summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/segment.c
blob: 800d4fc31f3481f14d651331321a0d68cadccd92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"

#include <string.h>  // memset
#include <stdio.h>

#define MI_PAGE_HUGE_ALIGN  (256*1024)

static void mi_segment_delayed_decommit(mi_segment_t* segment, bool force, mi_stats_t* stats);


// -------------------------------------------------------------------
// commit mask 
// -------------------------------------------------------------------

static bool mi_commit_mask_all_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) {
  for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
    if ((commit->mask[i] & cm->mask[i]) != cm->mask[i]) return false;
  }
  return true;
}

static bool mi_commit_mask_any_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) {
  for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
    if ((commit->mask[i] & cm->mask[i]) != 0) return true;
  }
  return false;
}

static void mi_commit_mask_create_intersect(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm, mi_commit_mask_t* res) {
  for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
    res->mask[i] = (commit->mask[i] & cm->mask[i]);
  }
}

static void mi_commit_mask_clear(mi_commit_mask_t* res, const mi_commit_mask_t* cm) {
  for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
    res->mask[i] &= ~(cm->mask[i]);
  }
}

static void mi_commit_mask_set(mi_commit_mask_t* res, const mi_commit_mask_t* cm) {
  for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
    res->mask[i] |= cm->mask[i];
  }
}

static void mi_commit_mask_create(size_t bitidx, size_t bitcount, mi_commit_mask_t* cm) {
  mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS);
  mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS);
  if (bitcount == MI_COMMIT_MASK_BITS) {
    mi_assert_internal(bitidx==0);
    mi_commit_mask_create_full(cm);
  }
  else if (bitcount == 0) {
    mi_commit_mask_create_empty(cm);
  }
  else {
    mi_commit_mask_create_empty(cm);
    size_t i = bitidx / MI_COMMIT_MASK_FIELD_BITS;
    size_t ofs = bitidx % MI_COMMIT_MASK_FIELD_BITS;
    while (bitcount > 0) {
      mi_assert_internal(i < MI_COMMIT_MASK_FIELD_COUNT);
      size_t avail = MI_COMMIT_MASK_FIELD_BITS - ofs;
      size_t count = (bitcount > avail ? avail : bitcount);
      size_t mask = (count >= MI_COMMIT_MASK_FIELD_BITS ? ~((size_t)0) : (((size_t)1 << count) - 1) << ofs);
      cm->mask[i] = mask;
      bitcount -= count;
      ofs = 0;
      i++;
    }
  }
}

size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total) {
  mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0);
  size_t count = 0;
  for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
    size_t mask = cm->mask[i];
    if (~mask == 0) {
      count += MI_COMMIT_MASK_FIELD_BITS;
    }
    else {
      for (; mask != 0; mask >>= 1) {  // todo: use popcount
        if ((mask&1)!=0) count++;
      }
    }
  }
  // we use total since for huge segments each commit bit may represent a larger size
  return ((total / MI_COMMIT_MASK_BITS) * count);
}


size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx) {
  size_t i = (*idx) / MI_COMMIT_MASK_FIELD_BITS;
  size_t ofs = (*idx) % MI_COMMIT_MASK_FIELD_BITS;
  size_t mask = 0;
  // find first ones
  while (i < MI_COMMIT_MASK_FIELD_COUNT) {
    mask = cm->mask[i];
    mask >>= ofs;
    if (mask != 0) {
      while ((mask&1) == 0) {
        mask >>= 1;
        ofs++;
      }
      break;
    }
    i++;
    ofs = 0;
  }
  if (i >= MI_COMMIT_MASK_FIELD_COUNT) {
    // not found
    *idx = MI_COMMIT_MASK_BITS;
    return 0;
  }
  else {
    // found, count ones
    size_t count = 0;
    *idx = (i*MI_COMMIT_MASK_FIELD_BITS) + ofs;
    do {
      mi_assert_internal(ofs < MI_COMMIT_MASK_FIELD_BITS && (mask&1) == 1);
      do {
        count++;
        mask >>= 1;
      } while ((mask&1) == 1);
      if ((((*idx + count) % MI_COMMIT_MASK_FIELD_BITS) == 0)) {
        i++;
        if (i >= MI_COMMIT_MASK_FIELD_COUNT) break;
        mask = cm->mask[i];
        ofs = 0;
      }
    } while ((mask&1) == 1);
    mi_assert_internal(count > 0);
    return count;
  }
}


/* --------------------------------------------------------------------------------
  Segment allocation

  If a  thread ends, it "abandons" pages with used blocks
  and there is an abandoned segment list whose segments can
  be reclaimed by still running threads, much like work-stealing.
-------------------------------------------------------------------------------- */


/* -----------------------------------------------------------
   Slices
----------------------------------------------------------- */


static const mi_slice_t* mi_segment_slices_end(const mi_segment_t* segment) {
  return &segment->slices[segment->slice_entries];
}

static uint8_t* mi_slice_start(const mi_slice_t* slice) {
  mi_segment_t* segment = _mi_ptr_segment(slice);
  mi_assert_internal(slice >= segment->slices && slice < mi_segment_slices_end(segment));
  return ((uint8_t*)segment + ((slice - segment->slices)*MI_SEGMENT_SLICE_SIZE));
}


/* -----------------------------------------------------------
   Bins
----------------------------------------------------------- */
// Use bit scan forward to quickly find the first zero bit if it is available

static inline size_t mi_slice_bin8(size_t slice_count) {
  if (slice_count<=1) return slice_count;
  mi_assert_internal(slice_count <= MI_SLICES_PER_SEGMENT);
  slice_count--;
  size_t s = mi_bsr(slice_count);  // slice_count > 1
  if (s <= 2) return slice_count + 1;
  size_t bin = ((s << 2) | ((slice_count >> (s - 2))&0x03)) - 4;
  return bin;
}

static inline size_t mi_slice_bin(size_t slice_count) {
  mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_SEGMENT_SIZE);
  mi_assert_internal(mi_slice_bin8(MI_SLICES_PER_SEGMENT) <= MI_SEGMENT_BIN_MAX);
  size_t bin = mi_slice_bin8(slice_count);
  mi_assert_internal(bin <= MI_SEGMENT_BIN_MAX);
  return bin;
}

static inline size_t mi_slice_index(const mi_slice_t* slice) {
  mi_segment_t* segment = _mi_ptr_segment(slice);
  ptrdiff_t index = slice - segment->slices;
  mi_assert_internal(index >= 0 && index < (ptrdiff_t)segment->slice_entries);
  return index;
}


/* -----------------------------------------------------------
   Slice span queues
----------------------------------------------------------- */

static void mi_span_queue_push(mi_span_queue_t* sq, mi_slice_t* slice) {
  // todo: or push to the end?
  mi_assert_internal(slice->prev == NULL && slice->next==NULL);
  slice->prev = NULL; // paranoia
  slice->next = sq->first;
  sq->first = slice;
  if (slice->next != NULL) slice->next->prev = slice;
                     else sq->last = slice;
  slice->xblock_size = 0; // free
}

static mi_span_queue_t* mi_span_queue_for(size_t slice_count, mi_segments_tld_t* tld) {
  size_t bin = mi_slice_bin(slice_count);
  mi_span_queue_t* sq = &tld->spans[bin];
  mi_assert_internal(sq->slice_count >= slice_count);
  return sq;
}

static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) {
  mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0);
  // should work too if the queue does not contain slice (which can happen during reclaim)
  if (slice->prev != NULL) slice->prev->next = slice->next;
  if (slice == sq->first) sq->first = slice->next;
  if (slice->next != NULL) slice->next->prev = slice->prev;
  if (slice == sq->last) sq->last = slice->prev;
  slice->prev = NULL;
  slice->next = NULL;
  slice->xblock_size = 1; // no more free
}


