1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
%D \module
%D [ file=m-matrix,
%D version=2014.11.04, % already a year older
%D title=\CONTEXT\ Extra Modules,
%D subtitle=Matrices,
%D author={Jeong Dalyoung \& Hans Hagen},
%D date=\currentdate,
%D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
%D This code is based on a post by Dalyoung on the context list. After that
%D we turned it into a module and improved the code a bit. Feel free to ask
%D us for more. Once we're satisfied, a more general helper l-matrix could
%D be made. Dalyoung does the clever bits, and Hans only cleanes up and
%D optimizes a bit.
% \registerctxluafile{l-matrix}{1.001} % not yet
\startmodule[matrix]
\startluacode
local settings_to_hash = utilities.parsers.settings_to_hash
local formatters = string.formatters
local copy = table.copy
local insert = table.insert
local remove = table.remove
local matrix = { }
moduledata.matrix = matrix
local f_matrix_slot = formatters["%s_{%s%s}"]
function matrix.symbolic(sym, x, y, nx ,ny) -- symMatrix("a", "m", "n")
local nx = nx or 2
local ny = ny or nx
local function filled(i,y)
local mrow = { }
for j=1,nx do
mrow[#mrow+1] = f_matrix_slot(sym,i,j)
end
mrow[#mrow+1] = "\\cdots"
mrow[#mrow+1] = f_matrix_slot(sym,i,y)
return mrow
end
local function dummy()
local mrow = { }
for j=1,nx do
mrow[#mrow+1] = "\\vdots"
end
mrow[#mrow+1] = "\\ddots"
mrow[#mrow+1] = "\\vdots"
return mrow
end
--
local mm = { }
for i=1,ny do
mm[i] = filled(i,y)
end
mm[#mm+1] = dummy()
mm[#mm+1] = filled(x,y)
return mm
end
-- todo: define a matrix at the tex end so that we have more control
local fences_p = {
left = "\\left(\\,",
right = "\\,\\right)",
}
local fences_b = {
left = "\\left[\\,",
right = "\\,\\right]",
}
function matrix.typeset(m,options)
local options = settings_to_hash(options or "")
context.startmatrix(options.determinant and fences_b or fences_p)
for i=1, #m do
local mi = m[i]
for j=1,#mi do
context.NC(mi[j])
end
context.NR()
end
context.stopmatrix()
end
-- interchange two rows (i-th, j-th)
function matrix.swap(t,i,j)
t[i], t[j] = t[j], t[i]
end
-- replace i-th row with factor * (i-th row)
function matrix.multiply(m,i,factor)
local mi = m[i]
for k=1,#mi do
mi[k] = factor * mi[k]
end
return m
end
-- scalar product "factor * m"
function matrix.scalar(m, factor)
for i=1,#m do
local mi = m[i]
for j=1,#mi do
mi[j] = factor * mi[j]
end
end
return m
end
-- replace i-th row with i-th row + factor * (j-th row)
function matrix.sumrow(m,i,j,factor)
local mi = m[i]
local mj = m[j]
for k=1,#mi do
mi[k] = mi[k] + factor * mj[k]
end
end
-- transpose of a matrix
function matrix.transpose(m)
local t = { }
for j=1,#m[1] do
local r = { }
for i=1,#m do
r[i] = m[i][j]
end
t[j] = r
end
return t
end
-- inner product of two vectors
function matrix.inner(u,v)
local nu = #u
if nu == 0 then
return 0
end
local nv = #v
if nv ~= nu then
return 0
end
local result = 0
for i=1,nu do
result = result + u[i] * v[i]
end
return result
end
-- product of two matrices
