summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/random.c
diff options
context:
space:
mode:
Diffstat (limited to 'source/luametatex/source/libraries/mimalloc/src/random.c')
-rw-r--r--source/luametatex/source/libraries/mimalloc/src/random.c367
1 files changed, 367 insertions, 0 deletions
diff --git a/source/luametatex/source/libraries/mimalloc/src/random.c b/source/luametatex/source/libraries/mimalloc/src/random.c
new file mode 100644
index 000000000..d474a53a0
--- /dev/null
+++ b/source/luametatex/source/libraries/mimalloc/src/random.c
@@ -0,0 +1,367 @@
+/* ----------------------------------------------------------------------------
+Copyright (c) 2019-2021, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+#ifndef _DEFAULT_SOURCE
+#define _DEFAULT_SOURCE // for syscall() on Linux
+#endif
+
+#include "mimalloc.h"
+#include "mimalloc-internal.h"
+
+#include <string.h> // memset
+
+/* ----------------------------------------------------------------------------
+We use our own PRNG to keep predictable performance of random number generation
+and to avoid implementations that use a lock. We only use the OS provided
+random source to initialize the initial seeds. Since we do not need ultimate
+performance but we do rely on the security (for secret cookies in secure mode)
+we use a cryptographically secure generator (chacha20).
+-----------------------------------------------------------------------------*/
+
+#define MI_CHACHA_ROUNDS (20) // perhaps use 12 for better performance?
+
+
+/* ----------------------------------------------------------------------------
+Chacha20 implementation as the original algorithm with a 64-bit nonce
+and counter: https://en.wikipedia.org/wiki/Salsa20
+The input matrix has sixteen 32-bit values:
+Position 0 to 3: constant key
+Position 4 to 11: the key
+Position 12 to 13: the counter.
+Position 14 to 15: the nonce.
+
+The implementation uses regular C code which compiles very well on modern compilers.
+(gcc x64 has no register spills, and clang 6+ uses SSE instructions)
+-----------------------------------------------------------------------------*/
+
+static inline uint32_t rotl(uint32_t x, uint32_t shift) {
+ return (x << shift) | (x >> (32 - shift));
+}
+
+static inline void qround(uint32_t x[16], size_t a, size_t b, size_t c, size_t d) {
+ x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 16);
+ x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 12);
+ x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 8);
+ x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 7);
+}
+
+static void chacha_block(mi_random_ctx_t* ctx)
+{
+ // scramble into `x`
+ uint32_t x[16];
+ for (size_t i = 0; i < 16; i++) {
+ x[i] = ctx->input[i];
+ }
+ for (size_t i = 0; i < MI_CHACHA_ROUNDS; i += 2) {
+ qround(x, 0, 4, 8, 12);
+ qround(x, 1, 5, 9, 13);
+ qround(x, 2, 6, 10, 14);
+ qround(x, 3, 7, 11, 15);
+ qround(x, 0, 5, 10, 15);
+ qround(x, 1, 6, 11, 12);
+ qround(x, 2, 7, 8, 13);
+ qround(x, 3, 4, 9, 14);
+ }
+
+ // add scrambled data to the initial state
+ for (size_t i = 0; i < 16; i++) {
+ ctx->output[i] = x[i] + ctx->input[i];
+ }
+ ctx->output_available = 16;
+
+ // increment the counter for the next round
+ ctx->input[12] += 1;
+ if (ctx->input[12] == 0) {
+ ctx->input[13] += 1;
+ if (ctx->input[13] == 0) { // and keep increasing into the nonce
+ ctx->input[14] += 1;
