summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/page.c
diff options
context:
space:
mode:
Diffstat (limited to 'source/luametatex/source/libraries/mimalloc/src/page.c')
-rw-r--r--source/luametatex/source/libraries/mimalloc/src/page.c869
1 files changed, 869 insertions, 0 deletions
diff --git a/source/luametatex/source/libraries/mimalloc/src/page.c b/source/luametatex/source/libraries/mimalloc/src/page.c
new file mode 100644
index 000000000..fd6c5397d
--- /dev/null
+++ b/source/luametatex/source/libraries/mimalloc/src/page.c
@@ -0,0 +1,869 @@
+/*----------------------------------------------------------------------------
+Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+
+/* -----------------------------------------------------------
+ The core of the allocator. Every segment contains
+ pages of a certain block size. The main function
+ exported is `mi_malloc_generic`.
+----------------------------------------------------------- */
+
+#include "mimalloc.h"
+#include "mimalloc-internal.h"
+#include "mimalloc-atomic.h"
+
+/* -----------------------------------------------------------
+ Definition of page queues for each block size
+----------------------------------------------------------- */
+
+#define MI_IN_PAGE_C
+#include "page-queue.c"
+#undef MI_IN_PAGE_C
+
+
+/* -----------------------------------------------------------
+ Page helpers
+----------------------------------------------------------- */
+
+// Index a block in a page
+static inline mi_block_t* mi_page_block_at(const mi_page_t* page, void* page_start, size_t block_size, size_t i) {
+ MI_UNUSED(page);
+ mi_assert_internal(page != NULL);
+ mi_assert_internal(i <= page->reserved);
+ return (mi_block_t*)((uint8_t*)page_start + (i * block_size));
+}
+
+static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t size, mi_tld_t* tld);
+static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld);
+
+#if (MI_DEBUG>=3)
+static size_t mi_page_list_count(mi_page_t* page, mi_block_t* head) {
+ size_t count = 0;
+ while (head != NULL) {
+ mi_assert_internal(page == _mi_ptr_page(head));
+ count++;
+ head = mi_block_next(page, head);
+ }
+ return count;
+}
+
+/*
+// Start of the page available memory
+static inline uint8_t* mi_page_area(const mi_page_t* page) {
+ return _mi_page_start(_mi_page_segment(page), page, NULL);
+}
+*/
+
+static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
+ size_t psize;
+ uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize);
+ mi_block_t* start = (mi_block_t*)page_area;
+ mi_block_t* end = (mi_block_t*)(page_area + psize);
+ while(p != NULL) {
+ if (p < start || p >= end) return false;
+ p = mi_block_next(page, p);
+ }
+ return true;
+}
+
+static bool mi_page_is_valid_init(mi_page_t* page) {
+ mi_assert_internal(page->xblock_size > 0);
+ mi_assert_internal(page->used <= page->capacity);
+ mi_assert_internal(page->capacity <= page->reserved);
+
+ mi_segment_t* segment = _mi_page_segment(page);
+ uint8_t* start = _mi_page_start(segment,page,NULL);
+ mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL));
+ //const size_t bsize = mi_page_block_size(page);
+ //mi_assert_internal(start + page->capacity*page->block_size == page->top);
+
+ mi_assert_internal(mi_page_list_is_valid(page,page->free));
+ mi_assert_internal(mi_page_list_is_valid(page,page->local_free));
+
+ #if MI_DEBUG>3 // generally too expensive to check this
+ if (page->is_zero) {
+ const size_t ubsize = mi_page_usable_block_size(page);
+ for(mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
+ mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t)));
+ }
+ }
+ #endif
+
+ mi_block_t* tfree = mi_page_thread_free(page);
+ mi_assert_internal(mi_page_list_is_valid(page, tfree));
+ //size_t tfree_count = mi_page_list_count(page, tfree);
+ //mi_assert_internal(tfree_count <= page->thread_freed + 1);
+
+ size_t free_count = mi_page_list_count(page, page->free) + mi_page_list_count(page, page->local_free);
+ mi_assert_internal(page->used + free_count == page->capacity);
+
+ return true;
+}
+
+bool _mi_page_is_valid(mi_page_t* page) {
+ mi_assert_internal(mi_page_is_valid_init(page));
+ #if MI_SECURE
+ mi_assert_internal(page->keys[0] != 0);
+ #endif
+ if (mi_page_heap(page)!=NULL) {
+ mi_segment_t* segment = _mi_page_segment(page);
+
+ mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id);
+ if (segment->kind != MI_SEGMENT_HUGE) {
+ mi_page_queue_t* pq = mi_page_queue_of(page);
+ mi_assert_internal(mi_page_queue_contains(pq, page));
+ mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page));
+ mi_assert_internal(mi_heap_contains_queue(mi_page_heap(page),pq));
+ }
+ }
+ return true;
+}
+#endif
+
+void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) {
+ mi_thread_free_t tfreex;
+ mi_delayed_t old_delay;
+ mi_thread_free_t tfree;
+ do {
+ tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS;
+ tfreex = mi_tf_set_delayed(tfree, delay);
+ old_delay = mi_tf_delayed(tfree);
+ if (mi_unlikely(old_delay == MI_DELAYED_FREEING)) {
+ mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done.
+ // tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail
+ }
+ else if (delay == old_delay) {
+ break; // avoid atomic operation if already equal
+ }
+ else if (!override_never && old_delay == MI_NEVER_DELAYED_FREE) {
+ break; // leave never-delayed flag set
+ }
+ } while ((old_delay == MI_DELAYED_FREEING) ||
+ !mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
+}
+
+/* -----------------------------------------------------------
+ Page collect the `local_free` and `thread_free` lists
+----------------------------------------------------------- */
+
+// Collect the local `thread_free` list using an atomic exchange.
+// Note: The exchange must be done atomically as this is used right after
+// moving to the full list in `mi_page_collect_ex` and we need to
+// ensure that there was no race where the page became unfull just before the move.
+static void _mi_page_thread_free_collect(mi_page_t* page)
+{
+ mi_block_t* head;
+ mi_thread_free_t tfreex;
+ mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
+ do {
+ head = mi_tf_block(tfree);
+ tfreex = mi_tf_set_block(tfree,NULL);
+ } while (!mi_atomic_cas_weak_acq_rel(&page->xthread_free, &tfree, tfreex));
+
+ // return if the list is empty
+ if (head == NULL) return;
+
+ // find the tail -- also to get a proper count (without data races)
+ uint32_t max_count = page->capacity; // cannot collect more than capacity
+ uint32_t count = 1;
+ mi_block_t* tail = head;
+ mi_block_t* next;
+ while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) {
+ count++;
+ tail = next;
+ }
+ // if `count > max_count` there was a memory corruption (possibly infinite list due to double multi-threaded free)
+ if (count > max_count) {
+ _mi_error_message(EFAULT, "corrupted thread-free list\n");
+ return; // the thread-free items cannot be freed
+ }
+
+ // and append the current local free list
+ mi_block_set_next(page,tail, page->local_free);
+ page->local_free = head;
+
+ // update counts now
+ page->used -= count;
+}
+
+void _mi_page_free_collect(mi_page_t* page, bool force) {
+ mi_assert_internal(page!=NULL);
+
+ // collect the thread free list
+ if (force || mi_page_thread_free(page) != NULL) { // quick test to avoid an atomic operation
+ _mi_page_thread_free_collect(page);
+ }
+
+ // and the local free list
+ if (page->local_free != NULL) {
+ if (mi_likely(page->free == NULL)) {
+ // usual case
+ page->free = page->local_free;
+ page->local_free = NULL;
+ page->is_zero = false;
+ }
+ else if (force) {
+ // append -- only on shutdown (force) as this is a linear operation
+ mi_block_t* tail = page->local_free;
+ mi_block_t* next;
+ while ((next = mi_block_next(page, tail)) != NULL) {
+ tail = next;
+ }
+ mi_block_set_next(page, tail, page->free);
+ page->free = page->local_free;
+ page->local_free = NULL;
+ page->is_zero = false;
+ }
+ }
+
+ mi_assert_internal(!force || page->local_free == NULL);
+}
+
+
+
+/* -----------------------------------------------------------
+ Page fresh and retire
+----------------------------------------------------------- */
+
+// called from segments when reclaiming abandoned pages
+void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
+ mi_assert_expensive(mi_page_is_valid_init(page));
+
+ mi_assert_internal(mi_page_heap(page) == heap);
+ mi_assert_internal(mi_page_thread_free_flag(page) != MI_NEVER_DELAYED_FREE);
+ mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
+ mi_assert_internal(!page->is_reset);
+ // TODO: push on full queue immediately if it is full?
+ mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page));
+ mi_page_queue_push(heap, pq, page);
+ mi_assert_expensive(_mi_page_is_valid(page));
+}
+
+// allocate a fresh page from a segment
+static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size) {
+ mi_assert_internal(pq==NULL||mi_heap_contains_queue(heap, pq));
+ mi_page_t* page = _mi_segment_page_alloc(heap, block_size, &heap->tld->segments, &heap->tld->os);
+ if (page == NULL) {
+ // this may be out-of-memory, or an abandoned page was reclaimed (and in our queue)
+ return NULL;
+ }
+ mi_assert_internal(pq==NULL || _mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
+ mi_page_init(heap, page, block_size, heap->tld);
+ mi_heap_stat_increase(heap, pages, 1);
+ if (pq!=NULL) mi_page_queue_push(heap, pq, page); // huge pages use pq==NULL
+ mi_assert_expensive(_mi_page_is_valid(page));
+ return page;
+}
+
+// Get a fresh page to use
+static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) {
+ mi_assert_internal(mi_heap_contains_queue(heap, pq));
+ mi_page_t* page = mi_page_fresh_alloc(heap, pq, pq->block_size);
+ if (page==NULL) return NULL;
+ mi_assert_internal(pq->block_size==mi_page_block_size(page));
+ mi_assert_internal(pq==mi_page_queue(heap, mi_page_block_size(page)));
+ return page;
+}
+
+/* -----------------------------------------------------------
+ Do any delayed frees
+ (put there by other threads if they deallocated in a full page)
+----------------------------------------------------------- */
+void _mi_heap_delayed_free(mi_heap_t* heap) {
+ // take over the list (note: no atomic exchange since it is often NULL)
+ mi_block_t* block = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
+ while (block != NULL && !mi_atomic_cas_ptr_weak_acq_rel(mi_block_t, &heap->thread_delayed_free, &block, NULL)) { /* nothing */ };
+
+ // and free them all
+ while(block != NULL) {
+ mi_block_t* next = mi_block_nextx(heap,block, heap->keys);
+ // use internal free instead of regular one to keep stats etc correct
+ if (!_mi_free_delayed_block(block)) {
+ // we might already start delayed freeing while another thread has not yet
+ // reset the delayed_freeing flag; in that case delay it further by reinserting.
+ mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
+ do {
+ mi_block_set_nextx(heap, block, dfree, heap->keys);
+ } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
+ }
+ block = next;
+ }
+}
+
+/* -----------------------------------------------------------
+ Unfull, abandon, free and retire
+----------------------------------------------------------- */
+
+// Move a page from the full list back to a regular list
+void _mi_page_unfull(mi_page_t* page) {
+ mi_assert_internal(page != NULL);
+ mi_assert_expensive(_mi_page_is_valid(page));
+ mi_assert_internal(mi_page_is_in_full(page));
+ if (!mi_page_is_in_full(page)) return;
+
+ mi_heap_t* heap = mi_page_heap(page);
+ mi_page_queue_t* pqfull = &heap->pages[MI_BIN_FULL];
+ mi_page_set_in_full(page, false); // to get the right queue
+ mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
+ mi_page_set_in_full(page, true);
+ mi_page_queue_enqueue_from(pq, pqfull, page);
+}
+
+static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) {
+ mi_assert_internal(pq == mi_page_queue_of(page));
+ mi_assert_internal(!mi_page_immediate_available(page));
+ mi_assert_internal(!mi_page_is_in_full(page));
+
+ if (mi_page_is_in_full(page)) return;
+ mi_page_queue_enqueue_from(&mi_page_heap(page)->pages[MI_BIN_FULL], pq, page);
+ _mi_page_free_collect(page,false); // try to collect right away in case another thread freed just before MI_USE_DELAYED_FREE was set
+}
+
+
+// Abandon a page with used blocks at the end of a thread.
