summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/os.c
diff options
context:
space:
mode:
Diffstat (limited to 'source/luametatex/source/libraries/mimalloc/src/os.c')
-rw-r--r--source/luametatex/source/libraries/mimalloc/src/os.c1077
1 files changed, 105 insertions, 972 deletions
diff --git a/source/luametatex/source/libraries/mimalloc/src/os.c b/source/luametatex/source/libraries/mimalloc/src/os.c
index 0f9847417..75895c1b1 100644
--- a/source/luametatex/source/libraries/mimalloc/src/os.c
+++ b/source/luametatex/source/libraries/mimalloc/src/os.c
@@ -1,118 +1,48 @@
/* ----------------------------------------------------------------------------
-Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
+Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
-#ifndef _DEFAULT_SOURCE
-#define _DEFAULT_SOURCE // ensure mmap flags are defined
-#endif
-
-#if defined(__sun)
-// illumos provides new mman.h api when any of these are defined
-// otherwise the old api based on caddr_t which predates the void pointers one.
-// stock solaris provides only the former, chose to atomically to discard those
-// flags only here rather than project wide tough.
-#undef _XOPEN_SOURCE
-#undef _POSIX_C_SOURCE
-#endif
#include "mimalloc.h"
-#include "mimalloc-internal.h"
-#include "mimalloc-atomic.h"
+#include "mimalloc/internal.h"
+#include "mimalloc/atomic.h"
+#include "mimalloc/prim.h"
-#include <string.h> // strerror
-
-#ifdef _MSC_VER
-#pragma warning(disable:4996) // strerror
-#endif
-
-#if defined(__wasi__)
-#define MI_USE_SBRK
-#endif
-
-#if defined(_WIN32)
-#include <windows.h>
-#elif defined(__wasi__)
-#include <unistd.h> // sbrk
-#else
-#include <sys/mman.h> // mmap
-#include <unistd.h> // sysconf
-#if defined(__linux__)
-#include <features.h>
-#include <fcntl.h>
-#if defined(__GLIBC__)
-#include <linux/mman.h> // linux mmap flags
-#else
-#include <sys/mman.h>
-#endif
-#endif
-#if defined(__APPLE__)
-#include <TargetConditionals.h>
-#if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR
-#include <mach/vm_statistics.h>
-#endif
-#endif
-#if defined(__FreeBSD__) || defined(__DragonFly__)
-#include <sys/param.h>
-#if __FreeBSD_version >= 1200000
-#include <sys/cpuset.h>
-#include <sys/domainset.h>
-#endif
-#include <sys/sysctl.h>
-#endif
-#endif
/* -----------------------------------------------------------
Initialization.
On windows initializes support for aligned allocation and
large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
----------------------------------------------------------- */
-bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
-bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats);
-static void* mi_align_up_ptr(void* p, size_t alignment) {
- return (void*)_mi_align_up((uintptr_t)p, alignment);
-}
-
-static void* mi_align_down_ptr(void* p, size_t alignment) {
- return (void*)_mi_align_down((uintptr_t)p, alignment);
-}
-
-
-// page size (initialized properly in `os_init`)
-static size_t os_page_size = 4096;
-
-// minimal allocation granularity
-static size_t os_alloc_granularity = 4096;
-
-// if non-zero, use large page allocation
-static size_t large_os_page_size = 0;
-
-// is memory overcommit allowed?
-// set dynamically in _mi_os_init (and if true we use MAP_NORESERVE)
-static bool os_overcommit = true;
+static mi_os_mem_config_t mi_os_mem_config = {
+ 4096, // page size
+ 0, // large page size (usually 2MiB)
+ 4096, // allocation granularity
+ true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems)
+ false // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span)
+};
bool _mi_os_has_overcommit(void) {
- return os_overcommit;
+ return mi_os_mem_config.has_overcommit;
}
// OS (small) page size
size_t _mi_os_page_size(void) {
- return os_page_size;
+ return mi_os_mem_config.page_size;
}
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
size_t _mi_os_large_page_size(void) {
- return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size());
+ return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size());
}
-#if !defined(MI_USE_SBRK) && !defined(__wasi__)
-static bool use_large_os_page(size_t size, size_t alignment) {
+bool _mi_os_use_large_page(size_t size, size_t alignment) {
// if we have access, check the size and alignment requirements
- if (large_os_page_size == 0 || !mi_option_is_enabled(mi_option_large_os_pages)) return false;
- return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0);
+ if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_large_os_pages)) return false;
+ return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0);
}
-#endif
// round to a good OS allocation size (bounded by max 12.5% waste)
size_t _mi_os_good_alloc_size(size_t size) {
@@ -126,177 +56,24 @@ size_t _mi_os_good_alloc_size(size_t size) {
return _mi_align_up(size, align_size);
}
-#if defined(_WIN32)
-// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
-// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility)
-// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB)
-// We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's.
-typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E {
- MiMemExtendedParameterInvalidType = 0,
- MiMemExtendedParameterAddressRequirements,
- MiMemExtendedParameterNumaNode,
- MiMemExtendedParameterPartitionHandle,
- MiMemExtendedParameterUserPhysicalHandle,
- MiMemExtendedParameterAttributeFlags,
- MiMemExtendedParameterMax
-} MI_MEM_EXTENDED_PARAMETER_TYPE;
-
-typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S {
- struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type;
- union { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg;
-} MI_MEM_EXTENDED_PARAMETER;
-
-typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S {
- PVOID LowestStartingAddress;
- PVOID HighestEndingAddress;
- SIZE_T Alignment;
-} MI_MEM_ADDRESS_REQUIREMENTS;
-
-#define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE 0x00000010
-
-#include <winternl.h>
-typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
-typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
-static PVirtualAlloc2 pVirtualAlloc2 = NULL;
-static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;
-
-// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7
-typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER;
-
-typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber);
-typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber);
-typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask);
-typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber);
-static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL;
-static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL;
-static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL;
-static PGetNumaProcessorNode pGetNumaProcessorNode = NULL;
-
-static bool mi_win_enable_large_os_pages(void)
-{
- if (large_os_page_size > 0) return true;
-
- // Try to see if large OS pages are supported
- // To use large pages on Windows, we first need access permission
- // Set "Lock pages in memory" permission in the group policy editor
- // <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
- unsigned long err = 0;
- HANDLE token = NULL;
- BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
- if (ok) {
- TOKEN_PRIVILEGES tp;
- ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
- if (ok) {
- tp.PrivilegeCount = 1;
- tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
- ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
- if (ok) {
- err = GetLastError();
- ok = (err == ERROR_SUCCESS);
- if (ok) {
- large_os_page_size = GetLargePageMinimum();
- }
- }
- }
- CloseHandle(token);
- }
- if (!ok) {
- if (err == 0) err = GetLastError();
- _mi_warning_message("cannot enable large OS page support, error %lu\n", err);
- }
- return (ok!=0);
-}
-
-void _mi_os_init(void)
-{
- os_overcommit = false;
- // get the page size
- SYSTEM_INFO si;
- GetSystemInfo(&si);
- if (si.dwPageSize > 0) os_page_size = si.dwPageSize;
- if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity;
- // get the VirtualAlloc2 function
- HINSTANCE hDll;
- hDll = LoadLibrary(TEXT("kernelbase.dll"));
- if (hDll != NULL) {
- // use VirtualAlloc2FromApp if possible as it is available to Windows store apps
- pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
- if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
- FreeLibrary(hDll);
- }
- // NtAllocateVirtualMemoryEx is used for huge page allocation
- hDll = LoadLibrary(TEXT("ntdll.dll"));
- if (hDll != NULL) {
- pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
- FreeLibrary(hDll);
- }
- // Try to use Win7+ numa API
- hDll = LoadLibrary(TEXT("kernel32.dll"));
- if (hDll != NULL) {
- pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx");
- pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx");
- pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx");
- pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode");
- FreeLibrary(hDll);
- }
- if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
- mi_win_enable_large_os_pages();
- }
-}
-#elif defined(__wasi__)
void _mi_os_init(void) {
- os_overcommit = false;
- os_page_size = 64*MI_KiB; // WebAssembly has a fixed page size: 64KiB
- os_alloc_granularity = 16;
+ _mi_prim_mem_init(&mi_os_mem_config);
}
-#else // generic unix
-
-static void os_detect_overcommit(void) {
-#if defined(__linux__)
- int fd = open("/proc/sys/vm/overcommit_memory", O_RDONLY);
- if (fd < 0) return;
- char buf[32];
- ssize_t nread = read(fd, &buf, sizeof(buf));
- close(fd);
- // <https://www.kernel.org/doc/Documentation/vm/overcommit-accounting>
- // 0: heuristic overcommit, 1: always overcommit, 2: never overcommit (ignore NORESERVE)
- if (nread >= 1) {
- os_overcommit = (buf[0] == '0' || buf[0] == '1');
- }
-#elif defined(__FreeBSD__)
- int val = 0;
- size_t olen = sizeof(val);
- if (sysctlbyname("vm.overcommit", &val, &olen, NULL, 0) == 0) {
- os_overcommit = (val != 0);
- }
-#else
- // default: overcommit is true
-#endif
-}
-void _mi_os_init(void) {
- // get the page size
- long result = sysconf(_SC_PAGESIZE);
- if (result > 0) {
- os_page_size = (size_t)result;
- os_alloc_granularity = os_page_size;
- }
- large_os_page_size = 2*MI_MiB; // TODO: can we query the OS for this?
