summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/alloc-aligned.c
blob: fce0fd749852714026f513043e66656130ffae20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/

#include "mimalloc.h"
#include "mimalloc-internal.h"

#include <string.h>  // memset

// ------------------------------------------------------
// Aligned Allocation
// ------------------------------------------------------

// Fallback primitive aligned allocation -- split out for better codegen
static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
{
  mi_assert_internal(size <= PTRDIFF_MAX);
  mi_assert_internal(alignment!=0 && _mi_is_power_of_two(alignment) && alignment <= MI_ALIGNMENT_MAX);

  const uintptr_t align_mask = alignment-1;  // for any x, `(x & align_mask) == (x % alignment)`
  const size_t padsize = size + MI_PADDING_SIZE;

  // use regular allocation if it is guaranteed to fit the alignment constraints
  if (offset==0 && alignment<=padsize && padsize<=MI_MAX_ALIGN_GUARANTEE && (padsize&align_mask)==0) {
    void* p = _mi_heap_malloc_zero(heap, size, zero);
    mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0);
    return p;
  }

  // otherwise over-allocate
  void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero);
  if (p == NULL) return NULL;

  // .. and align within the allocation
  uintptr_t adjust = alignment - (((uintptr_t)p + offset) & align_mask);
  mi_assert_internal(adjust <= alignment);
  void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust));
  if (aligned_p != p) mi_page_set_has_aligned(_mi_ptr_page(p), true);
  mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
  mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p));
  return aligned_p;
}

// Primitive aligned allocation
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
{
  // note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size.
  mi_assert(alignment > 0);
  if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
    #if MI_DEBUG > 0
    _mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment);
    #endif
    return NULL;
  }
  if (mi_unlikely(alignment > MI_ALIGNMENT_MAX)) {  // we cannot align at a boundary larger than this (or otherwise we cannot find segment headers)
    #if MI_DEBUG > 0
    _mi_error_message(EOVERFLOW, "aligned allocation has a maximum alignment of %zu (size %zu, alignment %zu)\n", MI_ALIGNMENT_MAX, size, alignment);
    #endif
    return NULL;
  }
  if (mi_unlikely(size > PTRDIFF_MAX)) {          // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)                                                    
    #if MI_DEBUG > 0
    _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment);
    #endif
    return NULL;
  }
  const uintptr_t align_mask = alignment-1;       // for any x, `(x & align_mask) == (x % alignment)`
  const size_t padsize = size + MI_PADDING_SIZE;  // note: cannot overflow due to earlier size > PTRDIFF_MAX check

  // try first if there happens to be a small block available with just the right alignment
  if (mi_likely(padsize <= MI_SMALL_SIZE_MAX)) {
    mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize);
    const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
    if (mi_likely(page->free != NULL && is_aligned))
    {
      #if MI_STAT>1
      mi_heap_stat_increase(heap, malloc, size);
      #endif
      void* p = _mi_page_malloc(heap, page, padsize); // TODO: inline _mi_page_malloc
      mi_assert_internal(p != NULL);
      mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
      if (zero) { _mi_block_zero_init(page, p, size); }
      return p;
    }
  }
  // fallback
  return mi_heap_malloc_zero_aligned_at_fallback(heap, size, alignment, offset, zero);
}


// ------------------------------------------------------
// Optimized mi_heap_malloc_aligned / mi_malloc_aligned
// ------------------------------------------------------

mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false);
}

mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
  #if !MI_PADDING
  // without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`)
  if (!_mi_is_power_of_two(alignment)) return NULL;
  if (mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX))
  #else
  // with padding, we can only guarantee this for fixed alignments
  if (mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2)))
                && size <= MI_SMALL_SIZE_MAX))
  #endif
  {
    // fast path for common alignment and size
    return mi_heap_malloc_small(heap, size);
  }
  else {
    return mi_heap_malloc_aligned_at(heap, size, alignment, 0);
  }
}

// ------------------------------------------------------
// Aligned Allocation
// ------------------------------------------------------

mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true);
}

mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
  return mi_heap_zalloc_aligned_at(heap, size, alignment, 0);
}

mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_zalloc_aligned_at(heap, total, alignment, offset);
}

mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
  return mi_heap_calloc_aligned_at(heap,count,size,alignment,0);
}

mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_malloc_aligned_at(mi_get_default_heap(), size, alignment, offset);
}

mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
  return mi_heap_malloc_aligned(mi_get_default_heap(), size, alignment);
}

mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_zalloc_aligned_at(mi_get_default_heap(), size, alignment, offset);
}

mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
  return mi_heap_zalloc_aligned(mi_get_default_heap(), size, alignment);
}

mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_calloc_aligned_at(mi_get_default_heap(), count, size, alignment, offset);
}

mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
  return mi_heap_calloc_aligned(mi_get_default_heap(), count, size, alignment);
}


// ------------------------------------------------------
// Aligned re-allocation
// ------------------------------------------------------

static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
  mi_assert(alignment > 0);
  if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
  if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero);
  size_t size = mi_usable_size(p);
  if (newsize <= size && newsize >= (size - (size / 2))
      && (((uintptr_t)p + offset) % alignment) == 0) {
    return p;  // reallocation still fits, is aligned and not more than 50% waste
  }
  else {
    void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset);
    if (newp != NULL) {
      if (zero && newsize > size) {
        const mi_page_t* page = _mi_ptr_page(newp);
        if (page->is_zero) {
          // already zero initialized
          mi_assert_expensive(mi_mem_is_zero(newp,newsize));
        }
        else {
          // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
          size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
          memset((uint8_t*)newp + start, 0, newsize - start);
        }
      }
      _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
      mi_free(p); // only free if successful
    }
    return newp;
  }
}

static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept {
  mi_assert(alignment > 0);
  if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
  size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL)
  return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero);
}

void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false);
}

void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
  return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false);
}

void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true);
}

void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
  return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true);
}

void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(newcount, size, &total)) return NULL;
  return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset);
}

void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(newcount, size, &total)) return NULL;
  return mi_heap_rezalloc_aligned(heap, p, total, alignment);
}

void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_realloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset);
}

void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
  return mi_heap_realloc_aligned(mi_get_default_heap(), p, newsize, alignment);
}

void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_rezalloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset);
}

void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
  return mi_heap_rezalloc_aligned(mi_get_default_heap(), p, newsize, alignment);
}

void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
  return mi_heap_recalloc_aligned_at(mi_get_default_heap(), p, newcount, size, alignment, offset);
}

void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
  return mi_heap_recalloc_aligned(mi_get_default_heap(), p, newcount, size, alignment);
}