summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/segment.c
diff options
context:
space:
mode:
Diffstat (limited to 'source/luametatex/source/libraries/mimalloc/src/segment.c')
-rw-r--r--source/luametatex/source/libraries/mimalloc/src/segment.c1544
1 files changed, 1544 insertions, 0 deletions
diff --git a/source/luametatex/source/libraries/mimalloc/src/segment.c b/source/luametatex/source/libraries/mimalloc/src/segment.c
new file mode 100644
index 000000000..800d4fc31
--- /dev/null
+++ b/source/luametatex/source/libraries/mimalloc/src/segment.c
@@ -0,0 +1,1544 @@
+/* ----------------------------------------------------------------------------
+Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+#include "mimalloc.h"
+#include "mimalloc-internal.h"
+#include "mimalloc-atomic.h"
+
+#include <string.h> // memset
+#include <stdio.h>
+
+#define MI_PAGE_HUGE_ALIGN (256*1024)
+
+static void mi_segment_delayed_decommit(mi_segment_t* segment, bool force, mi_stats_t* stats);
+
+
+// -------------------------------------------------------------------
+// commit mask
+// -------------------------------------------------------------------
+
+static bool mi_commit_mask_all_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) {
+ for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
+ if ((commit->mask[i] & cm->mask[i]) != cm->mask[i]) return false;
+ }
+ return true;
+}
+
+static bool mi_commit_mask_any_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) {
+ for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
+ if ((commit->mask[i] & cm->mask[i]) != 0) return true;
+ }
+ return false;
+}
+
+static void mi_commit_mask_create_intersect(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm, mi_commit_mask_t* res) {
+ for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
+ res->mask[i] = (commit->mask[i] & cm->mask[i]);
+ }
+}
+
+static void mi_commit_mask_clear(mi_commit_mask_t* res, const mi_commit_mask_t* cm) {
+ for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
+ res->mask[i] &= ~(cm->mask[i]);
+ }
+}
+
+static void mi_commit_mask_set(mi_commit_mask_t* res, const mi_commit_mask_t* cm) {
+ for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
+ res->mask[i] |= cm->mask[i];
+ }
+}
+
+static void mi_commit_mask_create(size_t bitidx, size_t bitcount, mi_commit_mask_t* cm) {
+ mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS);
+ mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS);
+ if (bitcount == MI_COMMIT_MASK_BITS) {
+ mi_assert_internal(bitidx==0);
+ mi_commit_mask_create_full(cm);
+ }
+ else if (bitcount == 0) {
+ mi_commit_mask_create_empty(cm);
+ }
+ else {
+ mi_commit_mask_create_empty(cm);
+ size_t i = bitidx / MI_COMMIT_MASK_FIELD_BITS;
+ size_t ofs = bitidx % MI_COMMIT_MASK_FIELD_BITS;
+ while (bitcount > 0) {
+ mi_assert_internal(i < MI_COMMIT_MASK_FIELD_COUNT);
+ size_t avail = MI_COMMIT_MASK_FIELD_BITS - ofs;
+ size_t count = (bitcount > avail ? avail : bitcount);
+ size_t mask = (count >= MI_COMMIT_MASK_FIELD_BITS ? ~((size_t)0) : (((size_t)1 << count) - 1) << ofs);
+ cm->mask[i] = mask;
+ bitcount -= count;
+ ofs = 0;
+ i++;
+ }
+ }
+}
+
+size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total) {
+ mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0);
+ size_t count = 0;
+ for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
+ size_t mask = cm->mask[i];
+ if (~mask == 0) {
+ count += MI_COMMIT_MASK_FIELD_BITS;
+ }
+ else {
+ for (; mask != 0; mask >>= 1) { // todo: use popcount
+ if ((mask&1)!=0) count++;
+ }
+ }
+ }
+ // we use total since for huge segments each commit bit may represent a larger size
+ return ((total / MI_COMMIT_MASK_BITS) * count);
+}
+
+
+size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx) {
+ size_t i = (*idx) / MI_COMMIT_MASK_FIELD_BITS;
+ size_t ofs = (*idx) % MI_COMMIT_MASK_FIELD_BITS;
+ size_t mask = 0;
+ // find first ones
+ while (i < MI_COMMIT_MASK_FIELD_COUNT) {
+ mask = cm->mask[i];
+ mask >>= ofs;
+ if (mask != 0) {
+ while ((mask&1) == 0) {
+ mask >>= 1;
+ ofs++;
+ }
+ break;
+ }
+ i++;
+ ofs = 0;
+ }
+ if (i >= MI_COMMIT_MASK_FIELD_COUNT) {
+ // not found
+ *idx = MI_COMMIT_MASK_BITS;
+ return 0;
+ }
+ else {
+ // found, count ones
+ size_t count = 0;
+ *idx = (i*MI_COMMIT_MASK_FIELD_BITS) + ofs;
+ do {
+ mi_assert_internal(ofs < MI_COMMIT_MASK_FIELD_BITS && (mask&1) == 1);
+ do {
+ count++;
+ mask >>= 1;
+ } while ((mask&1) == 1);
+ if ((((*idx + count) % MI_COMMIT_MASK_FIELD_BITS) == 0)) {
+ i++;
+ if (i >= MI_COMMIT_MASK_FIELD_COUNT) break;
+ mask = cm->mask[i];
+ ofs = 0;
+ }
+ } while ((mask&1) == 1);
+ mi_assert_internal(count > 0);
+ return count;
+ }
+}
+
+
+/* --------------------------------------------------------------------------------
+ Segment allocation
+
+ If a thread ends, it "abandons" pages with used blocks
+ and there is an abandoned segment list whose segments can
+ be reclaimed by still running threads, much like work-stealing.
+-------------------------------------------------------------------------------- */
+
+
+/* -----------------------------------------------------------
+ Slices
+----------------------------------------------------------- */
+
+
+static const mi_slice_t* mi_segment_slices_end(const mi_segment_t* segment) {
+ return &segment->slices[segment->slice_entries];
+}
+
+static uint8_t* mi_slice_start(const mi_slice_t* slice) {
+ mi_segment_t* segment = _mi_ptr_segment(slice);
+ mi_assert_internal(slice >= segment->slices && slice < mi_segment_slices_end(segment));
+ return ((uint8_t*)segment + ((slice - segment->slices)*MI_SEGMENT_SLICE_SIZE));
+}
+
+
+/* -----------------------------------------------------------
+ Bins
+----------------------------------------------------------- */
+// Use bit scan forward to quickly find the first zero bit if it is available
+
+static inline size_t mi_slice_bin8(size_t slice_count) {
+ if (slice_count<=1) return slice_count;
+ mi_assert_internal(slice_count <= MI_SLICES_PER_SEGMENT);
+ slice_count--;
+ size_t s = mi_bsr(slice_count); // slice_count > 1
+ if (s <= 2) return slice_count + 1;
+ size_t bin = ((s << 2) | ((slice_count >> (s - 2))&0x03)) - 4;
+ return bin;
+}
+
+static inline size_t mi_slice_bin(size_t slice_count) {
+ mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_SEGMENT_SIZE);
+ mi_assert_internal(mi_slice_bin8(MI_SLICES_PER_SEGMENT) <= MI_SEGMENT_BIN_MAX);
+ size_t bin = mi_slice_bin8(slice_count);
+ mi_assert_internal(bin <= MI_SEGMENT_BIN_MAX);
+ return bin;
+}
+
+static inline size_t mi_slice_index(const mi_slice_t* slice) {
+ mi_segment_t* segment = _mi_ptr_segment(slice);
+ ptrdiff_t index = slice - segment->slices;
+ mi_assert_internal(index >= 0 && index < (ptrdiff_t)segment->slice_entries);
+ return index;
+}
+
+
+/* -----------------------------------------------------------
+ Slice span queues
+----------------------------------------------------------- */
+
+static void mi_span_queue_push(mi_span_queue_t* sq, mi_slice_t* slice) {
+ // todo: or push to the end?
