summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/alloc.c
blob: 24045162de351ee9e4645378b69e13abfeeb3a16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE   // for realpath() on Linux
#endif

#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"   // _mi_prim_thread_id()

#include <string.h>      // memset, strlen (for mi_strdup)
#include <stdlib.h>      // malloc, abort

#define MI_IN_ALLOC_C
#include "alloc-override.c"
#undef MI_IN_ALLOC_C

// ------------------------------------------------------
// Allocation
// ------------------------------------------------------

// Fast allocation in a page: just pop from the free list.
// Fall back to generic allocation only if the list is empty.
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept {
  mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
  mi_block_t* const block = page->free;
  if mi_unlikely(block == NULL) {
    return _mi_malloc_generic(heap, size, zero, 0);
  }
  mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
  // pop from the free list
  page->used++;
  page->free = mi_block_next(page, block);
  mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);

  // allow use of the block internally
  // note: when tracking we need to avoid ever touching the MI_PADDING since
  // that is tracked by valgrind etc. as non-accessible (through the red-zone, see `mimalloc/track.h`)
  mi_track_mem_undefined(block, mi_page_usable_block_size(page));

  // zero the block? note: we need to zero the full block size (issue #63)
  if mi_unlikely(zero) {
    mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic)
    const size_t zsize = (page->is_zero ? sizeof(block->next) + MI_PADDING_SIZE : page->xblock_size);
    _mi_memzero_aligned(block, zsize - MI_PADDING_SIZE);
  }

#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
  if (!page->is_zero && !zero && !mi_page_is_huge(page)) {
    memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page));
  }
#elif (MI_SECURE!=0)
  if (!zero) { block->next = 0; } // don't leak internal data
#endif

#if (MI_STAT>0)
  const size_t bsize = mi_page_usable_block_size(page);
  if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
    mi_heap_stat_increase(heap, normal, bsize);
    mi_heap_stat_counter_increase(heap, normal_count, 1);
#if (MI_STAT>1)
    const size_t bin = _mi_bin(bsize);
    mi_heap_stat_increase(heap, normal_bins[bin], 1);
#endif
  }
#endif

#if MI_PADDING // && !MI_TRACK_ENABLED
  mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
  ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
  #if (MI_DEBUG>=2)
  mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
  mi_track_mem_defined(padding,sizeof(mi_padding_t));  // note: re-enable since mi_page_usable_block_size may set noaccess
  #endif
  padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
  padding->delta  = (uint32_t)(delta);
  #if MI_PADDING_CHECK
  if (!mi_page_is_huge(page)) {
    uint8_t* fill = (uint8_t*)padding - delta;
    const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
    for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
  }
  #endif
#endif

  return block;
}

static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
  mi_assert(heap != NULL);
  #if MI_DEBUG
  const uintptr_t tid = _mi_thread_id();
  mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local
  #endif
  mi_assert(size <= MI_SMALL_SIZE_MAX);
  #if (MI_PADDING)
  if (size == 0) { size = sizeof(void*); }
  #endif
  mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE);
  void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero);  
  mi_track_malloc(p,size,zero);
  #if MI_STAT>1
  if (p != NULL) {
    if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
    mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
  }
  #endif
  return p;
}

// allocate a small block
mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small_zero(heap, size, false);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small(mi_prim_get_default_heap(), size);
}

// The main allocation function
extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept {
  if mi_likely(size <= MI_SMALL_SIZE_MAX) {
    mi_assert_internal(huge_alignment == 0);
    return mi_heap_malloc_small_zero(heap, size, zero);
  }
  else {
    mi_assert(heap!=NULL);
    mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id());   // heaps are thread local
    void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment);  // note: size can overflow but it is detected in malloc_generic
    mi_track_malloc(p,size,zero);
    #if MI_STAT>1
    if (p != NULL) {
      if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
      mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
    }
    #endif
    return p;
  }
}

extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
  return _mi_heap_malloc_zero_ex(heap, size, zero, 0);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return _mi_heap_malloc_zero(heap, size, false);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept {
  return mi_heap_malloc(mi_prim_get_default_heap(), size);
}

