summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/heap.c
blob: 15ca360312f1d2c9b38e452fa84f5961749a7929 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/

#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"

#include <string.h>  // memset, memcpy

#if defined(_MSC_VER) && (_MSC_VER < 1920)
#pragma warning(disable:4204)  // non-constant aggregate initializer
#endif

/* -----------------------------------------------------------
  Helpers
----------------------------------------------------------- */

// return `true` if ok, `false` to break
typedef bool (heap_page_visitor_fun)(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2);

// Visit all pages in a heap; returns `false` if break was called.
static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void* arg1, void* arg2)
{
  if (heap==NULL || heap->page_count==0) return 0;

  // visit all pages
  #if MI_DEBUG>1
  size_t total = heap->page_count;
  #endif
  size_t count = 0;
  for (size_t i = 0; i <= MI_BIN_FULL; i++) {
    mi_page_queue_t* pq = &heap->pages[i];
    mi_page_t* page = pq->first;
    while(page != NULL) {
      mi_page_t* next = page->next; // save next in case the page gets removed from the queue
      mi_assert_internal(mi_page_heap(page) == heap);
      count++;
      if (!fn(heap, pq, page, arg1, arg2)) return false;
      page = next; // and continue
    }
  }
  mi_assert_internal(count == total);
  return true;
}


#if MI_DEBUG>=2
static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
  MI_UNUSED(arg1);
  MI_UNUSED(arg2);
  MI_UNUSED(pq);
  mi_assert_internal(mi_page_heap(page) == heap);
  mi_segment_t* segment = _mi_page_segment(page);
  mi_assert_internal(segment->thread_id == heap->thread_id);
  mi_assert_expensive(_mi_page_is_valid(page));
  return true;
}
#endif
#if MI_DEBUG>=3
static bool mi_heap_is_valid(mi_heap_t* heap) {
  mi_assert_internal(heap!=NULL);
  mi_heap_visit_pages(heap, &mi_heap_page_is_valid, NULL, NULL);
  return true;
}
#endif




/* -----------------------------------------------------------
  "Collect" pages by migrating `local_free` and `thread_free`
  lists and freeing empty pages. This is done when a thread
  stops (and in that case abandons pages if there are still
  blocks alive)
----------------------------------------------------------- */

typedef enum mi_collect_e {
  MI_NORMAL,
  MI_FORCE,
  MI_ABANDON
} mi_collect_t;


static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) {
  MI_UNUSED(arg2);
  MI_UNUSED(heap);
  mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL));
  mi_collect_t collect = *((mi_collect_t*)arg_collect);
  _mi_page_free_collect(page, collect >= MI_FORCE);
  if (mi_page_all_free(page)) {
    // no more used blocks, free the page. 
    // note: this will free retired pages as well.
    _mi_page_free(page, pq, collect >= MI_FORCE);
  }
  else if (collect == MI_ABANDON) {
    // still used blocks but the thread is done; abandon the page
    _mi_page_abandon(page, pq);
  }
  return true; // don't break
}

static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
  MI_UNUSED(arg1);
  MI_UNUSED(arg2);
  MI_UNUSED(heap);
  MI_UNUSED(pq);
  _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
  return true; // don't break
}

static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect)
{
  if (heap==NULL || !mi_heap_is_initialized(heap)) return;

  const bool force = collect >= MI_FORCE;  
  _mi_deferred_free(heap, force);

  // note: never reclaim on collect but leave it to threads that need storage to reclaim 
  const bool force_main = 
    #ifdef NDEBUG
      collect == MI_FORCE
    #else
      collect >= MI_FORCE
    #endif
      && _mi_is_main_thread() && mi_heap_is_backing(heap) && !heap->no_reclaim;

  if (force_main) {
    // the main thread is abandoned (end-of-program), try to reclaim all abandoned segments.
    // if all memory is freed by now, all segments should be freed.
    _mi_abandoned_reclaim_all(heap, &heap->tld->segments);
  }
  
  // if abandoning, mark all pages to no longer add to delayed_free
  if (collect == MI_ABANDON) {
    mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL);
  }