+ mi_assert_internal(slice->prev == NULL && slice->next==NULL);
+ slice->prev = NULL; // paranoia
+ slice->next = sq->first;
+ sq->first = slice;
+ if (slice->next != NULL) slice->next->prev = slice;
+ else sq->last = slice;
+ slice->xblock_size = 0; // free
+}
+
+static mi_span_queue_t* mi_span_queue_for(size_t slice_count, mi_segments_tld_t* tld) {
+ size_t bin = mi_slice_bin(slice_count);
+ mi_span_queue_t* sq = &tld->spans[bin];
+ mi_assert_internal(sq->slice_count >= slice_count);
+ return sq;
+}
+
+static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) {
+ mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0);
+ // should work too if the queue does not contain slice (which can happen during reclaim)
+ if (slice->prev != NULL) slice->prev->next = slice->next;
+ if (slice == sq->first) sq->first = slice->next;
+ if (slice->next != NULL) slice->next->prev = slice->prev;
+ if (slice == sq->last) sq->last = slice->prev;
+ slice->prev = NULL;
+ slice->next = NULL;
+ slice->xblock_size = 1; // no more free
+}
+
+
+/* -----------------------------------------------------------
+ Invariant checking
+----------------------------------------------------------- */
+
+static bool mi_slice_is_used(const mi_slice_t* slice) {
+ return (slice->xblock_size > 0);
+}
+
+
+#if (MI_DEBUG>=3)
+static bool mi_span_queue_contains(mi_span_queue_t* sq, mi_slice_t* slice) {
+ for (mi_slice_t* s = sq->first; s != NULL; s = s->next) {
+ if (s==slice) return true;
+ }
+ return false;
+}
+
+static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(segment != NULL);
+ mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
+ mi_assert_internal(segment->abandoned <= segment->used);
+ mi_assert_internal(segment->thread_id == 0 || segment->thread_id == _mi_thread_id());
+ mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask)); // can only decommit committed blocks
+ //mi_assert_internal(segment->segment_info_size % MI_SEGMENT_SLICE_SIZE == 0);
+ mi_slice_t* slice = &segment->slices[0];
+ const mi_slice_t* end = mi_segment_slices_end(segment);
+ size_t used_count = 0;
+ mi_span_queue_t* sq;
+ while(slice < end) {
+ mi_assert_internal(slice->slice_count > 0);
+ mi_assert_internal(slice->slice_offset == 0);
+ size_t index = mi_slice_index(slice);
+ size_t maxindex = (index + slice->slice_count >= segment->slice_entries ? segment->slice_entries : index + slice->slice_count) - 1;
+ if (mi_slice_is_used(slice)) { // a page in use, we need at least MAX_SLICE_OFFSET valid back offsets
+ used_count++;
+ for (size_t i = 0; i <= MI_MAX_SLICE_OFFSET && index + i <= maxindex; i++) {
+ mi_assert_internal(segment->slices[index + i].slice_offset == i*sizeof(mi_slice_t));
+ mi_assert_internal(i==0 || segment->slices[index + i].slice_count == 0);
+ mi_assert_internal(i==0 || segment->slices[index + i].xblock_size == 1);
+ }
+ // and the last entry as well (for coalescing)
+ const mi_slice_t* last = slice + slice->slice_count - 1;
+ if (last > slice && last < mi_segment_slices_end(segment)) {
+ mi_assert_internal(last->slice_offset == (slice->slice_count-1)*sizeof(mi_slice_t));
+ mi_assert_internal(last->slice_count == 0);
+ mi_assert_internal(last->xblock_size == 1);
+ }
+ }
+ else { // free range of slices; only last slice needs a valid back offset
+ mi_slice_t* last = &segment->slices[maxindex];
+ if (segment->kind != MI_SEGMENT_HUGE || slice->slice_count <= (segment->slice_entries - segment->segment_info_slices)) {
+ mi_assert_internal((uint8_t*)slice == (uint8_t*)last - last->slice_offset);
+ }
+ mi_assert_internal(slice == last || last->slice_count == 0 );
+ mi_assert_internal(last->xblock_size == 0 || (segment->kind==MI_SEGMENT_HUGE && last->xblock_size==1));
+ if (segment->kind != MI_SEGMENT_HUGE && segment->thread_id != 0) { // segment is not huge or abandoned
+ sq = mi_span_queue_for(slice->slice_count,tld);
+ mi_assert_internal(mi_span_queue_contains(sq,slice));
+ }
+ }
+ slice = &segment->slices[maxindex+1];
+ }
+ mi_assert_internal(slice == end);
+ mi_assert_internal(used_count == segment->used + 1);
+ return true;
+}
+#endif
+
+/* -----------------------------------------------------------
+ Segment size calculations
+----------------------------------------------------------- */
+
+static size_t mi_segment_info_size(mi_segment_t* segment) {
+ return segment->segment_info_slices * MI_SEGMENT_SLICE_SIZE;
+}
+
+static uint8_t* _mi_segment_page_start_from_slice(const mi_segment_t* segment, const mi_slice_t* slice, size_t xblock_size, size_t* page_size)
+{
+ ptrdiff_t idx = slice - segment->slices;
+ size_t psize = (size_t)slice->slice_count * MI_SEGMENT_SLICE_SIZE;
+ // make the start not OS page aligned for smaller blocks to avoid page/cache effects
+ size_t start_offset = (xblock_size >= MI_INTPTR_SIZE && xblock_size <= 1024 ? MI_MAX_ALIGN_GUARANTEE : 0);
+ if (page_size != NULL) { *page_size = psize - start_offset; }
+ return (uint8_t*)segment + ((idx*MI_SEGMENT_SLICE_SIZE) + start_offset);
+}
+
+// Start of the page available memory; can be used on uninitialized pages
+uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size)
+{
+ const mi_slice_t* slice = mi_page_to_slice((mi_page_t*)page);
+ uint8_t* p = _mi_segment_page_start_from_slice(segment, slice, page->xblock_size, page_size);
+ mi_assert_internal(page->xblock_size > 0 || _mi_ptr_page(p) == page);
+ mi_assert_internal(_mi_ptr_segment(p) == segment);
+ return p;
+}
+
+
+static size_t mi_segment_calculate_slices(size_t required, size_t* pre_size, size_t* info_slices) {
+ size_t page_size = _mi_os_page_size();
+ size_t isize = _mi_align_up(sizeof(mi_segment_t), page_size);
+ size_t guardsize = 0;
+
+ if (MI_SECURE>0) {
+ // in secure mode, we set up a protected page in between the segment info
+ // and the page data (and one at the end of the segment)
+ guardsize = page_size;
+ required = _mi_align_up(required, page_size);
+ }
+
+ if (pre_size != NULL) *pre_size = isize;
+ isize = _mi_align_up(isize + guardsize, MI_SEGMENT_SLICE_SIZE);
+ if (info_slices != NULL) *info_slices = isize / MI_SEGMENT_SLICE_SIZE;
+ size_t segment_size = (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + guardsize, MI_SEGMENT_SLICE_SIZE) );
+ mi_assert_internal(segment_size % MI_SEGMENT_SLICE_SIZE == 0);
+ return (segment_size / MI_SEGMENT_SLICE_SIZE);
+}
+
+
+/* ----------------------------------------------------------------------------
+Segment caches
+We keep a small segment cache per thread to increase local
+reuse and avoid setting/clearing guard pages in secure mode.