// zero initialized small block
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small_zero(mi_prim_get_default_heap(), size, true);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return _mi_heap_malloc_zero(heap, size, true);
}

mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept {
  return mi_heap_zalloc(mi_prim_get_default_heap(),size);
}


// ------------------------------------------------------
// Check for double free in secure and debug mode
// This is somewhat expensive so only enabled for secure mode 4
// ------------------------------------------------------

#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
// linear check if the free list contains a specific element
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
  while (list != NULL) {
    if (elem==list) return true;
    list = mi_block_next(page, list);
  }
  return false;
}

static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
  // The decoded value is in the same page (or NULL).
  // Walk the free lists to verify positively if it is already freed
  if (mi_list_contains(page, page->free, block) ||
      mi_list_contains(page, page->local_free, block) ||
      mi_list_contains(page, mi_page_thread_free(page), block))
  {
    _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
    return true;
  }
  return false;
}

#define mi_track_page(page,access)  { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }

static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
  bool is_double_free = false;
  mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
  if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 &&  // quick check: aligned pointer?
      (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
  {
    // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
    // (continue in separate function to improve code generation)
    is_double_free = mi_check_is_double_freex(page, block);
  }
  return is_double_free;
}
#else
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
  MI_UNUSED(page);
  MI_UNUSED(block);
  return false;
}
#endif

// ---------------------------------------------------------------------------
// Check for heap block overflow by setting up padding at the end of the block
// ---------------------------------------------------------------------------

#if MI_PADDING // && !MI_TRACK_ENABLED
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
  *bsize = mi_page_usable_block_size(page);
  const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
  mi_track_mem_defined(padding,sizeof(mi_padding_t));
  *delta = padding->delta;
  uint32_t canary = padding->canary;
  uintptr_t keys[2];
  keys[0] = page->keys[0];
  keys[1] = page->keys[1];
  bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
  mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
  return ok;
}

// Return the exact usable size of a block.
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
  size_t bsize;
  size_t delta;
  bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
  mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
  return (ok ? bsize - delta : 0);
}

// When a non-thread-local block is freed, it becomes part of the thread delayed free
// list that is freed later by the owning heap. If the exact usable size is too small to
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
// so it will later not trigger an overflow error in `mi_free_block`.
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
  size_t bsize;
  size_t delta;
  bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
  mi_assert_internal(ok);
  if (!ok || (bsize - delta) >= min_size) return;  // usually already enough space
  mi_assert_internal(bsize >= min_size);
  if (bsize < min_size) return;  // should never happen
  size_t new_delta = (bsize - min_size);
  mi_assert_internal(new_delta < bsize);
  mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
  mi_track_mem_defined(padding,sizeof(mi_padding_t));
  padding->delta = (uint32_t)new_delta;
  mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
}
#else
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
  MI_UNUSED(block);
  return mi_page_usable_block_size(page);
}

void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
  MI_UNUSED(page);
  MI_UNUSED(block);
  MI_UNUSED(min_size);
}
#endif

#if MI_PADDING && MI_PADDING_CHECK

static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
  size_t bsize;
  size_t delta;
  bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
  *size = *wrong = bsize;
  if (!ok) return false;
  mi_assert_internal(bsize >= delta);
  *size = bsize - delta;
  if (!mi_page_is_huge(page)) {
    uint8_t* fill = (uint8_t*)block + bsize - delta;
    const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
    mi_track_mem_defined(fill, maxpad);
    for (size_t i = 0; i < maxpad; i++) {
      if (fill[i] != MI_DEBUG_PADDING) {
        *wrong = bsize - delta + i;
        ok = false;
        break;
      }
    }
    mi_track_mem_noaccess(fill, maxpad);
  }
  return ok;
}

static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
  size_t size;
  size_t wrong;
  if (!mi_verify_padding(page,block,&size,&wrong)) {
    _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
  }
}

