/* ---------------------------------------------------------------------------- Copyright (c) 2018-2021, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc-internal.h" #include // memset // ------------------------------------------------------ // Aligned Allocation // ------------------------------------------------------ // Fallback primitive aligned allocation -- split out for better codegen static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept { mi_assert_internal(size <= PTRDIFF_MAX); mi_assert_internal(alignment!=0 && _mi_is_power_of_two(alignment) && alignment <= MI_ALIGNMENT_MAX); const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` const size_t padsize = size + MI_PADDING_SIZE; // use regular allocation if it is guaranteed to fit the alignment constraints if (offset==0 && alignment<=padsize && padsize<=MI_MAX_ALIGN_GUARANTEE && (padsize&align_mask)==0) { void* p = _mi_heap_malloc_zero(heap, size, zero); mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0); return p; } // otherwise over-allocate void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero); if (p == NULL) return NULL; // .. and align within the allocation uintptr_t adjust = alignment - (((uintptr_t)p + offset) & align_mask); mi_assert_internal(adjust <= alignment); void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust)); if (aligned_p != p) mi_page_set_has_aligned(_mi_ptr_page(p), true); mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p)); return aligned_p; } // Primitive aligned allocation static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept { // note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size. mi_assert(alignment > 0); if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) { // require power-of-two (see ) #if MI_DEBUG > 0 _mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment); #endif return NULL; } if (mi_unlikely(alignment > MI_ALIGNMENT_MAX)) { // we cannot align at a boundary larger than this (or otherwise we cannot find segment headers) #if MI_DEBUG > 0 _mi_error_message(EOVERFLOW, "aligned allocation has a maximum alignment of %zu (size %zu, alignment %zu)\n", MI_ALIGNMENT_MAX, size, alignment); #endif return NULL; } if (mi_unlikely(size > PTRDIFF_MAX)) { // we don't allocate more than PTRDIFF_MAX (see ) #if MI_DEBUG > 0 _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment); #endif return NULL; } const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` const size_t padsize = size + MI_PADDING_SIZE; // note: cannot overflow due to earlier size > PTRDIFF_MAX check // try first if there happens to be a small block available with just the right alignment if (mi_likely(padsize <= MI_SMALL_SIZE_MAX)) { mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize); const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0; if (mi_likely(page->free != NULL && is_aligned)) { #if MI_STAT>1 mi_heap_stat_increase(heap, malloc, size); #endif void* p = _mi_page_malloc(heap, page, padsize); // TODO: inline _mi_page_malloc mi_assert_internal(p != NULL); mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); if (zero) { _mi_block_zero_init(page, p, size); } return p; } } // fallback return mi_heap_malloc_zero_aligned_at_fallback(heap, size, alignment, offset, zero); } // ------------------------------------------------------ // Optimized mi_heap_malloc_aligned / mi_malloc_aligned // ------------------------------------------------------ mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false); } mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { #if !MI_PADDING // without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`) if (!_mi_is_power_of_two(alignment)) return NULL; if (mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX)) #else // with padding, we can only guarantee this for fixed alignments if (mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2))) && size <= MI_SMALL_SIZE_MAX)) #endif { // fast path for common alignment and size return mi_heap_malloc_small(heap, size); } else { return mi_heap_malloc_aligned_at(heap, size, alignment, 0); } } // ------------------------------------------------------ // Aligned Allocation // ------------------------------------------------------ mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true); } mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_zalloc_aligned_at(heap, size, alignment, 0); } mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_zalloc_aligned_at(heap, total, alignment, offset); } mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_calloc_aligned_at(heap,count,size,alignment,0); } mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_malloc_aligned_at(mi_get_default_heap(), size, alignment, offset); } mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_malloc_aligned(mi_get_default_heap(), size, alignment); } mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_zalloc_aligned_at(mi_get_default_heap(), size, alignment, offset); } mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_zalloc_aligned(mi_get_default_heap(), size, alignment); } mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_calloc_aligned_at(mi_get_default_heap(), count, size, alignment, offset); } mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_calloc_aligned(mi_get_default_heap(), count, size, alignment); } // ------------------------------------------------------ // Aligned re-allocation // ------------------------------------------------------ static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { mi_assert(alignment > 0); if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero); size_t size = mi_usable_size(p); if (newsize <= size && newsize >= (size - (size / 2)) && (((uintptr_t)p + offset) % alignment) == 0) { return p; // reallocation still fits, is aligned and not more than 50% waste } else { void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset); if (newp != NULL) { if (zero && newsize > size) { const mi_page_t* page = _mi_ptr_page(newp); if (page->is_zero) { // already zero initialized mi_assert_expensive(mi_mem_is_zero(newp,newsize)); } else { // also set last word in the previous allocation to zero to ensure any padding is zero-initialized size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); memset((uint8_t*)newp + start, 0, newsize - start); } } _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize)); mi_free(p); // only free if successful } return newp; } } static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept { mi_assert(alignment > 0); if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL) return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero); } void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false); } void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false); } void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true); } void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true); } void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(newcount, size, &total)) return NULL; return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset); } void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(newcount, size, &total)) return NULL; return mi_heap_rezalloc_aligned(heap, p, total, alignment); } void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_realloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset); } void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return mi_heap_realloc_aligned(mi_get_default_heap(), p, newsize, alignment); } void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_rezalloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset); } void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return mi_heap_rezalloc_aligned(mi_get_default_heap(), p, newsize, alignment); } void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_recalloc_aligned_at(mi_get_default_heap(), p, newcount, size, alignment, offset); } void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_recalloc_aligned(mi_get_default_heap(), p, newcount, size, alignment); }