summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/arena.c
blob: a04a04c8fd31119c5c79d514fc68a5405c6211f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/

/* ----------------------------------------------------------------------------
"Arenas" are fixed area's of OS memory from which we can allocate
large blocks (>= MI_ARENA_MIN_BLOCK_SIZE, 4MiB).
In contrast to the rest of mimalloc, the arenas are shared between
threads and need to be accessed using atomic operations.

Arenas are used to for huge OS page (1GiB) reservations or for reserving
OS memory upfront which can be improve performance or is sometimes needed
on embedded devices. We can also employ this with WASI or `sbrk` systems 
to reserve large arenas upfront and be able to reuse the memory more effectively.

The arena allocation needs to be thread safe and we use an atomic bitmap to allocate.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"

#include <string.h>  // memset
#include <errno.h>   // ENOMEM

#include "bitmap.h"  // atomic bitmap

/* -----------------------------------------------------------
  Arena allocation
----------------------------------------------------------- */

// Block info: bit 0 contains the `in_use` bit, the upper bits the
// size in count of arena blocks.
typedef uintptr_t mi_block_info_t;
#define MI_ARENA_BLOCK_SIZE   (MI_SEGMENT_SIZE)        // 64MiB  (must be at least MI_SEGMENT_ALIGN)
#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_BLOCK_SIZE/2)  // 32MiB
#define MI_MAX_ARENAS         (112)                    // not more than 126 (since we use 7 bits in the memid and an arena index + 1)

// A memory arena descriptor
typedef struct mi_arena_s {
  mi_arena_id_t id;                       // arena id; 0 for non-specific
  mi_memid_t memid;                       // memid of the memory area
  _Atomic(uint8_t*) start;                // the start of the memory area
  size_t   block_count;                   // size of the area in arena blocks (of `MI_ARENA_BLOCK_SIZE`)
  size_t   field_count;                   // number of bitmap fields (where `field_count * MI_BITMAP_FIELD_BITS >= block_count`)
  size_t   meta_size;                     // size of the arena structure itself (including its bitmaps)
  mi_memid_t meta_memid;                  // memid of the arena structure itself (OS or static allocation)
  int      numa_node;                     // associated NUMA node
  bool     exclusive;                     // only allow allocations if specifically for this arena  
  bool     is_large;                      // memory area consists of large- or huge OS pages (always committed)
  _Atomic(size_t) search_idx;             // optimization to start the search for free blocks
  _Atomic(mi_msecs_t) purge_expire;       // expiration time when blocks should be decommitted from `blocks_decommit`.  
  mi_bitmap_field_t* blocks_dirty;        // are the blocks potentially non-zero?
  mi_bitmap_field_t* blocks_committed;    // are the blocks committed? (can be NULL for memory that cannot be decommitted)
  mi_bitmap_field_t* blocks_purge;        // blocks that can be (reset) decommitted. (can be NULL for memory that cannot be (reset) decommitted)  
  mi_bitmap_field_t  blocks_inuse[1];     // in-place bitmap of in-use blocks (of size `field_count`)
} mi_arena_t;


// The available arenas
static mi_decl_cache_align _Atomic(mi_arena_t*) mi_arenas[MI_MAX_ARENAS];
static mi_decl_cache_align _Atomic(size_t)      mi_arena_count; // = 0


//static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept;

/* -----------------------------------------------------------
  Arena id's
  id = arena_index + 1
----------------------------------------------------------- */

static size_t mi_arena_id_index(mi_arena_id_t id) {
  return (size_t)(id <= 0 ? MI_MAX_ARENAS : id - 1);
}

static mi_arena_id_t mi_arena_id_create(size_t arena_index) {
  mi_assert_internal(arena_index < MI_MAX_ARENAS);
  return (int)arena_index + 1;
}

mi_arena_id_t _mi_arena_id_none(void) {
  return 0;
}

static bool mi_arena_id_is_suitable(mi_arena_id_t arena_id, bool arena_is_exclusive, mi_arena_id_t req_arena_id) {
  return ((!arena_is_exclusive && req_arena_id == _mi_arena_id_none()) ||
          (arena_id == req_arena_id));
}

bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id) {
  if (memid.memkind == MI_MEM_ARENA) {
    return mi_arena_id_is_suitable(memid.mem.arena.id, memid.mem.arena.is_exclusive, request_arena_id);
  }
  else {
    return mi_arena_id_is_suitable(0, false, request_arena_id);
  }
}

bool _mi_arena_memid_is_os_allocated(mi_memid_t memid) {
  return (memid.memkind == MI_MEM_OS);
}