  // free all current thread delayed blocks.
  // (if abandoning, after this there are no more thread-delayed references into the pages.)
  _mi_heap_delayed_free_all(heap);

  // collect retired pages
  _mi_heap_collect_retired(heap, force);

  // collect all pages owned by this thread
  mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL);
  mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL );

  // collect abandoned segments (in particular, decommit expired parts of segments in the abandoned segment list)
  // note: forced decommit can be quite expensive if many threads are created/destroyed so we do not force on abandonment
  _mi_abandoned_collect(heap, collect == MI_FORCE /* force? */, &heap->tld->segments);

  // collect segment local caches
  if (force) {
    _mi_segment_thread_collect(&heap->tld->segments);
  }

  // decommit in global segment caches
  // note: forced decommit can be quite expensive if many threads are created/destroyed so we do not force on abandonment
  _mi_segment_cache_collect( collect == MI_FORCE, &heap->tld->os);  

  // collect regions on program-exit (or shared library unload)
  if (force && _mi_is_main_thread() && mi_heap_is_backing(heap)) {
    //_mi_mem_collect(&heap->tld->os);
  }
}

void _mi_heap_collect_abandon(mi_heap_t* heap) {
  mi_heap_collect_ex(heap, MI_ABANDON);
}

void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept {
  mi_heap_collect_ex(heap, (force ? MI_FORCE : MI_NORMAL));
}

void mi_collect(bool force) mi_attr_noexcept {
  mi_heap_collect(mi_get_default_heap(), force);
}


/* -----------------------------------------------------------
  Heap new
----------------------------------------------------------- */

mi_heap_t* mi_heap_get_default(void) {
  mi_thread_init();
  return mi_get_default_heap();
}

mi_heap_t* mi_heap_get_backing(void) {
  mi_heap_t* heap = mi_heap_get_default();
  mi_assert_internal(heap!=NULL);
  mi_heap_t* bheap = heap->tld->heap_backing;
  mi_assert_internal(bheap!=NULL);
  mi_assert_internal(bheap->thread_id == _mi_thread_id());
  return bheap;
}

mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena( mi_arena_id_t arena_id ) {
  mi_heap_t* bheap = mi_heap_get_backing();
  mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t);  // todo: OS allocate in secure mode?
  if (heap==NULL) return NULL;
  _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t));
  heap->tld = bheap->tld;
  heap->thread_id = _mi_thread_id();
  heap->arena_id = arena_id;
  _mi_random_split(&bheap->random, &heap->random);
  heap->cookie  = _mi_heap_random_next(heap) | 1;
  heap->keys[0] = _mi_heap_random_next(heap);
  heap->keys[1] = _mi_heap_random_next(heap);
  heap->no_reclaim = true;  // don't reclaim abandoned pages or otherwise destroy is unsafe
  // push on the thread local heaps list
  heap->next = heap->tld->heaps;
  heap->tld->heaps = heap;
  return heap;
}

mi_decl_nodiscard mi_heap_t* mi_heap_new(void) {
  return mi_heap_new_in_arena(_mi_arena_id_none());
}

bool _mi_heap_memid_is_suitable(mi_heap_t* heap, size_t memid) {
  return _mi_arena_memid_is_suitable(memid, heap->arena_id);
}

uintptr_t _mi_heap_random_next(mi_heap_t* heap) {
  return _mi_random_next(&heap->random);
}

// zero out the page queues
static void mi_heap_reset_pages(mi_heap_t* heap) {
  mi_assert_internal(heap != NULL);
  mi_assert_internal(mi_heap_is_initialized(heap));
  // TODO: copy full empty heap instead?
  memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct));
#ifdef MI_MEDIUM_DIRECT
  memset(&heap->pages_free_medium, 0, sizeof(heap->pages_free_medium));
#endif
  _mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages));
  heap->thread_delayed_free = NULL;
  heap->page_count = 0;
}

