summaryrefslogtreecommitdiff
path: root/source/luametatex/source/mp/mpw/mpmath.w
diff options
context:
space:
mode:
Diffstat (limited to 'source/luametatex/source/mp/mpw/mpmath.w')
-rw-r--r--source/luametatex/source/mp/mpw/mpmath.w1949
1 files changed, 1949 insertions, 0 deletions
diff --git a/source/luametatex/source/mp/mpw/mpmath.w b/source/luametatex/source/mp/mpw/mpmath.w
new file mode 100644
index 000000000..b9001a61b
--- /dev/null
+++ b/source/luametatex/source/mp/mpw/mpmath.w
@@ -0,0 +1,1949 @@
+% This file is part of MetaPost. The MetaPost program is in the public domain.
+
+@ Introduction.
+
+@c
+# include "mpconfig.h"
+# include "mpmath.h"
+# include "mpstrings.h"
+@h
+
+@ @c
+@<Declarations@>
+
+@ @(mpmath.h@>=
+# ifndef MPMATH_H
+# define MPMATH_H 1
+
+# include "mp.h" /* internal header */
+
+math_data *mp_initialize_scaled_math (MP mp);
+
+# endif
+
+@* Math initialization.
+
+@ Here are the functions that are static as they are not used elsewhere
+
+@<Declarations@>=
+static int mp_ab_vs_cd (mp_number *a, mp_number *b, mp_number *c, mp_number *d);
+static void mp_allocate_abs (MP mp, mp_number *n, mp_number_type t, mp_number *B);
+static void mp_allocate_clone (MP mp, mp_number *n, mp_number_type t, mp_number *B);
+static void mp_allocate_double (MP mp, mp_number *n, double v);
+static void mp_allocate_number (MP mp, mp_number *n, mp_number_type t);
+static void mp_crossing_point (MP mp, mp_number *ret, mp_number *a, mp_number *b, mp_number *c);
+static void mp_fraction_to_round_scaled (mp_number *x);
+static void mp_free_number (MP mp, mp_number *n);
+static void mp_free_scaled_math (MP mp);
+static void mp_init_randoms (MP mp, int seed);
+static void mp_m_exp (MP mp, mp_number *ret, mp_number *x_orig);
+static void mp_m_log (MP mp, mp_number *ret, mp_number *x_orig);
+static void mp_m_norm_rand (MP mp, mp_number *ret);
+static void mp_m_unif_rand (MP mp, mp_number *ret, mp_number *x_orig);
+static int mp_make_scaled (MP mp, int p, int q);
+static void mp_n_arg (MP mp, mp_number *ret, mp_number *x, mp_number *y);
+static void mp_n_sin_cos (MP mp, mp_number *z_orig, mp_number *n_cos, mp_number *n_sin);
+static void mp_number_abs (mp_number *A);
+static void mp_number_abs_clone (mp_number *A, mp_number *B);
+static void mp_number_add (mp_number *A, mp_number *B);
+static void mp_number_add_scaled (mp_number *A, int B); /* also for negative B */
+static void mp_number_angle_to_scaled (mp_number *A);
+static void mp_number_clone (mp_number *A, mp_number *B);
+static void mp_number_divide_int (mp_number *A, int B);
+static void mp_number_double (mp_number *A);
+static int mp_number_equal (mp_number *A, mp_number *B);
+static void mp_number_floor (mp_number *i);
+static void mp_number_fraction_to_scaled (mp_number *A);
+static int mp_number_greater (mp_number *A, mp_number *B);
+static void mp_number_half (mp_number *A);
+static int mp_number_less (mp_number *A, mp_number *B);
+static void mp_number_make_fraction (MP mp, mp_number *r, mp_number *p, mp_number *q);
+static void mp_number_make_scaled (MP mp, mp_number *r, mp_number *p, mp_number *q);
+static void mp_number_modulo (mp_number *a, mp_number *b);
+static void mp_number_multiply_int (mp_number *A, int B);
+static void mp_number_negate (mp_number *A);
+static void mp_number_negated_clone (mp_number *A, mp_number *B);
+static int mp_number_nonequalabs (mp_number *A, mp_number *B);
+static int mp_number_odd (mp_number *A);
+static void mp_number_scaled_to_angle (mp_number *A);
+static void mp_number_scaled_to_fraction (mp_number *A);
+static void mp_number_subtract (mp_number *A, mp_number *B);
+static void mp_number_swap (mp_number *A, mp_number *B);
+static void mp_number_take_fraction (MP mp, mp_number *r, mp_number *p, mp_number *q);
+static void mp_number_take_scaled (MP mp, mp_number *r, mp_number *p, mp_number *q);
+static int mp_number_to_boolean (mp_number *A);
+static double mp_number_to_double (mp_number *A);
+static int mp_number_to_int (mp_number *A);
+static int mp_number_to_scaled (mp_number *A);
+static void mp_power_of (MP mp, mp_number *r, mp_number *a, mp_number *b);
+static void mp_print_number (MP mp, mp_number *n);
+static void mp_pyth_add (MP mp, mp_number *r, mp_number *a, mp_number *b);
+static void mp_pyth_sub (MP mp, mp_number *r, mp_number *a, mp_number *b);
+static int mp_round_decimals (MP mp, unsigned char *b, int k);
+static int mp_round_unscaled (mp_number *x_orig);
+static void mp_scaled_set_precision (MP mp);
+static void mp_scan_fractional_token (MP mp, int n);
+static void mp_scan_numeric_token (MP mp, int n);
+static void mp_set_number_from_addition (mp_number *A, mp_number *B, mp_number *C);
+static void mp_set_number_from_boolean (mp_number *A, int B);
+static void mp_set_number_from_div (mp_number *A, mp_number *B, mp_number *C);
+static void mp_set_number_from_double (mp_number *A, double B);
+static void mp_set_number_from_int (mp_number *A, int B);
+static void mp_set_number_from_int_div (mp_number *A, mp_number *B, int C);
+static void mp_set_number_from_int_mul (mp_number *A, mp_number *B, int C);
+static void mp_set_number_from_mul (mp_number *A, mp_number *B, mp_number *C);
+static void mp_set_number_from_of_the_way (MP mp, mp_number *A, mp_number *t, mp_number *B, mp_number *C);
+static void mp_set_number_from_scaled (mp_number *A, int B);
+static void mp_set_number_from_subtraction (mp_number *A, mp_number *B, mp_number *C);
+static void mp_set_number_half_from_addition (mp_number *A, mp_number *B, mp_number *C);
+static void mp_set_number_half_from_subtraction(mp_number *A, mp_number *B, mp_number *C);
+static void mp_slow_add (MP mp, mp_number *ret, mp_number *x_orig, mp_number *y_orig);
+static void mp_square_rt (MP mp, mp_number *ret, mp_number *x_orig);
+static int mp_take_fraction (MP mp, int q, int f);
+static int mp_take_scaled (MP mp, int q, int f);
+static void mp_velocity (MP mp, mp_number *ret, mp_number *st, mp_number *ct, mp_number *sf, mp_number *cf, mp_number *t);
+static void mp_wrapup_numeric_token (MP mp, int n, int f);
+static char *mp_number_tostring (MP mp, mp_number *n);
+static char *mp_string_scaled (MP mp, int s);
+
+@
+@d coef_bound 04525252525 /* |fraction| approximation to 7/3 */
+@d fraction_threshold 2685 /* a |fraction| coefficient less than this is zeroed */
+@d half_fraction_threshold 1342 /* half of |fraction_threshold| */
+@d scaled_threshold 8 /* a |scaled| coefficient less than this is zeroed */
+@d half_scaled_threshold 4 /* half of |scaled_threshold| */
+@d near_zero_angle 26844
+@d p_over_v_threshold 0x80000
+@d equation_threshold 64
+
+@ Fixed-point arithmetic is done on {\sl scaled integers} that are multiples of
+$2^{-16}$. In other words, a binary point is assumed to be sixteen bit positions
+from the right end of a binary computer word.
+
+@d unity 0x10000 /* $2^{16}$, represents 1.00000 */
+@d two (2*unity) /* $2^{17}$, represents 2.00000 */
+@d three (3*unity) /* $2^{17}+2^{16}$, represents 3.00000 */
+@d half_unit (unity/2) /* $2^{15}$, represents 0.50000 */
+@d three_quarter_unit (3*(unity/4)) /* $3\cdot2^{14}$, represents 0.75000 */
+@d EL_GORDO 0x7fffffff /* $2^{31}-1$, the largest value that \MP\ likes */
+@d negative_EL_GORDO (-EL_GORDO)
+@d one_third_EL_GORDO 05252525252
+
+@ We need these preprocessor values
+
+@d TWEXP31 2147483648.0
+@d TWEXP28 268435456.0
+@d TWEXP16 65536.0
+@d TWEXP_16 (1.0/65536.0)
+@d TWEXP_28 (1.0/268435456.0)
+
+@d no_crossing (fraction_one + 1)
+@d one_crossing fraction_one
+@d zero_crossing 0
+
+@ The |scaled| quantities in \MP\ programs are generally supposed to be less than
+$2^{12}$ in absolute value, so \MP\ does much of its internal arithmetic with
+28~significant bits of precision. A |fraction| denotes a scaled integer whose
+binary point is assumed to be 28 bit positions from the right.