/* -----------------------------------------------------------
  Arena allocations get a (currently) 16-bit memory id where the 
  lower 8 bits are the arena id, and the upper bits the block index.
----------------------------------------------------------- */

static size_t mi_block_count_of_size(size_t size) {
  return _mi_divide_up(size, MI_ARENA_BLOCK_SIZE);
}

static size_t mi_arena_block_size(size_t bcount) {
  return (bcount * MI_ARENA_BLOCK_SIZE);
}

static size_t mi_arena_size(mi_arena_t* arena) {
  return mi_arena_block_size(arena->block_count);
}

static mi_memid_t mi_memid_create_arena(mi_arena_id_t id, bool is_exclusive, mi_bitmap_index_t bitmap_index) {
  mi_memid_t memid = _mi_memid_create(MI_MEM_ARENA);
  memid.mem.arena.id = id;
  memid.mem.arena.block_index = bitmap_index;
  memid.mem.arena.is_exclusive = is_exclusive;
  return memid;
}

static bool mi_arena_memid_indices(mi_memid_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index) {
  mi_assert_internal(memid.memkind == MI_MEM_ARENA);
  *arena_index = mi_arena_id_index(memid.mem.arena.id);
  *bitmap_index = memid.mem.arena.block_index;
  return memid.mem.arena.is_exclusive;
}



/* -----------------------------------------------------------
  Special static area for mimalloc internal structures
  to avoid OS calls (for example, for the arena metadata)
----------------------------------------------------------- */

#define MI_ARENA_STATIC_MAX  (MI_INTPTR_SIZE*MI_KiB)  // 8 KiB on 64-bit

static uint8_t mi_arena_static[MI_ARENA_STATIC_MAX];
static _Atomic(size_t) mi_arena_static_top;

static void* mi_arena_static_zalloc(size_t size, size_t alignment, mi_memid_t* memid) {
  *memid = _mi_memid_none();
  if (size == 0 || size > MI_ARENA_STATIC_MAX) return NULL;
  if ((mi_atomic_load_relaxed(&mi_arena_static_top) + size) > MI_ARENA_STATIC_MAX) return NULL;

  // try to claim space
  if (alignment == 0) { alignment = 1; }
  const size_t oversize = size + alignment - 1;
  if (oversize > MI_ARENA_STATIC_MAX) return NULL;
  const size_t oldtop = mi_atomic_add_acq_rel(&mi_arena_static_top, oversize);
  size_t top = oldtop + oversize;
  if (top > MI_ARENA_STATIC_MAX) {
    // try to roll back, ok if this fails
    mi_atomic_cas_strong_acq_rel(&mi_arena_static_top, &top, oldtop);
    return NULL;
  }

  // success
  *memid = _mi_memid_create(MI_MEM_STATIC);
  const size_t start = _mi_align_up(oldtop, alignment);
  uint8_t* const p = &mi_arena_static[start];
  _mi_memzero(p, size);
  return p;
}

static void* mi_arena_meta_zalloc(size_t size, mi_memid_t* memid, mi_stats_t* stats) {
  *memid = _mi_memid_none();

  // try static
  void* p = mi_arena_static_zalloc(size, MI_ALIGNMENT_MAX, memid);
  if (p != NULL) return p;

  // or fall back to the OS
  return _mi_os_alloc(size, memid, stats);
}

static void mi_arena_meta_free(void* p, mi_memid_t memid, size_t size, mi_stats_t* stats) {
  if (mi_memkind_is_os(memid.memkind)) {
    _mi_os_free(p, size, memid, stats);
  }
  else {
    mi_assert(memid.memkind == MI_MEM_STATIC);
  }
}

static void* mi_arena_block_start(mi_arena_t* arena, mi_bitmap_index_t bindex) {
  return (arena->start + mi_arena_block_size(mi_bitmap_index_bit(bindex)));
}


/* -----------------------------------------------------------
  Thread safe allocation in an arena
----------------------------------------------------------- */

// claim the `blocks_inuse` bits
static bool mi_arena_try_claim(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* bitmap_idx)
{
  size_t idx = 0; // mi_atomic_load_relaxed(&arena->search_idx);  // start from last search; ok to be relaxed as the exact start does not matter
  if (_mi_bitmap_try_find_from_claim_across(arena->blocks_inuse, arena->field_count, idx, blocks, bitmap_idx)) {
    mi_atomic_store_relaxed(&arena->search_idx, mi_bitmap_index_field(*bitmap_idx));  // start search from found location next time around    
    return true;
  };
  return false;
}


/* -----------------------------------------------------------
  Arena Allocation
----------------------------------------------------------- */

static mi_decl_noinline void* mi_arena_try_alloc_at(mi_arena_t* arena, size_t arena_index, size_t needed_bcount,
                                                    bool commit, mi_memid_t* memid, mi_os_tld_t* tld)
{
  MI_UNUSED(arena_index);
  mi_assert_internal(mi_arena_id_index(arena->id) == arena_index);

  mi_bitmap_index_t bitmap_index;
  if (!mi_arena_try_claim(arena, needed_bcount, &bitmap_index)) return NULL;