/* -----------------------------------------------------------
 Invariant checking
----------------------------------------------------------- */

static bool mi_slice_is_used(const mi_slice_t* slice) {
  return (slice->xblock_size > 0);
}


#if (MI_DEBUG>=3)
static bool mi_span_queue_contains(mi_span_queue_t* sq, mi_slice_t* slice) {
  for (mi_slice_t* s = sq->first; s != NULL; s = s->next) {
    if (s==slice) return true;
  }
  return false;
}

static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(segment != NULL);
  mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
  mi_assert_internal(segment->abandoned <= segment->used);
  mi_assert_internal(segment->thread_id == 0 || segment->thread_id == _mi_thread_id());
  mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask)); // can only decommit committed blocks
  //mi_assert_internal(segment->segment_info_size % MI_SEGMENT_SLICE_SIZE == 0);
  mi_slice_t* slice = &segment->slices[0];
  const mi_slice_t* end = mi_segment_slices_end(segment);
  size_t used_count = 0;
  mi_span_queue_t* sq;
  while(slice < end) {
    mi_assert_internal(slice->slice_count > 0);
    mi_assert_internal(slice->slice_offset == 0);
    size_t index = mi_slice_index(slice);
    size_t maxindex = (index + slice->slice_count >= segment->slice_entries ? segment->slice_entries : index + slice->slice_count) - 1;
    if (mi_slice_is_used(slice)) { // a page in use, we need at least MAX_SLICE_OFFSET valid back offsets
      used_count++;
      for (size_t i = 0; i <= MI_MAX_SLICE_OFFSET && index + i <= maxindex; i++) {
        mi_assert_internal(segment->slices[index + i].slice_offset == i*sizeof(mi_slice_t));
        mi_assert_internal(i==0 || segment->slices[index + i].slice_count == 0);
        mi_assert_internal(i==0 || segment->slices[index + i].xblock_size == 1);
      }
      // and the last entry as well (for coalescing)
      const mi_slice_t* last = slice + slice->slice_count - 1;
      if (last > slice && last < mi_segment_slices_end(segment)) {
        mi_assert_internal(last->slice_offset == (slice->slice_count-1)*sizeof(mi_slice_t));
        mi_assert_internal(last->slice_count == 0);
        mi_assert_internal(last->xblock_size == 1);
      }
    }
    else {  // free range of slices; only last slice needs a valid back offset
      mi_slice_t* last = &segment->slices[maxindex];
      if (segment->kind != MI_SEGMENT_HUGE || slice->slice_count <= (segment->slice_entries - segment->segment_info_slices)) {
        mi_assert_internal((uint8_t*)slice == (uint8_t*)last - last->slice_offset);
      }
      mi_assert_internal(slice == last || last->slice_count == 0 );
      mi_assert_internal(last->xblock_size == 0 || (segment->kind==MI_SEGMENT_HUGE && last->xblock_size==1));
      if (segment->kind != MI_SEGMENT_HUGE && segment->thread_id != 0) { // segment is not huge or abandoned
        sq = mi_span_queue_for(slice->slice_count,tld);
        mi_assert_internal(mi_span_queue_contains(sq,slice));
      }
    }
    slice = &segment->slices[maxindex+1];
  }
  mi_assert_internal(slice == end);
  mi_assert_internal(used_count == segment->used + 1);
  return true;
}
#endif

/* -----------------------------------------------------------
 Segment size calculations
----------------------------------------------------------- */

static size_t mi_segment_info_size(mi_segment_t* segment) {
  return segment->segment_info_slices * MI_SEGMENT_SLICE_SIZE;
}

static uint8_t* _mi_segment_page_start_from_slice(const mi_segment_t* segment, const mi_slice_t* slice, size_t xblock_size, size_t* page_size)
{
  ptrdiff_t idx = slice - segment->slices;
  size_t psize = (size_t)slice->slice_count * MI_SEGMENT_SLICE_SIZE;
  // make the start not OS page aligned for smaller blocks to avoid page/cache effects
  size_t start_offset = (xblock_size >= MI_INTPTR_SIZE && xblock_size <= 1024 ? MI_MAX_ALIGN_GUARANTEE : 0); 
  if (page_size != NULL) { *page_size = psize - start_offset; }
  return (uint8_t*)segment + ((idx*MI_SEGMENT_SLICE_SIZE) + start_offset);
}

// Start of the page available memory; can be used on uninitialized pages
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size)
{
  const mi_slice_t* slice = mi_page_to_slice((mi_page_t*)page);
  uint8_t* p = _mi_segment_page_start_from_slice(segment, slice, page->xblock_size, page_size);  
  mi_assert_internal(page->xblock_size > 0 || _mi_ptr_page(p) == page);
  mi_assert_internal(_mi_ptr_segment(p) == segment);
  return p;
}


static size_t mi_segment_calculate_slices(size_t required, size_t* pre_size, size_t* info_slices) {
  size_t page_size = _mi_os_page_size();
  size_t isize     = _mi_align_up(sizeof(mi_segment_t), page_size);
  size_t guardsize = 0;

  if (MI_SECURE>0) {
    // in secure mode, we set up a protected page in between the segment info
    // and the page data (and one at the end of the segment)
    guardsize =  page_size;
    required  = _mi_align_up(required, page_size);
  }

  if (pre_size != NULL) *pre_size = isize;
  isize = _mi_align_up(isize + guardsize, MI_SEGMENT_SLICE_SIZE);
  if (info_slices != NULL) *info_slices = isize / MI_SEGMENT_SLICE_SIZE;
  size_t segment_size = (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + guardsize, MI_SEGMENT_SLICE_SIZE) );  
  mi_assert_internal(segment_size % MI_SEGMENT_SLICE_SIZE == 0);
  return (segment_size / MI_SEGMENT_SLICE_SIZE);
}


/* ----------------------------------------------------------------------------
Segment caches
We keep a small segment cache per thread to increase local
reuse and avoid setting/clearing guard pages in secure mode.
------------------------------------------------------------------------------- */

static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
  if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1);
                  else _mi_stat_decrease(&tld->stats->segments,1);
  tld->count += (segment_size >= 0 ? 1 : -1);
  if (tld->count > tld->peak_count) tld->peak_count = tld->count;
  tld->current_size += segment_size;
  if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
}

static void mi_segment_os_free(mi_segment_t* segment, mi_segments_tld_t* tld) {
  segment->thread_id = 0;
  _mi_segment_map_freed_at(segment);
  mi_segments_track_size(-((long)mi_segment_size(segment)),tld);
  if (MI_SECURE>0) {
    // _mi_os_unprotect(segment, mi_segment_size(segment)); // ensure no more guard pages are set
    // unprotect the guard pages; we cannot just unprotect the whole segment size as part may be decommitted
    size_t os_pagesize = _mi_os_page_size();
    _mi_os_unprotect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize);
    uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize;
    _mi_os_unprotect(end, os_pagesize);
  }

  // purge delayed decommits now? (no, leave it to the cache)
  // mi_segment_delayed_decommit(segment,true,tld->stats);
  
  // _mi_os_free(segment, mi_segment_size(segment), /*segment->memid,*/ tld->stats);
  const size_t size = mi_segment_size(segment);
  if (size != MI_SEGMENT_SIZE || !_mi_segment_cache_push(segment, size, segment->memid, &segment->commit_mask, &segment->decommit_mask, segment->mem_is_large, segment->mem_is_pinned, tld->os)) {
    const size_t csize = _mi_commit_mask_committed_size(&segment->commit_mask, size);
    if (csize > 0 && !segment->mem_is_pinned) _mi_stat_decrease(&_mi_stats_main.committed, csize);
    _mi_abandoned_await_readers();  // wait until safe to free
    _mi_arena_free(segment, mi_segment_size(segment), segment->memid, segment->mem_is_pinned /* pretend not committed to not double count decommits */, tld->os);
  }
}