+
+@d fraction_half 0x08000000 /* $2^{27}$, represents 0.50000000 01000000000 */
+@d fraction_one 0x10000000 /* $2^{28}$, represents 1.00000000 02000000000 */
+@d fraction_two 0x20000000 /* $2^{29}$, represents 2.00000000 04000000000 */
+@d fraction_three 0x30000000 /* $3\cdot2^{28}$, represents 3.00000000 06000000000 */
+@d fraction_four 0x40000000 /* $2^{30}$, represents 4.00000000 010000000000 */
+
+@ Octants are represented in a \quote {Gray code,} since that turns out to be
+computationally simplest.
+
+@d negate_x 1
+@d negate_y 2
+@d switch_x_and_y 4
+@d first_octant 1
+@d second_octant (first_octant + switch_x_and_y)
+@d third_octant (first_octant + switch_x_and_y + negate_x)
+@d fourth_octant (first_octant + negate_x)
+@d fifth_octant (first_octant + negate_x + negate_y)
+@d sixth_octant (first_octant + switch_x_and_y + negate_x + negate_y)
+@d seventh_octant (first_octant + switch_x_and_y + negate_y)
+@d eighth_octant (first_octant + negate_y)
+
+@d forty_five_deg 0x02D00000 /* $ 45\cdot2^{20}$, represents $ 45^\circ$ 0264000000 */
+@d ninety_deg 0x05A00000 /* $ 90\cdot2^{20}$, represents $ 90^\circ$ 0550000000 */
+@d one_eighty_deg 0x0B400000 /* $180\cdot2^{20}$, represents $180^\circ$ 01320000000 */
+@d negative_one_eighty_deg -0x0B400000 /* $180\cdot2^{20}$, represents $180^\circ$ */
+@d three_sixty_deg 0x16800000 /* $360\cdot2^{20}$, represents $360^\circ$ 02640000000 */
+
+@d odd(A) (abs(A)%2==1)
+@d two_to_the(A) (1<<(unsigned)(A))
+
+@d set_cur_cmd(A) mp->cur_mod_->command = (A)
+@d set_cur_mod(A) mp->cur_mod_->data.n.data.val = (A)
+
+@ @c
+math_data *mp_initialize_scaled_math(MP mp)
+{
+ math_data *math = (math_data *) mp_memory_allocate(sizeof(math_data));
+ /* alloc */
+ math->md_allocate = mp_allocate_number;
+ math->md_free = mp_free_number;
+ math->md_allocate_clone = mp_allocate_clone;
+ math->md_allocate_abs = mp_allocate_abs;
+ math->md_allocate_double = mp_allocate_double;
+ /* precission */
+ mp_allocate_number(mp, &math->md_precision_default, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_precision_max, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_precision_min, mp_scaled_type);
+ /* here are the constants for |scaled| objects */
+ mp_allocate_number(mp, &math->md_epsilon_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_inf_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_negative_inf_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_warning_limit_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_one_third_inf_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_unity_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_two_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_three_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_half_unit_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_three_quarter_unit_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_zero_t, mp_scaled_type);
+ /* |fractions| */
+ mp_allocate_number(mp, &math->md_arc_tol_k, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_fraction_one_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_fraction_half_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_fraction_three_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_fraction_four_t, mp_fraction_type);
+ /* |angles| */
+ mp_allocate_number(mp, &math->md_three_sixty_deg_t, mp_angle_type);
+ mp_allocate_number(mp, &math->md_one_eighty_deg_t, mp_angle_type);
+ mp_allocate_number(mp, &math->md_negative_one_eighty_deg_t, mp_angle_type);
+ /* various approximations */
+ mp_allocate_number(mp, &math->md_one_k, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_sqrt_8_e_k, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_twelve_ln_2_k, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_coef_bound_k, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_coef_bound_minus_1, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_twelvebits_3, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_twentysixbits_sqrt2_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_twentyeightbits_d_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_twentysevenbits_sqrt2_d_t, mp_fraction_type);
+ /* thresholds */
+ mp_allocate_number(mp, &math->md_fraction_threshold_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_half_fraction_threshold_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_scaled_threshold_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_half_scaled_threshold_t, mp_scaled_type);
+ mp_allocate_number(mp, &math->md_near_zero_angle_t, mp_angle_type);
+ mp_allocate_number(mp, &math->md_p_over_v_threshold_t, mp_fraction_type);
+ mp_allocate_number(mp, &math->md_equation_threshold_t, mp_scaled_type);
+ /* initializations */
+ math->md_precision_default.data.val = unity * 10;
+ math->md_precision_max.data.val = unity * 10;
+ math->md_precision_min.data.val = unity * 10;
+ math->md_epsilon_t.data.val = 1;
+ math->md_inf_t.data.val = EL_GORDO;
+ math->md_negative_inf_t.data.val = negative_EL_GORDO;
+ math->md_one_third_inf_t.data.val = one_third_EL_GORDO;
+ math->md_warning_limit_t.data.val = fraction_one;
+ math->md_unity_t.data.val = unity;
+ math->md_two_t.data.val = two;
+ math->md_three_t.data.val = three;
+ math->md_half_unit_t.data.val = half_unit;
+ math->md_three_quarter_unit_t.data.val = three_quarter_unit;
+ math->md_arc_tol_k.data.val = (unity/4096);
+ math->md_fraction_one_t.data.val = fraction_one;
+ math->md_fraction_half_t.data.val = fraction_half;
+ math->md_fraction_three_t.data.val = fraction_three;
+ math->md_fraction_four_t.data.val = fraction_four;
+ math->md_three_sixty_deg_t.data.val = three_sixty_deg;
+ math->md_one_eighty_deg_t.data.val = one_eighty_deg;
+ math->md_negative_one_eighty_deg_t.data.val = negative_one_eighty_deg;
+ math->md_one_k.data.val = 1024;
+ math->md_sqrt_8_e_k.data.val = 112429; /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
+ math->md_twelve_ln_2_k.data.val = 139548960; /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
+ math->md_coef_bound_k.data.val = coef_bound;
+ math->md_coef_bound_minus_1.data.val = coef_bound - 1;
+ math->md_twelvebits_3.data.val = 1365; /* $1365\approx 2^{12}/3$ */
+ math->md_twentysixbits_sqrt2_t.data.val = 94906266; /* $2^{26}\sqrt2\approx94906265.62$ */
+ math->md_twentyeightbits_d_t.data.val = 35596755; /* $2^{28}d\approx35596754.69$ */
+ math->md_twentysevenbits_sqrt2_d_t.data.val = 25170707; /* $2^{27}\sqrt2\,d\approx25170706.63$ */
+ math->md_fraction_threshold_t.data.val = fraction_threshold;
+ math->md_half_fraction_threshold_t.data.val = half_fraction_threshold;
+ math->md_scaled_threshold_t.data.val = scaled_threshold;
+ math->md_half_scaled_threshold_t.data.val = half_scaled_threshold;
+ math->md_near_zero_angle_t.data.val = near_zero_angle;
+ math->md_p_over_v_threshold_t.data.val = p_over_v_threshold;
+ math->md_equation_threshold_t.data.val = equation_threshold;
+ /* functions */
+ math->md_from_int = mp_set_number_from_int;
+ math->md_from_boolean = mp_set_number_from_boolean;
+ math->md_from_scaled = mp_set_number_from_scaled;
+ math->md_from_double = mp_set_number_from_double;
+ math->md_from_addition = mp_set_number_from_addition;
+ math->md_half_from_addition = mp_set_number_half_from_addition;
+ math->md_from_subtraction = mp_set_number_from_subtraction;
+ math->md_half_from_subtraction = mp_set_number_half_from_subtraction;
+ math->md_from_oftheway = mp_set_number_from_of_the_way;
+ math->md_from_div = mp_set_number_from_div;
+ math->md_from_mul = mp_set_number_from_mul;
+ math->md_from_int_div = mp_set_number_from_int_div;
+ math->md_from_int_mul = mp_set_number_from_int_mul;
+ math->md_negate = mp_number_negate;
+ math->md_add = mp_number_add;
+ math->md_subtract = mp_number_subtract;
+ math->md_half = mp_number_half;
+ math->md_do_double = mp_number_double;
+ math->md_abs = mp_number_abs;
+ math->md_clone = mp_number_clone;
+ math->md_negated_clone = mp_number_negated_clone;
+ math->md_abs_clone = mp_number_abs_clone;
+ math->md_swap = mp_number_swap;
+ math->md_add_scaled = mp_number_add_scaled;
+ math->md_multiply_int = mp_number_multiply_int;
+ math->md_divide_int = mp_number_divide_int;
+ math->md_to_int = mp_number_to_int;
+ math->md_to_boolean = mp_number_to_boolean;
+ math->md_to_scaled = mp_number_to_scaled;
+ math->md_to_double = mp_number_to_double;
+ math->md_odd = mp_number_odd;
+ math->md_equal = mp_number_equal;
+ math->md_less = mp_number_less;
+ math->md_greater = mp_number_greater;
+ math->md_nonequalabs = mp_number_nonequalabs;
+ math->md_round_unscaled = mp_round_unscaled;
+ math->md_floor_scaled = mp_number_floor;