+------------------------------------------------------------------------------- */
+
+static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
+ if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1);
+ else _mi_stat_decrease(&tld->stats->segments,1);
+ tld->count += (segment_size >= 0 ? 1 : -1);
+ if (tld->count > tld->peak_count) tld->peak_count = tld->count;
+ tld->current_size += segment_size;
+ if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
+}
+
+static void mi_segment_os_free(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ segment->thread_id = 0;
+ _mi_segment_map_freed_at(segment);
+ mi_segments_track_size(-((long)mi_segment_size(segment)),tld);
+ if (MI_SECURE>0) {
+ // _mi_os_unprotect(segment, mi_segment_size(segment)); // ensure no more guard pages are set
+ // unprotect the guard pages; we cannot just unprotect the whole segment size as part may be decommitted
+ size_t os_pagesize = _mi_os_page_size();
+ _mi_os_unprotect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize);
+ uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize;
+ _mi_os_unprotect(end, os_pagesize);
+ }
+
+ // purge delayed decommits now? (no, leave it to the cache)
+ // mi_segment_delayed_decommit(segment,true,tld->stats);
+
+ // _mi_os_free(segment, mi_segment_size(segment), /*segment->memid,*/ tld->stats);
+ const size_t size = mi_segment_size(segment);
+ if (size != MI_SEGMENT_SIZE || !_mi_segment_cache_push(segment, size, segment->memid, &segment->commit_mask, &segment->decommit_mask, segment->mem_is_large, segment->mem_is_pinned, tld->os)) {
+ const size_t csize = _mi_commit_mask_committed_size(&segment->commit_mask, size);
+ if (csize > 0 && !segment->mem_is_pinned) _mi_stat_decrease(&_mi_stats_main.committed, csize);
+ _mi_abandoned_await_readers(); // wait until safe to free
+ _mi_arena_free(segment, mi_segment_size(segment), segment->memid, segment->mem_is_pinned /* pretend not committed to not double count decommits */, tld->os);
+ }
+}
+
+// called by threads that are terminating
+void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
+ MI_UNUSED(tld);
+ // nothing to do
+}
+
+
+/* -----------------------------------------------------------
+ Span management
+----------------------------------------------------------- */
+
+static void mi_segment_commit_mask(mi_segment_t* segment, bool conservative, uint8_t* p, size_t size, uint8_t** start_p, size_t* full_size, mi_commit_mask_t* cm) {
+ mi_assert_internal(_mi_ptr_segment(p) == segment);
+ mi_assert_internal(segment->kind != MI_SEGMENT_HUGE);
+ mi_commit_mask_create_empty(cm);
+ if (size == 0 || size > MI_SEGMENT_SIZE || segment->kind == MI_SEGMENT_HUGE) return;
+ const size_t segstart = mi_segment_info_size(segment);
+ const size_t segsize = mi_segment_size(segment);
+ if (p >= (uint8_t*)segment + segsize) return;
+
+ size_t pstart = (p - (uint8_t*)segment);
+ mi_assert_internal(pstart + size <= segsize);
+
+ size_t start;
+ size_t end;
+ if (conservative) {
+ // decommit conservative
+ start = _mi_align_up(pstart, MI_COMMIT_SIZE);
+ end = _mi_align_down(pstart + size, MI_COMMIT_SIZE);
+ mi_assert_internal(start >= segstart);
+ mi_assert_internal(end <= segsize);
+ }
+ else {
+ // commit liberal
+ start = _mi_align_down(pstart, MI_MINIMAL_COMMIT_SIZE);
+ end = _mi_align_up(pstart + size, MI_MINIMAL_COMMIT_SIZE);
+ }
+ if (pstart >= segstart && start < segstart) { // note: the mask is also calculated for an initial commit of the info area
+ start = segstart;
+ }
+ if (end > segsize) {
+ end = segsize;
+ }
+
+ mi_assert_internal(start <= pstart && (pstart + size) <= end);
+ mi_assert_internal(start % MI_COMMIT_SIZE==0 && end % MI_COMMIT_SIZE == 0);
+ *start_p = (uint8_t*)segment + start;
+ *full_size = (end > start ? end - start : 0);
+ if (*full_size == 0) return;
+
+ size_t bitidx = start / MI_COMMIT_SIZE;
+ mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS);
+
+ size_t bitcount = *full_size / MI_COMMIT_SIZE; // can be 0
+ if (bitidx + bitcount > MI_COMMIT_MASK_BITS) {
+ _mi_warning_message("commit mask overflow: idx=%zu count=%zu start=%zx end=%zx p=0x%p size=%zu fullsize=%zu\n", bitidx, bitcount, start, end, p, size, *full_size);
+ }
+ mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS);
+ mi_commit_mask_create(bitidx, bitcount, cm);
+}
+
+
+static bool mi_segment_commitx(mi_segment_t* segment, bool commit, uint8_t* p, size_t size, mi_stats_t* stats) {
+ mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));
+
+ // try to commit in at least MI_MINIMAL_COMMIT_SIZE sizes.
+ /*
+ if (commit && size > 0) {
+ const size_t csize = _mi_align_up(size, MI_MINIMAL_COMMIT_SIZE);
+ if (p + csize <= mi_segment_end(segment)) {
+ size = csize;
+ }
+ }
+ */
+ // commit liberal, but decommit conservative
+ uint8_t* start = NULL;
+ size_t full_size = 0;
+ mi_commit_mask_t mask;
+ mi_segment_commit_mask(segment, !commit/*conservative*/, p, size, &start, &full_size, &mask);
+ if (mi_commit_mask_is_empty(&mask) || full_size==0) return true;
+
+ if (commit && !mi_commit_mask_all_set(&segment->commit_mask, &mask)) {
+ bool is_zero = false;
+ mi_commit_mask_t cmask;
+ mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask);
+ _mi_stat_decrease(&_mi_stats_main.committed, _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for overlap
+ if (!_mi_os_commit(start,full_size,&is_zero,stats)) return false;
+ mi_commit_mask_set(&segment->commit_mask, &mask);
+ }
+ else if (!commit && mi_commit_mask_any_set(&segment->commit_mask, &mask)) {
+ mi_assert_internal((void*)start != (void*)segment);
+ //mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &mask));
+
+ mi_commit_mask_t cmask;
+ mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask);
+ _mi_stat_increase(&_mi_stats_main.committed, full_size - _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for overlap
+ if (segment->allow_decommit) {
+ _mi_os_decommit(start, full_size, stats); // ok if this fails
+ }
+ mi_commit_mask_clear(&segment->commit_mask, &mask);
+ }
+ // increase expiration of reusing part of the delayed decommit
+ if (commit && mi_commit_mask_any_set(&segment->decommit_mask, &mask)) {
+ segment->decommit_expire = _mi_clock_now() + mi_option_get(mi_option_decommit_delay);
+ }
+ // always undo delayed decommits
+ mi_commit_mask_clear(&segment->decommit_mask, &mask);
+ return true;
+}
+
+static bool mi_segment_ensure_committed(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) {
+ mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));
+ // note: assumes commit_mask is always full for huge segments as otherwise the commit mask bits can overflow
+ if (mi_commit_mask_is_full(&segment->commit_mask) && mi_commit_mask_is_empty(&segment->decommit_mask)) return true; // fully committed
+ return mi_segment_commitx(segment,true,p,size,stats);
+}
+
+static void mi_segment_perhaps_decommit(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) {
+ if (!segment->allow_decommit) return;
+ if (mi_option_get(mi_option_decommit_delay) == 0) {
+ mi_segment_commitx(segment, false, p, size, stats);
+ }
+ else {
+ // register for future decommit in the decommit mask
+ uint8_t* start = NULL;
+ size_t full_size = 0;
+ mi_commit_mask_t mask;
+ mi_segment_commit_mask(segment, true /*conservative*/, p, size, &start, &full_size, &mask);
+ if (mi_commit_mask_is_empty(&mask) || full_size==0) return;
+
+ // update delayed commit
+ mi_assert_internal(segment->decommit_expire > 0 || mi_commit_mask_is_empty(&segment->decommit_mask));
+ mi_commit_mask_t cmask;
+ mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); // only decommit what is committed; span_free may try to decommit more
+ mi_commit_mask_set(&segment->decommit_mask, &cmask);
+ mi_msecs_t now = _mi_clock_now();
+ if (segment->decommit_expire == 0) {
+ // no previous decommits, initialize now
+ segment->decommit_expire = now + mi_option_get(mi_option_decommit_delay);
+ }
+ else if (segment->decommit_expire <= now) {
+ // previous decommit mask already expired
+ // mi_segment_delayed_decommit(segment, true, stats);
+ segment->decommit_expire = now + mi_option_get(mi_option_decommit_extend_delay); // (mi_option_get(mi_option_decommit_delay) / 8); // wait a tiny bit longer in case there is a series of free's
+ }
+ else {
+ // previous decommit mask is not yet expired, increase the expiration by a bit.