  // claimed it! 
  void* p = mi_arena_block_start(arena, bitmap_index);
  *memid = mi_memid_create_arena(arena->id, arena->exclusive, bitmap_index);
  memid->is_pinned = arena->memid.is_pinned;

  // none of the claimed blocks should be scheduled for a decommit
  if (arena->blocks_purge != NULL) {
    // this is thread safe as a potential purge only decommits parts that are not yet claimed as used (in `blocks_inuse`).
    _mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, needed_bcount, bitmap_index);
  }

  // set the dirty bits (todo: no need for an atomic op here?)
  if (arena->memid.initially_zero && arena->blocks_dirty != NULL) {
    memid->initially_zero = _mi_bitmap_claim_across(arena->blocks_dirty, arena->field_count, needed_bcount, bitmap_index, NULL);
  }

  // set commit state
  if (arena->blocks_committed == NULL) {
    // always committed
    memid->initially_committed = true;
  }
  else if (commit) {
    // commit requested, but the range may not be committed as a whole: ensure it is committed now
    memid->initially_committed = true;
    bool any_uncommitted;
    _mi_bitmap_claim_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index, &any_uncommitted);
    if (any_uncommitted) {
      bool commit_zero = false;
      if (!_mi_os_commit(p, mi_arena_block_size(needed_bcount), &commit_zero, tld->stats)) {
        memid->initially_committed = false;
      }
      else {
        if (commit_zero) { memid->initially_zero = true; }
      }
    }
  }
  else {
    // no need to commit, but check if already fully committed
    memid->initially_committed = _mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index);
  }
  
  return p;
}

// allocate in a speficic arena
static void* mi_arena_try_alloc_at_id(mi_arena_id_t arena_id, bool match_numa_node, int numa_node, size_t size, size_t alignment, 
                                       bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld ) 
{
  MI_UNUSED_RELEASE(alignment);
  mi_assert_internal(alignment <= MI_SEGMENT_ALIGN);
  const size_t bcount = mi_block_count_of_size(size);  
  const size_t arena_index = mi_arena_id_index(arena_id);
  mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count));
  mi_assert_internal(size <= mi_arena_block_size(bcount));
  
  // Check arena suitability
  mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]);
  if (arena == NULL) return NULL;
  if (!allow_large && arena->is_large) return NULL;
  if (!mi_arena_id_is_suitable(arena->id, arena->exclusive, req_arena_id)) return NULL;
  if (req_arena_id == _mi_arena_id_none()) { // in not specific, check numa affinity
    const bool numa_suitable = (numa_node < 0 || arena->numa_node < 0 || arena->numa_node == numa_node);
    if (match_numa_node) { if (!numa_suitable) return NULL; }
                    else { if (numa_suitable) return NULL; }
  }

  // try to allocate
  void* p = mi_arena_try_alloc_at(arena, arena_index, bcount, commit, memid, tld);
  mi_assert_internal(p == NULL || _mi_is_aligned(p, alignment));
  return p;
}


// allocate from an arena with fallback to the OS
static mi_decl_noinline void* mi_arena_try_alloc(int numa_node, size_t size, size_t alignment, 
                                                  bool commit, bool allow_large,
                                                  mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld )
{
  MI_UNUSED(alignment);
  mi_assert_internal(alignment <= MI_SEGMENT_ALIGN);
  const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
  if mi_likely(max_arena == 0) return NULL;
  
  if (req_arena_id != _mi_arena_id_none()) {
    // try a specific arena if requested 
    if (mi_arena_id_index(req_arena_id) < max_arena) {
      void* p = mi_arena_try_alloc_at_id(req_arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
      if (p != NULL) return p;
    }
  }
  else {
    // try numa affine allocation
    for (size_t i = 0; i < max_arena; i++) {    
      void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
      if (p != NULL) return p;
    }

    // try from another numa node instead..
    if (numa_node >= 0) {  // if numa_node was < 0 (no specific affinity requested), all arena's have been tried already
      for (size_t i = 0; i < max_arena; i++) {
        void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), false /* only proceed if not numa local */, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
        if (p != NULL) return p;
      }
    }
  }
  return NULL;
}

// try to reserve a fresh arena space
static bool mi_arena_reserve(size_t req_size, bool allow_large, mi_arena_id_t req_arena_id, mi_arena_id_t *arena_id)
{
  if (_mi_preloading()) return false;  // use OS only while pre loading
  if (req_arena_id != _mi_arena_id_none()) return false;

  const size_t arena_count = mi_atomic_load_acquire(&mi_arena_count);
  if (arena_count > (MI_MAX_ARENAS - 4)) return false;

  size_t arena_reserve = mi_option_get_size(mi_option_arena_reserve);
  if (arena_reserve == 0) return false;

  if (!_mi_os_has_virtual_reserve()) { 
    arena_reserve = arena_reserve/4;  // be conservative if virtual reserve is not supported (for some embedded systems for example)
  }
  arena_reserve = _mi_align_up(arena_reserve, MI_ARENA_BLOCK_SIZE);
  if (arena_count >= 8 && arena_count <= 128) {
    arena_reserve = ((size_t)1<<(arena_count/8)) * arena_reserve;  // scale up the arena sizes exponentially
  }    
  if (arena_reserve < req_size) return false;  // should be able to at least handle the current allocation size
      