+ math->md_fraction_to_round_scaled = mp_fraction_to_round_scaled;
+ math->md_make_scaled = mp_number_make_scaled;
+ math->md_make_fraction = mp_number_make_fraction;
+ math->md_take_fraction = mp_number_take_fraction;
+ math->md_take_scaled = mp_number_take_scaled;
+ math->md_velocity = mp_velocity;
+ math->md_n_arg = mp_n_arg;
+ math->md_m_log = mp_m_log;
+ math->md_m_exp = mp_m_exp;
+ math->md_m_unif_rand = mp_m_unif_rand;
+ math->md_m_norm_rand = mp_m_norm_rand;
+ math->md_pyth_add = mp_pyth_add;
+ math->md_pyth_sub = mp_pyth_sub;
+ math->md_power_of = mp_power_of;
+ math->md_fraction_to_scaled = mp_number_fraction_to_scaled;
+ math->md_scaled_to_fraction = mp_number_scaled_to_fraction;
+ math->md_scaled_to_angle = mp_number_scaled_to_angle;
+ math->md_angle_to_scaled = mp_number_angle_to_scaled;
+ math->md_init_randoms = mp_init_randoms;
+ math->md_sin_cos = mp_n_sin_cos;
+ math->md_slow_add = mp_slow_add;
+ math->md_sqrt = mp_square_rt;
+ math->md_print = mp_print_number;
+ math->md_tostring = mp_number_tostring;
+ math->md_modulo = mp_number_modulo;
+ math->md_ab_vs_cd = mp_ab_vs_cd;
+ math->md_crossing_point = mp_crossing_point;
+ math->md_scan_numeric = mp_scan_numeric_token;
+ math->md_scan_fractional = mp_scan_fractional_token;
+ math->md_free_math = mp_free_scaled_math;
+ math->md_set_precision = mp_scaled_set_precision;
+ return math;
+}
+
+void mp_scaled_set_precision (MP mp)
+{
+ (void) mp;
+}
+
+void mp_free_scaled_math (MP mp)
+{
+ mp_free_number(mp, &(mp->math->md_epsilon_t));
+ mp_free_number(mp, &(mp->math->md_inf_t));
+ mp_free_number(mp, &(mp->math->md_negative_inf_t));
+ mp_free_number(mp, &(mp->math->md_arc_tol_k));
+ mp_free_number(mp, &(mp->math->md_three_sixty_deg_t));
+ mp_free_number(mp, &(mp->math->md_one_eighty_deg_t));
+ mp_free_number(mp, &(mp->math->md_negative_one_eighty_deg_t));
+ mp_free_number(mp, &(mp->math->md_fraction_one_t));
+ mp_free_number(mp, &(mp->math->md_fraction_half_t));
+ mp_free_number(mp, &(mp->math->md_fraction_three_t));
+ mp_free_number(mp, &(mp->math->md_fraction_four_t));
+ mp_free_number(mp, &(mp->math->md_zero_t));
+ mp_free_number(mp, &(mp->math->md_half_unit_t));
+ mp_free_number(mp, &(mp->math->md_three_quarter_unit_t));
+ mp_free_number(mp, &(mp->math->md_unity_t));
+ mp_free_number(mp, &(mp->math->md_two_t));
+ mp_free_number(mp, &(mp->math->md_three_t));
+ mp_free_number(mp, &(mp->math->md_one_third_inf_t));
+ mp_free_number(mp, &(mp->math->md_warning_limit_t));
+ mp_free_number(mp, &(mp->math->md_one_k));
+ mp_free_number(mp, &(mp->math->md_sqrt_8_e_k));
+ mp_free_number(mp, &(mp->math->md_twelve_ln_2_k));
+ mp_free_number(mp, &(mp->math->md_coef_bound_k));
+ mp_free_number(mp, &(mp->math->md_coef_bound_minus_1));
+ mp_free_number(mp, &(mp->math->md_twelvebits_3));
+ mp_free_number(mp, &(mp->math->md_twentysixbits_sqrt2_t));
+ mp_free_number(mp, &(mp->math->md_twentyeightbits_d_t));
+ mp_free_number(mp, &(mp->math->md_twentysevenbits_sqrt2_d_t));
+ mp_free_number(mp, &(mp->math->md_fraction_threshold_t));
+ mp_free_number(mp, &(mp->math->md_half_fraction_threshold_t));
+ mp_free_number(mp, &(mp->math->md_scaled_threshold_t));
+ mp_free_number(mp, &(mp->math->md_half_scaled_threshold_t));
+ mp_free_number(mp, &(mp->math->md_near_zero_angle_t));
+ mp_free_number(mp, &(mp->math->md_p_over_v_threshold_t));
+ mp_free_number(mp, &(mp->math->md_equation_threshold_t));
+ mp_memory_free(mp->math);
+}
+
+@ Creating an destroying |mp_number| objects
+
+@ @c
+void mp_allocate_number (MP mp, mp_number *n, mp_number_type t)
+{
+ (void) mp;
+ n->data.val = 0;
+ n->type = t;
+}
+
+void mp_allocate_clone (MP mp, mp_number *n, mp_number_type t, mp_number *v)
+{
+ (void) mp;
+ n->type = t;
+ n->data.val = v->data.val;
+}
+
+void mp_allocate_abs (MP mp, mp_number *n, mp_number_type t, mp_number *v)
+{
+ (void) mp;
+ n->type = t;
+ n->data.val = abs(v->data.val);
+}
+
+void mp_allocate_double (MP mp, mp_number *n, double v)
+{
+ (void) mp;
+ n->type = mp_scaled_type;
+ n->data.val = (int) (v * 65536.0);
+}
+
+void mp_free_number (MP mp, mp_number *n)
+{
+ (void) mp;
+ n->type = mp_nan_type;
+}
+
+@ Here are the low-level functions on |mp_number| items, setters first.
+
+@ @c
+void mp_set_number_from_int(mp_number *A, int B)
+{
+ A->data.val = B * 65536;
+}
+
+void mp_set_number_from_boolean(mp_number *A, int B)
+{
+ A->data.val = B;
+}
+
+void mp_set_number_from_scaled(mp_number *A, int B)
+{
+ A->data.val = B;
+}
+
+void mp_set_number_from_double(mp_number *A, double B)
+{
+ A->data.val = (int) (B * 65536.0);
+}
+
+void mp_set_number_from_addition(mp_number *A, mp_number *B, mp_number *C)
+{
+ A->data.val = B->data.val + C->data.val;
+}
+
+void mp_set_number_half_from_addition(mp_number *A, mp_number *B, mp_number *C)
+{
+ A->data.val = (B->data.val + C->data.val) / 2;
+}
+
+void mp_set_number_from_subtraction(mp_number *A, mp_number *B, mp_number *C)
+{
+ A->data.val = B->data.val - C->data.val;
+}
+
+void mp_set_number_half_from_subtraction(mp_number *A, mp_number *B, mp_number *C)
+{
+ A->data.val = (B->data.val - C->data.val) / 2;
+}
+
+void mp_set_number_from_div(mp_number *A, mp_number *B, mp_number *C)
+{
+ A->data.val = B->data.val / C->data.val;
+}
+
+void mp_set_number_from_mul(mp_number *A, mp_number *B, mp_number *C)
+{
+ A->data.val = B->data.val * C->data.val;
+}
+
+void mp_set_number_from_int_div(mp_number *A, mp_number *B, int C)
+{
+ A->data.val = B->data.val / C;
+}
+
+void mp_set_number_from_int_mul(mp_number *A, mp_number *B, int C)
+{
+ A->data.val = B->data.val * C;
+}
+
+void mp_set_number_from_of_the_way (MP mp, mp_number *A, mp_number *t, mp_number *B, mp_number *C)
+{
+ (void) mp;
+ A->data.val = B->data.val - mp_take_fraction(mp, (B->data.val - C->data.val), t->data.val);
+}
+
+void mp_number_negate(mp_number *A)
+{
+ A->data.val = -A->data.val;
+}
+
+void mp_number_add(mp_number *A, mp_number *B)
+{
+ A->data.val = A->data.val + B->data.val;
+}
+
+void mp_number_subtract(mp_number *A, mp_number *B)
+{
+ A->data.val = A->data.val - B->data.val;
+}
+
+void mp_number_half(mp_number *A)
+{
+ A->data.val = A->data.val / 2;
+}
+
+void mp_number_double(mp_number *A)
+{
+ A->data.val = A->data.val + A->data.val;
+}
+
+void mp_number_add_scaled(mp_number *A, int B)
+{
+ /* also for negative B */
+ A->data.val = A->data.val + B;
+}
+
+void mp_number_multiply_int(mp_number *A, int B)
+{
+ A->data.val = B * A->data.val;
+}
+
+void mp_number_divide_int(mp_number *A, int B)
+{
+ A->data.val = A->data.val / B;
+}
+
+void mp_number_abs(mp_number *A)
+{
+ A->data.val = abs(A->data.val);
+}
+
+void mp_number_clone(mp_number *A, mp_number *B)
+{
+ A->data.val = B->data.val;
+}
+
+void mp_number_negated_clone(mp_number *A, mp_number *B)
+{
+ A->data.val = -B->data.val;
+}
+
+void mp_number_abs_clone(mp_number *A, mp_number *B)
+{
+ A->data.val = abs(B->data.val);
+}
+
+void mp_number_swap(mp_number *A, mp_number *B)
+{
+ int swap_tmp = A->data.val;
+ A->data.val = B->data.val;
+ B->data.val = swap_tmp;
+}
+
+void mp_number_fraction_to_scaled(mp_number *A)
+{
+ A->type = mp_scaled_type;
+ A->data.val = A->data.val / 4096;
+}
+
+void mp_number_angle_to_scaled(mp_number *A)
+{
+ A->type = mp_scaled_type;
+ if (A->data.val >= 0) {
+ A->data.val = (A->data.val + 8) / 16;
+ } else {
+ A->data.val = -((-A->data.val + 8) / 16);
+ }
+}
+
+void mp_number_scaled_to_fraction(mp_number *A)
+{
+ A->type = mp_fraction_type;
+ A->data.val = A->data.val * 4096;
+}
+
+void mp_number_scaled_to_angle(mp_number *A)
+{
+ A->type = mp_angle_type;
+ A->data.val = A->data.val * 16;
+}
+
+@ Query functions
+
+@c
+int mp_number_to_int(mp_number *A)
+{
+ return A->data.val;
+}
+
+int mp_number_to_scaled(mp_number *A)
+{
+ return A->data.val;
+}
+
+int mp_number_to_boolean(mp_number *A)
+{
+ return A->data.val;
+}
+
+double mp_number_to_double(mp_number *A)
+{
+ return A->data.val / 65536.0;
+}
+
+int mp_number_odd(mp_number *A)
+{
+ return odd(mp_round_unscaled(A));
+}
+
+int mp_number_equal(mp_number *A, mp_number *B) {
+ return A->data.val == B->data.val;
+}
+
+int mp_number_greater(mp_number *A, mp_number *B)
+{
+ return A->data.val > B->data.val;
+}
+
+int mp_number_less(mp_number *A, mp_number *B)
+{
+ return A->data.val < B->data.val;
+}
+
+int mp_number_nonequalabs(mp_number *A, mp_number *B)
+{
+ return abs(A->data.val) != abs(B->data.val);
+}
+
+@ One of \MP's most common operations is the calculation of $\lfloor {a+b\over2}
+\rfloor$, the midpoint of two given integers |a| and~|b|. The most decent way to
+do this is to write |(a+b)/2|; but on many machines it is more efficient to
+calculate |(a+b)>>1|.