+ segment->decommit_expire += mi_option_get(mi_option_decommit_extend_delay);
+ }
+ }
+}
+
+static void mi_segment_delayed_decommit(mi_segment_t* segment, bool force, mi_stats_t* stats) {
+ if (!segment->allow_decommit || mi_commit_mask_is_empty(&segment->decommit_mask)) return;
+ mi_msecs_t now = _mi_clock_now();
+ if (!force && now < segment->decommit_expire) return;
+
+ mi_commit_mask_t mask = segment->decommit_mask;
+ segment->decommit_expire = 0;
+ mi_commit_mask_create_empty(&segment->decommit_mask);
+
+ size_t idx;
+ size_t count;
+ mi_commit_mask_foreach(&mask, idx, count) {
+ // if found, decommit that sequence
+ if (count > 0) {
+ uint8_t* p = (uint8_t*)segment + (idx*MI_COMMIT_SIZE);
+ size_t size = count * MI_COMMIT_SIZE;
+ mi_segment_commitx(segment, false, p, size, stats);
+ }
+ }
+ mi_commit_mask_foreach_end()
+ mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
+}
+
+
+static bool mi_segment_is_abandoned(mi_segment_t* segment) {
+ return (segment->thread_id == 0);
+}
+
+// note: can be called on abandoned segments
+static void mi_segment_span_free(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) {
+ mi_assert_internal(slice_index < segment->slice_entries);
+ mi_span_queue_t* sq = (segment->kind == MI_SEGMENT_HUGE || mi_segment_is_abandoned(segment)
+ ? NULL : mi_span_queue_for(slice_count,tld));
+ if (slice_count==0) slice_count = 1;
+ mi_assert_internal(slice_index + slice_count - 1 < segment->slice_entries);
+
+ // set first and last slice (the intermediates can be undetermined)
+ mi_slice_t* slice = &segment->slices[slice_index];
+ slice->slice_count = (uint32_t)slice_count;
+ mi_assert_internal(slice->slice_count == slice_count); // no overflow?
+ slice->slice_offset = 0;
+ if (slice_count > 1) {
+ mi_slice_t* last = &segment->slices[slice_index + slice_count - 1];
+ last->slice_count = 0;
+ last->slice_offset = (uint32_t)(sizeof(mi_page_t)*(slice_count - 1));
+ last->xblock_size = 0;
+ }
+
+ // perhaps decommit
+ mi_segment_perhaps_decommit(segment,mi_slice_start(slice),slice_count*MI_SEGMENT_SLICE_SIZE,tld->stats);
+
+ // and push it on the free page queue (if it was not a huge page)
+ if (sq != NULL) mi_span_queue_push( sq, slice );
+ else slice->xblock_size = 0; // mark huge page as free anyways
+}
+
+/*
+// called from reclaim to add existing free spans
+static void mi_segment_span_add_free(mi_slice_t* slice, mi_segments_tld_t* tld) {
+ mi_segment_t* segment = _mi_ptr_segment(slice);
+ mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0);
+ size_t slice_index = mi_slice_index(slice);
+ mi_segment_span_free(segment,slice_index,slice->slice_count,tld);
+}
+*/
+
+static void mi_segment_span_remove_from_queue(mi_slice_t* slice, mi_segments_tld_t* tld) {
+ mi_assert_internal(slice->slice_count > 0 && slice->slice_offset==0 && slice->xblock_size==0);
+ mi_assert_internal(_mi_ptr_segment(slice)->kind != MI_SEGMENT_HUGE);
+ mi_span_queue_t* sq = mi_span_queue_for(slice->slice_count, tld);
+ mi_span_queue_delete(sq, slice);
+}
+
+// note: can be called on abandoned segments
+static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_tld_t* tld) {
+ mi_assert_internal(slice != NULL && slice->slice_count > 0 && slice->slice_offset == 0);
+ mi_segment_t* segment = _mi_ptr_segment(slice);
+ bool is_abandoned = mi_segment_is_abandoned(segment);
+
+ // for huge pages, just mark as free but don't add to the queues
+ if (segment->kind == MI_SEGMENT_HUGE) {
+ mi_assert_internal(segment->used == 1); // decreased right after this call in `mi_segment_page_clear`
+ slice->xblock_size = 0; // mark as free anyways
+ // we should mark the last slice `xblock_size=0` now to maintain invariants but we skip it to
+ // avoid a possible cache miss (and the segment is about to be freed)
+ return slice;
+ }
+
+ // otherwise coalesce the span and add to the free span queues
+ size_t slice_count = slice->slice_count;
+ mi_slice_t* next = slice + slice->slice_count;
+ mi_assert_internal(next <= mi_segment_slices_end(segment));
+ if (next < mi_segment_slices_end(segment) && next->xblock_size==0) {
+ // free next block -- remove it from free and merge
+ mi_assert_internal(next->slice_count > 0 && next->slice_offset==0);
+ slice_count += next->slice_count; // extend
+ if (!is_abandoned) { mi_segment_span_remove_from_queue(next, tld); }
+ }
+ if (slice > segment->slices) {
+ mi_slice_t* prev = mi_slice_first(slice - 1);
+ mi_assert_internal(prev >= segment->slices);
+ if (prev->xblock_size==0) {
+ // free previous slice -- remove it from free and merge
+ mi_assert_internal(prev->slice_count > 0 && prev->slice_offset==0);
+ slice_count += prev->slice_count;
+ if (!is_abandoned) { mi_segment_span_remove_from_queue(prev, tld); }
+ slice = prev;
+ }
+ }
+
+ // and add the new free page
+ mi_segment_span_free(segment, mi_slice_index(slice), slice_count, tld);
+ return slice;
+}
+
+
+static void mi_segment_slice_split(mi_segment_t* segment, mi_slice_t* slice, size_t slice_count, mi_segments_tld_t* tld) {
+ mi_assert_internal(_mi_ptr_segment(slice)==segment);
+ mi_assert_internal(slice->slice_count >= slice_count);
+ mi_assert_internal(slice->xblock_size > 0); // no more in free queue
+ if (slice->slice_count <= slice_count) return;
+ mi_assert_internal(segment->kind != MI_SEGMENT_HUGE);
+ size_t next_index = mi_slice_index(slice) + slice_count;
+ size_t next_count = slice->slice_count - slice_count;
+ mi_segment_span_free(segment, next_index, next_count, tld);
+ slice->slice_count = (uint32_t)slice_count;
+}
+
+// Note: may still return NULL if committing the memory failed
+static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) {
+ mi_assert_internal(slice_index < segment->slice_entries);
+ mi_slice_t* slice = &segment->slices[slice_index];
+ mi_assert_internal(slice->xblock_size==0 || slice->xblock_size==1);
+
+ // commit before changing the slice data
+ if (!mi_segment_ensure_committed(segment, _mi_segment_page_start_from_slice(segment, slice, 0, NULL), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats)) {
+ return NULL; // commit failed!
+ }
+
+ // convert the slices to a page
+ slice->slice_offset = 0;
+ slice->slice_count = (uint32_t)slice_count;
+ mi_assert_internal(slice->slice_count == slice_count);
+ const size_t bsize = slice_count * MI_SEGMENT_SLICE_SIZE;
+ slice->xblock_size = (uint32_t)(bsize >= MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : bsize);
+ mi_page_t* page = mi_slice_to_page(slice);
+ mi_assert_internal(mi_page_block_size(page) == bsize);
+
+ // set slice back pointers for the first MI_MAX_SLICE_OFFSET entries
+ size_t extra = slice_count-1;
+ if (extra > MI_MAX_SLICE_OFFSET) extra = MI_MAX_SLICE_OFFSET;
+ if (slice_index + extra >= segment->slice_entries) extra = segment->slice_entries - slice_index - 1; // huge objects may have more slices than avaiable entries in the segment->slices
+ slice++;
+ for (size_t i = 1; i <= extra; i++, slice++) {
+ slice->slice_offset = (uint32_t)(sizeof(mi_slice_t)*i);
+ slice->slice_count = 0;
+ slice->xblock_size = 1;
+ }
+
+ // and also for the last one (if not set already) (the last one is needed for coalescing)
+ // note: the cast is needed for ubsan since the index can be larger than MI_SLICES_PER_SEGMENT for huge allocations (see #543)
+ mi_slice_t* last = &((mi_slice_t*)segment->slices)[slice_index + slice_count - 1];
+ if (last < mi_segment_slices_end(segment) && last >= slice) {
+ last->slice_offset = (uint32_t)(sizeof(mi_slice_t)*(slice_count-1));
+ last->slice_count = 0;
+ last->xblock_size = 1;
+ }
+
+ // and initialize the page
+ page->is_reset = false;
+ page->is_committed = true;
+ segment->used++;
+ return page;
+}
+
+static mi_page_t* mi_segments_page_find_and_allocate(size_t slice_count, mi_segments_tld_t* tld) {
+ mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_LARGE_OBJ_SIZE_MAX);
+ // search from best fit up
+ mi_span_queue_t* sq = mi_span_queue_for(slice_count, tld);
+ if (slice_count == 0) slice_count = 1;
+ while (sq <= &tld->spans[MI_SEGMENT_BIN_MAX]) {
+ for (mi_slice_t* slice = sq->first; slice != NULL; slice = slice->next) {
+ if (slice->slice_count >= slice_count) {
+ // found one
+ mi_span_queue_delete(sq, slice);
+ mi_segment_t* segment = _mi_ptr_segment(slice);
+ if (slice->slice_count > slice_count) {
+ mi_segment_slice_split(segment, slice, slice_count, tld);
+ }
+ mi_assert_internal(slice != NULL && slice->slice_count == slice_count && slice->xblock_size > 0);
+ mi_page_t* page = mi_segment_span_allocate(segment, mi_slice_index(slice), slice->slice_count, tld);
+ if (page == NULL) {
+ // commit failed; return NULL but first restore the slice
+ mi_segment_span_free_coalesce(slice, tld);
+ return NULL;
+ }
+ return page;
+ }
+ }
+ sq++;
+ }
+ // could not find a page..