function matrix.product(m1,m2)
local product = { }
if #m1[1] == #m2 then
for i=1,#m1 do
local m1i = m1[i]
local mrow = { }
for j=1,#m2[1] do
local temp = 0
for k=1,#m1[1] do
temp = temp + m1i[k] * m2[k][j]
end
mrow[j] = temp
end
product[i] = mrow
end
end
return product
end
local function uppertri(m,sign)
local temp = copy(m)
for i=1,#temp-1 do
local pivot = temp[i][i]
if pivot == 0 then
local pRow = i +1
while temp[pRow][i] == 0 do
pRow = pRow + 1
if pRow > #temp then -- if there is no nonzero number
return temp
end
end
temp[i], temp[pRow] = temp[pRow], temp[i]
if sign then
sign = -sign
end
end
local mi = temp[i]
for k=i+1, #temp do
local factor = -temp[k][i]/mi[i]
local mk = temp[k]
for l=i,#mk do
mk[l] = mk[l] + factor * mi[l]
end
end
end
if sign then
return temp, sign
else
return temp
end
end
matrix.uppertri = uppertri
function matrix.determinant(m)
if #m == #m[1] then
local d = 1
local t, s = uppertri(m,1)
for i=1,#t do
d = d * t[i][i]
end
return s*d
else
return 0
end
end
local function rowechelon(m,r)
local temp = copy(m)
local pRow = 1
local pCol = 1
while pRow <= #temp do
local pivot = temp[pRow][pCol]
if pivot == 0 then
local i = pRow
local n = #temp
while temp[i][pCol] == 0 do
i = i + 1
if i > n then
-- no nonzero number in a column
pCol = pCol + 1
if pCol > #temp[pRow] then
-- there is no nonzero number in a row
return temp
end
i = pRow
end
end
temp[pRow], temp[i] = temp[i], temp[pRow]
end
local row = temp[pRow]
pivot = row[pCol]
for l=pCol,#row do
row[l] = row[l]/pivot
end
if r == 1 then
-- make the "reduced row echelon form"
local row = temp[pRow]
for k=1,pRow-1 do
local current = temp[k]
local factor = -current[pCol]
local mk = current
for l=pCol,#mk do
mk[l] = mk[l] + factor * row[l]
end
end
end
-- just make the row echelon form
local row = temp[pRow]
for k=pRow+1, #temp do
local current = temp[k]
local factor = -current[pCol]
local mk = current
for l=pCol,#mk do
mk[l] = mk[l] + factor * row[l]
end
end
pRow = pRow + 1
pCol = pCol + 1
if pRow > #temp or pCol > #temp[1] then
pRow = #temp + 1
end
end
return temp
end
matrix.rowechelon = rowechelon
matrix.rowEchelon = rowechelon
-- solve the linear equation m X = c
local function solve(m,c)
local n = #m
if n ~= #c then
return copy(m)
end
local newm = copy(m)
local temp = copy(c)
for i=1,n do
insert(newm[i],temp[i])
end
return rowechelon(newm,1)
end
matrix.solve = solve
-- find the inverse matrix of m
local function inverse(m)
local n = #m
local temp = copy(m)
if n ~= #m[1] then
return temp
end
for i=1,n do
for j=1,n do
insert(temp[i],j == i and 1 or 0)
end
end
temp = rowechelon(temp,1)
for i=1,n do
for j=1,n do
remove(temp[i], 1)
end
end
return temp
end
matrix.inverse = inverse
\stopluacode
\stopmodule
\unexpanded\def\ctxmodulematrix#1{\ctxlua{moduledata.matrix.#1}}
\continueifinputfile{m-matrix.mkiv}
\starttext
\startluacode
document.DemoMatrixA = {
{ 0, 2, 4, -4, 1 },
{ 0, 0, 2, 3, 4 },
{ 2, 2, -6, 2, 4 },
{ 2, 0, -6, 9, 7 },
{ 2, 3, 4, 5, 6 },
{ 6, 6, -6, 6, 6 },