// called by threads that are terminating 
void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
  MI_UNUSED(tld);
  // nothing to do
}


/* -----------------------------------------------------------
   Span management
----------------------------------------------------------- */

static void mi_segment_commit_mask(mi_segment_t* segment, bool conservative, uint8_t* p, size_t size, uint8_t** start_p, size_t* full_size, mi_commit_mask_t* cm) {
  mi_assert_internal(_mi_ptr_segment(p) == segment);
  mi_assert_internal(segment->kind != MI_SEGMENT_HUGE);
  mi_commit_mask_create_empty(cm);
  if (size == 0 || size > MI_SEGMENT_SIZE || segment->kind == MI_SEGMENT_HUGE) return;
  const size_t segstart = mi_segment_info_size(segment);
  const size_t segsize = mi_segment_size(segment);
  if (p >= (uint8_t*)segment + segsize) return;

  size_t pstart = (p - (uint8_t*)segment);
  mi_assert_internal(pstart + size <= segsize);

  size_t start;
  size_t end;
  if (conservative) {
    // decommit conservative
    start = _mi_align_up(pstart, MI_COMMIT_SIZE);
    end   = _mi_align_down(pstart + size, MI_COMMIT_SIZE);
    mi_assert_internal(start >= segstart);
    mi_assert_internal(end <= segsize);
  }
  else {
    // commit liberal
    start = _mi_align_down(pstart, MI_MINIMAL_COMMIT_SIZE);
    end   = _mi_align_up(pstart + size, MI_MINIMAL_COMMIT_SIZE);
  }
  if (pstart >= segstart && start < segstart) {  // note: the mask is also calculated for an initial commit of the info area
    start = segstart;
  }
  if (end > segsize) {
    end = segsize;
  }

  mi_assert_internal(start <= pstart && (pstart + size) <= end);
  mi_assert_internal(start % MI_COMMIT_SIZE==0 && end % MI_COMMIT_SIZE == 0);
  *start_p   = (uint8_t*)segment + start;
  *full_size = (end > start ? end - start : 0);
  if (*full_size == 0) return;

  size_t bitidx = start / MI_COMMIT_SIZE;
  mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS);
  
  size_t bitcount = *full_size / MI_COMMIT_SIZE; // can be 0
  if (bitidx + bitcount > MI_COMMIT_MASK_BITS) {
    _mi_warning_message("commit mask overflow: idx=%zu count=%zu start=%zx end=%zx p=0x%p size=%zu fullsize=%zu\n", bitidx, bitcount, start, end, p, size, *full_size);
  }
  mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS);
  mi_commit_mask_create(bitidx, bitcount, cm);
}


static bool mi_segment_commitx(mi_segment_t* segment, bool commit, uint8_t* p, size_t size, mi_stats_t* stats) {    
  mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));

  // try to commit in at least MI_MINIMAL_COMMIT_SIZE sizes.
  /*
  if (commit && size > 0) {
    const size_t csize = _mi_align_up(size, MI_MINIMAL_COMMIT_SIZE);
    if (p + csize <= mi_segment_end(segment)) {
      size = csize;
    }
  }
  */
  // commit liberal, but decommit conservative
  uint8_t* start = NULL;
  size_t   full_size = 0;
  mi_commit_mask_t mask;
  mi_segment_commit_mask(segment, !commit/*conservative*/, p, size, &start, &full_size, &mask);
  if (mi_commit_mask_is_empty(&mask) || full_size==0) return true;

  if (commit && !mi_commit_mask_all_set(&segment->commit_mask, &mask)) {
    bool is_zero = false;
    mi_commit_mask_t cmask;
    mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask);
    _mi_stat_decrease(&_mi_stats_main.committed, _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for overlap
    if (!_mi_os_commit(start,full_size,&is_zero,stats)) return false;    
    mi_commit_mask_set(&segment->commit_mask, &mask);     
  }
  else if (!commit && mi_commit_mask_any_set(&segment->commit_mask, &mask)) {
    mi_assert_internal((void*)start != (void*)segment);
    //mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &mask));

    mi_commit_mask_t cmask;
    mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask);
    _mi_stat_increase(&_mi_stats_main.committed, full_size - _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for overlap
    if (segment->allow_decommit) { 
      _mi_os_decommit(start, full_size, stats); // ok if this fails
    } 
    mi_commit_mask_clear(&segment->commit_mask, &mask);
  }
  // increase expiration of reusing part of the delayed decommit
  if (commit && mi_commit_mask_any_set(&segment->decommit_mask, &mask)) {
    segment->decommit_expire = _mi_clock_now() + mi_option_get(mi_option_decommit_delay);
  }
  // always undo delayed decommits
  mi_commit_mask_clear(&segment->decommit_mask, &mask);
  return true;
}

static bool mi_segment_ensure_committed(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) {
  mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));
  // note: assumes commit_mask is always full for huge segments as otherwise the commit mask bits can overflow
  if (mi_commit_mask_is_full(&segment->commit_mask) && mi_commit_mask_is_empty(&segment->decommit_mask)) return true; // fully committed
  return mi_segment_commitx(segment,true,p,size,stats);
}

static void mi_segment_perhaps_decommit(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) {
  if (!segment->allow_decommit) return;
  if (mi_option_get(mi_option_decommit_delay) == 0) {
    mi_segment_commitx(segment, false, p, size, stats);
  }
  else {
    // register for future decommit in the decommit mask
    uint8_t* start = NULL;
    size_t   full_size = 0;
    mi_commit_mask_t mask; 
    mi_segment_commit_mask(segment, true /*conservative*/, p, size, &start, &full_size, &mask);
    if (mi_commit_mask_is_empty(&mask) || full_size==0) return;
    
    // update delayed commit
    mi_assert_internal(segment->decommit_expire > 0 || mi_commit_mask_is_empty(&segment->decommit_mask));      
    mi_commit_mask_t cmask;
    mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask);  // only decommit what is committed; span_free may try to decommit more
    mi_commit_mask_set(&segment->decommit_mask, &cmask);
    mi_msecs_t now = _mi_clock_now();    
    if (segment->decommit_expire == 0) {
      // no previous decommits, initialize now
      segment->decommit_expire = now + mi_option_get(mi_option_decommit_delay);
    }
    else if (segment->decommit_expire <= now) {
      // previous decommit mask already expired
      // mi_segment_delayed_decommit(segment, true, stats);
      segment->decommit_expire = now + mi_option_get(mi_option_decommit_extend_delay); // (mi_option_get(mi_option_decommit_delay) / 8); // wait a tiny bit longer in case there is a series of free's
    }
    else {
      // previous decommit mask is not yet expired, increase the expiration by a bit.
      segment->decommit_expire += mi_option_get(mi_option_decommit_extend_delay);
    }
  }  
}

static void mi_segment_delayed_decommit(mi_segment_t* segment, bool force, mi_stats_t* stats) {
  if (!segment->allow_decommit || mi_commit_mask_is_empty(&segment->decommit_mask)) return;
  mi_msecs_t now = _mi_clock_now();
  if (!force && now < segment->decommit_expire) return;

  mi_commit_mask_t mask = segment->decommit_mask;
  segment->decommit_expire = 0;
  mi_commit_mask_create_empty(&segment->decommit_mask);

  size_t idx;
  size_t count;
  mi_commit_mask_foreach(&mask, idx, count) {
    // if found, decommit that sequence
    if (count > 0) {
      uint8_t* p = (uint8_t*)segment + (idx*MI_COMMIT_SIZE);
      size_t size = count * MI_COMMIT_SIZE;
      mi_segment_commitx(segment, false, p, size, stats);
    }
  }
  mi_commit_mask_foreach_end()
  mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
}


static bool mi_segment_is_abandoned(mi_segment_t* segment) {
  return (segment->thread_id == 0);
}