  // commit eagerly?
  bool arena_commit = false;
  if (mi_option_get(mi_option_arena_eager_commit) == 2)      { arena_commit = _mi_os_has_overcommit(); }
  else if (mi_option_get(mi_option_arena_eager_commit) == 1) { arena_commit = true; }

  return (mi_reserve_os_memory_ex(arena_reserve, arena_commit, allow_large, false /* exclusive */, arena_id) == 0);
}    


void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large,
                              mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld)
{
  mi_assert_internal(memid != NULL && tld != NULL);
  mi_assert_internal(size > 0);
  *memid = _mi_memid_none();

  const int numa_node = _mi_os_numa_node(tld); // current numa node

  // try to allocate in an arena if the alignment is small enough and the object is not too small (as for heap meta data)
  if (size >= MI_ARENA_MIN_OBJ_SIZE && alignment <= MI_SEGMENT_ALIGN && align_offset == 0) {
    void* p = mi_arena_try_alloc(numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
    if (p != NULL) return p;    

    // otherwise, try to first eagerly reserve a new arena 
    if (req_arena_id == _mi_arena_id_none()) {
      mi_arena_id_t arena_id = 0;
      if (mi_arena_reserve(size, allow_large, req_arena_id, &arena_id)) {
        // and try allocate in there
        mi_assert_internal(req_arena_id == _mi_arena_id_none());
        p = mi_arena_try_alloc_at_id(arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
        if (p != NULL) return p;
      }
    }
  }

  // if we cannot use OS allocation, return NULL
  if (mi_option_is_enabled(mi_option_limit_os_alloc) || req_arena_id != _mi_arena_id_none()) {
    errno = ENOMEM;
    return NULL;
  }
   
  // finally, fall back to the OS
  if (align_offset > 0) {
    return _mi_os_alloc_aligned_at_offset(size, alignment, align_offset, commit, allow_large, memid, tld->stats);
  }
  else {
    return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld->stats);
  }  
}

void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld)
{
  return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, 0, commit, allow_large, req_arena_id, memid, tld);
}


void* mi_arena_area(mi_arena_id_t arena_id, size_t* size) {
  if (size != NULL) *size = 0;
  size_t arena_index = mi_arena_id_index(arena_id);
  if (arena_index >= MI_MAX_ARENAS) return NULL;
  mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]);
  if (arena == NULL) return NULL;
  if (size != NULL) { *size = mi_arena_block_size(arena->block_count); }
  return arena->start;
}


/* -----------------------------------------------------------
  Arena purge
----------------------------------------------------------- */

static long mi_arena_purge_delay(void) {
  // <0 = no purging allowed, 0=immediate purging, >0=milli-second delay
  return (mi_option_get(mi_option_purge_delay) * mi_option_get(mi_option_arena_purge_mult));
}

// reset or decommit in an arena and update the committed/decommit bitmaps
// assumes we own the area (i.e. blocks_in_use is claimed by us)
static void mi_arena_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) {
  mi_assert_internal(arena->blocks_committed != NULL);
  mi_assert_internal(arena->blocks_purge != NULL);
  mi_assert_internal(!arena->memid.is_pinned);
  const size_t size = mi_arena_block_size(blocks);
  void* const p = mi_arena_block_start(arena, bitmap_idx); 
  bool needs_recommit;
  if (_mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx)) {
    // all blocks are committed, we can purge freely
    needs_recommit = _mi_os_purge(p, size, stats);
  }
  else {
    // some blocks are not committed -- this can happen when a partially committed block is freed 
    // in `_mi_arena_free` and it is conservatively marked as uncommitted but still scheduled for a purge
    // we need to ensure we do not try to reset (as that may be invalid for uncommitted memory), 
    // and also undo the decommit stats (as it was already adjusted)
    mi_assert_internal(mi_option_is_enabled(mi_option_purge_decommits));
    needs_recommit = _mi_os_purge_ex(p, size, false /* allow reset? */, stats);
    _mi_stat_increase(&stats->committed, size);
  }
  
  // clear the purged blocks
  _mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx);
  // update committed bitmap
  if (needs_recommit) {
    _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx);
  }
}

// Schedule a purge. This is usually delayed to avoid repeated decommit/commit calls.
// Note: assumes we (still) own the area as we may purge immediately
static void mi_arena_schedule_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) {
  mi_assert_internal(arena->blocks_purge != NULL);
  const long delay = mi_arena_purge_delay();
  if (delay < 0) return;  // is purging allowed at all?