+
+Therefore the midpoint operation will always be denoted by |half(a+b)| in this
+program. If \MP\ is being implemented with languages that permit binary shifting,
+the |half| macro should be changed to make this operation as efficient as
+possible. Since some systems have shift operators that can only be trusted to
+work on positive numbers, there is also a macro |halfp| that is used only when
+the quantity being halved is known to be positive or zero.
+
+@ Here is a procedure analogous to |print_int|. If the output of this procedure
+is subsequently read by \MP\ and converted by the |round_decimals| routine above,
+it turns out that the original value will be reproduced exactly. A decimal point
+is printed only if the value is not an integer. If there is more than one way to
+print the result with the optimum number of digits following the decimal point,
+the closest possible value is given.
+
+The invariant relation in the |repeat| loop is that a sequence of decimal
+digits yet to be printed will yield the original number if and only if they form
+a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$. We can stop if and only
+if $f=0$ satisfies this condition; the loop will terminate before $s$ can
+possibly become zero. We round to five digits
+
+@ @c
+static char *mp_string_scaled (MP mp, int s)
+{
+ (void) mp;
+ static char scaled_string[32];
+ int i = 0;
+ if (s < 0) {
+ scaled_string[i++] = '-';
+ s = -s;
+ }
+ /* print the integer part */
+ mp_snprintf ((scaled_string+i), 12, "%d", (int) (s / unity));
+ while (*(scaled_string+i)) {
+ i++;
+ }
+ s = 10 * (s % unity) + 5;
+ if (s != 5) {
+ /* amount of allowable inaccuracy, scaled */
+ int delta = 10;
+ scaled_string[i++] = '.';
+ do {
+ /* round the final digit */
+ if (delta > unity) {
+ s = s + 0100000 - (delta / 2);
+ }
+ scaled_string[i++] = '0' + (s / unity);
+ s = 10 * (s % unity);
+ delta = delta * 10;
+ } while (s > delta);
+ }
+ scaled_string[i] = '\0';
+ return scaled_string;
+}
+
+@ Addition is not always checked to make sure that it doesn't overflow, but in
+places where overflow isn't too unlikely the |slow_add| routine is used.
+
+@c
+void mp_slow_add (MP mp, mp_number *ret, mp_number *x_orig, mp_number *y_orig)
+{
+ int x = x_orig->data.val;
+ int y = y_orig->data.val;
+ if (x >= 0) {
+ if (y <= EL_GORDO - x) {
+ ret->data.val = x + y;
+ } else {
+ mp->arith_error = 1;
+ ret->data.val = EL_GORDO;
+ }
+ } else if (-y <= EL_GORDO + x) {
+ ret->data.val = x + y;
+ } else {
+ mp->arith_error = 1;
+ ret->data.val = negative_EL_GORDO;
+ }
+}
+
+@ The |make_fraction| routine produces the |fraction| equivalent of |p/q|, given
+integers |p| and~|q|; it computes the integer
+$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are positive. If |p| and
+|q| are both of the same scaled type |t|, the \quote {type relation}
+|make_fraction(t,t)=fraction| is valid; and it's also possible to use the
+subroutine \quote {backwards,} using the relation |make_fraction(t,fraction)=t|
+between scaled types.
+
+If the result would have magnitude $2^{31}$ or more, |make_fraction| sets
+|arith_error:=true|. Most of \MP's internal computations have been designed to
+avoid this sort of error.
+
+If this subroutine were programmed in assembly language on a typical machine, we
+could simply compute |(@t$2^{28}$@>*p)div q|, since a double-precision product
+can often be input to a fixed-point division instruction. But when we are
+restricted to int-eger arithmetic it is necessary either to resort to
+multiple-precision maneuvering or to use a simple but slow iteration. The
+multiple-precision technique would be about three times faster than the code
+adopted here, but it would be comparatively long and tricky, involving about
+sixteen additional multiplications and divisions.
+
+This operation is part of \MP's \quote {inner loop}; indeed, it will consume nearly
+10\pct! of the running time (exclusive of input and output) if the code below is
+left unchanged. A machine-dependent recoding will therefore make \MP\ run faster.
+The present implementation is highly portable, but slow; it avoids multiplication
+and division except in the initial stage. System wizards should be careful to
+replace it with a routine that is guaranteed to produce identical results in all
+cases. @^system dependencies@>
+
+As noted below, a few more routines should also be replaced by machine-dependent
+code, for efficiency. But when a procedure is not part of the \quote {inner loop,}
+such changes aren't advisable; simplicity and robustness are preferable to
+trickery, unless the cost is too high. @^inner loop@>
+
+@ @c
+static int mp_make_fraction (MP mp, int p, int q)
+{
+ if (q == 0) {
+ mp_confusion (mp, "division by zero");
+ @:this can't happen /}{\quad \./@>
+ return 0;
+ } else {
+ double d = TWEXP28 * (double) p / (double) q;
+ if ((p ^ q) >= 0) {
+ d += 0.5;
+ if (d >= TWEXP31) {
+ mp->arith_error = 1;
+ return EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && (((q > 0 ? -q : q) & 077777) * (((i & 037777) << 1) - 1) & 04000) != 0) {
+ --i;
+ }
+ return i;
+ }
+ } else {
+ d -= 0.5;
+ if (d <= -TWEXP31) {
+ mp->arith_error = 1;
+ return -negative_EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && (((q > 0 ? q : -q) & 077777) * (((i & 037777) << 1) + 1) & 04000) != 0) {
+ ++i;
+ }
+ return i;
+ }
+ }
+ }
+}
+
+void mp_number_make_fraction (MP mp, mp_number *ret, mp_number *p, mp_number *q)
+{
+ ret->data.val = mp_make_fraction (mp, p->data.val, q->data.val);
+}
+
+@ The dual of |make_fraction| is |take_fraction|, which multiplies a given
+integer~|q| by a fraction~|f|. When the operands are positive, it computes
+$p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function of |q| and~|f|.
+
+This routine is even more \quote {inner loopy} than |make_fraction|; the present
+implementation consumes almost 20\pct! of \MP's computation time during typical
+jobs, so a machine-language substitute is advisable. @^inner loop@> @^system
+dependencies@>
+
+@ Here |q| is the fraction. @c
+int mp_take_fraction (MP mp, int p, int q)
+{
+ double d = (double) p *(double) q *TWEXP_28;
+ if ((p ^ q) >= 0) {
+ d += 0.5;
+ if (d >= TWEXP31) {
+ if (d != TWEXP31 || (((p & 077777) * (q & 077777)) & 040000) == 0) {
+ mp->arith_error = 1;
+ }
+ return EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && (((p & 077777) * (q & 077777)) & 040000) != 0) {
+ --i;
+ }
+ return i;
+ }
+ } else {
+ d -= 0.5;
+ if (d <= -TWEXP31) {
+ if (d != -TWEXP31 || ((-(p & 077777) * (q & 077777)) & 040000) == 0) {
+ mp->arith_error = 1;
+ }
+ return -negative_EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && ((-(p & 077777) * (q & 077777)) & 040000) != 0) {
+ ++i;
+ }
+ return i;
+ }
+ }
+}
+
+void mp_number_take_fraction (MP mp, mp_number *ret, mp_number *p_orig, mp_number *q_orig)
+{
+ ret->data.val = mp_take_fraction (mp, p_orig->data.val, q_orig->data.val);
+}
+
+@ When we want to multiply something by a |scaled| quantity, we use a scheme
+analogous to |take_fraction| but with a different scaling. Given positive
+operands, |take_scaled| computes the quantity $p=\lfloor
+qf/2^{16}+{1\over2}\rfloor$.