+ return NULL;
+}
+
+
+/* -----------------------------------------------------------
+ Segment allocation
+----------------------------------------------------------- */
+
+// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
+static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_segments_tld_t* tld, mi_os_tld_t* os_tld, mi_page_t** huge_page)
+{
+ mi_assert_internal((required==0 && huge_page==NULL) || (required>0 && huge_page != NULL));
+ mi_assert_internal((segment==NULL) || (segment!=NULL && required==0));
+ // calculate needed sizes first
+ size_t info_slices;
+ size_t pre_size;
+ const size_t segment_slices = mi_segment_calculate_slices(required, &pre_size, &info_slices);
+ const size_t slice_entries = (segment_slices > MI_SLICES_PER_SEGMENT ? MI_SLICES_PER_SEGMENT : segment_slices);
+ const size_t segment_size = segment_slices * MI_SEGMENT_SLICE_SIZE;
+
+ // Commit eagerly only if not the first N lazy segments (to reduce impact of many threads that allocate just a little)
+ const bool eager_delay = (// !_mi_os_has_overcommit() && // never delay on overcommit systems
+ _mi_current_thread_count() > 1 && // do not delay for the first N threads
+ tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay));
+ const bool eager = !eager_delay && mi_option_is_enabled(mi_option_eager_commit);
+ bool commit = eager || (required > 0);
+
+ // Try to get from our cache first
+ bool is_zero = false;
+ const bool commit_info_still_good = (segment != NULL);
+ mi_commit_mask_t commit_mask;
+ mi_commit_mask_t decommit_mask;
+ if (segment != NULL) {
+ commit_mask = segment->commit_mask;
+ decommit_mask = segment->decommit_mask;
+ }
+ else {
+ mi_commit_mask_create_empty(&commit_mask);
+ mi_commit_mask_create_empty(&decommit_mask);
+ }
+ if (segment==NULL) {
+ // Allocate the segment from the OS
+ bool mem_large = (!eager_delay && (MI_SECURE==0)); // only allow large OS pages once we are no longer lazy
+ bool is_pinned = false;
+ size_t memid = 0;
+ segment = (mi_segment_t*)_mi_segment_cache_pop(segment_size, &commit_mask, &decommit_mask, &mem_large, &is_pinned, &is_zero, &memid, os_tld);
+ if (segment==NULL) {
+ segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &commit, &mem_large, &is_pinned, &is_zero, &memid, os_tld);
+ if (segment == NULL) return NULL; // failed to allocate
+ if (commit) {
+ mi_commit_mask_create_full(&commit_mask);
+ }
+ else {
+ mi_commit_mask_create_empty(&commit_mask);
+ }
+ }
+ mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);
+
+ const size_t commit_needed = _mi_divide_up(info_slices*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE);
+ mi_assert_internal(commit_needed>0);
+ mi_commit_mask_t commit_needed_mask;
+ mi_commit_mask_create(0, commit_needed, &commit_needed_mask);
+ if (!mi_commit_mask_all_set(&commit_mask, &commit_needed_mask)) {
+ // at least commit the info slices
+ mi_assert_internal(commit_needed*MI_COMMIT_SIZE >= info_slices*MI_SEGMENT_SLICE_SIZE);
+ bool ok = _mi_os_commit(segment, commit_needed*MI_COMMIT_SIZE, &is_zero, tld->stats);
+ if (!ok) return NULL; // failed to commit
+ mi_commit_mask_set(&commit_mask, &commit_needed_mask);
+ }
+ segment->memid = memid;
+ segment->mem_is_pinned = is_pinned;
+ segment->mem_is_large = mem_large;
+ segment->mem_is_committed = mi_commit_mask_is_full(&commit_mask);
+ mi_segments_track_size((long)(segment_size), tld);
+ _mi_segment_map_allocated_at(segment);
+ }
+
+ // zero the segment info? -- not always needed as it is zero initialized from the OS
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); // tsan
+ if (!is_zero) {
+ ptrdiff_t ofs = offsetof(mi_segment_t, next);
+ size_t prefix = offsetof(mi_segment_t, slices) - ofs;
+ memset((uint8_t*)segment+ofs, 0, prefix + sizeof(mi_slice_t)*segment_slices);
+ }
+
+ if (!commit_info_still_good) {
+ segment->commit_mask = commit_mask; // on lazy commit, the initial part is always committed
+ segment->allow_decommit = (mi_option_is_enabled(mi_option_allow_decommit) && !segment->mem_is_pinned && !segment->mem_is_large);
+ if (segment->allow_decommit) {
+ segment->decommit_expire = _mi_clock_now() + mi_option_get(mi_option_decommit_delay);
+ segment->decommit_mask = decommit_mask;
+ mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));
+ #if MI_DEBUG>2
+ const size_t commit_needed = _mi_divide_up(info_slices*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE);
+ mi_commit_mask_t commit_needed_mask;
+ mi_commit_mask_create(0, commit_needed, &commit_needed_mask);
+ mi_assert_internal(!mi_commit_mask_any_set(&segment->decommit_mask, &commit_needed_mask));
+ #endif
+ }
+ else {
+ mi_assert_internal(mi_commit_mask_is_empty(&decommit_mask));
+ segment->decommit_expire = 0;
+ mi_commit_mask_create_empty( &segment->decommit_mask );
+ mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
+ }
+ }
+
+
+ // initialize segment info
+ segment->segment_slices = segment_slices;
+ segment->segment_info_slices = info_slices;
+ segment->thread_id = _mi_thread_id();
+ segment->cookie = _mi_ptr_cookie(segment);
+ segment->slice_entries = slice_entries;
+ segment->kind = (required == 0 ? MI_SEGMENT_NORMAL : MI_SEGMENT_HUGE);
+
+ // memset(segment->slices, 0, sizeof(mi_slice_t)*(info_slices+1));
+ _mi_stat_increase(&tld->stats->page_committed, mi_segment_info_size(segment));
+
+ // set up guard pages
+ size_t guard_slices = 0;
+ if (MI_SECURE>0) {
+ // in secure mode, we set up a protected page in between the segment info
+ // and the page data, and at the end of the segment.