// called from `mi_heap_destroy` and `mi_heap_delete` to free the internal heap resources.
static void mi_heap_free(mi_heap_t* heap) {
  mi_assert(heap != NULL);
  mi_assert_internal(mi_heap_is_initialized(heap));
  if (heap==NULL || !mi_heap_is_initialized(heap)) return;
  if (mi_heap_is_backing(heap)) return; // dont free the backing heap

  // reset default
  if (mi_heap_is_default(heap)) {
    _mi_heap_set_default_direct(heap->tld->heap_backing);
  }

  // remove ourselves from the thread local heaps list
  // linear search but we expect the number of heaps to be relatively small
  mi_heap_t* prev = NULL;
  mi_heap_t* curr = heap->tld->heaps; 
  while (curr != heap && curr != NULL) {
    prev = curr;
    curr = curr->next;
  }
  mi_assert_internal(curr == heap);
  if (curr == heap) {
    if (prev != NULL) { prev->next = heap->next; }
                 else { heap->tld->heaps = heap->next; }
  }
  mi_assert_internal(heap->tld->heaps != NULL);

  // and free the used memory
  mi_free(heap);
}


/* -----------------------------------------------------------
  Heap destroy
----------------------------------------------------------- */

static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
  MI_UNUSED(arg1);
  MI_UNUSED(arg2);
  MI_UNUSED(heap);
  MI_UNUSED(pq);

  // ensure no more thread_delayed_free will be added
  _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);

  // stats
  const size_t bsize = mi_page_block_size(page);
  if (bsize > MI_MEDIUM_OBJ_SIZE_MAX) {
    if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
      mi_heap_stat_decrease(heap, large, bsize);
    }
    else {
      mi_heap_stat_decrease(heap, huge, bsize);
    }
  }
#if (MI_STAT)
  _mi_page_free_collect(page, false);  // update used count
  const size_t inuse = page->used;
  if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
    mi_heap_stat_decrease(heap, normal, bsize * inuse);
#if (MI_STAT>1)
    mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], inuse);
#endif
  }
  mi_heap_stat_decrease(heap, malloc, bsize * inuse);  // todo: off for aligned blocks...
#endif

  /// pretend it is all free now
  mi_assert_internal(mi_page_thread_free(page) == NULL);
  page->used = 0;

  // and free the page
  // mi_page_free(page,false);
  page->next = NULL;
  page->prev = NULL;
  _mi_segment_page_free(page,false /* no force? */, &heap->tld->segments);

  return true; // keep going
}

void _mi_heap_destroy_pages(mi_heap_t* heap) {
  mi_heap_visit_pages(heap, &_mi_heap_page_destroy, NULL, NULL);
  mi_heap_reset_pages(heap);
}

void mi_heap_destroy(mi_heap_t* heap) {
  mi_assert(heap != NULL);
  mi_assert(mi_heap_is_initialized(heap));
  mi_assert(heap->no_reclaim);
  mi_assert_expensive(mi_heap_is_valid(heap));
  if (heap==NULL || !mi_heap_is_initialized(heap)) return;
  if (!heap->no_reclaim) {
    // don't free in case it may contain reclaimed pages
    mi_heap_delete(heap);
  }
  else {
    // free all pages
    _mi_heap_destroy_pages(heap);
    mi_heap_free(heap);
  }
}



/* -----------------------------------------------------------
  Safe Heap delete
----------------------------------------------------------- */

// Transfer the pages from one heap to the other
static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) {
  mi_assert_internal(heap!=NULL);
  if (from==NULL || from->page_count == 0) return;

  // reduce the size of the delayed frees
  _mi_heap_delayed_free_partial(from);
  
  // transfer all pages by appending the queues; this will set a new heap field 
  // so threads may do delayed frees in either heap for a while.
  // note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state
  // so after this only the new heap will get delayed frees
  for (size_t i = 0; i <= MI_BIN_FULL; i++) {
    mi_page_queue_t* pq = &heap->pages[i];
    mi_page_queue_t* append = &from->pages[i];
    size_t pcount = _mi_page_queue_append(heap, pq, append);
    heap->page_count += pcount;
    from->page_count -= pcount;
  }
  mi_assert_internal(from->page_count == 0);