}
document.DemoMatrixB = {
{ 0, 2, 4, -4, 1 },
{ 0, 0, 2, 3, 4 },
{ 2, 2, -6, 2, 4 },
{ 2, 0, -6, 9, 7 },
{ 2, 2, -6, 2, 4 },
{ 2, 2, -6, 2, 4 },
}
\stopluacode
\startsubject[title={A symbolic matrix}]
\ctxmodulematrix{typeset(moduledata.matrix.symbolic("a", "m", "n"))}
\ctxmodulematrix{typeset(moduledata.matrix.symbolic("a", "m", "n", 4, 8))}
\stopsubject
\startsubject[title={Swap two rows (2 and 4)}]
\startluacode
moduledata.matrix.typeset(document.DemoMatrixA)
context.blank()
moduledata.matrix.swap(document.DemoMatrixA, 2, 4)
context.blank()
moduledata.matrix.typeset(document.DemoMatrixA)
\stopluacode
\stopsubject
\startsubject[title={Multiply $3 \times r_2$}]
\startluacode
moduledata.matrix.typeset(document.DemoMatrixA)
context.blank()
moduledata.matrix.typeset(moduledata.matrix.multiply(document.DemoMatrixA, 2, 3))
\stopluacode
\stopsubject
\startsubject[title={Row 2 + $3 \times r_4$}]
\startluacode
moduledata.matrix.typeset(document.DemoMatrixA)
context.blank()
moduledata.matrix.sumrow(document.DemoMatrixA, 2, 3, 4)
context.blank()
moduledata.matrix.typeset(document.DemoMatrixA)
\stopluacode
\stopsubject
\startsubject[title={Transpose a matrix}]
\startluacode
moduledata.matrix.typeset(document.DemoMatrixA)
context.blank()
moduledata.matrix.typeset(moduledata.matrix.transpose(document.DemoMatrixA))
\stopluacode
\stopsubject
\startsubject[title={The inner product of two vectors}]
\startluacode
context(moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2 }))
context.blank()
context(moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2, 4 }))
\stopluacode
\startsubject[title={The product of two matrices}]
\startluacode
moduledata.matrix.typeset(document.DemoMatrixA)
context.blank()
moduledata.matrix.typeset(moduledata.matrix.product(document.DemoMatrixA,document.DemoMatrixA))
\stopluacode
\stopsubject
\startsubject[title={An Upper Triangular Matrix}]
\ctxmodulematrix{typeset(moduledata.matrix.uppertri(document.DemoMatrixB))}
\startsubject[title={A determinant}]
\startluacode
local m = {
{ 1, 2, 4 },
{ 0, 0, 2 },
{ 2, 2, -6 },
}
context(moduledata.matrix.determinant(m))
\stopluacode
\stopsubject
\startsubject[title={Row echelon form}]
\startluacode
local m = {
{ 1, 3, -2, 0, 2, 0, 0 },
{ 2, 6, -5, -2, 4, -3, -1 },
{ 0, 0, 5, 10, 0, 15, 5 },
{ 2, 6, 0, 8, 4, 18, 6 },
}
moduledata.matrix.typeset(m)
moduledata.matrix.typeset(moduledata.matrix.rowechelon(m,1))
\stopluacode
\stopsubject
\startsubject[title={Solving linear equation}]
\startluacode
local m = {
{ 1, 3, -2, 0 },
{ 2, 0, 1, 2 },
{ 6, -5, -2, 4 },
{ -3, -1, 5, 10 },
}
local c = { 5, 2, 6, 8 }
moduledata.matrix.typeset(moduledata.matrix.solve(m,c))
\stopluacode
\stopsubject
\startsubject[title={Inverse matrix}]
\startcombination[2*1]
{\ctxlua{moduledata.matrix.typeset { { 1, 1, 1 }, { 0, 2, 3 }, { 3, 2, 1 } }}} {}
{\ctxlua{moduledata.matrix.typeset(moduledata.matrix.inverse { { 1, 1, 1 }, { 0, 2, 3 }, { 3, 2, 1 } })}} {}
\stopcombination
\stopsubject
\stoptext
|