  if (_mi_preloading() || delay == 0) {
    // decommit directly
    mi_arena_purge(arena, bitmap_idx, blocks, stats);    
  }
  else {
    // schedule decommit
    mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire);
    if (expire != 0) {
      mi_atomic_addi64_acq_rel(&arena->purge_expire, delay/10);  // add smallish extra delay
    }
    else {
      mi_atomic_storei64_release(&arena->purge_expire, _mi_clock_now() + delay);
    }
    _mi_bitmap_claim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx, NULL);
  }
}

// purge a range of blocks
// return true if the full range was purged.
// assumes we own the area (i.e. blocks_in_use is claimed by us)
static bool mi_arena_purge_range(mi_arena_t* arena, size_t idx, size_t startidx, size_t bitlen, size_t purge, mi_stats_t* stats) {
  const size_t endidx = startidx + bitlen;
  size_t bitidx = startidx;
  bool all_purged = false;
  while (bitidx < endidx) {
    // count consequetive ones in the purge mask
    size_t count = 0;
    while (bitidx + count < endidx && (purge & ((size_t)1 << (bitidx + count))) != 0) {
      count++;
    }
    if (count > 0) {
      // found range to be purged
      const mi_bitmap_index_t range_idx = mi_bitmap_index_create(idx, bitidx);
      mi_arena_purge(arena, range_idx, count, stats);
      if (count == bitlen) {
        all_purged = true;
      }
    }
    bitidx += (count+1); // +1 to skip the zero bit (or end)
  }
  return all_purged;
}

// returns true if anything was purged
static bool mi_arena_try_purge(mi_arena_t* arena, mi_msecs_t now, bool force, mi_stats_t* stats) 
{
  if (arena->memid.is_pinned || arena->blocks_purge == NULL) return false;
  mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire);
  if (expire == 0) return false;
  if (!force && expire > now) return false;

  // reset expire (if not already set concurrently)
  mi_atomic_casi64_strong_acq_rel(&arena->purge_expire, &expire, 0);
  
  // potential purges scheduled, walk through the bitmap
  bool any_purged = false;
  bool full_purge = true;  
  for (size_t i = 0; i < arena->field_count; i++) {
    size_t purge = mi_atomic_load_relaxed(&arena->blocks_purge[i]);
    if (purge != 0) {
      size_t bitidx = 0;
      while (bitidx < MI_BITMAP_FIELD_BITS) {
        // find consequetive range of ones in the purge mask
        size_t bitlen = 0;
        while (bitidx + bitlen < MI_BITMAP_FIELD_BITS && (purge & ((size_t)1 << (bitidx + bitlen))) != 0) {
          bitlen++;
        }
        // try to claim the longest range of corresponding in_use bits
        const mi_bitmap_index_t bitmap_index = mi_bitmap_index_create(i, bitidx);
        while( bitlen > 0 ) {
          if (_mi_bitmap_try_claim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index)) {
            break;
          }
          bitlen--;
        }
        // actual claimed bits at `in_use`
        if (bitlen > 0) {
          // read purge again now that we have the in_use bits
          purge = mi_atomic_load_acquire(&arena->blocks_purge[i]);
          if (!mi_arena_purge_range(arena, i, bitidx, bitlen, purge, stats)) {
            full_purge = false;
          }
          any_purged = true;
          // release the claimed `in_use` bits again
          _mi_bitmap_unclaim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index);
        }
        bitidx += (bitlen+1);  // +1 to skip the zero (or end)
      } // while bitidx
    } // purge != 0
  }
  // if not fully purged, make sure to purge again in the future
  if (!full_purge) {
    const long delay = mi_arena_purge_delay();
    mi_msecs_t expected = 0;
    mi_atomic_casi64_strong_acq_rel(&arena->purge_expire,&expected,_mi_clock_now() + delay);
  }
  return any_purged;
}

static void mi_arenas_try_purge( bool force, bool visit_all, mi_stats_t* stats ) {
  if (_mi_preloading() || mi_arena_purge_delay() <= 0) return;  // nothing will be scheduled

  const size_t max_arena = mi_atomic_load_acquire(&mi_arena_count);
  if (max_arena == 0) return;

  // allow only one thread to purge at a time
  static mi_atomic_guard_t purge_guard;
  mi_atomic_guard(&purge_guard) 
  {
    mi_msecs_t now = _mi_clock_now();
    size_t max_purge_count = (visit_all ? max_arena : 1);
    for (size_t i = 0; i < max_arena; i++) {
      mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
      if (arena != NULL) {
        if (mi_arena_try_purge(arena, now, force, stats)) {
          if (max_purge_count <= 1) break;
          max_purge_count--;
        }
      }
    }
  }  
}