#else

static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
  MI_UNUSED(page);
  MI_UNUSED(block);
}

#endif

// only maintain stats for smaller objects if requested
#if (MI_STAT>0)
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
  #if (MI_STAT < 2)  
  MI_UNUSED(block);
  #endif
  mi_heap_t* const heap = mi_heap_get_default();
  const size_t bsize = mi_page_usable_block_size(page);
  #if (MI_STAT>1)
  const size_t usize = mi_page_usable_size_of(page, block);
  mi_heap_stat_decrease(heap, malloc, usize);
  #endif  
  if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
    mi_heap_stat_decrease(heap, normal, bsize);
    #if (MI_STAT > 1)
    mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
    #endif
  }
  else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
    mi_heap_stat_decrease(heap, large, bsize);
  }
  else {
    mi_heap_stat_decrease(heap, huge, bsize);
  }  
}
#else
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
  MI_UNUSED(page); MI_UNUSED(block);
}
#endif

#if MI_HUGE_PAGE_ABANDON
#if (MI_STAT>0)
// maintain stats for huge objects
static void mi_stat_huge_free(const mi_page_t* page) {
  mi_heap_t* const heap = mi_heap_get_default();
  const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
  if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
    mi_heap_stat_decrease(heap, large, bsize);
  }
  else {
    mi_heap_stat_decrease(heap, huge, bsize);
  }
}
#else
static void mi_stat_huge_free(const mi_page_t* page) {
  MI_UNUSED(page);
}
#endif
#endif

// ------------------------------------------------------
// Free
// ------------------------------------------------------

// multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
{
  // The padding check may access the non-thread-owned page for the key values.
  // that is safe as these are constant and the page won't be freed (as the block is not freed yet).
  mi_check_padding(page, block);
  _mi_padding_shrink(page, block, sizeof(mi_block_t));       // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
  
  // huge page segments are always abandoned and can be freed immediately
  mi_segment_t* segment = _mi_page_segment(page);
  if (segment->kind == MI_SEGMENT_HUGE) {
    #if MI_HUGE_PAGE_ABANDON
    // huge page segments are always abandoned and can be freed immediately
    mi_stat_huge_free(page);
    _mi_segment_huge_page_free(segment, page, block);
    return;
    #else
    // huge pages are special as they occupy the entire segment
    // as these are large we reset the memory occupied by the page so it is available to other threads
    // (as the owning thread needs to actually free the memory later).
    _mi_segment_huge_page_reset(segment, page, block);
    #endif
  }
  
  #if (MI_DEBUG!=0) && !MI_TRACK_ENABLED && !MI_TSAN        // note: when tracking, cannot use mi_usable_size with multi-threading
  if (segment->kind != MI_SEGMENT_HUGE) {                   // not for huge segments as we just reset the content
    memset(block, MI_DEBUG_FREED, mi_usable_size(block));
  }
  #endif

  // Try to put the block on either the page-local thread free list, or the heap delayed free list.
  mi_thread_free_t tfreex;
  bool use_delayed;
  mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
  do {
    use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
    if mi_unlikely(use_delayed) {
      // unlikely: this only happens on the first concurrent free in a page that is in the full list
      tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
    }
    else {
      // usual: directly add to page thread_free list
      mi_block_set_next(page, block, mi_tf_block(tfree));
      tfreex = mi_tf_set_block(tfree,block);
    }
  } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));

  if mi_unlikely(use_delayed) {
    // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
    mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
    mi_assert_internal(heap != NULL);
    if (heap != NULL) {
      // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
      mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
      do {
        mi_block_set_nextx(heap,block,dfree, heap->keys);
      } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
    }

    // and reset the MI_DELAYED_FREEING flag
    tfree = mi_atomic_load_relaxed(&page->xthread_free);
    do {
      tfreex = tfree;
      mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
      tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
    } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
  }
}