- os_detect_overcommit();
-}
-#endif
+/* -----------------------------------------------------------
+ Util
+-------------------------------------------------------------- */
+bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
+bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats);
+static void* mi_align_up_ptr(void* p, size_t alignment) {
+ return (void*)_mi_align_up((uintptr_t)p, alignment);
+}
-#if defined(MADV_NORMAL)
-static int mi_madvise(void* addr, size_t length, int advice) {
- #if defined(__sun)
- return madvise((caddr_t)addr, length, advice); // Solaris needs cast (issue #520)
- #else
- return madvise(addr, length, advice);
- #endif
+static void* mi_align_down_ptr(void* p, size_t alignment) {
+ return (void*)_mi_align_down((uintptr_t)p, alignment);
}
-#endif
/* -----------------------------------------------------------
@@ -319,7 +96,7 @@ static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes)
#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages)
-static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size)
+void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size)
{
if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL;
size = _mi_align_up(size, MI_SEGMENT_SIZE);
@@ -332,7 +109,7 @@ static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size)
if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize
uintptr_t init = MI_HINT_BASE;
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode
- uintptr_t r = _mi_heap_random_next(mi_get_default_heap());
+ uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB
#endif
uintptr_t expected = hint + size;
@@ -343,361 +120,39 @@ static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size)
return (void*)hint;
}
#else
-static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
+void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
MI_UNUSED(try_alignment); MI_UNUSED(size);
return NULL;
}
#endif
+
/* -----------------------------------------------------------
Free memory
-------------------------------------------------------------- */
-static bool mi_os_mem_free(void* addr, size_t size, bool was_committed, mi_stats_t* stats)
-{
- if (addr == NULL || size == 0) return true; // || _mi_os_is_huge_reserved(addr)
- bool err = false;
-#if defined(_WIN32)
- DWORD errcode = 0;
- err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
- if (err) { errcode = GetLastError(); }
- if (errcode == ERROR_INVALID_ADDRESS) {
- // In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside
- // the memory region returned by VirtualAlloc; in that case we need to free using
- // the start of the region.
- MEMORY_BASIC_INFORMATION info = { 0 };
- VirtualQuery(addr, &info, sizeof(info));
- if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) {
- errcode = 0;
- err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0);
- if (err) { errcode = GetLastError(); }
- }
- }
- if (errcode != 0) {
- _mi_warning_message("unable to release OS memory: error code 0x%x, addr: %p, size: %zu\n", errcode, addr, size);
- }
-#elif defined(MI_USE_SBRK) || defined(__wasi__)
- err = false; // sbrk heap cannot be shrunk
-#else
- err = (munmap(addr, size) == -1);
- if (err) {
- _mi_warning_message("unable to release OS memory: %s, addr: %p, size: %zu\n", strerror(errno), addr, size);
+static void mi_os_mem_free(void* addr, size_t size, bool was_committed, mi_stats_t* tld_stats) {
+ MI_UNUSED(tld_stats);
+ mi_assert_internal((size % _mi_os_page_size()) == 0);
+ if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr)
+ int err = _mi_prim_free(addr, size);
+ if (err != 0) {
+ _mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr);
}
-#endif
+ mi_stats_t* stats = &_mi_stats_main;
if (was_committed) { _mi_stat_decrease(&stats->committed, size); }
_mi_stat_decrease(&stats->reserved, size);
- return !err;
-}
-
-
-/* -----------------------------------------------------------
- Raw allocation on Windows (VirtualAlloc)
--------------------------------------------------------------- */
-
-#ifdef _WIN32
-
-#define MEM_COMMIT_RESERVE (MEM_COMMIT|MEM_RESERVE)
-
-static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment, DWORD flags) {
-#if (MI_INTPTR_SIZE >= 8)
- // on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations
- if (addr == NULL) {
- void* hint = mi_os_get_aligned_hint(try_alignment,size);
- if (hint != NULL) {
- void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE);
- if (p != NULL) return p;
- _mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags);
- // fall through on error
- }
- }
-#endif
- // on modern Windows try use VirtualAlloc2 for aligned allocation
- if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
- MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
- reqs.Alignment = try_alignment;
- MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
- param.Type.Type = MiMemExtendedParameterAddressRequirements;
- param.Arg.Pointer = &reqs;
- void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, &param, 1);
- if (p != NULL) return p;
- _mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags);
- // fall through on error
- }
- // last resort
- return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
-static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
- mi_assert_internal(!(large_only && !allow_large));
- static _Atomic(size_t) large_page_try_ok; // = 0;
- void* p = NULL;
- // Try to allocate large OS pages (2MiB) if allowed or required.
- if ((large_only || use_large_os_page(size, try_alignment))
- && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
- size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
- if (!large_only && try_ok > 0) {
- // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
- // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
- mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
- }
- else {
- // large OS pages must always reserve and commit.
- *is_large = true;
- p = mi_win_virtual_allocx(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
- if (large_only) return p;
- // fall back to non-large page allocation on error (`p == NULL`).
- if (p == NULL) {
- mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations
- }
- }
- }
- // Fall back to regular page allocation
- if (p == NULL) {
- *is_large = ((flags&MEM_LARGE_PAGES) != 0);
- p = mi_win_virtual_allocx(addr, size, try_alignment, flags);
- }
- if (p == NULL) {
- _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large);
- }
- return p;
-}
-
-/* -----------------------------------------------------------
- Raw allocation using `sbrk` or `wasm_memory_grow`
--------------------------------------------------------------- */
-
-#elif defined(MI_USE_SBRK) || defined(__wasi__)
-#if defined(MI_USE_SBRK)
- static void* mi_memory_grow( size_t size ) {
- void* p = sbrk(size);
- if (p == (void*)(-1)) return NULL;
- #if !defined(__wasi__) // on wasi this is always zero initialized already (?)