  // and do outstanding delayed frees in the `from` heap  
  // note: be careful here as the `heap` field in all those pages no longer point to `from`,
  // turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a 
  // the regular `_mi_free_delayed_block` which is safe.
  _mi_heap_delayed_free_all(from);  
  #if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL);
  #endif

  // and reset the `from` heap
  mi_heap_reset_pages(from);  
}

// Safe delete a heap without freeing any still allocated blocks in that heap.
void mi_heap_delete(mi_heap_t* heap)
{
  mi_assert(heap != NULL);
  mi_assert(mi_heap_is_initialized(heap));
  mi_assert_expensive(mi_heap_is_valid(heap));
  if (heap==NULL || !mi_heap_is_initialized(heap)) return;

  if (!mi_heap_is_backing(heap)) {
    // tranfer still used pages to the backing heap
    mi_heap_absorb(heap->tld->heap_backing, heap);
  }
  else {
    // the backing heap abandons its pages
    _mi_heap_collect_abandon(heap);
  }
  mi_assert_internal(heap->page_count==0);
  mi_heap_free(heap);
}

mi_heap_t* mi_heap_set_default(mi_heap_t* heap) {
  mi_assert(heap != NULL);
  mi_assert(mi_heap_is_initialized(heap));
  if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL;
  mi_assert_expensive(mi_heap_is_valid(heap));
  mi_heap_t* old = mi_get_default_heap();
  _mi_heap_set_default_direct(heap);
  return old;
}




/* -----------------------------------------------------------
  Analysis
----------------------------------------------------------- */

// static since it is not thread safe to access heaps from other threads.
static mi_heap_t* mi_heap_of_block(const void* p) {
  if (p == NULL) return NULL;
  mi_segment_t* segment = _mi_ptr_segment(p);
  bool valid = (_mi_ptr_cookie(segment) == segment->cookie);
  mi_assert_internal(valid);
  if mi_unlikely(!valid) return NULL;
  return mi_page_heap(_mi_segment_page_of(segment,p));
}

bool mi_heap_contains_block(mi_heap_t* heap, const void* p) {
  mi_assert(heap != NULL);
  if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
  return (heap == mi_heap_of_block(p));
}


static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) {
  MI_UNUSED(heap);
  MI_UNUSED(pq);
  bool* found = (bool*)vfound;
  mi_segment_t* segment = _mi_page_segment(page);
  void* start = _mi_page_start(segment, page, NULL);
  void* end   = (uint8_t*)start + (page->capacity * mi_page_block_size(page));
  *found = (p >= start && p < end);
  return (!*found); // continue if not found
}

bool mi_heap_check_owned(mi_heap_t* heap, const void* p) {
  mi_assert(heap != NULL);
  if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
  if (((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) return false;  // only aligned pointers
  bool found = false;
  mi_heap_visit_pages(heap, &mi_heap_page_check_owned, (void*)p, &found);
  return found;
}

bool mi_check_owned(const void* p) {
  return mi_heap_check_owned(mi_get_default_heap(), p);
}

/* -----------------------------------------------------------
  Visit all heap blocks and areas
  Todo: enable visiting abandoned pages, and
        enable visiting all blocks of all heaps across threads
----------------------------------------------------------- */

// Separate struct to keep `mi_page_t` out of the public interface
typedef struct mi_heap_area_ex_s {
  mi_heap_area_t area;
  mi_page_t*     page;
} mi_heap_area_ex_t;

static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_visit_fun* visitor, void* arg) {
  mi_assert(xarea != NULL);
  if (xarea==NULL) return true;
  const mi_heap_area_t* area = &xarea->area;
  mi_page_t* page = xarea->page;
  mi_assert(page != NULL);
  if (page == NULL) return true;