// regular free
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
{
  // and push it on the free list
  //const size_t bsize = mi_page_block_size(page);
  if mi_likely(local) {
    // owning thread can free a block directly
    if mi_unlikely(mi_check_is_double_free(page, block)) return;
    mi_check_padding(page, block);
    #if (MI_DEBUG!=0) && !MI_TRACK_ENABLED && !MI_TSAN
    if (!mi_page_is_huge(page)) {   // huge page content may be already decommitted
      memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
    }
    #endif
    mi_block_set_next(page, block, page->local_free);
    page->local_free = block;
    page->used--;
    if mi_unlikely(mi_page_all_free(page)) {
      _mi_page_retire(page);
    }
    else if mi_unlikely(mi_page_is_in_full(page)) {
      _mi_page_unfull(page);
    }
  }
  else {
    _mi_free_block_mt(page,block);
  }
}


// Adjust a block that was allocated aligned, to the actual start of the block in the page.
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
  mi_assert_internal(page!=NULL && p!=NULL);
  const size_t diff   = (uint8_t*)p - _mi_page_start(segment, page, NULL);
  const size_t adjust = (diff % mi_page_block_size(page));
  return (mi_block_t*)((uintptr_t)p - adjust);
}


void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
  mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
  mi_stat_free(page, block);    // stat_free may access the padding
  mi_track_free_size(block, mi_page_usable_size_of(page,block));
  _mi_free_block(page, is_local, block);
}

// Get the segment data belonging to a pointer
// This is just a single `and` in assembly but does further checks in debug mode
// (and secure mode) if this was a valid pointer.
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
{
  MI_UNUSED(msg);
  mi_assert(p != NULL);

#if (MI_DEBUG>0)
  if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
    _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
    return NULL;
  }
#endif

  mi_segment_t* const segment = _mi_ptr_segment(p);
  mi_assert_internal(segment != NULL);

#if (MI_DEBUG>0)
  if mi_unlikely(!mi_is_in_heap_region(p)) {
  #if (MI_INTPTR_SIZE == 8 && defined(__linux__))
    if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
  #else
    {
  #endif
      _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
        "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
      if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
        _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
      }
    }
  }
#endif
#if (MI_DEBUG>0 || MI_SECURE>=4)
  if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
    _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
    return NULL;
  }
#endif

  return segment;
}

// Free a block
// fast path written carefully to prevent spilling on the stack
void mi_free(void* p) mi_attr_noexcept
{
  if mi_unlikely(p == NULL) return;
  mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
  const bool          is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
  mi_page_t* const    page    = _mi_segment_page_of(segment, p);

  if mi_likely(is_local) {                       // thread-local free?
    if mi_likely(page->flags.full_aligned == 0)  // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
    {
      mi_block_t* const block = (mi_block_t*)p;
      if mi_unlikely(mi_check_is_double_free(page, block)) return;
      mi_check_padding(page, block);
      mi_stat_free(page, block);
      #if (MI_DEBUG!=0) && !MI_TRACK_ENABLED  && !MI_TSAN
      memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
      #endif
      mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
      mi_block_set_next(page, block, page->local_free);
      page->local_free = block;
      if mi_unlikely(--page->used == 0) {   // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
        _mi_page_retire(page);
      }
    }
    else {
      // page is full or contains (inner) aligned blocks; use generic path
      _mi_free_generic(segment, page, true, p);
    }
  }
  else {
    // not thread-local; use generic path
    _mi_free_generic(segment, page, false, p);
  }
}

// return true if successful
bool _mi_free_delayed_block(mi_block_t* block) {
  // get segment and page
  const mi_segment_t* const segment = _mi_ptr_segment(block);
  mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
  mi_assert_internal(_mi_thread_id() == segment->thread_id);
  mi_page_t* const page = _mi_segment_page_of(segment, block);

  // Clear the no-delayed flag so delayed freeing is used again for this page.
  // This must be done before collecting the free lists on this page -- otherwise
  // some blocks may end up in the page `thread_free` list with no blocks in the
  // heap `thread_delayed_free` list which may cause the page to be never freed!
  // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
  if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
    return false;
  }