- memset(p,0,size);
- #endif
- return p;
- }
-#elif defined(__wasi__)
- static void* mi_memory_grow( size_t size ) {
- size_t base = (size > 0 ? __builtin_wasm_memory_grow(0,_mi_divide_up(size, _mi_os_page_size()))
- : __builtin_wasm_memory_size(0));
- if (base == SIZE_MAX) return NULL;
- return (void*)(base * _mi_os_page_size());
- }
-#endif
-
-#if defined(MI_USE_PTHREADS)
-static pthread_mutex_t mi_heap_grow_mutex = PTHREAD_MUTEX_INITIALIZER;
-#endif
-
-static void* mi_heap_grow(size_t size, size_t try_alignment) {
- void* p = NULL;
- if (try_alignment <= 1) {
- // `sbrk` is not thread safe in general so try to protect it (we could skip this on WASM but leave it in for now)
- #if defined(MI_USE_PTHREADS)
- pthread_mutex_lock(&mi_heap_grow_mutex);
- #endif
- p = mi_memory_grow(size);
- #if defined(MI_USE_PTHREADS)
- pthread_mutex_unlock(&mi_heap_grow_mutex);
- #endif
- }
- else {
- void* base = NULL;
- size_t alloc_size = 0;
- // to allocate aligned use a lock to try to avoid thread interaction
- // between getting the current size and actual allocation
- // (also, `sbrk` is not thread safe in general)
- #if defined(MI_USE_PTHREADS)
- pthread_mutex_lock(&mi_heap_grow_mutex);
- #endif
- {
- void* current = mi_memory_grow(0); // get current size
- if (current != NULL) {
- void* aligned_current = mi_align_up_ptr(current, try_alignment); // and align from there to minimize wasted space
- alloc_size = _mi_align_up( ((uint8_t*)aligned_current - (uint8_t*)current) + size, _mi_os_page_size());
- base = mi_memory_grow(alloc_size);
- }
- }
- #if defined(MI_USE_PTHREADS)
- pthread_mutex_unlock(&mi_heap_grow_mutex);
- #endif
- if (base != NULL) {
- p = mi_align_up_ptr(base, try_alignment);
- if ((uint8_t*)p + size > (uint8_t*)base + alloc_size) {
- // another thread used wasm_memory_grow/sbrk in-between and we do not have enough
- // space after alignment. Give up (and waste the space as we cannot shrink :-( )
- // (in `mi_os_mem_alloc_aligned` this will fall back to overallocation to align)
- p = NULL;
- }
- }
- }
- if (p == NULL) {
- _mi_warning_message("unable to allocate sbrk/wasm_memory_grow OS memory (%zu bytes, %zu alignment)\n", size, try_alignment);
- errno = ENOMEM;
- return NULL;
- }
- mi_assert_internal( try_alignment == 0 || (uintptr_t)p % try_alignment == 0 );
- return p;
-}
-
-/* -----------------------------------------------------------
- Raw allocation on Unix's (mmap)
--------------------------------------------------------------- */
-#else
-#define MI_OS_USE_MMAP
-static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) {
- MI_UNUSED(try_alignment);
- #if defined(MAP_ALIGNED) // BSD
- if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) {
- size_t n = mi_bsr(try_alignment);
- if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB
- flags |= MAP_ALIGNED(n);
- void* p = mmap(addr, size, protect_flags, flags | MAP_ALIGNED(n), fd, 0);
- if (p!=MAP_FAILED) return p;
- // fall back to regular mmap
- }
- }
- #elif defined(MAP_ALIGN) // Solaris
- if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) {
- void* p = mmap((void*)try_alignment, size, protect_flags, flags | MAP_ALIGN, fd, 0); // addr parameter is the required alignment
- if (p!=MAP_FAILED) return p;
- // fall back to regular mmap
- }
- #endif
- #if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED)
- // on 64-bit systems, use the virtual address area after 2TiB for 4MiB aligned allocations
- if (addr == NULL) {
- void* hint = mi_os_get_aligned_hint(try_alignment, size);
- if (hint != NULL) {
- void* p = mmap(hint, size, protect_flags, flags, fd, 0);
- if (p!=MAP_FAILED) return p;
- // fall back to regular mmap
- }
- }
- #endif
- // regular mmap
- void* p = mmap(addr, size, protect_flags, flags, fd, 0);
- if (p!=MAP_FAILED) return p;
- // failed to allocate
- return NULL;
-}
-static int mi_unix_mmap_fd(void) {
-#if defined(VM_MAKE_TAG)
- // macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99)
- int os_tag = (int)mi_option_get(mi_option_os_tag);
- if (os_tag < 100 || os_tag > 255) os_tag = 100;
- return VM_MAKE_TAG(os_tag);
-#else
- return -1;
-#endif
+void _mi_os_free_ex(void* addr, size_t size, bool was_committed, mi_stats_t* tld_stats) {
+ const size_t csize = _mi_os_good_alloc_size(size);
+ mi_os_mem_free(addr,csize,was_committed,tld_stats);
}
-static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) {
- void* p = NULL;
- #if !defined(MAP_ANONYMOUS)
- #define MAP_ANONYMOUS MAP_ANON
- #endif
- #if !defined(MAP_NORESERVE)
- #define MAP_NORESERVE 0
- #endif
- const int fd = mi_unix_mmap_fd();
- int flags = MAP_PRIVATE | MAP_ANONYMOUS;
- if (_mi_os_has_overcommit()) {
- flags |= MAP_NORESERVE;
- }
- #if defined(PROT_MAX)
- protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD
- #endif
- // huge page allocation
- if ((large_only || use_large_os_page(size, try_alignment)) && allow_large) {
- static _Atomic(size_t) large_page_try_ok; // = 0;
- size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
- if (!large_only && try_ok > 0) {
- // If the OS is not configured for large OS pages, or the user does not have
- // enough permission, the `mmap` will always fail (but it might also fail for other reasons).
- // Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times
- // to avoid too many failing calls to mmap.
- mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
- }
- else {
- int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux
- int lfd = fd;
- #ifdef MAP_ALIGNED_SUPER
- lflags |= MAP_ALIGNED_SUPER;
- #endif
- #ifdef MAP_HUGETLB
- lflags |= MAP_HUGETLB;
- #endif
- #ifdef MAP_HUGE_1GB
- static bool mi_huge_pages_available = true;
- if ((size % MI_GiB) == 0 && mi_huge_pages_available) {
- lflags |= MAP_HUGE_1GB;
- }
- else
- #endif
- {
- #ifdef MAP_HUGE_2MB
- lflags |= MAP_HUGE_2MB;
- #endif
- }
- #ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB
- lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
- #endif
- if (large_only || lflags != flags) {
- // try large OS page allocation
- *is_large = true;
- p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd);
- #ifdef MAP_HUGE_1GB
- if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) {
- mi_huge_pages_available = false; // don't try huge 1GiB pages again
- _mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (error %i)\n", errno);
- lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB);
- p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd);
- }
- #endif
- if (large_only) return p;
- if (p == NULL) {
- mi_atomic_store_release(&large_page_try_ok, (size_t)8); // on error, don't try again for the next N allocations
- }
- }
- }
- }
- // regular allocation
- if (p == NULL) {
- *is_large = false;
- p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, flags, fd);
- if (p != NULL) {
- #if defined(MADV_HUGEPAGE)
- // Many Linux systems don't allow MAP_HUGETLB but they support instead
- // transparent huge pages (THP). Generally, it is not required to call `madvise` with MADV_HUGE
- // though since properly aligned allocations will already use large pages if available
- // in that case -- in particular for our large regions (in `memory.c`).
- // However, some systems only allow THP if called with explicit `madvise`, so
- // when large OS pages are enabled for mimalloc, we call `madvise` anyways.
- if (allow_large && use_large_os_page(size, try_alignment)) {
- if (mi_madvise(p, size, MADV_HUGEPAGE) == 0) {
- *is_large = true; // possibly
- };
- }
- #elif defined(__sun)
- if (allow_large && use_large_os_page(size, try_alignment)) {
- struct memcntl_mha cmd = {0};
- cmd.mha_pagesize = large_os_page_size;
- cmd.mha_cmd = MHA_MAPSIZE_VA;
- if (memcntl((caddr_t)p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) {
- *is_large = true;
- }
- }
- #endif
- }
- }
- if (p == NULL) {
- _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, errno, addr, large_only, allow_large);
- }
- return p;
+void _mi_os_free(void* p, size_t size, mi_stats_t* tld_stats) {
+ _mi_os_free_ex(p, size, true, tld_stats);
}
-#endif
/* -----------------------------------------------------------
@@ -711,7 +166,11 @@ static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, boo
if (!commit) allow_large = false;
if (try_alignment == 0) try_alignment = 1; // avoid 0 to ensure there will be no divide by zero when aligning
- void* p = NULL;
+ void* p = NULL;
+ int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, &p);
+ if (err != 0) {
+ _mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large);
+ }
/*
if (commit && allow_large) {
p = _mi_os_try_alloc_from_huge_reserved(size, try_alignment);
@@ -722,18 +181,6 @@ static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, boo
}
*/
- #if defined(_WIN32)
- int flags = MEM_RESERVE;
- if (commit) { flags |= MEM_COMMIT; }
- p = mi_win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
- #elif defined(MI_USE_SBRK) || defined(__wasi__)
- MI_UNUSED(allow_large);
- *is_large = false;
- p = mi_heap_grow(size, try_alignment);
- #else
- int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE);
- p = mi_unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large);
- #endif
mi_stat_counter_increase(stats->mmap_calls, 1);
if (p != NULL) {
_mi_stat_increase(&stats->reserved, size);
@@ -760,39 +207,40 @@ static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit,
// if not aligned, free it, overallocate, and unmap around it
if (((uintptr_t)p % alignment != 0)) {
mi_os_mem_free(p, size, commit, stats);
- _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (%zu bytes, address: %p, alignment: %zu, commit: %d)\n", size, p, alignment, commit);
+ _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
const size_t over_size = size + alignment;
-#if _WIN32
- // over-allocate uncommitted (virtual) memory
- p = mi_os_mem_alloc(over_size, 0 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, stats);
- if (p == NULL) return NULL;
+ if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block
+ // over-allocate uncommitted (virtual) memory
+ p = mi_os_mem_alloc(over_size, 0 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, stats);
+ if (p == NULL) return NULL;
- // set p to the aligned part in the full region
- // note: this is dangerous on Windows as VirtualFree needs the actual region pointer
- // but in mi_os_mem_free we handle this (hopefully exceptional) situation.