+// Note: only call if it is ensured that no references exist from
+// the `page->heap->thread_delayed_free` into this page.
+// Currently only called through `mi_heap_collect_ex` which ensures this.
+void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
+ mi_assert_internal(page != NULL);
+ mi_assert_expensive(_mi_page_is_valid(page));
+ mi_assert_internal(pq == mi_page_queue_of(page));
+ mi_assert_internal(mi_page_heap(page) != NULL);
+
+ mi_heap_t* pheap = mi_page_heap(page);
+
+ // remove from our page list
+ mi_segments_tld_t* segments_tld = &pheap->tld->segments;
+ mi_page_queue_remove(pq, page);
+
+ // page is no longer associated with our heap
+ mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
+ mi_page_set_heap(page, NULL);
+
+#if MI_DEBUG>1
+ // check there are no references left..
+ for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) {
+ mi_assert_internal(_mi_ptr_page(block) != page);
+ }
+#endif
+
+ // and abandon it
+ mi_assert_internal(mi_page_heap(page) == NULL);
+ _mi_segment_page_abandon(page,segments_tld);
+}
+
+
+// Free a page with no more free blocks
+void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
+ mi_assert_internal(page != NULL);
+ mi_assert_expensive(_mi_page_is_valid(page));
+ mi_assert_internal(pq == mi_page_queue_of(page));
+ mi_assert_internal(mi_page_all_free(page));
+ mi_assert_internal(mi_page_thread_free_flag(page)!=MI_DELAYED_FREEING);
+
+ // no more aligned blocks in here
+ mi_page_set_has_aligned(page, false);
+
+ mi_heap_t* heap = mi_page_heap(page);
+
+ // remove from the page list
+ // (no need to do _mi_heap_delayed_free first as all blocks are already free)
+ mi_segments_tld_t* segments_tld = &heap->tld->segments;
+ mi_page_queue_remove(pq, page);
+
+ // and free it
+ mi_page_set_heap(page,NULL);
+ _mi_segment_page_free(page, force, segments_tld);
+}
+
+// Retire parameters
+#define MI_MAX_RETIRE_SIZE MI_MEDIUM_OBJ_SIZE_MAX
+#define MI_RETIRE_CYCLES (8)
+
+// Retire a page with no more used blocks
+// Important to not retire too quickly though as new
+// allocations might coming.
+// Note: called from `mi_free` and benchmarks often
+// trigger this due to freeing everything and then
+// allocating again so careful when changing this.
+void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
+ mi_assert_internal(page != NULL);
+ mi_assert_expensive(_mi_page_is_valid(page));
+ mi_assert_internal(mi_page_all_free(page));
+
+ mi_page_set_has_aligned(page, false);
+
+ // don't retire too often..
+ // (or we end up retiring and re-allocating most of the time)
+ // NOTE: refine this more: we should not retire if this
+ // is the only page left with free blocks. It is not clear
+ // how to check this efficiently though...
+ // for now, we don't retire if it is the only page left of this size class.
+ mi_page_queue_t* pq = mi_page_queue_of(page);
+ if (mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_is_in_full(page))) {
+ if (pq->last==page && pq->first==page) { // the only page in the queue?
+ mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
+ page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
+ mi_heap_t* heap = mi_page_heap(page);
+ mi_assert_internal(pq >= heap->pages);
+ const size_t index = pq - heap->pages;
+ mi_assert_internal(index < MI_BIN_FULL && index < MI_BIN_HUGE);
+ if (index < heap->page_retired_min) heap->page_retired_min = index;
+ if (index > heap->page_retired_max) heap->page_retired_max = index;
+ mi_assert_internal(mi_page_all_free(page));
+ return; // dont't free after all
+ }
+ }
+ _mi_page_free(page, pq, false);
+}
+
+// free retired pages: we don't need to look at the entire queues
+// since we only retire pages that are at the head position in a queue.