/* -----------------------------------------------------------
  Arena free
----------------------------------------------------------- */

void _mi_arena_free(void* p, size_t size, size_t committed_size, mi_memid_t memid, mi_stats_t* stats) {
  mi_assert_internal(size > 0 && stats != NULL);
  mi_assert_internal(committed_size <= size);
  if (p==NULL) return;
  if (size==0) return;
  const bool all_committed = (committed_size == size);
  
  if (mi_memkind_is_os(memid.memkind)) {
    // was a direct OS allocation, pass through
    if (!all_committed && committed_size > 0) {
      // if partially committed, adjust the committed stats (as `_mi_os_free` will increase decommit by the full size)
      _mi_stat_decrease(&stats->committed, committed_size);
    }
    _mi_os_free(p, size, memid, stats);
  }
  else if (memid.memkind == MI_MEM_ARENA) {
    // allocated in an arena
    size_t arena_idx;
    size_t bitmap_idx;
    mi_arena_memid_indices(memid, &arena_idx, &bitmap_idx);
    mi_assert_internal(arena_idx < MI_MAX_ARENAS);
    mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t,&mi_arenas[arena_idx]);
    mi_assert_internal(arena != NULL);
    const size_t blocks = mi_block_count_of_size(size);
    
    // checks
    if (arena == NULL) {
      _mi_error_message(EINVAL, "trying to free from non-existent arena: %p, size %zu, memid: 0x%zx\n", p, size, memid);
      return;
    }
    mi_assert_internal(arena->field_count > mi_bitmap_index_field(bitmap_idx));
    if (arena->field_count <= mi_bitmap_index_field(bitmap_idx)) {
      _mi_error_message(EINVAL, "trying to free from non-existent arena block: %p, size %zu, memid: 0x%zx\n", p, size, memid);
      return;
    }

    // need to set all memory to undefined as some parts may still be marked as no_access (like padding etc.)
    mi_track_mem_undefined(p,size);

    // potentially decommit
    if (arena->memid.is_pinned || arena->blocks_committed == NULL) {
      mi_assert_internal(all_committed);
    }
    else {
      mi_assert_internal(arena->blocks_committed != NULL);
      mi_assert_internal(arena->blocks_purge != NULL);
      
      if (!all_committed) {
        // mark the entire range as no longer committed (so we recommit the full range when re-using)
        _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx);
        mi_track_mem_noaccess(p,size);
        if (committed_size > 0) {
          // if partially committed, adjust the committed stats (is it will be recommitted when re-using)
          // in the delayed purge, we now need to not count a decommit if the range is not marked as committed.
          _mi_stat_decrease(&stats->committed, committed_size);
        }
        // note: if not all committed, it may be that the purge will reset/decommit the entire range
        // that contains already decommitted parts. Since purge consistently uses reset or decommit that
        // works (as we should never reset decommitted parts).
      }
      // (delay) purge the entire range
      mi_arena_schedule_purge(arena, bitmap_idx, blocks, stats);      
    }
    
    // and make it available to others again
    bool all_inuse = _mi_bitmap_unclaim_across(arena->blocks_inuse, arena->field_count, blocks, bitmap_idx);
    if (!all_inuse) {
      _mi_error_message(EAGAIN, "trying to free an already freed arena block: %p, size %zu\n", p, size);
      return;
    };
  }
  else {
    // arena was none, external, or static; nothing to do
    mi_assert_internal(memid.memkind < MI_MEM_OS);
  }

  // purge expired decommits
  mi_arenas_try_purge(false, false, stats);
}

// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit`
// for dynamic libraries that are unloaded and need to release all their allocated memory.
static void mi_arenas_unsafe_destroy(void) {
  const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
  size_t new_max_arena = 0;
  for (size_t i = 0; i < max_arena; i++) {
    mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
    if (arena != NULL) {
      if (arena->start != NULL && mi_memkind_is_os(arena->memid.memkind)) {      
        mi_atomic_store_ptr_release(mi_arena_t, &mi_arenas[i], NULL);
        _mi_os_free(arena->start, mi_arena_size(arena), arena->memid, &_mi_stats_main); 
      }
      else {
        new_max_arena = i;
      }
      mi_arena_meta_free(arena, arena->meta_memid, arena->meta_size, &_mi_stats_main);
    }
  }

  // try to lower the max arena.
  size_t expected = max_arena;
  mi_atomic_cas_strong_acq_rel(&mi_arena_count, &expected, new_max_arena);
}

// Purge the arenas; if `force_purge` is true, amenable parts are purged even if not yet expired
void _mi_arena_collect(bool force_purge, mi_stats_t* stats) {
  mi_arenas_try_purge(force_purge, true /* visit all */, stats);
}

// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit`
// for dynamic libraries that are unloaded and need to release all their allocated memory.
void _mi_arena_unsafe_destroy_all(mi_stats_t* stats) {
  mi_arenas_unsafe_destroy();
  _mi_arena_collect(true /* force purge */, stats);  // purge non-owned arenas  
}