  // collect all other non-local frees to ensure up-to-date `used` count
  _mi_page_free_collect(page, false);

  // and free the block (possibly freeing the page as well since used is updated)
  _mi_free_block(page, true, block);
  return true;
}

// Bytes available in a block
mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
  const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
  const size_t size = mi_page_usable_size_of(page, block);
  const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
  mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
  return (size - adjust);
}

static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
  if (p == NULL) return 0;
  const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
  const mi_page_t* const page = _mi_segment_page_of(segment, p);
  if mi_likely(!mi_page_has_aligned(page)) {
    const mi_block_t* block = (const mi_block_t*)p;
    return mi_page_usable_size_of(page, block);
  }
  else {
    // split out to separate routine for improved code generation
    return mi_page_usable_aligned_size_of(segment, page, p);
  }
}

mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
  return _mi_usable_size(p, "mi_usable_size");
}


// ------------------------------------------------------
// Allocation extensions
// ------------------------------------------------------

void mi_free_size(void* p, size_t size) mi_attr_noexcept {
  MI_UNUSED_RELEASE(size);
  mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
  mi_free(p);
}

void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
  MI_UNUSED_RELEASE(alignment);
  mi_assert(((uintptr_t)p % alignment) == 0);
  mi_free_size(p,size);
}

void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
  MI_UNUSED_RELEASE(alignment);
  mi_assert(((uintptr_t)p % alignment) == 0);
  mi_free(p);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count,size,&total)) return NULL;
  return mi_heap_zalloc(heap,total);
}

mi_decl_nodiscard mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_calloc(mi_prim_get_default_heap(),count,size);
}

// Uninitialized `calloc`
mi_decl_nodiscard extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_malloc(heap, total);
}

mi_decl_nodiscard mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_mallocn(mi_prim_get_default_heap(),count,size);
}

// Expand (or shrink) in place (or fail)
void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
  #if MI_PADDING
  // we do not shrink/expand with padding enabled
  MI_UNUSED(p); MI_UNUSED(newsize);
  return NULL;
  #else
  if (p == NULL) return NULL;
  const size_t size = _mi_usable_size(p,"mi_expand");
  if (newsize > size) return NULL;
  return p; // it fits
  #endif
}

void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept {
  // if p == NULL then behave as malloc.
  // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)).
  // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.)
  const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0)
  if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) {  // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0)
    mi_assert_internal(p!=NULL);
    // todo: do not track as the usable size is still the same in the free; adjust potential padding?
    // mi_track_resize(p,size,newsize)
    return p;  // reallocation still fits and not more than 50% waste
  }
  void* newp = mi_heap_malloc(heap,newsize);
  if mi_likely(newp != NULL) {
    if (zero && newsize > size) {
      // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
      const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
      memset((uint8_t*)newp + start, 0, newsize - start);
    }
    if mi_likely(p != NULL) {
      if mi_likely(_mi_is_aligned(p, sizeof(uintptr_t))) {  // a client may pass in an arbitrary pointer `p`..
        const size_t copysize = (newsize > size ? size : newsize);
        mi_track_mem_defined(p,copysize);  // _mi_useable_size may be too large for byte precise memory tracking..
        _mi_memcpy_aligned(newp, p, copysize);
      }
      mi_free(p); // only free the original pointer if successful
    }
  }
  return newp;
}

mi_decl_nodiscard void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  return _mi_heap_realloc_zero(heap, p, newsize, false);
}

mi_decl_nodiscard void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_realloc(heap, p, total);
}


// Reallocate but free `p` on errors
mi_decl_nodiscard void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  void* newp = mi_heap_realloc(heap, p, newsize);
  if (newp==NULL && p!=NULL) mi_free(p);
  return newp;
}

mi_decl_nodiscard void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  return _mi_heap_realloc_zero(heap, p, newsize, true);
}

mi_decl_nodiscard void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_rezalloc(heap, p, total);
}


mi_decl_nodiscard void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_realloc(mi_prim_get_default_heap(),p,newsize);
}

mi_decl_nodiscard void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_reallocn(mi_prim_get_default_heap(),p,count,size);
}