  _mi_page_free_collect(page,true);
  mi_assert_internal(page->local_free == NULL);
  if (page->used == 0) return true;

  const size_t bsize = mi_page_block_size(page);
  const size_t ubsize = mi_page_usable_block_size(page); // without padding
  size_t   psize;
  uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize);

  if (page->capacity == 1) {
    // optimize page with one block
    mi_assert_internal(page->used == 1 && page->free == NULL);
    return visitor(mi_page_heap(page), area, pstart, ubsize, arg);
  }

  // create a bitmap of free blocks.
  #define MI_MAX_BLOCKS   (MI_SMALL_PAGE_SIZE / sizeof(void*))
  uintptr_t free_map[MI_MAX_BLOCKS / sizeof(uintptr_t)];
  memset(free_map, 0, sizeof(free_map));

  size_t free_count = 0;
  for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
    free_count++;
    mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize));
    size_t offset = (uint8_t*)block - pstart;
    mi_assert_internal(offset % bsize == 0);
    size_t blockidx = offset / bsize;  // Todo: avoid division?
    mi_assert_internal( blockidx < MI_MAX_BLOCKS);
    size_t bitidx = (blockidx / sizeof(uintptr_t));
    size_t bit = blockidx - (bitidx * sizeof(uintptr_t));
    free_map[bitidx] |= ((uintptr_t)1 << bit);
  }
  mi_assert_internal(page->capacity == (free_count + page->used));

  // walk through all blocks skipping the free ones
  size_t used_count = 0;
  for (size_t i = 0; i < page->capacity; i++) {
    size_t bitidx = (i / sizeof(uintptr_t));
    size_t bit = i - (bitidx * sizeof(uintptr_t));
    uintptr_t m = free_map[bitidx];
    if (bit == 0 && m == UINTPTR_MAX) {
      i += (sizeof(uintptr_t) - 1); // skip a run of free blocks
    }
    else if ((m & ((uintptr_t)1 << bit)) == 0) {
      used_count++;
      uint8_t* block = pstart + (i * bsize);
      if (!visitor(mi_page_heap(page), area, block, ubsize, arg)) return false;
    }
  }
  mi_assert_internal(page->used == used_count);
  return true;
}

typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ex_t* area, void* arg);


static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) {
  MI_UNUSED(heap);
  MI_UNUSED(pq);
  mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun;
  mi_heap_area_ex_t xarea;
  const size_t bsize = mi_page_block_size(page);
  const size_t ubsize = mi_page_usable_block_size(page);
  xarea.page = page;
  xarea.area.reserved = page->reserved * bsize;
  xarea.area.committed = page->capacity * bsize;
  xarea.area.blocks = _mi_page_start(_mi_page_segment(page), page, NULL);
  xarea.area.used = page->used;   // number of blocks in use (#553)
  xarea.area.block_size = ubsize;
  xarea.area.full_block_size = bsize;
  return fun(heap, &xarea, arg);
}

// Visit all heap pages as areas
static bool mi_heap_visit_areas(const mi_heap_t* heap, mi_heap_area_visit_fun* visitor, void* arg) {
  if (visitor == NULL) return false;
  return mi_heap_visit_pages((mi_heap_t*)heap, &mi_heap_visit_areas_page, (void*)(visitor), arg); // note: function pointer to void* :-{
}

// Just to pass arguments
typedef struct mi_visit_blocks_args_s {
  bool  visit_blocks;
  mi_block_visit_fun* visitor;
  void* arg;
} mi_visit_blocks_args_t;

static bool mi_heap_area_visitor(const mi_heap_t* heap, const mi_heap_area_ex_t* xarea, void* arg) {
  mi_visit_blocks_args_t* args = (mi_visit_blocks_args_t*)arg;
  if (!args->visitor(heap, &xarea->area, NULL, xarea->area.block_size, args->arg)) return false;
  if (args->visit_blocks) {
    return mi_heap_area_visit_blocks(xarea, args->visitor, args->arg);
  }
  else {
    return true;
  }
}

// Visit all blocks in a heap
bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) {
  mi_visit_blocks_args_t args = { visit_blocks, visitor, arg };
  return mi_heap_visit_areas(heap, &mi_heap_area_visitor, &args);
}