- p = mi_align_up_ptr(p, alignment);
+ // set p to the aligned part in the full region
+ // note: this is dangerous on Windows as VirtualFree needs the actual region pointer
+ // but in mi_os_mem_free we handle this (hopefully exceptional) situation.
+ p = mi_align_up_ptr(p, alignment);
- // explicitly commit only the aligned part
- if (commit) {
- _mi_os_commit(p, size, NULL, stats);
+ // explicitly commit only the aligned part
+ if (commit) {
+ _mi_os_commit(p, size, NULL, stats);
+ }
+ }
+ else { // mmap can free inside an allocation
+ // overallocate...
+ p = mi_os_mem_alloc(over_size, 1, commit, false, is_large, stats);
+ if (p == NULL) return NULL;
+ // and selectively unmap parts around the over-allocated area. (noop on sbrk)
+ void* aligned_p = mi_align_up_ptr(p, alignment);
+ size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
+ size_t mid_size = _mi_align_up(size, _mi_os_page_size());
+ size_t post_size = over_size - pre_size - mid_size;
+ mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size);
+ if (pre_size > 0) mi_os_mem_free(p, pre_size, commit, stats);
+ if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats);
+ // we can return the aligned pointer on `mmap` (and sbrk) systems
+ p = aligned_p;
}
-#else
- // overallocate...
- p = mi_os_mem_alloc(over_size, 1, commit, false, is_large, stats);
- if (p == NULL) return NULL;
- // and selectively unmap parts around the over-allocated area. (noop on sbrk)
- void* aligned_p = mi_align_up_ptr(p, alignment);
- size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
- size_t mid_size = _mi_align_up(size, _mi_os_page_size());
- size_t post_size = over_size - pre_size - mid_size;
- mi_assert_internal(pre_size < over_size && post_size < over_size && mid_size >= size);
- if (pre_size > 0) mi_os_mem_free(p, pre_size, commit, stats);
- if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats);
- // we can return the aligned pointer on `mmap` (and sbrk) systems
- p = aligned_p;
-#endif
}
mi_assert_internal(p == NULL || (p != NULL && ((uintptr_t)p % alignment) == 0));
@@ -801,7 +249,7 @@ static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit,
/* -----------------------------------------------------------
- OS API: alloc, free, alloc_aligned
+ OS API: alloc and alloc_aligned
----------------------------------------------------------- */
void* _mi_os_alloc(size_t size, mi_stats_t* tld_stats) {
@@ -813,21 +261,9 @@ void* _mi_os_alloc(size_t size, mi_stats_t* tld_stats) {
return mi_os_mem_alloc(size, 0, true, false, &is_large, stats);
}
-void _mi_os_free_ex(void* p, size_t size, bool was_committed, mi_stats_t* tld_stats) {
- MI_UNUSED(tld_stats);
- mi_stats_t* stats = &_mi_stats_main;
- if (size == 0 || p == NULL) return;
- size = _mi_os_good_alloc_size(size);
- mi_os_mem_free(p, size, was_committed, stats);
-}
-
-void _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
- _mi_os_free_ex(p, size, true, stats);
-}
-
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_stats_t* tld_stats)
{
- MI_UNUSED(&mi_os_get_aligned_hint); // suppress unused warnings
+ MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings
MI_UNUSED(tld_stats);
if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size);
@@ -880,11 +316,11 @@ void _mi_os_free_aligned(void* p, size_t size, size_t alignment, size_t align_of
_mi_os_free_ex(start, size + extra, was_committed, tld_stats);
}
+
/* -----------------------------------------------------------
OS memory API: reset, commit, decommit, protect, unprotect.
----------------------------------------------------------- */
-
// OS page align within a given area, either conservative (pages inside the area only),
// or not (straddling pages outside the area is possible)
static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) {
@@ -909,18 +345,6 @@ static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t*
return mi_os_page_align_areax(true, addr, size, newsize);
}
-static void mi_mprotect_hint(int err) {
-#if defined(MI_OS_USE_MMAP) && (MI_SECURE>=2) // guard page around every mimalloc page
- if (err == ENOMEM) {
- _mi_warning_message("the previous warning may have been caused by a low memory map limit.\n"
- " On Linux this is controlled by the vm.max_map_count. For example:\n"
- " > sudo sysctl -w vm.max_map_count=262144\n");
- }
-#else
- MI_UNUSED(err);
-#endif
-}
-
// Commit/Decommit memory.
// Usually commit is aligned liberal, while decommit is aligned conservative.