+void _mi_heap_collect_retired(mi_heap_t* heap, bool force) {
+ size_t min = MI_BIN_FULL;
+ size_t max = 0;
+ for(size_t bin = heap->page_retired_min; bin <= heap->page_retired_max; bin++) {
+ mi_page_queue_t* pq = &heap->pages[bin];
+ mi_page_t* page = pq->first;
+ if (page != NULL && page->retire_expire != 0) {
+ if (mi_page_all_free(page)) {
+ page->retire_expire--;
+ if (force || page->retire_expire == 0) {
+ _mi_page_free(pq->first, pq, force);
+ }
+ else {
+ // keep retired, update min/max
+ if (bin < min) min = bin;
+ if (bin > max) max = bin;
+ }
+ }
+ else {
+ page->retire_expire = 0;
+ }
+ }
+ }
+ heap->page_retired_min = min;
+ heap->page_retired_max = max;
+}
+
+
+/* -----------------------------------------------------------
+ Initialize the initial free list in a page.
+ In secure mode we initialize a randomized list by
+ alternating between slices.
+----------------------------------------------------------- */
+
+#define MI_MAX_SLICE_SHIFT (6) // at most 64 slices
+#define MI_MAX_SLICES (1UL << MI_MAX_SLICE_SHIFT)
+#define MI_MIN_SLICES (2)
+
+static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) {
+ MI_UNUSED(stats);
+ #if (MI_SECURE<=2)
+ mi_assert_internal(page->free == NULL);
+ mi_assert_internal(page->local_free == NULL);
+ #endif
+ mi_assert_internal(page->capacity + extend <= page->reserved);
+ mi_assert_internal(bsize == mi_page_block_size(page));
+ void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL);
+
+ // initialize a randomized free list
+ // set up `slice_count` slices to alternate between
+ size_t shift = MI_MAX_SLICE_SHIFT;
+ while ((extend >> shift) == 0) {
+ shift--;
+ }
+ const size_t slice_count = (size_t)1U << shift;
+ const size_t slice_extend = extend / slice_count;
+ mi_assert_internal(slice_extend >= 1);
+ mi_block_t* blocks[MI_MAX_SLICES]; // current start of the slice
+ size_t counts[MI_MAX_SLICES]; // available objects in the slice
+ for (size_t i = 0; i < slice_count; i++) {
+ blocks[i] = mi_page_block_at(page, page_area, bsize, page->capacity + i*slice_extend);
+ counts[i] = slice_extend;
+ }
+ counts[slice_count-1] += (extend % slice_count); // final slice holds the modulus too (todo: distribute evenly?)
+
+ // and initialize the free list by randomly threading through them
+ // set up first element
+ const uintptr_t r = _mi_heap_random_next(heap);
+ size_t current = r % slice_count;
+ counts[current]--;
+ mi_block_t* const free_start = blocks[current];
+ // and iterate through the rest; use `random_shuffle` for performance
+ uintptr_t rnd = _mi_random_shuffle(r|1); // ensure not 0
+ for (size_t i = 1; i < extend; i++) {
+ // call random_shuffle only every INTPTR_SIZE rounds
+ const size_t round = i%MI_INTPTR_SIZE;
+ if (round == 0) rnd = _mi_random_shuffle(rnd);
+ // select a random next slice index
+ size_t next = ((rnd >> 8*round) & (slice_count-1));
+ while (counts[next]==0) { // ensure it still has space
+ next++;
+ if (next==slice_count) next = 0;
+ }
+ // and link the current block to it
+ counts[next]--;
+ mi_block_t* const block = blocks[current];
+ blocks[current] = (mi_block_t*)((uint8_t*)block + bsize); // bump to the following block
+ mi_block_set_next(page, block, blocks[next]); // and set next; note: we may have `current == next`
+ current = next;
+ }
+ // prepend to the free list (usually NULL)
+ mi_block_set_next(page, blocks[current], page->free); // end of the list
+ page->free = free_start;
+}
+
+static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats)
+{
+ MI_UNUSED(stats);
+ #if (MI_SECURE <= 2)
+ mi_assert_internal(page->free == NULL);
+ mi_assert_internal(page->local_free == NULL);
+ #endif
+ mi_assert_internal(page->capacity + extend <= page->reserved);
+ mi_assert_internal(bsize == mi_page_block_size(page));
+ void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL );
+
+ mi_block_t* const start = mi_page_block_at(page, page_area, bsize, page->capacity);
+
+ // initialize a sequential free list
+ mi_block_t* const last = mi_page_block_at(page, page_area, bsize, page->capacity + extend - 1);
+ mi_block_t* block = start;
+ while(block <= last) {
+ mi_block_t* next = (mi_block_t*)((uint8_t*)block + bsize);
+ mi_block_set_next(page,block,next);
+ block = next;
+ }
+ // prepend to free list (usually `NULL`)
+ mi_block_set_next(page, last, page->free);
+ page->free = start;
+}
+
+/* -----------------------------------------------------------
+ Page initialize and extend the capacity
+----------------------------------------------------------- */
+
+#define MI_MAX_EXTEND_SIZE (4*1024) // heuristic, one OS page seems to work well.