// Is a pointer inside any of our arenas?
bool _mi_arena_contains(const void* p) {
  const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
  for (size_t i = 0; i < max_arena; i++) {
    mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
    if (arena != NULL && arena->start <= (const uint8_t*)p && arena->start + mi_arena_block_size(arena->block_count) > (const uint8_t*)p) { 
      return true;      
    }
  }
  return false;
}


/* -----------------------------------------------------------
  Add an arena.
----------------------------------------------------------- */

static bool mi_arena_add(mi_arena_t* arena, mi_arena_id_t* arena_id) {
  mi_assert_internal(arena != NULL);
  mi_assert_internal((uintptr_t)mi_atomic_load_ptr_relaxed(uint8_t,&arena->start) % MI_SEGMENT_ALIGN == 0);
  mi_assert_internal(arena->block_count > 0);
  if (arena_id != NULL) { *arena_id = -1; }

  size_t i = mi_atomic_increment_acq_rel(&mi_arena_count);
  if (i >= MI_MAX_ARENAS) {
    mi_atomic_decrement_acq_rel(&mi_arena_count);
    return false;
  }
  arena->id = mi_arena_id_create(i);
  mi_atomic_store_ptr_release(mi_arena_t,&mi_arenas[i], arena);
  if (arena_id != NULL) { *arena_id = arena->id; }
  return true;
}

static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept
{
  if (arena_id != NULL) *arena_id = _mi_arena_id_none();
  if (size < MI_ARENA_BLOCK_SIZE) return false;

  if (is_large) {
    mi_assert_internal(memid.initially_committed && memid.is_pinned);
  }

  const size_t bcount = size / MI_ARENA_BLOCK_SIZE;
  const size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS);
  const size_t bitmaps = (memid.is_pinned ? 2 : 4);
  const size_t asize  = sizeof(mi_arena_t) + (bitmaps*fields*sizeof(mi_bitmap_field_t));
  mi_memid_t meta_memid;
  mi_arena_t* arena   = (mi_arena_t*)mi_arena_meta_zalloc(asize, &meta_memid, &_mi_stats_main); // TODO: can we avoid allocating from the OS?
  if (arena == NULL) return false;
  
  // already zero'd due to os_alloc
  // _mi_memzero(arena, asize);
  arena->id = _mi_arena_id_none();
  arena->memid = memid;
  arena->exclusive = exclusive;
  arena->meta_size = asize;
  arena->meta_memid = meta_memid;
  arena->block_count = bcount;
  arena->field_count = fields;
  arena->start = (uint8_t*)start;
  arena->numa_node    = numa_node; // TODO: or get the current numa node if -1? (now it allows anyone to allocate on -1)
  arena->is_large     = is_large;
  arena->purge_expire = 0;
  arena->search_idx   = 0;
  arena->blocks_dirty = &arena->blocks_inuse[fields]; // just after inuse bitmap
  arena->blocks_committed = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[2*fields]); // just after dirty bitmap
  arena->blocks_purge  = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[3*fields]); // just after committed bitmap  
  // initialize committed bitmap?
  if (arena->blocks_committed != NULL && arena->memid.initially_committed) {
    memset((void*)arena->blocks_committed, 0xFF, fields*sizeof(mi_bitmap_field_t)); // cast to void* to avoid atomic warning
  }
  
  // and claim leftover blocks if needed (so we never allocate there)
  ptrdiff_t post = (fields * MI_BITMAP_FIELD_BITS) - bcount;
  mi_assert_internal(post >= 0);
  if (post > 0) {
    // don't use leftover bits at the end
    mi_bitmap_index_t postidx = mi_bitmap_index_create(fields - 1, MI_BITMAP_FIELD_BITS - post);
    _mi_bitmap_claim(arena->blocks_inuse, fields, post, postidx, NULL);
  }
  return mi_arena_add(arena, arena_id);

}

bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
  mi_memid_t memid = _mi_memid_create(MI_MEM_EXTERNAL);
  memid.initially_committed = is_committed;
  memid.initially_zero = is_zero;
  memid.is_pinned = is_large;
  return mi_manage_os_memory_ex2(start,size,is_large,numa_node,exclusive,memid, arena_id);
}

// Reserve a range of regular OS memory
int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
  if (arena_id != NULL) *arena_id = _mi_arena_id_none();
  size = _mi_align_up(size, MI_ARENA_BLOCK_SIZE); // at least one block
  mi_memid_t memid;
  void* start = _mi_os_alloc_aligned(size, MI_SEGMENT_ALIGN, commit, allow_large, &memid, &_mi_stats_main);
  if (start == NULL) return ENOMEM;
  const bool is_large = memid.is_pinned; // todo: use separate is_large field?
  if (!mi_manage_os_memory_ex2(start, size, is_large, -1 /* numa node */, exclusive, memid, arena_id)) {
    _mi_os_free_ex(start, size, commit, memid, &_mi_stats_main);
    _mi_verbose_message("failed to reserve %zu k memory\n", _mi_divide_up(size, 1024));
    return ENOMEM;
  }
  _mi_verbose_message("reserved %zu KiB memory%s\n", _mi_divide_up(size, 1024), is_large ? " (in large os pages)" : "");
  return 0;
}