+
+Once again it is a good idea to use a machine-language replacement if possible;
+otherwise |take_scaled| will use more than 2\pct! of the running time when the
+Computer Modern fonts are being generated. @^inner loop@>
+
+@ @c
+static int mp_take_scaled (MP mp, int p, int q)
+{ /* q = scaled */
+ double d = (double) p *(double) q *TWEXP_16;
+ if ((p ^ q) >= 0) {
+ d += 0.5;
+ if (d >= TWEXP31) {
+ if (d != TWEXP31 || (((p & 077777) * (q & 077777)) & 040000) == 0) {
+ mp->arith_error = 1;
+ }
+ return EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && (((p & 077777) * (q & 077777)) & 040000) != 0) {
+ --i;
+ }
+ return i;
+ }
+ } else {
+ d -= 0.5;
+ if (d <= -TWEXP31) {
+ if (d != -TWEXP31 || ((-(p & 077777) * (q & 077777)) & 040000) == 0) {
+ mp->arith_error = 1;
+ }
+ return -negative_EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && ((-(p & 077777) * (q & 077777)) & 040000) != 0) {
+ ++i;
+ }
+ return i;
+ }
+ }
+}
+
+void mp_number_take_scaled (MP mp, mp_number *ret, mp_number *p_orig, mp_number *q_orig)
+{
+ ret->data.val = mp_take_scaled(mp, p_orig->data.val, q_orig->data.val);
+}
+
+@ For completeness, there's also |make_scaled|, which computes a quotient as a
+|scaled| number instead of as a |fraction|. In other words, the result is
+$\lfloor2^{16}p/q+{1\over2}\rfloor$, if the operands are positive. \ (This
+procedure is not used especially often, so it is not part of \MP's inner loop.)
+
+@ @c
+int mp_make_scaled (MP mp, int p, int q)
+{
+ if (q == 0) {
+ mp_confusion (mp, "division by zero");
+ @:this can't happen /}{\quad \./@>
+ return 0;
+ } else {
+ double d = TWEXP16 * (double) p / (double) q;
+ if ((p ^ q) >= 0) {
+ d += 0.5;
+ if (d >= TWEXP31) {
+ mp->arith_error = 1;
+ return EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && (((q > 0 ? -q : q) & 077777) * (((i & 037777) << 1) - 1) & 04000) != 0) {
+ --i;
+ }
+ return i;
+ }
+ } else {
+ d -= 0.5;
+ if (d <= -TWEXP31) {
+ mp->arith_error = 1;
+ return -negative_EL_GORDO;
+ } else {
+ int i = (int) d;
+ if (d == (double) i && (((q > 0 ? q : -q) & 077777) * (((i & 037777) << 1) + 1) & 04000) != 0) {
+ ++i;
+ }
+ return i;
+ }
+ }
+ }
+}
+
+void mp_number_make_scaled (MP mp, mp_number *ret, mp_number *p_orig, mp_number *q_orig)
+{
+ ret->data.val = mp_make_scaled(mp, p_orig->data.val, q_orig->data.val);
+}
+
+@ The following function is used to create a scaled integer from a given decimal
+fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|.
+
+@ This converts a decimal fraction.
+@c
+static int mp_round_decimals (MP mp, unsigned char *b, int k)
+{
+ unsigned a = 0; /* the accumulator */
+ int l = 0;
+ (void) mp; /* Will be needed later */
+ for (l = k-1; l >= 0; l-- ) {
+ if (l<16) {
+ /* digits for |k>=17| cannot affect the result */
+ a = (a + (unsigned) (*(b+l) - '0') * two) / 10;
+ }
+ }
+ return (int) (a + 1)/2;
+}
+
+@ @* Scanning numbers in the input.
+
+@ We no longer have these character mapping so we can just as well do the next
+without class checking. Also because signs are hard checked.
+
+@ @c
+static void mp_wrapup_numeric_token (MP mp, int n, int f)
+{
+ if (n < 32768) {
+ int mod = (n * unity + f); /* scaled */
+ set_cur_mod(mod);
+ if (mod >= fraction_one) {
+ if (internal_value(mp_warning_check_internal).data.val > 0 && (mp->scanner_status != mp_tex_flushing_state)) {
+ char msg[256];
+ mp_snprintf(msg, 256, "Number is too large (%s)", mp_string_scaled(mp,mod));
+ @.Number is too large@>
+ mp_error(
+ mp,
+ msg,
+ "It is at least 4096. Continue and I'll try to cope with that big value;\n"
+ "but it might be dangerous. (Set warningcheck:=0 to suppress this message.)"
+ );
+ }
+ }
+ } else if (mp->scanner_status != mp_tex_flushing_state) {
+ mp_error(
+ mp,
+ "Enormous number has been reduced",
+ "I can\'t handle numbers bigger than 32767.99998; so I've changed your constant\n"
+ "to that maximum amount."
+ );
+ @.Enormous number...@>
+ set_cur_mod(EL_GORDO);
+ }
+ set_cur_cmd(mp_numeric_command);
+}
+
+@ @c
+void mp_scan_fractional_token (MP mp, int n)
+{ /* n: scaled */
+ int f; /* scaled */
+ int k = 0;
+ do {
+ k++;
+ mp->cur_input.loc_field++;
+ } while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class);
+ f = mp_round_decimals(mp, (unsigned char *)(mp->buffer+mp->cur_input.loc_field-k), (int) k);
+ if (f == unity) {
+ n++;
+ f = 0;
+ }
+ mp_wrapup_numeric_token(mp, n, f);
+}
+
+
+@ @c
+void mp_scan_numeric_token (MP mp, int n)
+{
+ while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class) {
+ if (n < 32768) {
+ n = 10 * n + mp->buffer[mp->cur_input.loc_field] - '0';
+ }
+ mp->cur_input.loc_field++;
+ }
+ if (! (mp->buffer[mp->cur_input.loc_field] == '.' && mp->char_class[mp->buffer[mp->cur_input.loc_field + 1]] == mp_digit_class)) {
+ mp_wrapup_numeric_token(mp, n, 0);
+ } else {
+ mp->cur_input.loc_field++;
+ mp_scan_fractional_token(mp, n);
+ }
+}
+
+@ Here is a typical example of how the routines above can be used. It computes
+the function $${1\over3\tau}f(\theta,\phi)=
+{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
+(\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
+3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
+where $\tau$ is a |scaled| \quote {tension} parameter. This is \MP's magic fudge
+factor for placing the first control point of a curve that starts at an angle
+$\theta$ and ends at an angle $\phi$ from the straight path. (Actually, if the
+stated quantity exceeds 4, \MP\ reduces it to~4.)
+
+The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
+(It's a sum of eight terms whose absolute values can be bounded using relations
+such as $\sin\theta\cos\theta|1\over2|$.) Thus the numerator is positive; and
+since the tension $\tau$ is constrained to be at least $3\over4$, the numerator
+is less than $16\over3$. The denominator is nonnegative and at most~6. Hence the
+fixed-point calculations below are guaranteed to stay within the bounds of a
+32-bit computer word.
+
+The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
+arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
+$\sin\phi$, and $\cos\phi$, respectively.
+
+@c
+void mp_velocity (MP mp, mp_number *ret, mp_number *st, mp_number *ct, mp_number *sf, mp_number *cf, mp_number *t)
+{
+ int acc, num, denom; /* registers for intermediate calculations */
+ acc = mp_take_fraction(mp, st->data.val - (sf->data.val / 16), sf->data.val - (st->data.val / 16));
+ acc = mp_take_fraction(mp, acc, ct->data.val - cf->data.val);
+ num = fraction_two + mp_take_fraction(mp, acc, 379625062);
+ /*
+ $2^{28}\sqrt2\approx379625062.497$
+ */
+ denom = fraction_three + mp_take_fraction(mp, ct->data.val, 497706707) + mp_take_fraction (mp, cf->data.val, 307599661);
+ /*
+ $3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
+ $3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$
+ */
+ if (t->data.val != unity) {
+ /* |make_scaled(fraction,scaled)=fraction| */
+ num = mp_make_scaled (mp, num, t->data.val);
+ }
+ if (num / 4 >= denom) {
+ ret->data.val = fraction_four;
+ } else {
+ ret->data.val = mp_make_fraction(mp, num, denom);
+ }
+ /* |printf ("num,denom=%f,%f -=> %f\n", num/65536.0, denom/65536.0, ret.data.val/65536.0);| */
+}
+
+@ The following somewhat different subroutine tests rigorously if $ab$ is greater
+than, equal to, or less than~$cd$, given integers $(a,b,c,d)$. In most cases a
+quick decision is reached. The result is $+1$, 0, or~$-1$ in the three respective
+cases.
+
+@c
+static int mp_ab_vs_cd (mp_number *a_orig, mp_number *b_orig, mp_number *c_orig, mp_number *d_orig)
+{
+ int a = a_orig->data.val;
+ int b = b_orig->data.val;
+ int c = c_orig->data.val;
+ int d = d_orig->data.val;
+ if (a < 0) {
+ a = -a;
+ b = -b;
+ }
+ if (c < 0) {
+ c = -c;
+ d = -d;
+ }
+ if (d <= 0) {
+ if (b >= 0) {
+ if ((a == 0 || b == 0) && (c == 0 || d == 0)) {
+ return 0;
+ } else {
+ return 1;
+ }
+ } else if (d == 0) {
+ return a == 0 ? 0 : -1;
+ } else {
+ int q = a;
+ a = c;
+ c = q;
+ q = -b;
+ b = -d;
+ d = q;
+ }
+ } else if (b <= 0) {
+ if (b < 0 && a > 0) {
+ return -1;
+ } else {
+ return c == 0 ? 0 : -1;
+ }
+ }
+ while (1) {
+ int q = a / d;
+ int r = c / b;
+ if (q != r) {
+ return q > r ? 1 : -1;
+ } else {
+ q = a % d;
+ r = c % b;
+ if (r == 0) {
+ return q ? 1 : 0;
+ } else if (q == 0) {
+ return -1;
+ } else {
+ a = b;
+ b = q;
+ c = d;
+ d = r;
+ }
+ }
+ }
+ /* now |a>d>0| and |c>b>0| */
+}
+
+@ Now here's a subroutine that's handy for all sorts of path computations: Given
+a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function returns the
+unique |fraction| value |t| between 0 and~1 at which $B(a,b,c;t)$ changes from
+positive to negative, or returns |t=fraction_one+1| if no such value exists. If
+|a<0| (so that $B(a,b,c;t)$ is already negative at |t=0|), |crossing_point|
+returns the value zero.