+ size_t os_pagesize = _mi_os_page_size();
+ mi_assert_internal(mi_segment_info_size(segment) - os_pagesize >= pre_size);
+ _mi_os_protect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize);
+ uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize;
+ mi_segment_ensure_committed(segment, end, os_pagesize, tld->stats);
+ _mi_os_protect(end, os_pagesize);
+ if (slice_entries == segment_slices) segment->slice_entries--; // don't use the last slice :-(
+ guard_slices = 1;
+ }
+
+ // reserve first slices for segment info
+ mi_page_t* page0 = mi_segment_span_allocate(segment, 0, info_slices, tld);
+ mi_assert_internal(page0!=NULL); if (page0==NULL) return NULL; // cannot fail as we always commit in advance
+ mi_assert_internal(segment->used == 1);
+ segment->used = 0; // don't count our internal slices towards usage
+
+ // initialize initial free pages
+ if (segment->kind == MI_SEGMENT_NORMAL) { // not a huge page
+ mi_assert_internal(huge_page==NULL);
+ mi_segment_span_free(segment, info_slices, segment->slice_entries - info_slices, tld);
+ }
+ else {
+ mi_assert_internal(huge_page!=NULL);
+ mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
+ mi_assert_internal(mi_commit_mask_is_full(&segment->commit_mask));
+ *huge_page = mi_segment_span_allocate(segment, info_slices, segment_slices - info_slices - guard_slices, tld);
+ mi_assert_internal(*huge_page != NULL); // cannot fail as we commit in advance
+ }
+
+ mi_assert_expensive(mi_segment_is_valid(segment,tld));
+ return segment;
+}
+
+
+// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
+static mi_segment_t* mi_segment_alloc(size_t required, mi_segments_tld_t* tld, mi_os_tld_t* os_tld, mi_page_t** huge_page) {
+ return mi_segment_init(NULL, required, tld, os_tld, huge_page);
+}
+
+
+static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
+ MI_UNUSED(force);
+ mi_assert_internal(segment != NULL);
+ mi_assert_internal(segment->next == NULL);
+ mi_assert_internal(segment->used == 0);
+
+ // Remove the free pages
+ mi_slice_t* slice = &segment->slices[0];
+ const mi_slice_t* end = mi_segment_slices_end(segment);
+ size_t page_count = 0;
+ while (slice < end) {
+ mi_assert_internal(slice->slice_count > 0);
+ mi_assert_internal(slice->slice_offset == 0);
+ mi_assert_internal(mi_slice_index(slice)==0 || slice->xblock_size == 0); // no more used pages ..
+ if (slice->xblock_size == 0 && segment->kind != MI_SEGMENT_HUGE) {
+ mi_segment_span_remove_from_queue(slice, tld);
+ }
+ page_count++;
+ slice = slice + slice->slice_count;
+ }
+ mi_assert_internal(page_count == 2); // first page is allocated by the segment itself
+
+ // stats
+ _mi_stat_decrease(&tld->stats->page_committed, mi_segment_info_size(segment));
+
+ // return it to the OS
+ mi_segment_os_free(segment, tld);
+}
+
+
+/* -----------------------------------------------------------
+ Page Free
+----------------------------------------------------------- */
+
+static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);
+
+// note: can be called on abandoned pages
+static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_assert_internal(page->xblock_size > 0);
+ mi_assert_internal(mi_page_all_free(page));
+ mi_segment_t* segment = _mi_ptr_segment(page);
+ mi_assert_internal(segment->used > 0);
+
+ size_t inuse = page->capacity * mi_page_block_size(page);
+ _mi_stat_decrease(&tld->stats->page_committed, inuse);
+ _mi_stat_decrease(&tld->stats->pages, 1);
+
+ // reset the page memory to reduce memory pressure?
+ if (!segment->mem_is_pinned && !page->is_reset && mi_option_is_enabled(mi_option_page_reset)) {
+ size_t psize;
+ uint8_t* start = _mi_page_start(segment, page, &psize);
+ page->is_reset = true;
+ _mi_os_reset(start, psize, tld->stats);
+ }
+
+ // zero the page data, but not the segment fields
+ page->is_zero_init = false;
+ ptrdiff_t ofs = offsetof(mi_page_t, capacity);
+ memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs);
+ page->xblock_size = 1;
+
+ // and free it
+ mi_slice_t* slice = mi_segment_span_free_coalesce(mi_page_to_slice(page), tld);
+ segment->used--;
+ // cannot assert segment valid as it is called during reclaim
+ // mi_assert_expensive(mi_segment_is_valid(segment, tld));
+ return slice;
+}
+
+void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
+{
+ mi_assert(page != NULL);
+
+ mi_segment_t* segment = _mi_page_segment(page);
+ mi_assert_expensive(mi_segment_is_valid(segment,tld));
+
+ // mark it as free now
+ mi_segment_page_clear(page, tld);
+ mi_assert_expensive(mi_segment_is_valid(segment, tld));
+
+ if (segment->used == 0) {
+ // no more used pages; remove from the free list and free the segment
+ mi_segment_free(segment, force, tld);
+ }
+ else if (segment->used == segment->abandoned) {
+ // only abandoned pages; remove from free list and abandon
+ mi_segment_abandon(segment,tld);
+ }
+}
+
+
+/* -----------------------------------------------------------
+Abandonment
+
+When threads terminate, they can leave segments with
+live blocks (reachable through other threads). Such segments
+are "abandoned" and will be reclaimed by other threads to
+reuse their pages and/or free them eventually
+
+We maintain a global list of abandoned segments that are
+reclaimed on demand. Since this is shared among threads
+the implementation needs to avoid the A-B-A problem on
+popping abandoned segments: <https://en.wikipedia.org/wiki/ABA_problem>
+We use tagged pointers to avoid accidentially identifying
+reused segments, much like stamped references in Java.
+Secondly, we maintain a reader counter to avoid resetting
+or decommitting segments that have a pending read operation.
+
+Note: the current implementation is one possible design;
+another way might be to keep track of abandoned segments
+in the arenas/segment_cache's. This would have the advantage of keeping
+all concurrent code in one place and not needing to deal
+with ABA issues. The drawback is that it is unclear how to
+scan abandoned segments efficiently in that case as they
+would be spread among all other segments in the arenas.
+----------------------------------------------------------- */
+
+// Use the bottom 20-bits (on 64-bit) of the aligned segment pointers
+// to put in a tag that increments on update to avoid the A-B-A problem.
+#define MI_TAGGED_MASK MI_SEGMENT_MASK
+typedef uintptr_t mi_tagged_segment_t;
+
+static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) {
+ return (mi_segment_t*)(ts & ~MI_TAGGED_MASK);
+}
+
+static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) {
+ mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0);
+ uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK;
+ return ((uintptr_t)segment | tag);
+}
+
+// This is a list of visited abandoned pages that were full at the time.
+// this list migrates to `abandoned` when that becomes NULL. The use of
+// this list reduces contention and the rate at which segments are visited.
+static mi_decl_cache_align _Atomic(mi_segment_t*) abandoned_visited; // = NULL
+
+// The abandoned page list (tagged as it supports pop)
+static mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned; // = NULL
+
+// Maintain these for debug purposes (these counts may be a bit off)
+static mi_decl_cache_align _Atomic(size_t) abandoned_count;
+static mi_decl_cache_align _Atomic(size_t) abandoned_visited_count;
+
+// We also maintain a count of current readers of the abandoned list
+// in order to prevent resetting/decommitting segment memory if it might
+// still be read.
+static mi_decl_cache_align _Atomic(size_t) abandoned_readers; // = 0
+
+// Push on the visited list
+static void mi_abandoned_visited_push(mi_segment_t* segment) {
+ mi_assert_internal(segment->thread_id == 0);
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL);
+ mi_assert_internal(segment->next == NULL);
+ mi_assert_internal(segment->used > 0);
+ mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited);
+ do {
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext);
+ } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &abandoned_visited, &anext, segment));
+ mi_atomic_increment_relaxed(&abandoned_visited_count);
+}
+
+// Move the visited list to the abandoned list.
+static bool mi_abandoned_visited_revisit(void)
+{
+ // quick check if the visited list is empty
+ if (mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited) == NULL) return false;
+
+ // grab the whole visited list
+ mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &abandoned_visited, NULL);
+ if (first == NULL) return false;
+
+ // first try to swap directly if the abandoned list happens to be NULL
+ mi_tagged_segment_t afirst;
+ mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
+ if (mi_tagged_segment_ptr(ts)==NULL) {
+ size_t count = mi_atomic_load_relaxed(&abandoned_visited_count);
+ afirst = mi_tagged_segment(first, ts);
+ if (mi_atomic_cas_strong_acq_rel(&abandoned, &ts, afirst)) {
+ mi_atomic_add_relaxed(&abandoned_count, count);
+ mi_atomic_sub_relaxed(&abandoned_visited_count, count);
+ return true;
+ }
+ }
+
+ // find the last element of the visited list: O(n)
+ mi_segment_t* last = first;
+ mi_segment_t* next;
+ while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) {
+ last = next;
+ }
+
+ // and atomically prepend to the abandoned list
+ // (no need to increase the readers as we don't access the abandoned segments)
+ mi_tagged_segment_t anext = mi_atomic_load_relaxed(&abandoned);
+ size_t count;
+ do {
+ count = mi_atomic_load_relaxed(&abandoned_visited_count);
+ mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext));
+ afirst = mi_tagged_segment(first, anext);
+ } while (!mi_atomic_cas_weak_release(&abandoned, &anext, afirst));
+ mi_atomic_add_relaxed(&abandoned_count, count);
+ mi_atomic_sub_relaxed(&abandoned_visited_count, count);
+ return true;
+}
+
+// Push on the abandoned list.