// (but not for the reset version where we want commit to be conservative as well)
@@ -930,7 +354,6 @@ static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservativ
size_t csize;
void* start = mi_os_page_align_areax(conservative, addr, size, &csize);
if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr))
- int err = 0;
if (commit) {
_mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit
_mi_stat_counter_increase(&stats->commit_calls, 1);
@@ -939,56 +362,9 @@ static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservativ
_mi_stat_decrease(&stats->committed, size);
}
- #if defined(_WIN32)
- if (commit) {
- // *is_zero = true; // note: if the memory was already committed, the call succeeds but the memory is not zero'd
- void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE);
- err = (p == start ? 0 : GetLastError());
- }
- else {
- BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT);
- err = (ok ? 0 : GetLastError());
- }
- #elif defined(__wasi__)
- // WebAssembly guests can't control memory protection
- #elif 0 && defined(MAP_FIXED) && !defined(__APPLE__)
- // Linux: disabled for now as mmap fixed seems much more expensive than MADV_DONTNEED (and splits VMA's?)
- if (commit) {
- // commit: just change the protection
- err = mprotect(start, csize, (PROT_READ | PROT_WRITE));
- if (err != 0) { err = errno; }
- }
- else {
- // decommit: use mmap with MAP_FIXED to discard the existing memory (and reduce rss)
- const int fd = mi_unix_mmap_fd();
- void* p = mmap(start, csize, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), fd, 0);
- if (p != start) { err = errno; }
- }
- #else
- // Linux, macOSX and others.
- if (commit) {
- // commit: ensure we can access the area
- err = mprotect(start, csize, (PROT_READ | PROT_WRITE));
- if (err != 0) { err = errno; }
- }
- else {
- #if defined(MADV_DONTNEED) && MI_DEBUG == 0 && MI_SECURE == 0
- // decommit: use MADV_DONTNEED as it decreases rss immediately (unlike MADV_FREE)
- // (on the other hand, MADV_FREE would be good enough.. it is just not reflected in the stats :-( )
- err = madvise(start, csize, MADV_DONTNEED);
- #else
- // decommit: just disable access (also used in debug and secure mode to trap on illegal access)
- err = mprotect(start, csize, PROT_NONE);
- if (err != 0) { err = errno; }
- #endif
- //#if defined(MADV_FREE_REUSE)
- // while ((err = mi_madvise(start, csize, MADV_FREE_REUSE)) != 0 && errno == EAGAIN) { errno = 0; }
- //#endif
- }
- #endif
+ int err = _mi_prim_commit(start, csize, commit);
if (err != 0) {
- _mi_warning_message("%s error: start: %p, csize: 0x%zx, err: %i\n", commit ? "commit" : "decommit", start, csize, err);
- mi_mprotect_hint(err);
+ _mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", commit ? "commit" : "decommit", err, err, start, csize);
}
mi_assert_internal(err == 0);
return (err == 0);
@@ -1027,45 +403,17 @@ static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats)
else _mi_stat_decrease(&stats->reset, csize);
if (!reset) return true; // nothing to do on unreset!
- #if (MI_DEBUG>1) && !MI_TRACK_ENABLED
+ #if (MI_DEBUG>1) && !MI_TRACK_ENABLED // && !MI_TSAN
if (MI_SECURE==0) {
memset(start, 0, csize); // pretend it is eagerly reset
}
#endif
-#if defined(_WIN32)
- // Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory
- void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
- mi_assert_internal(p == start);
- #if 1
- if (p == start && start != NULL) {
- VirtualUnlock(start,csize); // VirtualUnlock after MEM_RESET removes the memory from the working set
- }
- #endif
- if (p != start) return false;
-#else
-#if defined(MADV_FREE)
- static _Atomic(size_t) advice = MI_ATOMIC_VAR_INIT(MADV_FREE);
- int oadvice = (int)mi_atomic_load_relaxed(&advice);
- int err;
- while ((err = mi_madvise(start, csize, oadvice)) != 0 && errno == EAGAIN) { errno = 0; };
- if (err != 0 && errno == EINVAL && oadvice == MADV_FREE) {
- // if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on
- mi_atomic_store_release(&advice, (size_t)MADV_DONTNEED);
- err = mi_madvise(start, csize, MADV_DONTNEED);
- }
-#elif defined(__wasi__)
- int err = 0;
-#else
- int err = mi_madvise(start, csize, MADV_DONTNEED);
-#endif
+ int err = _mi_prim_reset(start, csize);
if (err != 0) {
- _mi_warning_message("madvise reset error: start: %p, csize: 0x%zx, errno: %i\n", start, csize, errno);
+ _mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
}
- //mi_assert(err == 0);
- if (err != 0) return false;
-#endif
- return true;
+ return (err == 0);
}
// Signal to the OS that the address range is no longer in use
@@ -1098,20 +446,9 @@ static bool mi_os_protectx(void* addr, size_t size, bool protect) {
_mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
}
*/
- int err = 0;
-#ifdef _WIN32
- DWORD oldprotect = 0;
- BOOL ok = VirtualProtect(start, csize, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect);
- err = (ok ? 0 : GetLastError());
-#elif defined(__wasi__)
- err = 0;
-#else
- err = mprotect(start, csize, protect ? PROT_NONE : (PROT_READ | PROT_WRITE));
- if (err != 0) { err = errno; }
-#endif
+ int err = _mi_prim_protect(start,csize,protect);
if (err != 0) {
- _mi_warning_message("mprotect error: start: %p, csize: 0x%zx, err: %i\n", start, csize, err);
- mi_mprotect_hint(err);
+ _mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize);
}
return (err == 0);
}
@@ -1126,115 +463,12 @@ bool _mi_os_unprotect(void* addr, size_t size) {
-bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) {
- // page align conservatively within the range