+#if (MI_SECURE>0)
+#define MI_MIN_EXTEND (8*MI_SECURE) // extend at least by this many
+#else
+#define MI_MIN_EXTEND (1)
+#endif
+
+// Extend the capacity (up to reserved) by initializing a free list
+// We do at most `MI_MAX_EXTEND` to avoid touching too much memory
+// Note: we also experimented with "bump" allocation on the first
+// allocations but this did not speed up any benchmark (due to an
+// extra test in malloc? or cache effects?)
+static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) {
+ MI_UNUSED(tld);
+ mi_assert_expensive(mi_page_is_valid_init(page));
+ #if (MI_SECURE<=2)
+ mi_assert(page->free == NULL);
+ mi_assert(page->local_free == NULL);
+ if (page->free != NULL) return;
+ #endif
+ if (page->capacity >= page->reserved) return;
+
+ size_t page_size;
+ _mi_page_start(_mi_page_segment(page), page, &page_size);
+ mi_stat_counter_increase(tld->stats.pages_extended, 1);
+
+ // calculate the extend count
+ const size_t bsize = (page->xblock_size < MI_HUGE_BLOCK_SIZE ? page->xblock_size : page_size);
+ size_t extend = page->reserved - page->capacity;
+ mi_assert_internal(extend > 0);
+
+ size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/(uint32_t)bsize);
+ if (max_extend < MI_MIN_EXTEND) { max_extend = MI_MIN_EXTEND; }
+ mi_assert_internal(max_extend > 0);
+
+ if (extend > max_extend) {
+ // ensure we don't touch memory beyond the page to reduce page commit.
+ // the `lean` benchmark tests this. Going from 1 to 8 increases rss by 50%.
+ extend = max_extend;
+ }
+
+ mi_assert_internal(extend > 0 && extend + page->capacity <= page->reserved);
+ mi_assert_internal(extend < (1UL<<16));
+
+ // and append the extend the free list
+ if (extend < MI_MIN_SLICES || MI_SECURE==0) { //!mi_option_is_enabled(mi_option_secure)) {
+ mi_page_free_list_extend(page, bsize, extend, &tld->stats );
+ }
+ else {
+ mi_page_free_list_extend_secure(heap, page, bsize, extend, &tld->stats);
+ }
+ // enable the new free list
+ page->capacity += (uint16_t)extend;
+ mi_stat_increase(tld->stats.page_committed, extend * bsize);
+
+ // extension into zero initialized memory preserves the zero'd free list
+ if (!page->is_zero_init) {
+ page->is_zero = false;
+ }
+ mi_assert_expensive(mi_page_is_valid_init(page));
+}
+
+// Initialize a fresh page
+static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi_tld_t* tld) {
+ mi_assert(page != NULL);
+ mi_segment_t* segment = _mi_page_segment(page);
+ mi_assert(segment != NULL);
+ mi_assert_internal(block_size > 0);
+ // set fields
+ mi_page_set_heap(page, heap);
+ page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start
+ size_t page_size;
+ _mi_segment_page_start(segment, page, &page_size);
+ mi_assert_internal(mi_page_block_size(page) <= page_size);
+ mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE);
+ mi_assert_internal(page_size / block_size < (1L<<16));
+ page->reserved = (uint16_t)(page_size / block_size);
+ #ifdef MI_ENCODE_FREELIST
+ page->keys[0] = _mi_heap_random_next(heap);
+ page->keys[1] = _mi_heap_random_next(heap);
+ #endif
+ #if MI_DEBUG > 0
+ page->is_zero = false; // ensure in debug mode we initialize with MI_DEBUG_UNINIT, see issue #501
+ #else
+ page->is_zero = page->is_zero_init;
+ #endif
+
+ mi_assert_internal(page->is_committed);
+ mi_assert_internal(!page->is_reset);