+static void mi_abandoned_push(mi_segment_t* segment) {
+ mi_assert_internal(segment->thread_id == 0);
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
+ mi_assert_internal(segment->next == NULL);
+ mi_assert_internal(segment->used > 0);
+ mi_tagged_segment_t next;
+ mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
+ do {
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts));
+ next = mi_tagged_segment(segment, ts);
+ } while (!mi_atomic_cas_weak_release(&abandoned, &ts, next));
+ mi_atomic_increment_relaxed(&abandoned_count);
+}
+
+// Wait until there are no more pending reads on segments that used to be in the abandoned list
+// called for example from `arena.c` before decommitting
+void _mi_abandoned_await_readers(void) {
+ size_t n;
+ do {
+ n = mi_atomic_load_acquire(&abandoned_readers);
+ if (n != 0) mi_atomic_yield();
+ } while (n != 0);
+}
+
+// Pop from the abandoned list
+static mi_segment_t* mi_abandoned_pop(void) {
+ mi_segment_t* segment;
+ // Check efficiently if it is empty (or if the visited list needs to be moved)
+ mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
+ segment = mi_tagged_segment_ptr(ts);
+ if (mi_likely(segment == NULL)) {
+ if (mi_likely(!mi_abandoned_visited_revisit())) { // try to swap in the visited list on NULL
+ return NULL;
+ }
+ }
+
+ // Do a pop. We use a reader count to prevent
+ // a segment to be decommitted while a read is still pending,
+ // and a tagged pointer to prevent A-B-A link corruption.
+ // (this is called from `region.c:_mi_mem_free` for example)
+ mi_atomic_increment_relaxed(&abandoned_readers); // ensure no segment gets decommitted
+ mi_tagged_segment_t next = 0;
+ ts = mi_atomic_load_acquire(&abandoned);
+ do {
+ segment = mi_tagged_segment_ptr(ts);
+ if (segment != NULL) {
+ mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next);
+ next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted
+ }
+ } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&abandoned, &ts, next));
+ mi_atomic_decrement_relaxed(&abandoned_readers); // release reader lock
+ if (segment != NULL) {
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
+ mi_atomic_decrement_relaxed(&abandoned_count);
+ }
+ return segment;
+}
+
+/* -----------------------------------------------------------
+ Abandon segment/page
+----------------------------------------------------------- */
+
+static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(segment->used == segment->abandoned);
+ mi_assert_internal(segment->used > 0);
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
+ mi_assert_internal(segment->abandoned_visits == 0);
+ mi_assert_expensive(mi_segment_is_valid(segment,tld));
+
+ // remove the free pages from the free page queues
+ mi_slice_t* slice = &segment->slices[0];
+ const mi_slice_t* end = mi_segment_slices_end(segment);
+ while (slice < end) {
+ mi_assert_internal(slice->slice_count > 0);
+ mi_assert_internal(slice->slice_offset == 0);
+ if (slice->xblock_size == 0) { // a free page
+ mi_segment_span_remove_from_queue(slice,tld);
+ slice->xblock_size = 0; // but keep it free
+ }
+ slice = slice + slice->slice_count;
+ }
+
+ // perform delayed decommits
+ mi_segment_delayed_decommit(segment, mi_option_is_enabled(mi_option_abandoned_page_decommit) /* force? */, tld->stats);
+
+ // all pages in the segment are abandoned; add it to the abandoned list
+ _mi_stat_increase(&tld->stats->segments_abandoned, 1);
+ mi_segments_track_size(-((long)mi_segment_size(segment)), tld);
+ segment->thread_id = 0;
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
+ segment->abandoned_visits = 1; // from 0 to 1 to signify it is abandoned
+ mi_abandoned_push(segment);
+}
+
+void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_assert(page != NULL);
+ mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
+ mi_assert_internal(mi_page_heap(page) == NULL);
+ mi_segment_t* segment = _mi_page_segment(page);
+
+ mi_assert_expensive(mi_segment_is_valid(segment,tld));
+ segment->abandoned++;
+
+ _mi_stat_increase(&tld->stats->pages_abandoned, 1);
+ mi_assert_internal(segment->abandoned <= segment->used);
+ if (segment->used == segment->abandoned) {
+ // all pages are abandoned, abandon the entire segment
+ mi_segment_abandon(segment, tld);
+ }
+}
+
+/* -----------------------------------------------------------
+ Reclaim abandoned pages
+----------------------------------------------------------- */
+
+static mi_slice_t* mi_slices_start_iterate(mi_segment_t* segment, const mi_slice_t** end) {
+ mi_slice_t* slice = &segment->slices[0];
+ *end = mi_segment_slices_end(segment);
+ mi_assert_internal(slice->slice_count>0 && slice->xblock_size>0); // segment allocated page
+ slice = slice + slice->slice_count; // skip the first segment allocated page
+ return slice;
+}
+
+// Possibly free pages and check if free space is available
+static bool mi_segment_check_free(mi_segment_t* segment, size_t slices_needed, size_t block_size, mi_segments_tld_t* tld)
+{
+ mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
+ mi_assert_internal(mi_segment_is_abandoned(segment));
+ bool has_page = false;
+
+ // for all slices
+ const mi_slice_t* end;
+ mi_slice_t* slice = mi_slices_start_iterate(segment, &end);
+ while (slice < end) {
+ mi_assert_internal(slice->slice_count > 0);
+ mi_assert_internal(slice->slice_offset == 0);
+ if (mi_slice_is_used(slice)) { // used page
+ // ensure used count is up to date and collect potential concurrent frees
+ mi_page_t* const page = mi_slice_to_page(slice);
+ _mi_page_free_collect(page, false);
+ if (mi_page_all_free(page)) {
+ // if this page is all free now, free it without adding to any queues (yet)
+ mi_assert_internal(page->next == NULL && page->prev==NULL);
+ _mi_stat_decrease(&tld->stats->pages_abandoned, 1);
+ segment->abandoned--;
+ slice = mi_segment_page_clear(page, tld); // re-assign slice due to coalesce!
+ mi_assert_internal(!mi_slice_is_used(slice));
+ if (slice->slice_count >= slices_needed) {
+ has_page = true;
+ }
+ }
+ else {
+ if (page->xblock_size == block_size && mi_page_has_any_available(page)) {
+ // a page has available free blocks of the right size
+ has_page = true;
+ }
+ }
+ }
+ else {
+ // empty span
+ if (slice->slice_count >= slices_needed) {
+ has_page = true;
+ }
+ }
+ slice = slice + slice->slice_count;
+ }
+ return has_page;
+}
+
+// Reclaim an abandoned segment; returns NULL if the segment was freed
+// set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full.