// note: can be called on abandoned segments
static void mi_segment_span_free(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) {
  mi_assert_internal(slice_index < segment->slice_entries);
  mi_span_queue_t* sq = (segment->kind == MI_SEGMENT_HUGE || mi_segment_is_abandoned(segment) 
                          ? NULL : mi_span_queue_for(slice_count,tld));
  if (slice_count==0) slice_count = 1;
  mi_assert_internal(slice_index + slice_count - 1 < segment->slice_entries);

  // set first and last slice (the intermediates can be undetermined)
  mi_slice_t* slice = &segment->slices[slice_index];
  slice->slice_count = (uint32_t)slice_count;
  mi_assert_internal(slice->slice_count == slice_count); // no overflow?
  slice->slice_offset = 0;
  if (slice_count > 1) {
    mi_slice_t* last = &segment->slices[slice_index + slice_count - 1];
    last->slice_count = 0;
    last->slice_offset = (uint32_t)(sizeof(mi_page_t)*(slice_count - 1));
    last->xblock_size = 0;
  }

  // perhaps decommit
  mi_segment_perhaps_decommit(segment,mi_slice_start(slice),slice_count*MI_SEGMENT_SLICE_SIZE,tld->stats);
  
  // and push it on the free page queue (if it was not a huge page)
  if (sq != NULL) mi_span_queue_push( sq, slice );
             else slice->xblock_size = 0; // mark huge page as free anyways
}

/*
// called from reclaim to add existing free spans
static void mi_segment_span_add_free(mi_slice_t* slice, mi_segments_tld_t* tld) {
  mi_segment_t* segment = _mi_ptr_segment(slice);
  mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0);
  size_t slice_index = mi_slice_index(slice);
  mi_segment_span_free(segment,slice_index,slice->slice_count,tld);
}
*/

static void mi_segment_span_remove_from_queue(mi_slice_t* slice, mi_segments_tld_t* tld) {
  mi_assert_internal(slice->slice_count > 0 && slice->slice_offset==0 && slice->xblock_size==0);
  mi_assert_internal(_mi_ptr_segment(slice)->kind != MI_SEGMENT_HUGE);
  mi_span_queue_t* sq = mi_span_queue_for(slice->slice_count, tld);
  mi_span_queue_delete(sq, slice);
}

// note: can be called on abandoned segments
static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_tld_t* tld) {
  mi_assert_internal(slice != NULL && slice->slice_count > 0 && slice->slice_offset == 0);
  mi_segment_t* segment = _mi_ptr_segment(slice);
  bool is_abandoned = mi_segment_is_abandoned(segment);

  // for huge pages, just mark as free but don't add to the queues
  if (segment->kind == MI_SEGMENT_HUGE) {
    mi_assert_internal(segment->used == 1);  // decreased right after this call in `mi_segment_page_clear`
    slice->xblock_size = 0;  // mark as free anyways
    // we should mark the last slice `xblock_size=0` now to maintain invariants but we skip it to 
    // avoid a possible cache miss (and the segment is about to be freed)
    return slice;
  }

  // otherwise coalesce the span and add to the free span queues
  size_t slice_count = slice->slice_count;
  mi_slice_t* next = slice + slice->slice_count;
  mi_assert_internal(next <= mi_segment_slices_end(segment));
  if (next < mi_segment_slices_end(segment) && next->xblock_size==0) {
    // free next block -- remove it from free and merge
    mi_assert_internal(next->slice_count > 0 && next->slice_offset==0);
    slice_count += next->slice_count; // extend
    if (!is_abandoned) { mi_segment_span_remove_from_queue(next, tld); }
  }
  if (slice > segment->slices) {
    mi_slice_t* prev = mi_slice_first(slice - 1);
    mi_assert_internal(prev >= segment->slices);
    if (prev->xblock_size==0) {
      // free previous slice -- remove it from free and merge
      mi_assert_internal(prev->slice_count > 0 && prev->slice_offset==0);
      slice_count += prev->slice_count;
      if (!is_abandoned) { mi_segment_span_remove_from_queue(prev, tld); }
      slice = prev;
    }
  }

  // and add the new free page
  mi_segment_span_free(segment, mi_slice_index(slice), slice_count, tld);
  return slice;
}


static void mi_segment_slice_split(mi_segment_t* segment, mi_slice_t* slice, size_t slice_count, mi_segments_tld_t* tld) {
  mi_assert_internal(_mi_ptr_segment(slice)==segment);
  mi_assert_internal(slice->slice_count >= slice_count);
  mi_assert_internal(slice->xblock_size > 0); // no more in free queue
  if (slice->slice_count <= slice_count) return;
  mi_assert_internal(segment->kind != MI_SEGMENT_HUGE);
  size_t next_index = mi_slice_index(slice) + slice_count;
  size_t next_count = slice->slice_count - slice_count;
  mi_segment_span_free(segment, next_index, next_count, tld);
  slice->slice_count = (uint32_t)slice_count;
}

// Note: may still return NULL if committing the memory failed
static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) {
  mi_assert_internal(slice_index < segment->slice_entries);
  mi_slice_t* slice = &segment->slices[slice_index];
  mi_assert_internal(slice->xblock_size==0 || slice->xblock_size==1);

  // commit before changing the slice data
  if (!mi_segment_ensure_committed(segment, _mi_segment_page_start_from_slice(segment, slice, 0, NULL), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats)) {
    return NULL;  // commit failed!
  }

  // convert the slices to a page
  slice->slice_offset = 0;
  slice->slice_count = (uint32_t)slice_count;
  mi_assert_internal(slice->slice_count == slice_count);
  const size_t bsize = slice_count * MI_SEGMENT_SLICE_SIZE;
  slice->xblock_size = (uint32_t)(bsize >= MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : bsize);
  mi_page_t*  page = mi_slice_to_page(slice);
  mi_assert_internal(mi_page_block_size(page) == bsize);

  // set slice back pointers for the first MI_MAX_SLICE_OFFSET entries
  size_t extra = slice_count-1;
  if (extra > MI_MAX_SLICE_OFFSET) extra = MI_MAX_SLICE_OFFSET;
  if (slice_index + extra >= segment->slice_entries) extra = segment->slice_entries - slice_index - 1;  // huge objects may have more slices than avaiable entries in the segment->slices
  slice++;
  for (size_t i = 1; i <= extra; i++, slice++) {
    slice->slice_offset = (uint32_t)(sizeof(mi_slice_t)*i);
    slice->slice_count = 0;
    slice->xblock_size = 1;
  }

  // and also for the last one (if not set already) (the last one is needed for coalescing)
  // note: the cast is needed for ubsan since the index can be larger than MI_SLICES_PER_SEGMENT for huge allocations (see #543)
  mi_slice_t* last = &((mi_slice_t*)segment->slices)[slice_index + slice_count - 1]; 
  if (last < mi_segment_slices_end(segment) && last >= slice) {
    last->slice_offset = (uint32_t)(sizeof(mi_slice_t)*(slice_count-1));
    last->slice_count = 0;
    last->xblock_size = 1;
  }
  