+
+The general bisection method is quite simple when $n=2$, hence |crossing_point|
+does not take much time. At each stage in the recursion we have a subinterval
+defined by |l| and~|j| such that $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we
+want to \quote {zero in} on the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
+
+It is convenient for purposes of calculation to combine the values of |l| and~|j|
+in a single variable $d=2^l+j$, because the operation of bisection then
+corresponds simply to doubling $d$ and possibly adding~1. Furthermore it proves
+to be convenient to modify our previous conventions for bisection slightly,
+maintaining the variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and
+$X_2=2^l(x_1-x_2)$. With these variables the conditions $x_0\ge0$ and
+$\min(x_1,x_2)<0$ are equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
+
+The following code maintains the invariant relations
+$0\L|x0|<\max(|x1|,|x1|+|x2|)$, $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
+it has been constructed in such a way that no arithmetic overflow will occur if
+the inputs satisfy $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert
+b-c\vert<2^{30}$.
+
+@c
+static void mp_crossing_point (MP mp, mp_number *ret, mp_number *aa, mp_number *bb, mp_number *cc)
+{
+ int x, xx, x0, x1, x2; /* temporary registers for bisection */
+ int a = aa->data.val;
+ int b = bb->data.val;
+ int c = cc->data.val;
+ int d; /* recursive counter */
+ (void) mp;
+ if (a < 0) {
+ ret->data.val = zero_crossing;
+ return;
+ } else if (c >= 0) {
+ if (b >= 0) {
+ if (c > 0) {
+ ret->data.val = no_crossing;
+ } else if ((a == 0) && (b == 0)) {
+ ret->data.val = no_crossing;
+ } else {
+ ret->data.val = one_crossing;
+ }
+ return;
+ } else if (a == 0) {
+ ret->data.val = zero_crossing;
+ return;
+ }
+ } else if (a == 0) {
+ if (b <= 0) {
+ ret->data.val = zero_crossing;
+ return;
+ }
+ }
+ /* Use bisection to find the crossing point... */
+ d = 1;
+ x0 = a;
+ x1 = a - b;
+ x2 = b - c;
+ do {
+ x = (x1 + x2) / 2;
+ if (x1 - x0 > x0) {
+ x2 = x;
+ x0 += x0;
+ d += d;
+ } else {
+ xx = x1 + x - x0;
+ if (xx > x0) {
+ x2 = x;
+ x0 += x0;
+ d += d;
+ } else {
+ x0 = x0 - xx;
+ if ((x <= x0) && (x + x2 <= x0)) {
+ ret->data.val = no_crossing;
+ return;
+ } else {
+ x1 = x;
+ d = d + d + 1;
+ }
+ }
+ }
+ } while (d < fraction_one);
+ ret->data.val = d - fraction_one;
+}
+
+@ We conclude this set of elementary routines with some simple rounding and
+truncation operations.
+
+@ |round_unscaled| rounds a |scaled| and converts it to |int|
+@c
+int mp_round_unscaled(mp_number *x_orig)
+{
+ int x = x_orig->data.val;
+ if (x >= 32768) {
+ return 1 + ((x-32768) / 65536);
+ } else if (x >= -32768) {
+ return 0;
+ } else {
+ return -(1+((-(x+1)-32768) / 65536));
+ }
+}
+
+@ |number_floor| floors a |scaled|
+
+@c
+void mp_number_floor(mp_number *i)
+{
+ i->data.val = i->data.val&-65536;
+}
+
+@ |fraction_to_scaled| rounds a |fraction| and converts it to |scaled|
+@c
+void mp_fraction_to_round_scaled(mp_number *x_orig)
+{
+ int x = x_orig->data.val;
+ x_orig->type = mp_scaled_type;
+ x_orig->data.val = (x>=2048 ? 1+((x-2048) / 4096) : ( x>=-2048 ? 0 : -(1+((-(x+1)-2048) / 4096))));
+}
+
+@* Algebraic and transcendental functions. \MP\ computes all of the necessary
+special functions from scratch, without relying on |real| arithmetic or system
+subroutines for sines, cosines, etc.
+
+@ To get the square root of a |scaled| number |x|, we want to calculate
+$s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique integer
+such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine determines $s$ by
+an iterative method that maintains the invariant relations $x=2^{46-2k}x_0\bmod
+2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor -s^2+s\L q=2s$, where $x_0$ is the
+initial value of $x$. The value of~$y$ might, however, be zero at the start of
+the first iteration.
+
+@c
+void mp_square_rt (MP mp, mp_number *ret, mp_number *x_orig)
+{
+ int x = x_orig->data.val;
+ if (x <= 0) {
+ if (x < 0) {
+ char msg[256];
+ mp_snprintf(msg, 256, "Square root of %s has been replaced by 0", mp_string_scaled(mp, x));
+ @.Square root...replaced by 0@>
+ mp_error(
+ mp,
+ msg,
+ "Since I don't take square roots of negative numbers, I'm zeroing this one.\n"
+ "Proceed, with fingers crossed."
+ );
+ }
+ ret->data.val = 0;
+ } else {
+ int k = 23; /* iteration control counter */
+ int y;
+ int q = 2;
+ while (x < fraction_two) { /* i.e., |while x<@t$2^{29}$@>|\unskip */
+ k--;
+ x = x + x + x + x;
+ }
+ if (x < fraction_four)
+ y = 0;
+ else {
+ x = x - fraction_four;
+ y = 1;
+ }
+ do {
+ @<Decrease |k| by 1, maintaining the invariant relations between |x|, |y|, and~|q|@>
+ } while (k != 0);
+ ret->data.val = (int) (q/2);
+ }
+}
+
+@ @<Decrease |k| by 1, maintaining...@>=
+x += x;
+y += y;
+if (x >= fraction_four) {
+ /* note that |fraction_four=@t$2^{30}$@>| */
+ x = x - fraction_four;
+ y++;
+};
+x += x;
+y = y + y - q;
+q += q;
+if (x >= fraction_four) {
+ x = x - fraction_four;
+ y++;
+};
+if (y > (int) q) {
+ y -= q;
+ q += 2;
+} else if (y <= 0) {
+ q -= 2;
+ y += q;
+};
+k--;
+
+@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant iterative
+scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal @^Moler, Cleve
+Barry@> @^Morrison, Donald Ross@> of Research and Development \bf27} (1983),
+577--581]. It modifies |a| and~|b| in such a way that their Pythagorean sum
+remains invariant, while the smaller argument decreases.
+
+@c
+void mp_pyth_add (MP mp, mp_number *ret, mp_number *a_orig, mp_number *b_orig)
+{
+ int a = abs(a_orig->data.val);
+ int b = abs(b_orig->data.val);
+ if (a < b) {
+ int r = b;
+ b = a;
+ a = r;
+ }
+ /* now |0<=b<=a| */
+ if (b > 0) {
+ int big; /* is the result dangerously near $2^{31}$? */
+ if (a < fraction_two) {
+ big = 0;
+ } else {
+ a = a / 4;
+ b = b / 4;
+ big = 1;
+ }
+ /* we reduced the precision to avoid arithmetic overflow */
+ @<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>
+ if (big) {
+ if (a < fraction_two) {
+ a = a + a + a + a;
+ } else {
+ mp->arith_error = 1;
+ a = EL_GORDO;
+ }
+ }
+ }
+ ret->data.val = a;
+}
+
+@ The key idea here is to reflect the vector $(a,b)$ about the line through
+$(a,b/2)$.
+
+@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
+while (1) {
+ int r = mp_make_fraction(mp, b, a);
+ r = mp_take_fraction(mp, r, r);
+ /* now $r\approx b^2/a^2$ */
+ if (r == 0) {
+ break;
+ } else {
+ r = mp_make_fraction(mp, r, fraction_four + r);
+ a = a + mp_take_fraction(mp, a + a, r);
+ b = mp_take_fraction(mp, b, r);
+ }
+}
+
+@ Here is a similar algorithm for $\psqrt{a^2-b^2}$. It converges slowly when $b$
+is near $a$, but otherwise it works fine.
+
+@c
+void mp_pyth_sub (MP mp, mp_number *ret, mp_number *a_orig, mp_number *b_orig)
+{
+ int a = abs(a_orig->data.val);
+ int b = abs(b_orig->data.val);
+ if (a <= b) {
+ @<Handle erroneous |pyth_sub| and set |a:=0|@>
+ } else {
+ int big; /* is the result dangerously near $2^{31}$? */
+ if (a < fraction_four) {
+ big = 0;
+ } else {
+ a = (int) a/2;
+ b = (int) b/2;
+ big = 1;
+ }
+ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>
+ if (big) {
+ a *= 2;
+ }
+ }
+ ret->data.val = a;
+}
+
+@ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
+while (1) {
+ int r = mp_make_fraction(mp, b, a);
+ r = mp_take_fraction(mp, r, r);
+ /* now $r\approx b^2/a^2$ */
+ if (r == 0) {
+ break;
+ } else {
+ r = mp_make_fraction(mp, r, fraction_four - r);
+ a = a - mp_take_fraction(mp, a + a, r);
+ b = mp_take_fraction(mp, b, r);
+ }
+}
+
+@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
+if (a < b) {
+ char msg[256];
+ char *astr = mp_strdup(mp_string_scaled(mp, a));
+ mp_snprintf(msg, 256, "Pythagorean subtraction %s+-+%s has been replaced by 0", astr, mp_string_scaled(mp, b));
+ mp_memory_free(astr);
+ @.Pythagorean...@>
+ mp_error(
+ mp,
+ msg,
+ "Since I don't take square roots of negative numbers, I'm zeroing this one.\n"
+ "Proceed, with fingers crossed."
