summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/prim/wasi/prim.c
blob: cb3ce1a7f17a4a25d45518b82144b9e107db27e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/

// This file is included in `src/prim/prim.c`

#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"

//---------------------------------------------
// Initialize
//---------------------------------------------

void _mi_prim_mem_init( mi_os_mem_config_t* config ) {
  config->page_size = 64*MI_KiB; // WebAssembly has a fixed page size: 64KiB
  config->alloc_granularity = 16;
  config->has_overcommit = false;  
  config->must_free_whole = true;
}

//---------------------------------------------
// Free
//---------------------------------------------

int _mi_prim_free(void* addr, size_t size ) {
  MI_UNUSED(addr); MI_UNUSED(size);
  // wasi heap cannot be shrunk
  return 0;
}


//---------------------------------------------
// Allocation: sbrk or memory_grow
//---------------------------------------------

#if defined(MI_USE_SBRK)
  static void* mi_memory_grow( size_t size ) {
    void* p = sbrk(size);
    if (p == (void*)(-1)) return NULL;
    #if !defined(__wasi__) // on wasi this is always zero initialized already (?)
    memset(p,0,size);
    #endif
    return p;
  }
#elif defined(__wasi__)
  static void* mi_memory_grow( size_t size ) {
    size_t base = (size > 0 ? __builtin_wasm_memory_grow(0,_mi_divide_up(size, _mi_os_page_size()))
                            : __builtin_wasm_memory_size(0));
    if (base == SIZE_MAX) return NULL;
    return (void*)(base * _mi_os_page_size());
  }
#endif

#if defined(MI_USE_PTHREADS)
static pthread_mutex_t mi_heap_grow_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif

static void* mi_prim_mem_grow(size_t size, size_t try_alignment) {
  void* p = NULL;
  if (try_alignment <= 1) {
    // `sbrk` is not thread safe in general so try to protect it (we could skip this on WASM but leave it in for now)
    #if defined(MI_USE_PTHREADS)
    pthread_mutex_lock(&mi_heap_grow_mutex);
    #endif
    p = mi_memory_grow(size);
    #if defined(MI_USE_PTHREADS)
    pthread_mutex_unlock(&mi_heap_grow_mutex);
    #endif
  }
  else {
    void* base = NULL;
    size_t alloc_size = 0;
    // to allocate aligned use a lock to try to avoid thread interaction
    // between getting the current size and actual allocation
    // (also, `sbrk` is not thread safe in general)
    #if defined(MI_USE_PTHREADS)
    pthread_mutex_lock(&mi_heap_grow_mutex);
    #endif
    {
      void* current = mi_memory_grow(0);  // get current size
      if (current != NULL) {
        void* aligned_current = mi_align_up_ptr(current, try_alignment);  // and align from there to minimize wasted space
        alloc_size = _mi_align_up( ((uint8_t*)aligned_current - (uint8_t*)current) + size, _mi_os_page_size());
        base = mi_memory_grow(alloc_size);
      }
    }
    #if defined(MI_USE_PTHREADS)
    pthread_mutex_unlock(&mi_heap_grow_mutex);
    #endif
    if (base != NULL) {
      p = mi_align_up_ptr(base, try_alignment);
      if ((uint8_t*)p + size > (uint8_t*)base + alloc_size) {
        // another thread used wasm_memory_grow/sbrk in-between and we do not have enough
        // space after alignment. Give up (and waste the space as we cannot shrink :-( )
        // (in `mi_os_mem_alloc_aligned` this will fall back to overallocation to align)
        p = NULL;
      }
    }
  }
  /*
  if (p == NULL) {
    _mi_warning_message("unable to allocate sbrk/wasm_memory_grow OS memory (%zu bytes, %zu alignment)\n", size, try_alignment);
    errno = ENOMEM;
    return NULL;
  }
  */
  mi_assert_internal( p == NULL || try_alignment == 0 || (uintptr_t)p % try_alignment == 0 );
  return p;
}

// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, void** addr) {
  MI_UNUSED(allow_large); MI_UNUSED(commit);
  *is_large = false;
  *addr = mi_prim_mem_grow(size, try_alignment);
  return (*addr != NULL ? 0 : ENOMEM);
}


//---------------------------------------------
// Commit/Reset/Protect
//---------------------------------------------

int _mi_prim_commit(void* addr, size_t size, bool commit) {
  MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(commit);
  return 0;
}

int _mi_prim_reset(void* addr, size_t size) {
  MI_UNUSED(addr); MI_UNUSED(size);
  return 0;
}

int _mi_prim_protect(void* addr, size_t size, bool protect) {
  MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(protect);
  return 0;
}


//---------------------------------------------
// Huge pages and NUMA nodes
//---------------------------------------------

int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, void** addr) {
  MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node);
  *addr = NULL;
  return ENOSYS;
}

size_t _mi_prim_numa_node(void) {
  return 0;
}

size_t _mi_prim_numa_node_count(void) {
  return 1;
}


//----------------------------------------------------------------
// Clock
//----------------------------------------------------------------

#include <time.h>

#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC)

mi_msecs_t _mi_prim_clock_now(void) {
  struct timespec t;
  #ifdef CLOCK_MONOTONIC
  clock_gettime(CLOCK_MONOTONIC, &t);
  #else
  clock_gettime(CLOCK_REALTIME, &t);
  #endif
  return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000);
}

#else

// low resolution timer
mi_msecs_t _mi_prim_clock_now(void) {
  #if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0)
  return (mi_msecs_t)clock();  
  #elif (CLOCKS_PER_SEC < 1000)
  return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC);  
  #else
  return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000);
  #endif
}

#endif


//----------------------------------------------------------------
// Process info
//----------------------------------------------------------------

void _mi_prim_process_info(mi_process_info_t* pinfo)
{
  // use defaults
  MI_UNUSED(pinfo);
}


//----------------------------------------------------------------
// Output
//----------------------------------------------------------------

void _mi_prim_out_stderr( const char* msg ) {
  fputs(msg,stderr);
}


//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------

bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
  // cannot call getenv() when still initializing the C runtime.
  if (_mi_preloading()) return false;
  const char* s = getenv(name);
  if (s == NULL) {
    // we check the upper case name too.
    char buf[64+1];
    size_t len = _mi_strnlen(name,sizeof(buf)-1);
    for (size_t i = 0; i < len; i++) {
      buf[i] = _mi_toupper(name[i]);
    }
    buf[len] = 0;
    s = getenv(buf);
  }
  if (s == NULL || _mi_strnlen(s,result_size) >= result_size)  return false;
  _mi_strlcpy(result, s, result_size);
  return true;
}


//----------------------------------------------------------------
// Random
//----------------------------------------------------------------

bool _mi_prim_random_buf(void* buf, size_t buf_len) {
  return false;
}


//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------

void _mi_prim_thread_init_auto_done(void) {
  // nothing
}

void _mi_prim_thread_done_auto_done(void) {
  // nothing
}

void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
  MI_UNUSED(heap);
}