  // and initialize the page
  page->is_reset = false;
  page->is_committed = true;
  segment->used++;
  return page;
}

static mi_page_t* mi_segments_page_find_and_allocate(size_t slice_count, mi_segments_tld_t* tld) {
  mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_LARGE_OBJ_SIZE_MAX);
  // search from best fit up
  mi_span_queue_t* sq = mi_span_queue_for(slice_count, tld);
  if (slice_count == 0) slice_count = 1;
  while (sq <= &tld->spans[MI_SEGMENT_BIN_MAX]) {
    for (mi_slice_t* slice = sq->first; slice != NULL; slice = slice->next) {
      if (slice->slice_count >= slice_count) {
        // found one
        mi_span_queue_delete(sq, slice);
        mi_segment_t* segment = _mi_ptr_segment(slice);
        if (slice->slice_count > slice_count) {
          mi_segment_slice_split(segment, slice, slice_count, tld);
        }
        mi_assert_internal(slice != NULL && slice->slice_count == slice_count && slice->xblock_size > 0);
        mi_page_t* page = mi_segment_span_allocate(segment, mi_slice_index(slice), slice->slice_count, tld);
        if (page == NULL) {
          // commit failed; return NULL but first restore the slice
          mi_segment_span_free_coalesce(slice, tld);
          return NULL;
        }
        return page;        
      }
    }
    sq++;
  }
  // could not find a page..
  return NULL;
}


/* -----------------------------------------------------------
   Segment allocation
----------------------------------------------------------- */

// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_segments_tld_t* tld, mi_os_tld_t* os_tld, mi_page_t** huge_page)
{
  mi_assert_internal((required==0 && huge_page==NULL) || (required>0 && huge_page != NULL));
  mi_assert_internal((segment==NULL) || (segment!=NULL && required==0));
  // calculate needed sizes first
  size_t info_slices;
  size_t pre_size;
  const size_t segment_slices = mi_segment_calculate_slices(required, &pre_size, &info_slices);
  const size_t slice_entries = (segment_slices > MI_SLICES_PER_SEGMENT ? MI_SLICES_PER_SEGMENT : segment_slices);
  const size_t segment_size = segment_slices * MI_SEGMENT_SLICE_SIZE;

  // Commit eagerly only if not the first N lazy segments (to reduce impact of many threads that allocate just a little)
  const bool eager_delay = (// !_mi_os_has_overcommit() &&             // never delay on overcommit systems
                            _mi_current_thread_count() > 1 &&       // do not delay for the first N threads
                            tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay));
  const bool eager = !eager_delay && mi_option_is_enabled(mi_option_eager_commit);
  bool commit = eager || (required > 0); 
  
  // Try to get from our cache first
  bool is_zero = false;
  const bool commit_info_still_good = (segment != NULL);
  mi_commit_mask_t commit_mask;
  mi_commit_mask_t decommit_mask;
  if (segment != NULL) {
    commit_mask = segment->commit_mask;
    decommit_mask = segment->decommit_mask;
  }
  else {
    mi_commit_mask_create_empty(&commit_mask);
    mi_commit_mask_create_empty(&decommit_mask);
  }
  if (segment==NULL) {
    // Allocate the segment from the OS
    bool mem_large = (!eager_delay && (MI_SECURE==0)); // only allow large OS pages once we are no longer lazy    
    bool is_pinned = false;
    size_t memid = 0;
    segment = (mi_segment_t*)_mi_segment_cache_pop(segment_size, &commit_mask, &decommit_mask, &mem_large, &is_pinned, &is_zero, &memid, os_tld);
    if (segment==NULL) {
      segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &commit, &mem_large, &is_pinned, &is_zero, &memid, os_tld);
      if (segment == NULL) return NULL;  // failed to allocate
      if (commit) {
        mi_commit_mask_create_full(&commit_mask);
      }
      else {
        mi_commit_mask_create_empty(&commit_mask);
      }
    }    
    mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);

    const size_t commit_needed = _mi_divide_up(info_slices*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE);
    mi_assert_internal(commit_needed>0);
    mi_commit_mask_t commit_needed_mask;
    mi_commit_mask_create(0, commit_needed, &commit_needed_mask);
    if (!mi_commit_mask_all_set(&commit_mask, &commit_needed_mask)) {
      // at least commit the info slices
      mi_assert_internal(commit_needed*MI_COMMIT_SIZE >= info_slices*MI_SEGMENT_SLICE_SIZE);
      bool ok = _mi_os_commit(segment, commit_needed*MI_COMMIT_SIZE, &is_zero, tld->stats);
      if (!ok) return NULL; // failed to commit   
      mi_commit_mask_set(&commit_mask, &commit_needed_mask); 
    }
    segment->memid = memid;
    segment->mem_is_pinned = is_pinned;
    segment->mem_is_large = mem_large;
    segment->mem_is_committed = mi_commit_mask_is_full(&commit_mask);
    mi_segments_track_size((long)(segment_size), tld);
    _mi_segment_map_allocated_at(segment);
  }

  // zero the segment info? -- not always needed as it is zero initialized from the OS 
  mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);  // tsan
  if (!is_zero) {
    ptrdiff_t ofs = offsetof(mi_segment_t, next);
    size_t    prefix = offsetof(mi_segment_t, slices) - ofs;
    memset((uint8_t*)segment+ofs, 0, prefix + sizeof(mi_slice_t)*segment_slices);
  }

  if (!commit_info_still_good) {
    segment->commit_mask = commit_mask; // on lazy commit, the initial part is always committed
    segment->allow_decommit = (mi_option_is_enabled(mi_option_allow_decommit) && !segment->mem_is_pinned && !segment->mem_is_large);    
    if (segment->allow_decommit) {
      segment->decommit_expire = _mi_clock_now() + mi_option_get(mi_option_decommit_delay);
      segment->decommit_mask = decommit_mask;
      mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));
      #if MI_DEBUG>2
      const size_t commit_needed = _mi_divide_up(info_slices*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE);
      mi_commit_mask_t commit_needed_mask;
      mi_commit_mask_create(0, commit_needed, &commit_needed_mask);
      mi_assert_internal(!mi_commit_mask_any_set(&segment->decommit_mask, &commit_needed_mask));
      #endif
    }    
    else {
      mi_assert_internal(mi_commit_mask_is_empty(&decommit_mask));
      segment->decommit_expire = 0;
      mi_commit_mask_create_empty( &segment->decommit_mask );
      mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
    }
  }
  

  // initialize segment info
  segment->segment_slices = segment_slices;
  segment->segment_info_slices = info_slices;
  segment->thread_id = _mi_thread_id();
  segment->cookie = _mi_ptr_cookie(segment);
  segment->slice_entries = slice_entries;
  segment->kind = (required == 0 ? MI_SEGMENT_NORMAL : MI_SEGMENT_HUGE);

  // memset(segment->slices, 0, sizeof(mi_slice_t)*(info_slices+1));
  _mi_stat_increase(&tld->stats->page_committed, mi_segment_info_size(segment));

  // set up guard pages
  size_t guard_slices = 0;
  if (MI_SECURE>0) {
    // in secure mode, we set up a protected page in between the segment info
    // and the page data, and at the end of the segment.
    size_t os_pagesize = _mi_os_page_size();    
    mi_assert_internal(mi_segment_info_size(segment) - os_pagesize >= pre_size);
    _mi_os_protect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize);
    uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize;
    mi_segment_ensure_committed(segment, end, os_pagesize, tld->stats);
    _mi_os_protect(end, os_pagesize);
    if (slice_entries == segment_slices) segment->slice_entries--; // don't use the last slice :-(
    guard_slices = 1;
  }

  // reserve first slices for segment info
  mi_page_t* page0 = mi_segment_span_allocate(segment, 0, info_slices, tld);
  mi_assert_internal(page0!=NULL); if (page0==NULL) return NULL; // cannot fail as we always commit in advance  
  mi_assert_internal(segment->used == 1);
  segment->used = 0; // don't count our internal slices towards usage
  