// Reallocate but free `p` on errors
mi_decl_nodiscard void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_reallocf(mi_prim_get_default_heap(),p,newsize);
}

mi_decl_nodiscard void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_rezalloc(mi_prim_get_default_heap(), p, newsize);
}

mi_decl_nodiscard void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_recalloc(mi_prim_get_default_heap(), p, count, size);
}



// ------------------------------------------------------
// strdup, strndup, and realpath
// ------------------------------------------------------

// `strdup` using mi_malloc
mi_decl_nodiscard mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept {
  if (s == NULL) return NULL;
  size_t n = strlen(s);
  char* t = (char*)mi_heap_malloc(heap,n+1);
  if (t == NULL) return NULL;
  _mi_memcpy(t, s, n);
  t[n] = 0;
  return t;
}

mi_decl_nodiscard mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept {
  return mi_heap_strdup(mi_prim_get_default_heap(), s);
}

// `strndup` using mi_malloc
mi_decl_nodiscard mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept {
  if (s == NULL) return NULL;
  const char* end = (const char*)memchr(s, 0, n);  // find end of string in the first `n` characters (returns NULL if not found)
  const size_t m = (end != NULL ? (size_t)(end - s) : n);  // `m` is the minimum of `n` or the end-of-string
  mi_assert_internal(m <= n);
  char* t = (char*)mi_heap_malloc(heap, m+1);
  if (t == NULL) return NULL;
  _mi_memcpy(t, s, m);
  t[m] = 0;
  return t;
}

mi_decl_nodiscard mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept {
  return mi_heap_strndup(mi_prim_get_default_heap(),s,n);
}

#ifndef __wasi__
// `realpath` using mi_malloc
#ifdef _WIN32
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <windows.h>
mi_decl_nodiscard mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
  // todo: use GetFullPathNameW to allow longer file names
  char buf[PATH_MAX];
  DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL);
  if (res == 0) {
    errno = GetLastError(); return NULL;
  }
  else if (res > PATH_MAX) {
    errno = EINVAL; return NULL;
  }
  else if (resolved_name != NULL) {
    return resolved_name;
  }
  else {
    return mi_heap_strndup(heap, buf, PATH_MAX);
  }
}
#else
/*
#include <unistd.h>  // pathconf
static size_t mi_path_max(void) {
  static size_t path_max = 0;
  if (path_max <= 0) {
    long m = pathconf("/",_PC_PATH_MAX);
    if (m <= 0) path_max = 4096;      // guess
    else if (m < 256) path_max = 256; // at least 256
    else path_max = m;
  }
  return path_max;
}
*/
char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
  if (resolved_name != NULL) {
    return realpath(fname,resolved_name);
  }
  else {
    char* rname = realpath(fname, NULL);
    if (rname == NULL) return NULL;
    char* result = mi_heap_strdup(heap, rname);
    free(rname);  // use regular free! (which may be redirected to our free but that's ok)
    return result;
  }
  /*
    const size_t n  = mi_path_max();
    char* buf = (char*)mi_malloc(n+1);
    if (buf == NULL) {
      errno = ENOMEM;
      return NULL;
    }
    char* rname  = realpath(fname,buf);
    char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL`
    mi_free(buf);
    return result;
  }
  */
}
#endif

mi_decl_nodiscard mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept {
  return mi_heap_realpath(mi_prim_get_default_heap(),fname,resolved_name);
}
#endif

/*-------------------------------------------------------
C++ new and new_aligned
The standard requires calling into `get_new_handler` and
throwing the bad_alloc exception on failure. If we compile
with a C++ compiler we can implement this precisely. If we
use a C compiler we cannot throw a `bad_alloc` exception
but we call `exit` instead (i.e. not returning).
-------------------------------------------------------*/