+ mi_assert_internal(page->capacity == 0);
+ mi_assert_internal(page->free == NULL);
+ mi_assert_internal(page->used == 0);
+ mi_assert_internal(page->xthread_free == 0);
+ mi_assert_internal(page->next == NULL);
+ mi_assert_internal(page->prev == NULL);
+ mi_assert_internal(page->retire_expire == 0);
+ mi_assert_internal(!mi_page_has_aligned(page));
+ #if (MI_ENCODE_FREELIST)
+ mi_assert_internal(page->keys[0] != 0);
+ mi_assert_internal(page->keys[1] != 0);
+ #endif
+ mi_assert_expensive(mi_page_is_valid_init(page));
+
+ // initialize an initial free list
+ mi_page_extend_free(heap,page,tld);
+ mi_assert(mi_page_immediate_available(page));
+}
+
+
+/* -----------------------------------------------------------
+ Find pages with free blocks
+-------------------------------------------------------------*/
+
+// Find a page with free blocks of `page->block_size`.
+static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq, bool first_try)
+{
+ // search through the pages in "next fit" order
+ size_t count = 0;
+ mi_page_t* page = pq->first;
+ while (page != NULL)
+ {
+ mi_page_t* next = page->next; // remember next
+ count++;
+
+ // 0. collect freed blocks by us and other threads
+ _mi_page_free_collect(page, false);
+
+ // 1. if the page contains free blocks, we are done
+ if (mi_page_immediate_available(page)) {
+ break; // pick this one
+ }
+
+ // 2. Try to extend
+ if (page->capacity < page->reserved) {
+ mi_page_extend_free(heap, page, heap->tld);
+ mi_assert_internal(mi_page_immediate_available(page));
+ break;
+ }
+
+ // 3. If the page is completely full, move it to the `mi_pages_full`
+ // queue so we don't visit long-lived pages too often.
+ mi_assert_internal(!mi_page_is_in_full(page) && !mi_page_immediate_available(page));
+ mi_page_to_full(page, pq);
+
+ page = next;
+ } // for each page
+
+ mi_heap_stat_counter_increase(heap, searches, count);
+
+ if (page == NULL) {
+ _mi_heap_collect_retired(heap, false); // perhaps make a page available?
+ page = mi_page_fresh(heap, pq);
+ if (page == NULL && first_try) {
+ // out-of-memory _or_ an abandoned page with free blocks was reclaimed, try once again
+ page = mi_page_queue_find_free_ex(heap, pq, false);
+ }
+ }
+ else {
+ mi_assert(pq->first == page);
+ page->retire_expire = 0;
+ }
+ mi_assert_internal(page == NULL || mi_page_immediate_available(page));
+ return page;
+}
+
+
+
+// Find a page with free blocks of `size`.
+static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) {
+ mi_page_queue_t* pq = mi_page_queue(heap,size);
+ mi_page_t* page = pq->first;
+ if (page != NULL) {
+ #if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness
+ if (page->capacity < page->reserved && ((_mi_heap_random_next(heap) & 1) == 1)) {
+ mi_page_extend_free(heap, page, heap->tld);
+ mi_assert_internal(mi_page_immediate_available(page));
+ }
+ else
+ #endif
+ {
+ _mi_page_free_collect(page,false);
+ }
+
+ if (mi_page_immediate_available(page)) {
+ page->retire_expire = 0;
+ return page; // fast path
+ }
+ }
+ return mi_page_queue_find_free_ex(heap, pq, true);
+}
+
+
+/* -----------------------------------------------------------
+ Users can register a deferred free function called
+ when the `free` list is empty. Since the `local_free`
+ is separate this is deterministically called after
+ a certain number of allocations.