  // initialize initial free pages
  if (segment->kind == MI_SEGMENT_NORMAL) { // not a huge page
    mi_assert_internal(huge_page==NULL);
    mi_segment_span_free(segment, info_slices, segment->slice_entries - info_slices, tld);
  }
  else {
    mi_assert_internal(huge_page!=NULL);
    mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
    mi_assert_internal(mi_commit_mask_is_full(&segment->commit_mask));
    *huge_page = mi_segment_span_allocate(segment, info_slices, segment_slices - info_slices - guard_slices, tld);
    mi_assert_internal(*huge_page != NULL); // cannot fail as we commit in advance 
  }

  mi_assert_expensive(mi_segment_is_valid(segment,tld));
  return segment;
}


// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
static mi_segment_t* mi_segment_alloc(size_t required, mi_segments_tld_t* tld, mi_os_tld_t* os_tld, mi_page_t** huge_page) {
  return mi_segment_init(NULL, required, tld, os_tld, huge_page);
}


static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
  MI_UNUSED(force);
  mi_assert_internal(segment != NULL);
  mi_assert_internal(segment->next == NULL);
  mi_assert_internal(segment->used == 0);

  // Remove the free pages
  mi_slice_t* slice = &segment->slices[0];
  const mi_slice_t* end = mi_segment_slices_end(segment);
  size_t page_count = 0;
  while (slice < end) {
    mi_assert_internal(slice->slice_count > 0);
    mi_assert_internal(slice->slice_offset == 0);
    mi_assert_internal(mi_slice_index(slice)==0 || slice->xblock_size == 0); // no more used pages ..
    if (slice->xblock_size == 0 && segment->kind != MI_SEGMENT_HUGE) {
      mi_segment_span_remove_from_queue(slice, tld);
    }
    page_count++;
    slice = slice + slice->slice_count;
  }
  mi_assert_internal(page_count == 2); // first page is allocated by the segment itself

  // stats
  _mi_stat_decrease(&tld->stats->page_committed, mi_segment_info_size(segment));

  // return it to the OS
  mi_segment_os_free(segment, tld);
}


/* -----------------------------------------------------------
   Page Free
----------------------------------------------------------- */

static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);

// note: can be called on abandoned pages
static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert_internal(page->xblock_size > 0);
  mi_assert_internal(mi_page_all_free(page));
  mi_segment_t* segment = _mi_ptr_segment(page);
  mi_assert_internal(segment->used > 0);
  
  size_t inuse = page->capacity * mi_page_block_size(page);
  _mi_stat_decrease(&tld->stats->page_committed, inuse);
  _mi_stat_decrease(&tld->stats->pages, 1);

  // reset the page memory to reduce memory pressure?
  if (!segment->mem_is_pinned && !page->is_reset && mi_option_is_enabled(mi_option_page_reset)) {
    size_t psize;
    uint8_t* start = _mi_page_start(segment, page, &psize);
    page->is_reset = true;
    _mi_os_reset(start, psize, tld->stats);
  }

  // zero the page data, but not the segment fields
  page->is_zero_init = false;
  ptrdiff_t ofs = offsetof(mi_page_t, capacity);
  memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs);
  page->xblock_size = 1;

  // and free it
  mi_slice_t* slice = mi_segment_span_free_coalesce(mi_page_to_slice(page), tld);  
  segment->used--;
  // cannot assert segment valid as it is called during reclaim
  // mi_assert_expensive(mi_segment_is_valid(segment, tld));
  return slice;
}

void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
{
  mi_assert(page != NULL);

  mi_segment_t* segment = _mi_page_segment(page);
  mi_assert_expensive(mi_segment_is_valid(segment,tld));

  // mark it as free now
  mi_segment_page_clear(page, tld);
  mi_assert_expensive(mi_segment_is_valid(segment, tld));

  if (segment->used == 0) {
    // no more used pages; remove from the free list and free the segment
    mi_segment_free(segment, force, tld);
  }
  else if (segment->used == segment->abandoned) {
    // only abandoned pages; remove from free list and abandon
    mi_segment_abandon(segment,tld);
  }
}


/* -----------------------------------------------------------
Abandonment

When threads terminate, they can leave segments with
live blocks (reachable through other threads). Such segments
are "abandoned" and will be reclaimed by other threads to
reuse their pages and/or free them eventually

We maintain a global list of abandoned segments that are
reclaimed on demand. Since this is shared among threads
the implementation needs to avoid the A-B-A problem on
popping abandoned segments: <https://en.wikipedia.org/wiki/ABA_problem>
We use tagged pointers to avoid accidentially identifying
reused segments, much like stamped references in Java.
Secondly, we maintain a reader counter to avoid resetting
or decommitting segments that have a pending read operation.

Note: the current implementation is one possible design;
another way might be to keep track of abandoned segments
in the arenas/segment_cache's. This would have the advantage of keeping
all concurrent code in one place and not needing to deal
with ABA issues. The drawback is that it is unclear how to
scan abandoned segments efficiently in that case as they
would be spread among all other segments in the arenas.
----------------------------------------------------------- */

// Use the bottom 20-bits (on 64-bit) of the aligned segment pointers
// to put in a tag that increments on update to avoid the A-B-A problem.
#define MI_TAGGED_MASK   MI_SEGMENT_MASK
typedef uintptr_t        mi_tagged_segment_t;

static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) {
  return (mi_segment_t*)(ts & ~MI_TAGGED_MASK);
}

static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) {
  mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0);
  uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK;
  return ((uintptr_t)segment | tag);
}

// This is a list of visited abandoned pages that were full at the time.
// this list migrates to `abandoned` when that becomes NULL. The use of
// this list reduces contention and the rate at which segments are visited.
static mi_decl_cache_align _Atomic(mi_segment_t*)       abandoned_visited; // = NULL

// The abandoned page list (tagged as it supports pop)
static mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned;         // = NULL

// Maintain these for debug purposes (these counts may be a bit off)
static mi_decl_cache_align _Atomic(size_t)           abandoned_count; 
static mi_decl_cache_align _Atomic(size_t)           abandoned_visited_count;

// We also maintain a count of current readers of the abandoned list
// in order to prevent resetting/decommitting segment memory if it might
// still be read.
static mi_decl_cache_align _Atomic(size_t)           abandoned_readers; // = 0

// Push on the visited list
static void mi_abandoned_visited_push(mi_segment_t* segment) {
  mi_assert_internal(segment->thread_id == 0);
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL);
  mi_assert_internal(segment->next == NULL);
  mi_assert_internal(segment->used > 0);
  mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited);
  do {
    mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext);
  } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &abandoned_visited, &anext, segment));
  mi_atomic_increment_relaxed(&abandoned_visited_count);
}

// Move the visited list to the abandoned list.
static bool mi_abandoned_visited_revisit(void)
{
  // quick check if the visited list is empty
  if (mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited) == NULL) return false;

  // grab the whole visited list
  mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &abandoned_visited, NULL);
  if (first == NULL) return false;

  // first try to swap directly if the abandoned list happens to be NULL
  mi_tagged_segment_t afirst;
  mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
  if (mi_tagged_segment_ptr(ts)==NULL) {
    size_t count = mi_atomic_load_relaxed(&abandoned_visited_count);
    afirst = mi_tagged_segment(first, ts);
    if (mi_atomic_cas_strong_acq_rel(&abandoned, &ts, afirst)) {
      mi_atomic_add_relaxed(&abandoned_count, count);
      mi_atomic_sub_relaxed(&abandoned_visited_count, count);
      return true;
    }
  }

  // find the last element of the visited list: O(n)
  mi_segment_t* last = first;
  mi_segment_t* next;
  while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) {
    last = next;
  }

  // and atomically prepend to the abandoned list
  // (no need to increase the readers as we don't access the abandoned segments)
  mi_tagged_segment_t anext = mi_atomic_load_relaxed(&abandoned);
  size_t count;
  do {
    count = mi_atomic_load_relaxed(&abandoned_visited_count);
    mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext));
    afirst = mi_tagged_segment(first, anext);
  } while (!mi_atomic_cas_weak_release(&abandoned, &anext, afirst));
  mi_atomic_add_relaxed(&abandoned_count, count);
  mi_atomic_sub_relaxed(&abandoned_visited_count, count);
  return true;
}