+ );
+}
+a = 0;
+
+@ For the moment we just abuse doubles here.
+
+@c
+void mp_power_of (MP mp, mp_number *ret, mp_number *a_orig, mp_number *b_orig)
+{
+ double p = pow(mp_number_to_double(a_orig), mp_number_to_double(b_orig));
+ long r = lround(p * 65536.0);
+ if (r > 0) {
+ if (r >= EL_GORDO) {
+ mp->arith_error = 1;
+ r = EL_GORDO;
+ }
+ } else if (r < 0) {
+ if (r <= - EL_GORDO) {
+ mp->arith_error = 1;
+ r = - EL_GORDO;
+ }
+ }
+ ret->data.val = r;
+}
+
+@ The subroutines for logarithm and exponential involve two tables. The first is
+simple: |two_to_the[k]| equals $2^k$. The second involves a bit more calculation,
+which the author claims to have done correctly: |mp_m_spec_log[k]| is $2^{27}$ times
+$\ln\bigl(1/(1-2^{-k})\bigr)= 2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$,
+rounded to the nearest integer.
+
+@<Declarations@>=
+static const int mp_m_spec_log[29] = {
+ 0, 93032640, 38612034, 17922280, 8662214, 4261238, 2113709, 1052693, 525315,
+ 262400, 131136, 65552, 32772, 16385, 8192, 4096, 2048, 1024, 512, 256, 128,
+ 64, 32, 16, 8, 4, 2, 1, 1
+};
+
+@ Here is the routine that calculates $2^8$ times the natural logarithm of a
+|scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$, when
+|x| is a given positive integer.
+
+The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
+Programming}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
+and the logarithm of $2^{30}x$ remains to be added to an accumulator register
+called~$y$. Three auxiliary bits of accuracy are retained in~$y$ during the
+calculation, and sixteen auxiliary bits to extend |y| are kept in~|z| during the
+initial argument reduction. (We add $100\cdot2^{16}=6553600$ to~|z| and subtract
+100 from~|y| so that |z| will not become negative; also, the actual amount
+subtracted from~|y| is~96, not~100, because we want to add~4 for rounding before
+the final division by~8.)
+
+@c
+void mp_m_log (MP mp, mp_number *ret, mp_number *x_orig)
+{
+ int x = x_orig->data.val;
+ if (x <= 0) {
+ @<Handle non-positive logarithm@>
+ } else {
+ int k = 2; /* iteration counter, starts at 2 */
+ int y = 1302456956 + 4 - 100; /* $14\times2^{27}\ln2\approx1302456956.421063$ */
+ int z = 27595 + 6553600; /* and $2^{16}\times .421063\approx 27595$ */
+ /* $2^{27}\ln2\approx 93032639.74436163$ and $2^{16}\times.74436163\approx 48782$ */
+ while (x < fraction_four) {
+ x = 2*x;
+ y -= 93032639;
+ z -= 48782;
+ }
+ y = y + (z / unity);
+ while (x > fraction_four + 4) {
+ @<Increase |k| until |x| can be multiplied by a factor of $2^{-k}$, and adjust $y$ accordingly@>
+ }
+ ret->data.val = (y / 8);
+ }
+}
+
+@ @<Increase |k| until |x| can...@>=
+{
+ z = ((x - 1) / two_to_the (k)) + 1; /* $z=\lceil x/2^k\rceil$ */
+ while (x < fraction_four + z) {
+ z = (z + 1)/2;
+ k++;
+ };
+ y += mp_m_spec_log[k];
+ x -= z;
+}
+
+@ @<Handle non-positive logarithm@>=
+{
+ char msg[256];
+ mp_snprintf(msg, 256, "Logarithm of %s has been replaced by 0", mp_string_scaled(mp, x));
+ @.Logarithm...replaced by 0@>
+ mp_error(
+ mp,
+ msg,
+ "Since I don't take logs of non-positive numbers, I'm zeroing this one.\n"
+ "Proceed, with fingers crossed."
+ );
+ ret->data.val = 0;
+}
+
+@ Conversely, the exponential routine calculates $\exp(x/2^8)$, when |x| is
+|scaled|. The result is an integer approximation to $2^{16}\exp(x/2^{24})$, when
+|x| is regarded as an integer.
+
+@c
+void mp_m_exp (MP mp, mp_number *ret, mp_number *x_orig)
+{
+ int y, z; /* auxiliary registers */
+ int x = x_orig->data.val;
+ if (x > 174436200) {
+ /* $2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$ */
+ mp->arith_error = 1;
+ ret->data.val = EL_GORDO;
+ } else if (x < -197694359) {
+ /* $2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$ */
+ ret->data.val = 0;
+ } else {
+ if (x <= 0) {
+ z = -8 * x;
+ y = 04000000; /* $y=2^{20}$ */
+ } else {
+ if (x <= 127919879) {
+ z = 1023359037 - 8 * x;
+ /* $2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$ */
+ } else {
+ /* |z| is always nonnegative */
+ z = 8 * (174436200 - x);
+ }
+ y = EL_GORDO;
+ }
+ @<Multiply |y| by $\exp(-z/2^{27})$@>
+ if (x <= 127919879) {
+ ret->data.val = ((y + 8) / 16);
+ } else {
+ ret->data.val = y;
+ }
+ }
+}
+
+@ The idea here is that subtracting |mp_m_spec_log[k]| from |z| corresponds to
+multiplying |y| by $1-2^{-k}$.
+
+A subtle point (which had to be checked) was that if $x=127919879$, the value
+of~|y| will decrease so that |y+8| doesn't overflow. In fact, $z$ will be 5 in
+this case, and |y| will decrease by~64 when |k=25| and by~16 when |k=27|.
+
+@<Multiply |y| by...@>=
+{
+ int k = 1; /* loop control index */
+ while (z > 0) {
+ while (z >= mp_m_spec_log[k]) {
+ z -= mp_m_spec_log[k];
+ y = y - 1 - ((y - two_to_the(k - 1)) / two_to_the(k));
+ }
+ k++;
+ }
+}
+
+@ The trigonometric subroutines use an auxiliary table such that |spec_atan[k]|
+contains an approximation to the |angle| whose tangent is~$1/2^k$.
+$\arctan2^{-k}$ times $2^{20}\cdot180/\pi$
+
+@<Declarations@>=
+static const int mp_m_spec_atan[27] = {
+ 0, 27855475, 14718068, 7471121, 3750058, 1876857, 938658, 469357, 234682,
+ 117342, 58671, 29335, 14668, 7334, 3667, 1833, 917, 458, 229, 115, 57, 29,
+ 14, 7, 4, 2, 1
+};
+
+
+@ Given integers |x| and |y|, not both zero, the |n_arg| function returns the
+|angle| whose tangent points in the direction $(x,y)$. This subroutine first
+determines the correct octant, then solves the problem for |0<=y<=x|, then
+converts the result appropriately to return an answer in the range
+|-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|. (The answer is |+one_eighty_deg|
+if |y=0| and |x<0|, but an answer of |-one_eighty_deg| is possible if, for
+example, |y=-1| and $x=-2^{30}$.)
+
+@c
+void mp_n_arg (MP mp, mp_number *ret, mp_number *x_orig, mp_number *y_orig)
+{
+ int z; /* auxiliary register */
+ int t; /* temporary storage */
+ int k; /* loop counter */
+ int octant; /* octant code */
+ int x = x_orig->data.val;
+ int y = y_orig->data.val;
+ if (x >= 0) {
+ octant = first_octant;
+ } else {
+ x = -x;
+ octant = first_octant + negate_x;
+ }
+ if (y < 0) {
+ y = -y;
+ octant = octant + negate_y;
+ }
+ if (x < y) {
+ t = y;
+ y = x;
+ x = t;
+ octant = octant + switch_x_and_y;
+ }
+ if (x == 0) {
+ mp_error(
+ mp,
+ "angle(0,0) is taken as zero",
+ "The 'angle' between two identical points is undefined. I'm zeroing this one.\n"
+ "Proceed, with fingers crossed."
+ );
+ @.angle(0,0)...zero@>
+ ret->data.val = 0;
+ } else {
+ ret->type = mp_angle_type;
+ @<Set variable |z| to the arg of $(x,y)$@>
+ @<Return an appropriate answer based on |z| and |octant|@>
+ }
+}
+
+@ @<Return an appropriate answer...@>=
+switch (octant) {
+ case first_octant: ret->data.val = z; break;
+ case second_octant: ret->data.val = -z + ninety_deg; break;
+ case third_octant: ret->data.val = z + ninety_deg; break;
+ case fourth_octant: ret->data.val = -z + one_eighty_deg; break;
+ case fifth_octant: ret->data.val = z - one_eighty_deg; break;
+ case sixth_octant: ret->data.val = -z - ninety_deg; break;
+ case seventh_octant: ret->data.val = z - ninety_deg; break;
+ case eighth_octant: ret->data.val = -z; break;
+}
+
+@ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up or down
+until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations will be
+made.