#ifdef __cplusplus
#include <new>
static bool mi_try_new_handler(bool nothrow) {
  #if defined(_MSC_VER) || (__cplusplus >= 201103L)
    std::new_handler h = std::get_new_handler();
  #else
    std::new_handler h = std::set_new_handler();
    std::set_new_handler(h);
  #endif
  if (h==NULL) {
    _mi_error_message(ENOMEM, "out of memory in 'new'");
    if (!nothrow) {
      throw std::bad_alloc();
    }
    return false;
  }
  else {
    h();
    return true;
  }
}
#else
typedef void (*std_new_handler_t)(void);

#if (defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER)))  // exclude clang-cl, see issue #631
std_new_handler_t __attribute__((weak)) _ZSt15get_new_handlerv(void) {
  return NULL;
}
static std_new_handler_t mi_get_new_handler(void) {
  return _ZSt15get_new_handlerv();
}
#else
// note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`.
static std_new_handler_t mi_get_new_handler() {
  return NULL;
}
#endif

static bool mi_try_new_handler(bool nothrow) {
  std_new_handler_t h = mi_get_new_handler();
  if (h==NULL) {
    _mi_error_message(ENOMEM, "out of memory in 'new'");
    if (!nothrow) {
      abort();  // cannot throw in plain C, use abort
    }
    return false;
  }
  else {
    h();
    return true;
  }
}
#endif

mi_decl_export mi_decl_noinline void* mi_heap_try_new(mi_heap_t* heap, size_t size, bool nothrow ) {
  void* p = NULL;
  while(p == NULL && mi_try_new_handler(nothrow)) {
    p = mi_heap_malloc(heap,size);
  }
  return p;
}

static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow) {
  return mi_heap_try_new(mi_prim_get_default_heap(), size, nothrow);
}


mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) {
  void* p = mi_heap_malloc(heap,size);
  if mi_unlikely(p == NULL) return mi_heap_try_new(heap, size, false);
  return p;
}

mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) {
  return mi_heap_alloc_new(mi_prim_get_default_heap(), size);
}


mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) {
  size_t total;
  if mi_unlikely(mi_count_size_overflow(count, size, &total)) {
    mi_try_new_handler(false);  // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
    return NULL;
  }
  else {
    return mi_heap_alloc_new(heap,total);
  }
}

mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) {
  return mi_heap_alloc_new_n(mi_prim_get_default_heap(), size, count);
}


mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept {
  void* p = mi_malloc(size);
  if mi_unlikely(p == NULL) return mi_try_new(size, true);
  return p;
}

mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) {
  void* p;
  do {
    p = mi_malloc_aligned(size, alignment);
  }
  while(p == NULL && mi_try_new_handler(false));
  return p;
}

mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept {
  void* p;
  do {
    p = mi_malloc_aligned(size, alignment);
  }
  while(p == NULL && mi_try_new_handler(true));
  return p;
}

mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) {
  void* q;
  do {
    q = mi_realloc(p, newsize);
  } while (q == NULL && mi_try_new_handler(false));
  return q;
}

mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
  size_t total;
  if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) {
    mi_try_new_handler(false);  // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
    return NULL;
  }
  else {
    return mi_new_realloc(p, total);
  }
}

// ------------------------------------------------------
// ensure explicit external inline definitions are emitted!
// ------------------------------------------------------

#ifdef __cplusplus
void* _mi_externs[] = {
  (void*)&_mi_page_malloc,
  (void*)&_mi_heap_malloc_zero,
  (void*)&_mi_heap_malloc_zero_ex,
  (void*)&mi_malloc,
  (void*)&mi_malloc_small,
  (void*)&mi_zalloc_small,
  (void*)&mi_heap_malloc,
  (void*)&mi_heap_zalloc,
  (void*)&mi_heap_malloc_small
  // (void*)&mi_heap_alloc_new,
  // (void*)&mi_heap_alloc_new_n
};
#endif