// Push on the abandoned list.
static void mi_abandoned_push(mi_segment_t* segment) {
  mi_assert_internal(segment->thread_id == 0);
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
  mi_assert_internal(segment->next == NULL);
  mi_assert_internal(segment->used > 0);
  mi_tagged_segment_t next;
  mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
  do {
    mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts));
    next = mi_tagged_segment(segment, ts);
  } while (!mi_atomic_cas_weak_release(&abandoned, &ts, next));
  mi_atomic_increment_relaxed(&abandoned_count);
}

// Wait until there are no more pending reads on segments that used to be in the abandoned list
// called for example from `arena.c` before decommitting
void _mi_abandoned_await_readers(void) {
  size_t n;
  do {
    n = mi_atomic_load_acquire(&abandoned_readers);
    if (n != 0) mi_atomic_yield();
  } while (n != 0);
}

// Pop from the abandoned list
static mi_segment_t* mi_abandoned_pop(void) {
  mi_segment_t* segment;
  // Check efficiently if it is empty (or if the visited list needs to be moved)
  mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
  segment = mi_tagged_segment_ptr(ts);
  if (mi_likely(segment == NULL)) {
    if (mi_likely(!mi_abandoned_visited_revisit())) { // try to swap in the visited list on NULL
      return NULL;
    }
  }

  // Do a pop. We use a reader count to prevent
  // a segment to be decommitted while a read is still pending,
  // and a tagged pointer to prevent A-B-A link corruption.
  // (this is called from `region.c:_mi_mem_free` for example)
  mi_atomic_increment_relaxed(&abandoned_readers);  // ensure no segment gets decommitted
  mi_tagged_segment_t next = 0;
  ts = mi_atomic_load_acquire(&abandoned);
  do {
    segment = mi_tagged_segment_ptr(ts);
    if (segment != NULL) {
      mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next);
      next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted
    }
  } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&abandoned, &ts, next));
  mi_atomic_decrement_relaxed(&abandoned_readers);  // release reader lock
  if (segment != NULL) {
    mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
    mi_atomic_decrement_relaxed(&abandoned_count);
  }
  return segment;
}

/* -----------------------------------------------------------
   Abandon segment/page
----------------------------------------------------------- */

static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(segment->used == segment->abandoned);
  mi_assert_internal(segment->used > 0);
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
  mi_assert_internal(segment->abandoned_visits == 0);
  mi_assert_expensive(mi_segment_is_valid(segment,tld));
  
  // remove the free pages from the free page queues
  mi_slice_t* slice = &segment->slices[0];
  const mi_slice_t* end = mi_segment_slices_end(segment);
  while (slice < end) {
    mi_assert_internal(slice->slice_count > 0);
    mi_assert_internal(slice->slice_offset == 0);
    if (slice->xblock_size == 0) { // a free page
      mi_segment_span_remove_from_queue(slice,tld);
      slice->xblock_size = 0; // but keep it free
    }
    slice = slice + slice->slice_count;
  }

  // perform delayed decommits
  mi_segment_delayed_decommit(segment, mi_option_is_enabled(mi_option_abandoned_page_decommit) /* force? */, tld->stats);    
  
  // all pages in the segment are abandoned; add it to the abandoned list
  _mi_stat_increase(&tld->stats->segments_abandoned, 1);
  mi_segments_track_size(-((long)mi_segment_size(segment)), tld);
  segment->thread_id = 0;
  mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
  segment->abandoned_visits = 1;   // from 0 to 1 to signify it is abandoned
  mi_abandoned_push(segment);
}

void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert(page != NULL);
  mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
  mi_assert_internal(mi_page_heap(page) == NULL);
  mi_segment_t* segment = _mi_page_segment(page);

  mi_assert_expensive(mi_segment_is_valid(segment,tld));
  segment->abandoned++;  

  _mi_stat_increase(&tld->stats->pages_abandoned, 1);
  mi_assert_internal(segment->abandoned <= segment->used);
  if (segment->used == segment->abandoned) {
    // all pages are abandoned, abandon the entire segment
    mi_segment_abandon(segment, tld);
  }
}

/* -----------------------------------------------------------
  Reclaim abandoned pages
----------------------------------------------------------- */

static mi_slice_t* mi_slices_start_iterate(mi_segment_t* segment, const mi_slice_t** end) {
  mi_slice_t* slice = &segment->slices[0];
  *end = mi_segment_slices_end(segment);
  mi_assert_internal(slice->slice_count>0 && slice->xblock_size>0); // segment allocated page
  slice = slice + slice->slice_count; // skip the first segment allocated page
  return slice;
}

// Possibly free pages and check if free space is available
static bool mi_segment_check_free(mi_segment_t* segment, size_t slices_needed, size_t block_size, mi_segments_tld_t* tld) 
{
  mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
  mi_assert_internal(mi_segment_is_abandoned(segment));
  bool has_page = false;
  
  // for all slices
  const mi_slice_t* end;
  mi_slice_t* slice = mi_slices_start_iterate(segment, &end);
  while (slice < end) {
    mi_assert_internal(slice->slice_count > 0);
    mi_assert_internal(slice->slice_offset == 0);
    if (mi_slice_is_used(slice)) { // used page
      // ensure used count is up to date and collect potential concurrent frees
      mi_page_t* const page = mi_slice_to_page(slice);
      _mi_page_free_collect(page, false);
      if (mi_page_all_free(page)) {
        // if this page is all free now, free it without adding to any queues (yet) 
        mi_assert_internal(page->next == NULL && page->prev==NULL);
        _mi_stat_decrease(&tld->stats->pages_abandoned, 1);
        segment->abandoned--;
        slice = mi_segment_page_clear(page, tld); // re-assign slice due to coalesce!
        mi_assert_internal(!mi_slice_is_used(slice));
        if (slice->slice_count >= slices_needed) {
          has_page = true;
        }
      }
      else {
        if (page->xblock_size == block_size && mi_page_has_any_available(page)) {
          // a page has available free blocks of the right size
          has_page = true;
        }
      }      
    }
    else {
      // empty span
      if (slice->slice_count >= slices_needed) {
        has_page = true;
      }
    }
    slice = slice + slice->slice_count;
  }
  return has_page;
}

// Reclaim an abandoned segment; returns NULL if the segment was freed
// set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full.
static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) {
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
  mi_assert_expensive(mi_segment_is_valid(segment, tld));
  if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; }

  segment->thread_id = _mi_thread_id();
  segment->abandoned_visits = 0;
  mi_segments_track_size((long)mi_segment_size(segment), tld);
  mi_assert_internal(segment->next == NULL);
  _mi_stat_decrease(&tld->stats->segments_abandoned, 1);
  