+ }
+ }
+}
+
+static uint32_t chacha_next32(mi_random_ctx_t* ctx) {
+ if (ctx->output_available <= 0) {
+ chacha_block(ctx);
+ ctx->output_available = 16; // (assign again to suppress static analysis warning)
+ }
+ const uint32_t x = ctx->output[16 - ctx->output_available];
+ ctx->output[16 - ctx->output_available] = 0; // reset once the data is handed out
+ ctx->output_available--;
+ return x;
+}
+
+static inline uint32_t read32(const uint8_t* p, size_t idx32) {
+ const size_t i = 4*idx32;
+ return ((uint32_t)p[i+0] | (uint32_t)p[i+1] << 8 | (uint32_t)p[i+2] << 16 | (uint32_t)p[i+3] << 24);
+}
+
+static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce)
+{
+ // since we only use chacha for randomness (and not encryption) we
+ // do not _need_ to read 32-bit values as little endian but we do anyways
+ // just for being compatible :-)
+ memset(ctx, 0, sizeof(*ctx));
+ for (size_t i = 0; i < 4; i++) {
+ const uint8_t* sigma = (uint8_t*)"expand 32-byte k";
+ ctx->input[i] = read32(sigma,i);
+ }
+ for (size_t i = 0; i < 8; i++) {
+ ctx->input[i + 4] = read32(key,i);
+ }
+ ctx->input[12] = 0;
+ ctx->input[13] = 0;
+ ctx->input[14] = (uint32_t)nonce;
+ ctx->input[15] = (uint32_t)(nonce >> 32);
+}
+
+static void chacha_split(mi_random_ctx_t* ctx, uint64_t nonce, mi_random_ctx_t* ctx_new) {
+ memset(ctx_new, 0, sizeof(*ctx_new));
+ _mi_memcpy(ctx_new->input, ctx->input, sizeof(ctx_new->input));
+ ctx_new->input[12] = 0;
+ ctx_new->input[13] = 0;
+ ctx_new->input[14] = (uint32_t)nonce;
+ ctx_new->input[15] = (uint32_t)(nonce >> 32);
+ mi_assert_internal(ctx->input[14] != ctx_new->input[14] || ctx->input[15] != ctx_new->input[15]); // do not reuse nonces!
+ chacha_block(ctx_new);
+}
+
+
+/* ----------------------------------------------------------------------------
+Random interface
+-----------------------------------------------------------------------------*/
+
+#if MI_DEBUG>1
+static bool mi_random_is_initialized(mi_random_ctx_t* ctx) {
+ return (ctx != NULL && ctx->input[0] != 0);
+}
+#endif
+
+void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* ctx_new) {
+ mi_assert_internal(mi_random_is_initialized(ctx));
+ mi_assert_internal(ctx != ctx_new);
+ chacha_split(ctx, (uintptr_t)ctx_new /*nonce*/, ctx_new);
+}
+
+uintptr_t _mi_random_next(mi_random_ctx_t* ctx) {
+ mi_assert_internal(mi_random_is_initialized(ctx));
+ #if MI_INTPTR_SIZE <= 4
+ return chacha_next32(ctx);
+ #elif MI_INTPTR_SIZE == 8
+ return (((uintptr_t)chacha_next32(ctx) << 32) | chacha_next32(ctx));
+ #else
+ # error "define mi_random_next for this platform"
+ #endif
+}
+
+
+/* ----------------------------------------------------------------------------
+To initialize a fresh random context we rely on the OS:
+- Windows : BCryptGenRandom (or RtlGenRandom)
+- macOS : CCRandomGenerateBytes, arc4random_buf
+- bsd,wasi : arc4random_buf
+- Linux : getrandom,/dev/urandom
+If we cannot get good randomness, we fall back to weak randomness based on a timer and ASLR.
+-----------------------------------------------------------------------------*/
+
+#if defined(_WIN32)
+
+#if defined(MI_USE_RTLGENRANDOM) || defined(__cplusplus)
+// We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using
+// dynamic overriding, we observed it can raise an exception when compiled with C++, and
+// sometimes deadlocks when also running under the VS debugger.