+----------------------------------------------------------- */
+
+static mi_deferred_free_fun* volatile deferred_free = NULL;
+static _Atomic(void*) deferred_arg; // = NULL
+
+void _mi_deferred_free(mi_heap_t* heap, bool force) {
+ heap->tld->heartbeat++;
+ if (deferred_free != NULL && !heap->tld->recurse) {
+ heap->tld->recurse = true;
+ deferred_free(force, heap->tld->heartbeat, mi_atomic_load_ptr_relaxed(void,&deferred_arg));
+ heap->tld->recurse = false;
+ }
+}
+
+void mi_register_deferred_free(mi_deferred_free_fun* fn, void* arg) mi_attr_noexcept {
+ deferred_free = fn;
+ mi_atomic_store_ptr_release(void,&deferred_arg, arg);
+}
+
+
+/* -----------------------------------------------------------
+ General allocation
+----------------------------------------------------------- */
+
+// Large and huge page allocation.
+// Huge pages are allocated directly without being in a queue.
+// Because huge pages contain just one block, and the segment contains
+// just that page, we always treat them as abandoned and any thread
+// that frees the block can free the whole page and segment directly.
+static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size) {
+ size_t block_size = _mi_os_good_alloc_size(size);
+ mi_assert_internal(mi_bin(block_size) == MI_BIN_HUGE);
+ bool is_huge = (block_size > MI_LARGE_OBJ_SIZE_MAX);
+ mi_page_queue_t* pq = (is_huge ? NULL : mi_page_queue(heap, block_size));
+ mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size);
+ if (page != NULL) {
+ mi_assert_internal(mi_page_immediate_available(page));
+
+ if (pq == NULL) {
+ // huge pages are directly abandoned
+ mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
+ mi_assert_internal(_mi_page_segment(page)->used==1);
+ mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue
+ mi_page_set_heap(page, NULL);
+ }
+ else {
+ mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
+ }
+
+ const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding
+ if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
+ mi_heap_stat_increase(heap, large, bsize);
+ mi_heap_stat_counter_increase(heap, large_count, 1);
+ }
+ else {
+ mi_heap_stat_increase(heap, huge, bsize);
+ mi_heap_stat_counter_increase(heap, huge_count, 1);
+ }
+ }
+ return page;
+}
+
+
+// Allocate a page
+// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
+static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size) mi_attr_noexcept {
+ // huge allocation?
+ const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
+ if (mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) )) {
+ if (mi_unlikely(req_size > PTRDIFF_MAX)) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
+ _mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
+ return NULL;
+ }
+ else {
+ return mi_large_huge_page_alloc(heap,size);
+ }
+ }
+ else {
+ // otherwise find a page with free blocks in our size segregated queues
+ mi_assert_internal(size >= MI_PADDING_SIZE);
+ return mi_find_free_page(heap, size);
+ }
+}
+
+// Generic allocation routine if the fast path (`alloc.c:mi_page_malloc`) does not succeed.
+// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
+void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept
+{
+ mi_assert_internal(heap != NULL);
+
+ // initialize if necessary
+ if (mi_unlikely(!mi_heap_is_initialized(heap))) {
+ mi_thread_init(); // calls `_mi_heap_init` in turn
+ heap = mi_get_default_heap();
+ if (mi_unlikely(!mi_heap_is_initialized(heap))) { return NULL; }
+ }
+ mi_assert_internal(mi_heap_is_initialized(heap));
+
+ // call potential deferred free routines
+ _mi_deferred_free(heap, false);
+
+ // free delayed frees from other threads
+ _mi_heap_delayed_free(heap);
+
+ // find (or allocate) a page of the right size
+ mi_page_t* page = mi_find_page(heap, size);
+ if (mi_unlikely(page == NULL)) { // first time out of memory, try to collect and retry the allocation once more
+ mi_heap_collect(heap, true /* force */);
+ page = mi_find_page(heap, size);
+ }
+
+ if (mi_unlikely(page == NULL)) { // out of memory
+ const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
+ _mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size);
+ return NULL;
+ }
+
+ mi_assert_internal(mi_page_immediate_available(page));
+ mi_assert_internal(mi_page_block_size(page) >= size);
+
+ // and try again, this time succeeding! (i.e. this should never recurse)
+ return _mi_page_malloc(heap, page, size);
+}