+
+@<Set variable |z| to the arg...@>=
+while (x >= fraction_two) {
+ x = x/2;
+ y = y/2;
+}
+z = 0;
+if (y > 0) {
+ while (x < fraction_one) {
+ x += x;
+ y += y;
+ };
+ @<Increase |z| to the arg of $(x,y)$@>
+}
+
+@ During the calculations of this section, variables |x| and~|y| represent actual
+coordinates $(x,2^{-k}y)$. We will maintain the condition |x>=y|, so that the
+tangent will be at most $2^{-k}$. If $x<2y$, the tangent is greater than
+$2^{-k-1}$. The transformation $(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces
+$(a,b)$ by coordinates whose angle has decreased by~$\phi$; in the special case
+$a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces to the
+particularly simple iteration shown here. [Cf.~John E. Meggitt, @^Meggitt, John
+E.@> {\sl IBM Journal of Research and Development \bf6} (1962), 210--226.]
+
+The initial value of |x| will be multiplied by at most
+$(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence there is no
+chance of integer overflow.
+
+@<Increase |z|...@>=
+k = 0;
+do {
+ y += y;
+ k++;
+ if (y > x) {
+ z = z + mp_m_spec_atan[k];
+ t = x;
+ x = x + (y / two_to_the(k + k));
+ y = y - t;
+ };
+} while (k != 15);
+do {
+ y += y;
+ k++;
+ if (y > x) {
+ z = z + mp_m_spec_atan[k];
+ y = y - x;
+ };
+} while (k != 26);
+
+@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine and
+cosine of that angle. The results of this routine are stored in global integer
+variables |n_sin| and |n_cos|.
+
+@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees, the
+purpose of |n_sin_cos(z)| is to set |x=@t$r\cos\theta$@>| and
+|y=@t$r\sin\theta$@>| (approximately), for some rather large number~|r|. The
+maximum of |x| and |y| will be between $2^{28}$ and $2^{30}$, so that there will
+be hardly any loss of accuracy. Then |x| and~|y| are divided by~|r|.
+
+@ Compute a multiple of the sine and cosine
+
+@c
+void mp_n_sin_cos (MP mp, mp_number *z_orig, mp_number *n_cos, mp_number *n_sin)
+{
+ int k; /* loop control variable */
+ int q; /* specifies the quadrant */
+ int x, y, t; /* temporary registers */
+ int z = z_orig->data.val; /* scaled */
+ mp_number x_n, y_n, ret;
+ mp_allocate_number(mp, &ret, mp_scaled_type);
+ mp_allocate_number(mp, &x_n, mp_scaled_type);
+ mp_allocate_number(mp, &y_n, mp_scaled_type);
+ while (z < 0) {
+ z = z + three_sixty_deg;
+ }
+ z = z % three_sixty_deg;
+ /* now |0<=z<three_sixty_deg| */
+ q = z / forty_five_deg;
+ z = z % forty_five_deg;
+ x = fraction_one;
+ y = x;
+ if (! odd(q)) {
+ z = forty_five_deg - z;
+ }
+ @<Subtract angle |z| from |(x,y)|@>
+ @<Convert |(x,y)| to the octant determined by~|q|@>
+ x_n.data.val = x;
+ y_n.data.val = y;
+ mp_pyth_add(mp, &ret, &x_n, &y_n);
+ n_cos->data.val = mp_make_fraction(mp, x, ret.data.val);
+ n_sin->data.val = mp_make_fraction(mp, y, ret.data.val);
+ mp_free_number(mp, &ret);
+ mp_free_number(mp, &x_n);
+ mp_free_number(mp, &y_n);
+}
+
+@ In this case the octants are numbered sequentially.
+
+@<Convert |(x,...@>=
+switch (q) {
+ case 0: break;
+ case 1: t = x; x = y; y = t; break;
+ case 2: t = x; x = -y; y = t; break;
+ case 3: x = -x; break;
+ case 4: x = -x; y = -y; break;
+ case 5: t = x; x = -y; y = -t; break;
+ case 6: t = x; x = y; y = -t; break;
+ case 7: y = -y; break;
+}
+
+@ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
+applied in reverse. The values of |mp_m_spec_atan[k]| decrease slowly enough
+that this loop is guaranteed to terminate before the (nonexistent) value
+|mp_m_spec_atan[27]| would be required.
+
+@<Subtract angle |z|...@>=
+k = 1;
+while (z > 0) {
+ if (z >= mp_m_spec_atan[k]) {
+ z = z - mp_m_spec_atan[k];
+ t = x;
+ x = t + y / two_to_the(k);
+ y = y - t / two_to_the(k);
+ }
+ k++;
+}
+if (y < 0) {
+ /* this precaution may never be needed */
+ y = 0;
+}
+
+@ To initialize the |randoms| table, we call the following routine.
+
+@c
+void mp_init_randoms (MP mp, int seed)
+{
+ int k = 1; /* more or less random integers */
+ int j = abs(seed);
+ while (j >= fraction_one) {
+ j = j/2;
+ }
+ for (int i = 0; i <= 54; i++) {
+ int jj = k;
+ k = j - k;
+ j = jj;
+ if (k < 0) {
+ k += fraction_one;
+ }
+ mp->randoms[(i * 21) % 55].data.val = j;
+ }
+ /* \quote {warm up} the array */
+ mp_new_randoms(mp);
+ mp_new_randoms(mp);
+ mp_new_randoms(mp);
+}
+
+@ @c
+void mp_print_number (MP mp, mp_number *n)
+{
+ mp_print_e_str(mp, mp_string_scaled(mp, n->data.val));
+}
+
+@ @c
+char *mp_number_tostring (MP mp, mp_number *n)
+{
+ return mp_string_scaled(mp, n->data.val);
+}
+
+@ @c
+void mp_number_modulo(mp_number *a, mp_number *b)
+{
+ a->data.val = a->data.val % b->data.val;
+}
+
+@ To consume a random fraction, the program below will say |next_random|.
+
+@c
+static void mp_next_random (MP mp, mp_number *ret)
+{
+ if ( mp->j_random == 0) {
+ mp_new_randoms(mp);
+ } else {
+ mp->j_random = mp->j_random-1;
+ }
+ mp_number_clone(ret, &(mp->randoms[mp->j_random]));
+}
+
+@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x| or
+|0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
+
+Note that the call of |take_fraction| will produce the values 0 and~|x| with
+about half the probability that it will produce any other particular values
+between 0 and~|x|, because it rounds its answers.
+
+@c
+static void mp_m_unif_rand (MP mp, mp_number *ret, mp_number *x_orig)
+{
+ mp_number x, abs_x, u, y; /* |y| is trial value */
+ mp_allocate_number(mp, &y, mp_fraction_type);
+ mp_allocate_clone(mp, &x, mp_scaled_type, x_orig);
+ mp_allocate_abs(mp, &abs_x, mp_scaled_type, &x);
+ mp_allocate_number(mp, &u, mp_scaled_type);
+ mp_next_random(mp, &u);
+ /*|take_fraction (y, abs_x, u);|*/
+ mp_number_take_fraction(mp, &y, &abs_x, &u);
+ if (mp_number_equal(&y, &abs_x)) {
+ /*|set_number_to_zero(*ret);|*/
+ mp_number_clone(ret, &((math_data *)mp->math)->md_zero_t);
+ } else if (mp_number_greater(&x, &((math_data *)mp->math)->md_zero_t)) {
+ mp_number_clone(ret, &y);
+ } else {
+ mp_number_clone(ret, &y);
+ mp_number_negate(ret);
+ }
+ mp_free_number(mp, &y);
+ mp_free_number(mp, &abs_x);
+ mp_free_number(mp, &x);
+ mp_free_number(mp, &u);
+}
+
+@ Finally, a normal deviate with mean zero and unit standard deviation can
+readily be obtained with the ratio method (Algorithm 3.4.1R in {\sl The Art of
+Computer Programming}).
+
+@c
+static void mp_m_norm_rand (MP mp, mp_number *ret)
+{
+ mp_number abs_x, u, r, la, xa;
+ mp_allocate_number(mp, &la, mp_scaled_type);
+ mp_allocate_number(mp, &xa, mp_scaled_type);
+ mp_allocate_number(mp, &abs_x, mp_scaled_type);
+ mp_allocate_number(mp, &u, mp_scaled_type);
+ mp_allocate_number(mp, &r, mp_scaled_type);
+ do {
+ do {
+ mp_number v;
+ mp_allocate_number(mp, &v, mp_scaled_type);
+ mp_next_random(mp, &v);
+ mp_number_subtract(&v, &((math_data *)mp->math)->md_fraction_half_t);
+ mp_number_take_fraction(mp, &xa, &((math_data *)mp->math)->md_sqrt_8_e_k, &v);
+ mp_free_number(mp, &v);
+ mp_next_random(mp, &u);
+ mp_number_clone(&abs_x, &xa);
+ mp_number_abs(&abs_x);
+ } while (! mp_number_less(&abs_x, &u));
+ mp_number_make_fraction(mp, &r, &xa, &u);
+ mp_number_clone(&xa, &r);
+ mp_m_log(mp, &la, &u);
+ mp_set_number_from_subtraction(&la, &((math_data *)mp->math)->md_twelve_ln_2_k, &la);
+ } while (mp_ab_vs_cd(&((math_data *)mp->math)->md_one_k, &la, &xa, &xa) < 0);
+ mp_number_clone(ret, &xa);
+ mp_free_number(mp, &r);
+ mp_free_number(mp, &abs_x);
+ mp_free_number(mp, &la);
+ mp_free_number(mp, &xa);
+ mp_free_number(mp, &u);
+}