+#pragma comment (lib,"advapi32.lib")
+#define RtlGenRandom SystemFunction036
+#ifdef __cplusplus
+extern "C" {
+#endif
+BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
+#ifdef __cplusplus
+}
+#endif
+static bool os_random_buf(void* buf, size_t buf_len) {
+ return (RtlGenRandom(buf, (ULONG)buf_len) != 0);
+}
+#else
+#pragma comment (lib,"bcrypt.lib")
+#include <bcrypt.h>
+static bool os_random_buf(void* buf, size_t buf_len) {
+ return (BCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0);
+}
+#endif
+
+#elif defined(__APPLE__)
+#include <AvailabilityMacros.h>
+#if defined(MAC_OS_X_VERSION_10_10) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_10
+#include <CommonCrypto/CommonCryptoError.h>
+#include <CommonCrypto/CommonRandom.h>
+#endif
+static bool os_random_buf(void* buf, size_t buf_len) {
+ #if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15
+ // We prefere CCRandomGenerateBytes as it returns an error code while arc4random_buf
+ // may fail silently on macOS. See PR #390, and <https://opensource.apple.com/source/Libc/Libc-1439.40.11/gen/FreeBSD/arc4random.c.auto.html>
+ return (CCRandomGenerateBytes(buf, buf_len) == kCCSuccess);
+ #else
+ // fall back on older macOS
+ arc4random_buf(buf, buf_len);
+ return true;
+ #endif
+}
+
+#elif defined(__ANDROID__) || defined(__DragonFly__) || \
+ defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
+ defined(__sun) // todo: what to use with __wasi__?
+#include <stdlib.h>
+static bool os_random_buf(void* buf, size_t buf_len) {
+ arc4random_buf(buf, buf_len);
+ return true;
+}
+#elif defined(__linux__) || defined(__HAIKU__)
+#if defined(__linux__)
+#include <sys/syscall.h>
+#endif
+#include <unistd.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <errno.h>
+static bool os_random_buf(void* buf, size_t buf_len) {
+ // Modern Linux provides `getrandom` but different distributions either use `sys/random.h` or `linux/random.h`
+ // and for the latter the actual `getrandom` call is not always defined.
+ // (see <https://stackoverflow.com/questions/45237324/why-doesnt-getrandom-compile>)
+ // We therefore use a syscall directly and fall back dynamically to /dev/urandom when needed.
+#ifdef SYS_getrandom
+ #ifndef GRND_NONBLOCK
+ #define GRND_NONBLOCK (1)
+ #endif
+ static _Atomic(uintptr_t) no_getrandom; // = 0
+ if (mi_atomic_load_acquire(&no_getrandom)==0) {
+ ssize_t ret = syscall(SYS_getrandom, buf, buf_len, GRND_NONBLOCK);
+ if (ret >= 0) return (buf_len == (size_t)ret);
+ if (errno != ENOSYS) return false;
+ mi_atomic_store_release(&no_getrandom, 1UL); // don't call again, and fall back to /dev/urandom
+ }
+#endif
+ int flags = O_RDONLY;
+ #if defined(O_CLOEXEC)
+ flags |= O_CLOEXEC;
+ #endif
+ int fd = open("/dev/urandom", flags, 0);
+ if (fd < 0) return false;
+ size_t count = 0;
+ while(count < buf_len) {
+ ssize_t ret = read(fd, (char*)buf + count, buf_len - count);
+ if (ret<=0) {
+ if (errno!=EAGAIN && errno!=EINTR) break;
+ }
+ else {
+ count += ret;
+ }
+ }
+ close(fd);
+ return (count==buf_len);
+}
+#else
+static bool os_random_buf(void* buf, size_t buf_len) {
+ return false;
+}
+#endif