  // for all slices
  const mi_slice_t* end;
  mi_slice_t* slice = mi_slices_start_iterate(segment, &end);
  while (slice < end) {
    mi_assert_internal(slice->slice_count > 0);
    mi_assert_internal(slice->slice_offset == 0);
    if (mi_slice_is_used(slice)) {
      // in use: reclaim the page in our heap
      mi_page_t* page = mi_slice_to_page(slice);
      mi_assert_internal(!page->is_reset);
      mi_assert_internal(page->is_committed);
      mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
      mi_assert_internal(mi_page_heap(page) == NULL);
      mi_assert_internal(page->next == NULL && page->prev==NULL);
      _mi_stat_decrease(&tld->stats->pages_abandoned, 1);
      segment->abandoned--;
      // set the heap again and allow delayed free again
      mi_page_set_heap(page, heap);
      _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set)
      _mi_page_free_collect(page, false); // ensure used count is up to date
      if (mi_page_all_free(page)) {
        // if everything free by now, free the page
        slice = mi_segment_page_clear(page, tld);   // set slice again due to coalesceing
      }
      else {
        // otherwise reclaim it into the heap
        _mi_page_reclaim(heap, page);
        if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) {
          if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; }
        }
      }
    }
    else {
      // the span is free, add it to our page queues
      slice = mi_segment_span_free_coalesce(slice, tld); // set slice again due to coalesceing
    }
    mi_assert_internal(slice->slice_count>0 && slice->slice_offset==0);
    slice = slice + slice->slice_count;
  }

  mi_assert(segment->abandoned == 0);
  if (segment->used == 0) {  // due to page_clear
    mi_assert_internal(right_page_reclaimed == NULL || !(*right_page_reclaimed));
    mi_segment_free(segment, false, tld);
    return NULL;
  }
  else {
    return segment;
  }
}


void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) {
  mi_segment_t* segment;
  while ((segment = mi_abandoned_pop()) != NULL) {
    mi_segment_reclaim(segment, heap, 0, NULL, tld);
  }
}

static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t needed_slices, size_t block_size, bool* reclaimed, mi_segments_tld_t* tld)
{
  *reclaimed = false;
  mi_segment_t* segment;
  long max_tries = mi_option_get_clamp(mi_option_max_segment_reclaim, 8, 1024);     // limit the work to bound allocation times  
  while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) {
    segment->abandoned_visits++;
    bool has_page = mi_segment_check_free(segment,needed_slices,block_size,tld); // try to free up pages (due to concurrent frees)
    if (segment->used == 0) {
      // free the segment (by forced reclaim) to make it available to other threads.
      // note1: we prefer to free a segment as that might lead to reclaiming another
      // segment that is still partially used.
      // note2: we could in principle optimize this by skipping reclaim and directly
      // freeing but that would violate some invariants temporarily)
      mi_segment_reclaim(segment, heap, 0, NULL, tld);
    }
    else if (has_page) {
      // found a large enough free span, or a page of the right block_size with free space 
      // we return the result of reclaim (which is usually `segment`) as it might free
      // the segment due to concurrent frees (in which case `NULL` is returned).
      return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld);
    }
    else if (segment->abandoned_visits > 3) {  
      // always reclaim on 3rd visit to limit the abandoned queue length.
      mi_segment_reclaim(segment, heap, 0, NULL, tld);
    }
    else {
      // otherwise, push on the visited list so it gets not looked at too quickly again
      mi_segment_delayed_decommit(segment, true /* force? */, tld->stats); // forced decommit if needed as we may not visit soon again
      mi_abandoned_visited_push(segment);
    }
  }
  return NULL;
}


void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld)
{
  mi_segment_t* segment;
  int max_tries = (force ? 16*1024 : 1024); // limit latency
  if (force) {
    mi_abandoned_visited_revisit(); 
  }
  while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) {
    mi_segment_check_free(segment,0,0,tld); // try to free up pages (due to concurrent frees)
    if (segment->used == 0) {
      // free the segment (by forced reclaim) to make it available to other threads.
      // note: we could in principle optimize this by skipping reclaim and directly
      // freeing but that would violate some invariants temporarily)
      mi_segment_reclaim(segment, heap, 0, NULL, tld);
    }
    else {
      // otherwise, decommit if needed and push on the visited list 
      // note: forced decommit can be expensive if many threads are destroyed/created as in mstress.
      mi_segment_delayed_decommit(segment, force, tld->stats);
      mi_abandoned_visited_push(segment);
    }
  }
}

/* -----------------------------------------------------------
   Reclaim or allocate
----------------------------------------------------------- */

static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t needed_slices, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) 
{
  mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
  mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX);
  
  // 1. try to reclaim an abandoned segment
  bool reclaimed;
  mi_segment_t* segment = mi_segment_try_reclaim(heap, needed_slices, block_size, &reclaimed, tld);
  if (reclaimed) {
    // reclaimed the right page right into the heap
    mi_assert_internal(segment != NULL);
    return NULL; // pretend out-of-memory as the page will be in the page queue of the heap with available blocks
  }
  else if (segment != NULL) {
    // reclaimed a segment with a large enough empty span in it
    return segment;
  }
  // 2. otherwise allocate a fresh segment
  return mi_segment_alloc(0, tld, os_tld, NULL);  
}


/* -----------------------------------------------------------
   Page allocation
----------------------------------------------------------- */

static mi_page_t* mi_segments_page_alloc(mi_heap_t* heap, mi_page_kind_t page_kind, size_t required, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  mi_assert_internal(required <= MI_LARGE_OBJ_SIZE_MAX && page_kind <= MI_PAGE_LARGE);

  // find a free page
  size_t page_size = _mi_align_up(required, (required > MI_MEDIUM_PAGE_SIZE ? MI_MEDIUM_PAGE_SIZE : MI_SEGMENT_SLICE_SIZE));
  size_t slices_needed = page_size / MI_SEGMENT_SLICE_SIZE;
  mi_assert_internal(slices_needed * MI_SEGMENT_SLICE_SIZE == page_size);
  mi_page_t* page = mi_segments_page_find_and_allocate(slices_needed, tld); //(required <= MI_SMALL_SIZE_MAX ? 0 : slices_needed), tld);
  if (page==NULL) {
    // no free page, allocate a new segment and try again
    if (mi_segment_reclaim_or_alloc(heap, slices_needed, block_size, tld, os_tld) == NULL) {
      // OOM or reclaimed a good page in the heap
      return NULL;  
    }
    else {
      // otherwise try again
      return mi_segments_page_alloc(heap, page_kind, required, block_size, tld, os_tld);
    }
  }
  mi_assert_internal(page != NULL && page->slice_count*MI_SEGMENT_SLICE_SIZE == page_size);
  mi_assert_internal(_mi_ptr_segment(page)->thread_id == _mi_thread_id());
  mi_segment_delayed_decommit(_mi_ptr_segment(page), false, tld->stats);
  return page;
}



/* -----------------------------------------------------------
   Huge page allocation
----------------------------------------------------------- */

static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  mi_page_t* page = NULL;
  mi_segment_t* segment = mi_segment_alloc(size,tld,os_tld,&page);
  if (segment == NULL || page==NULL) return NULL;
  mi_assert_internal(segment->used==1);
  mi_assert_internal(mi_page_block_size(page) >= size);  
  segment->thread_id = 0; // huge segments are immediately abandoned
  return page;
}

// free huge block from another thread
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
  // huge page segments are always abandoned and can be freed immediately by any thread
  mi_assert_internal(segment->kind==MI_SEGMENT_HUGE);
  mi_assert_internal(segment == _mi_page_segment(page));
  mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id)==0);

  // claim it and free
  mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized.
  // paranoia: if this it the last reference, the cas should always succeed
  size_t expected_tid = 0;
  if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) {
    mi_block_set_next(page, block, page->free);
    page->free = block;
    page->used--;
    page->is_zero = false;
    mi_assert(page->used == 0);
    mi_tld_t* tld = heap->tld;
    _mi_segment_page_free(page, true, &tld->segments);
  }
#if (MI_DEBUG!=0)
  else {
    mi_assert_internal(false);
  }
#endif
}

/* -----------------------------------------------------------
   Page allocation and free
----------------------------------------------------------- */
mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  mi_page_t* page;
  if (block_size <= MI_SMALL_OBJ_SIZE_MAX) {
    page = mi_segments_page_alloc(heap,MI_PAGE_SMALL,block_size,block_size,tld,os_tld);
  }
  else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) {
    page = mi_segments_page_alloc(heap,MI_PAGE_MEDIUM,MI_MEDIUM_PAGE_SIZE,block_size,tld, os_tld);
  }
  else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) {
    page = mi_segments_page_alloc(heap,MI_PAGE_LARGE,block_size,block_size,tld, os_tld);
  }
  else {
    page = mi_segment_huge_page_alloc(block_size,tld,os_tld);
  }
  mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
  return page;
}