// Manage a range of regular OS memory
bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept {
  return mi_manage_os_memory_ex(start, size, is_committed, is_large, is_zero, numa_node, false /* exclusive? */, NULL);
}

// Reserve a range of regular OS memory
int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept {
  return mi_reserve_os_memory_ex(size, commit, allow_large, false, NULL);
}


/* -----------------------------------------------------------
  Debugging
----------------------------------------------------------- */

static size_t mi_debug_show_bitmap(const char* prefix, mi_bitmap_field_t* fields, size_t field_count ) {
  size_t inuse_count = 0;
  for (size_t i = 0; i < field_count; i++) {
    char buf[MI_BITMAP_FIELD_BITS + 1];
    uintptr_t field = mi_atomic_load_relaxed(&fields[i]);
    for (size_t bit = 0; bit < MI_BITMAP_FIELD_BITS; bit++) {
      bool inuse = ((((uintptr_t)1 << bit) & field) != 0);
      if (inuse) inuse_count++;
      buf[MI_BITMAP_FIELD_BITS - 1 - bit] = (inuse ? 'x' : '.');
    }
    buf[MI_BITMAP_FIELD_BITS] = 0;
    _mi_verbose_message("%s%s\n", prefix, buf);
  }
  return inuse_count;
}

void mi_debug_show_arenas(void) mi_attr_noexcept {
  size_t max_arenas = mi_atomic_load_relaxed(&mi_arena_count);
  for (size_t i = 0; i < max_arenas; i++) {
    mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]);
    if (arena == NULL) break;
    size_t inuse_count = 0;
    _mi_verbose_message("arena %zu: %zu blocks with %zu fields\n", i, arena->block_count, arena->field_count);
    inuse_count += mi_debug_show_bitmap("  ", arena->blocks_inuse, arena->field_count);
    _mi_verbose_message("  blocks in use ('x'): %zu\n", inuse_count);
  }
}


/* -----------------------------------------------------------
  Reserve a huge page arena.
----------------------------------------------------------- */
// reserve at a specific numa node
int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
  if (arena_id != NULL) *arena_id = -1;
  if (pages==0) return 0;
  if (numa_node < -1) numa_node = -1;
  if (numa_node >= 0) numa_node = numa_node % _mi_os_numa_node_count();
  size_t hsize = 0;
  size_t pages_reserved = 0;
  mi_memid_t memid;
  void* p = _mi_os_alloc_huge_os_pages(pages, numa_node, timeout_msecs, &pages_reserved, &hsize, &memid);
  if (p==NULL || pages_reserved==0) {
    _mi_warning_message("failed to reserve %zu GiB huge pages\n", pages);
    return ENOMEM;
  }
  _mi_verbose_message("numa node %i: reserved %zu GiB huge pages (of the %zu GiB requested)\n", numa_node, pages_reserved, pages);

  if (!mi_manage_os_memory_ex2(p, hsize, true, numa_node, exclusive, memid, arena_id)) {
    _mi_os_free(p, hsize, memid, &_mi_stats_main);
    return ENOMEM;
  }
  return 0;
}

int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept {
  return mi_reserve_huge_os_pages_at_ex(pages, numa_node, timeout_msecs, false, NULL);
}

// reserve huge pages evenly among the given number of numa nodes (or use the available ones as detected)
int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept {
  if (pages == 0) return 0;

  // pages per numa node
  size_t numa_count = (numa_nodes > 0 ? numa_nodes : _mi_os_numa_node_count());
  if (numa_count <= 0) numa_count = 1;
  const size_t pages_per = pages / numa_count;
  const size_t pages_mod = pages % numa_count;
  const size_t timeout_per = (timeout_msecs==0 ? 0 : (timeout_msecs / numa_count) + 50);

  // reserve evenly among numa nodes
  for (size_t numa_node = 0; numa_node < numa_count && pages > 0; numa_node++) {
    size_t node_pages = pages_per;  // can be 0
    if (numa_node < pages_mod) node_pages++;
    int err = mi_reserve_huge_os_pages_at(node_pages, (int)numa_node, timeout_per);
    if (err) return err;
    if (pages < node_pages) {
      pages = 0;
    }
    else {
      pages -= node_pages;
    }
  }

  return 0;
}

int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept {
  MI_UNUSED(max_secs);
  _mi_warning_message("mi_reserve_huge_os_pages is deprecated: use mi_reserve_huge_os_pages_interleave/at instead\n");
  if (pages_reserved != NULL) *pages_reserved = 0;
  int err = mi_reserve_huge_os_pages_interleave(pages, 0, (size_t)(max_secs * 1000.0));
  if (err==0 && pages_reserved!=NULL) *pages_reserved = pages;
  return err;
}