+
+#if defined(_WIN32)
+#include <windows.h>
+#elif defined(__APPLE__)
+#include <mach/mach_time.h>
+#else
+#include <time.h>
+#endif
+
+uintptr_t _mi_os_random_weak(uintptr_t extra_seed) {
+ uintptr_t x = (uintptr_t)&_mi_os_random_weak ^ extra_seed; // ASLR makes the address random
+
+ #if defined(_WIN32)
+ LARGE_INTEGER pcount;
+ QueryPerformanceCounter(&pcount);
+ x ^= (uintptr_t)(pcount.QuadPart);
+ #elif defined(__APPLE__)
+ x ^= (uintptr_t)mach_absolute_time();
+ #else
+ struct timespec time;
+ clock_gettime(CLOCK_MONOTONIC, &time);
+ x ^= (uintptr_t)time.tv_sec;
+ x ^= (uintptr_t)time.tv_nsec;
+ #endif
+ // and do a few randomization steps
+ uintptr_t max = ((x ^ (x >> 17)) & 0x0F) + 1;
+ for (uintptr_t i = 0; i < max; i++) {
+ x = _mi_random_shuffle(x);
+ }
+ mi_assert_internal(x != 0);
+ return x;
+}
+
+void _mi_random_init(mi_random_ctx_t* ctx) {
+ uint8_t key[32];
+ if (!os_random_buf(key, sizeof(key))) {
+ // if we fail to get random data from the OS, we fall back to a
+ // weak random source based on the current time
+ #if !defined(__wasi__)
+ _mi_warning_message("unable to use secure randomness\n");
+ #endif
+ uintptr_t x = _mi_os_random_weak(0);
+ for (size_t i = 0; i < 8; i++) { // key is eight 32-bit words.
+ x = _mi_random_shuffle(x);
+ ((uint32_t*)key)[i] = (uint32_t)x;
+ }
+ }
+ chacha_init(ctx, key, (uintptr_t)ctx /*nonce*/ );
+}
+
+/* --------------------------------------------------------
+test vectors from <https://tools.ietf.org/html/rfc8439>
+----------------------------------------------------------- */
+/*
+static bool array_equals(uint32_t* x, uint32_t* y, size_t n) {
+ for (size_t i = 0; i < n; i++) {
+ if (x[i] != y[i]) return false;
+ }
+ return true;
+}
+static void chacha_test(void)
+{
+ uint32_t x[4] = { 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 };
+ uint32_t x_out[4] = { 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb };
+ qround(x, 0, 1, 2, 3);
+ mi_assert_internal(array_equals(x, x_out, 4));
+
+ uint32_t y[16] = {
+ 0x879531e0, 0xc5ecf37d, 0x516461b1, 0xc9a62f8a,
+ 0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0x2a5f714c,
+ 0x53372767, 0xb00a5631, 0x974c541a, 0x359e9963,
+ 0x5c971061, 0x3d631689, 0x2098d9d6, 0x91dbd320 };
+ uint32_t y_out[16] = {
+ 0x879531e0, 0xc5ecf37d, 0xbdb886dc, 0xc9a62f8a,
+ 0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0xcfacafd2,
+ 0xe46bea80, 0xb00a5631, 0x974c541a, 0x359e9963,
+ 0x5c971061, 0xccc07c79, 0x2098d9d6, 0x91dbd320 };
+ qround(y, 2, 7, 8, 13);
+ mi_assert_internal(array_equals(y, y_out, 16));
+
+ mi_random_ctx_t r = {
+ { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574,
+ 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
+ 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
+ 0x00000001, 0x09000000, 0x4a000000, 0x00000000 },
+ {0},
+ 0
+ };
+ uint32_t r_out[16] = {
+ 0xe4e7f110, 0x15593bd1, 0x1fdd0f50, 0xc47120a3,
+ 0xc7f4d1c7, 0x0368c033, 0x9aaa2204, 0x4e6cd4c3,
+ 0x466482d2, 0x09aa9f07, 0x05d7c214, 0xa2028bd9,
+ 0xd19c12b5, 0xb94e16de, 0xe883d0cb, 0x4e3c50a2 };
+ chacha_block(&r);
+ mi_assert_internal(array_equals(r.output, r_out, 16));
+}
+*/