+static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) {
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
+ mi_assert_expensive(mi_segment_is_valid(segment, tld));
+ if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; }
+
+ segment->thread_id = _mi_thread_id();
+ segment->abandoned_visits = 0;
+ mi_segments_track_size((long)mi_segment_size(segment), tld);
+ mi_assert_internal(segment->next == NULL);
+ _mi_stat_decrease(&tld->stats->segments_abandoned, 1);
+
+ // for all slices
+ const mi_slice_t* end;
+ mi_slice_t* slice = mi_slices_start_iterate(segment, &end);
+ while (slice < end) {
+ mi_assert_internal(slice->slice_count > 0);
+ mi_assert_internal(slice->slice_offset == 0);
+ if (mi_slice_is_used(slice)) {
+ // in use: reclaim the page in our heap
+ mi_page_t* page = mi_slice_to_page(slice);
+ mi_assert_internal(!page->is_reset);
+ mi_assert_internal(page->is_committed);
+ mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
+ mi_assert_internal(mi_page_heap(page) == NULL);
+ mi_assert_internal(page->next == NULL && page->prev==NULL);
+ _mi_stat_decrease(&tld->stats->pages_abandoned, 1);
+ segment->abandoned--;
+ // set the heap again and allow delayed free again
+ mi_page_set_heap(page, heap);
+ _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set)
+ _mi_page_free_collect(page, false); // ensure used count is up to date
+ if (mi_page_all_free(page)) {
+ // if everything free by now, free the page
+ slice = mi_segment_page_clear(page, tld); // set slice again due to coalesceing
+ }
+ else {
+ // otherwise reclaim it into the heap
+ _mi_page_reclaim(heap, page);
+ if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) {
+ if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; }
+ }
+ }
+ }
+ else {
+ // the span is free, add it to our page queues
+ slice = mi_segment_span_free_coalesce(slice, tld); // set slice again due to coalesceing
+ }
+ mi_assert_internal(slice->slice_count>0 && slice->slice_offset==0);
+ slice = slice + slice->slice_count;
+ }
+
+ mi_assert(segment->abandoned == 0);
+ if (segment->used == 0) { // due to page_clear
+ mi_assert_internal(right_page_reclaimed == NULL || !(*right_page_reclaimed));
+ mi_segment_free(segment, false, tld);
+ return NULL;
+ }
+ else {
+ return segment;
+ }
+}
+
+
+void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) {
+ mi_segment_t* segment;
+ while ((segment = mi_abandoned_pop()) != NULL) {
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+}
+
+static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t needed_slices, size_t block_size, bool* reclaimed, mi_segments_tld_t* tld)
+{
+ *reclaimed = false;
+ mi_segment_t* segment;
+ long max_tries = mi_option_get_clamp(mi_option_max_segment_reclaim, 8, 1024); // limit the work to bound allocation times
+ while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) {
+ segment->abandoned_visits++;
+ bool has_page = mi_segment_check_free(segment,needed_slices,block_size,tld); // try to free up pages (due to concurrent frees)
+ if (segment->used == 0) {
+ // free the segment (by forced reclaim) to make it available to other threads.
+ // note1: we prefer to free a segment as that might lead to reclaiming another
+ // segment that is still partially used.
+ // note2: we could in principle optimize this by skipping reclaim and directly
+ // freeing but that would violate some invariants temporarily)
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+ else if (has_page) {
+ // found a large enough free span, or a page of the right block_size with free space
+ // we return the result of reclaim (which is usually `segment`) as it might free
+ // the segment due to concurrent frees (in which case `NULL` is returned).
+ return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld);
+ }
+ else if (segment->abandoned_visits > 3) {
+ // always reclaim on 3rd visit to limit the abandoned queue length.
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+ else {
+ // otherwise, push on the visited list so it gets not looked at too quickly again
+ mi_segment_delayed_decommit(segment, true /* force? */, tld->stats); // forced decommit if needed as we may not visit soon again
+ mi_abandoned_visited_push(segment);
+ }
+ }
+ return NULL;
+}
+
+
+void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld)
+{
+ mi_segment_t* segment;
+ int max_tries = (force ? 16*1024 : 1024); // limit latency
+ if (force) {
+ mi_abandoned_visited_revisit();
+ }
+ while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) {
+ mi_segment_check_free(segment,0,0,tld); // try to free up pages (due to concurrent frees)
+ if (segment->used == 0) {
+ // free the segment (by forced reclaim) to make it available to other threads.
+ // note: we could in principle optimize this by skipping reclaim and directly
+ // freeing but that would violate some invariants temporarily)
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+ else {
+ // otherwise, decommit if needed and push on the visited list
+ // note: forced decommit can be expensive if many threads are destroyed/created as in mstress.
+ mi_segment_delayed_decommit(segment, force, tld->stats);
+ mi_abandoned_visited_push(segment);
+ }
+ }
+}
+
+/* -----------------------------------------------------------
+ Reclaim or allocate
+----------------------------------------------------------- */
+
+static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t needed_slices, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
+{
+ mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
+ mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX);
+
+ // 1. try to reclaim an abandoned segment
+ bool reclaimed;
+ mi_segment_t* segment = mi_segment_try_reclaim(heap, needed_slices, block_size, &reclaimed, tld);
+ if (reclaimed) {
+ // reclaimed the right page right into the heap
+ mi_assert_internal(segment != NULL);
+ return NULL; // pretend out-of-memory as the page will be in the page queue of the heap with available blocks
+ }
+ else if (segment != NULL) {
+ // reclaimed a segment with a large enough empty span in it
+ return segment;
+ }
+ // 2. otherwise allocate a fresh segment
+ return mi_segment_alloc(0, tld, os_tld, NULL);
+}
+
+
+/* -----------------------------------------------------------
+ Page allocation
+----------------------------------------------------------- */
+
+static mi_page_t* mi_segments_page_alloc(mi_heap_t* heap, mi_page_kind_t page_kind, size_t required, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
+{
+ mi_assert_internal(required <= MI_LARGE_OBJ_SIZE_MAX && page_kind <= MI_PAGE_LARGE);
+
+ // find a free page
+ size_t page_size = _mi_align_up(required, (required > MI_MEDIUM_PAGE_SIZE ? MI_MEDIUM_PAGE_SIZE : MI_SEGMENT_SLICE_SIZE));
+ size_t slices_needed = page_size / MI_SEGMENT_SLICE_SIZE;
+ mi_assert_internal(slices_needed * MI_SEGMENT_SLICE_SIZE == page_size);
+ mi_page_t* page = mi_segments_page_find_and_allocate(slices_needed, tld); //(required <= MI_SMALL_SIZE_MAX ? 0 : slices_needed), tld);
+ if (page==NULL) {
+ // no free page, allocate a new segment and try again
+ if (mi_segment_reclaim_or_alloc(heap, slices_needed, block_size, tld, os_tld) == NULL) {
+ // OOM or reclaimed a good page in the heap
+ return NULL;
+ }
+ else {
+ // otherwise try again
+ return mi_segments_page_alloc(heap, page_kind, required, block_size, tld, os_tld);
+ }
+ }
+ mi_assert_internal(page != NULL && page->slice_count*MI_SEGMENT_SLICE_SIZE == page_size);
+ mi_assert_internal(_mi_ptr_segment(page)->thread_id == _mi_thread_id());
+ mi_segment_delayed_decommit(_mi_ptr_segment(page), false, tld->stats);
+ return page;
+}
+
+
+
+/* -----------------------------------------------------------
+ Huge page allocation
+----------------------------------------------------------- */
+
+static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
+{
+ mi_page_t* page = NULL;
+ mi_segment_t* segment = mi_segment_alloc(size,tld,os_tld,&page);
+ if (segment == NULL || page==NULL) return NULL;
+ mi_assert_internal(segment->used==1);
+ mi_assert_internal(mi_page_block_size(page) >= size);
+ segment->thread_id = 0; // huge segments are immediately abandoned
+ return page;
+}
+
+// free huge block from another thread
+void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
+ // huge page segments are always abandoned and can be freed immediately by any thread
+ mi_assert_internal(segment->kind==MI_SEGMENT_HUGE);
+ mi_assert_internal(segment == _mi_page_segment(page));
+ mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id)==0);
+
+ // claim it and free
+ mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized.
+ // paranoia: if this it the last reference, the cas should always succeed
+ size_t expected_tid = 0;
+ if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) {
+ mi_block_set_next(page, block, page->free);
+ page->free = block;
+ page->used--;
+ page->is_zero = false;
+ mi_assert(page->used == 0);
+ mi_tld_t* tld = heap->tld;
+ _mi_segment_page_free(page, true, &tld->segments);
+ }
+#if (MI_DEBUG!=0)
+ else {
+ mi_assert_internal(false);
+ }
+#endif
+}
+
+/* -----------------------------------------------------------
+ Page allocation and free
+----------------------------------------------------------- */
+mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ mi_page_t* page;
+ if (block_size <= MI_SMALL_OBJ_SIZE_MAX) {
+ page = mi_segments_page_alloc(heap,MI_PAGE_SMALL,block_size,block_size,tld,os_tld);
+ }
+ else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) {
+ page = mi_segments_page_alloc(heap,MI_PAGE_MEDIUM,MI_MEDIUM_PAGE_SIZE,block_size,tld, os_tld);
+ }
+ else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) {
+ page = mi_segments_page_alloc(heap,MI_PAGE_LARGE,block_size,block_size,tld, os_tld);
+ }
+ else {
+ page = mi_segment_huge_page_alloc(block_size,tld,os_tld);
+ }
+ mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
+ return page;
+}
+
+