- mi_assert_internal(oldsize > newsize && p != NULL);
- if (oldsize < newsize || p == NULL) return false;
- if (oldsize == newsize) return true;
-
- // oldsize and newsize should be page aligned or we cannot shrink precisely
- void* addr = (uint8_t*)p + newsize;
- size_t size = 0;
- void* start = mi_os_page_align_area_conservative(addr, oldsize - newsize, &size);
- if (size == 0 || start != addr) return false;
-
-#ifdef _WIN32
- // we cannot shrink on windows, but we can decommit
- return _mi_os_decommit(start, size, stats);
-#else
- return mi_os_mem_free(start, size, true, stats);
-#endif
-}
-
-
/* ----------------------------------------------------------------------------
Support for allocating huge OS pages (1Gib) that are reserved up-front
and possibly associated with a specific NUMA node. (use `numa_node>=0`)
-----------------------------------------------------------------------------*/
#define MI_HUGE_OS_PAGE_SIZE (MI_GiB)
-#if defined(_WIN32) && (MI_INTPTR_SIZE >= 8)
-static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node)
-{
- mi_assert_internal(size%MI_GiB == 0);
- mi_assert_internal(addr != NULL);
- const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE;
-
- mi_win_enable_large_os_pages();
-
- MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} };
- // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
- static bool mi_huge_pages_available = true;
- if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) {
- params[0].Type.Type = MiMemExtendedParameterAttributeFlags;
- params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
- ULONG param_count = 1;
- if (numa_node >= 0) {
- param_count++;
- params[1].Type.Type = MiMemExtendedParameterNumaNode;
- params[1].Arg.ULong = (unsigned)numa_node;
- }
- SIZE_T psize = size;
- void* base = addr;
- NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count);
- if (err == 0 && base != NULL) {
- return base;
- }
- else {
- // fall back to regular large pages
- mi_huge_pages_available = false; // don't try further huge pages
- _mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err);
- }
- }
- // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
- if (pVirtualAlloc2 != NULL && numa_node >= 0) {
- params[0].Type.Type = MiMemExtendedParameterNumaNode;
- params[0].Arg.ULong = (unsigned)numa_node;
- return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, params, 1);
- }
-
- // otherwise use regular virtual alloc on older windows
- return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
-}
-
-#elif defined(MI_OS_USE_MMAP) && (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__)
-#include <sys/syscall.h>
-#ifndef MPOL_PREFERRED
-#define MPOL_PREFERRED 1
-#endif
-#if defined(SYS_mbind)
-static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
- return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags);
-}
-#else
-static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
- MI_UNUSED(start); MI_UNUSED(len); MI_UNUSED(mode); MI_UNUSED(nmask); MI_UNUSED(maxnode); MI_UNUSED(flags);
- return 0;
-}
-#endif
-static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) {
- mi_assert_internal(size%MI_GiB == 0);
- bool is_large = true;
- void* p = mi_unix_mmap(addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large);
- if (p == NULL) return NULL;
- if (numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes
- unsigned long numa_mask = (1UL << numa_node);
- // TODO: does `mbind` work correctly for huge OS pages? should we
- // use `set_mempolicy` before calling mmap instead?
- // see: <https://lkml.org/lkml/2017/2/9/875>
- long err = mi_os_mbind(p, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0);
- if (err != 0) {
- _mi_warning_message("failed to bind huge (1GiB) pages to numa node %d: %s\n", numa_node, strerror(errno));
- }
- }
- return p;
-}
-#else
-static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) {
- MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(numa_node);
- return NULL;
-}
-#endif
#if (MI_INTPTR_SIZE >= 8)
// To ensure proper alignment, use our own area for huge OS pages
@@ -1253,10 +487,10 @@ static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
if (start == 0) {
// Initialize the start address after the 32TiB area
start = ((uintptr_t)32 << 40); // 32TiB virtual start address
-#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
- uintptr_t r = _mi_heap_random_next(mi_get_default_heap());
+ #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
+ uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB
-#endif
+ #endif
}
end = start + size;
mi_assert_internal(end % MI_SEGMENT_SIZE == 0);
@@ -1285,23 +519,29 @@ void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_mse
// We allocate one page at the time to be able to abort if it takes too long
// or to at least allocate as many as available on the system.
mi_msecs_t start_t = _mi_clock_start();
- size_t page;
- for (page = 0; page < pages; page++) {
+ size_t page = 0;
+ while (page < pages) {
// allocate a page
void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE);
- void* p = mi_os_alloc_huge_os_pagesx(addr, MI_HUGE_OS_PAGE_SIZE, numa_node);
+ void* p = NULL;
+ int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &p);
+ if (err != 0) {
+ _mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE);
+ break;
+ }
// Did we succeed at a contiguous address?
if (p != addr) {
// no success, issue a warning and break
if (p != NULL) {
- _mi_warning_message("could not allocate contiguous huge page %zu at %p\n", page, addr);
+ _mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr);
_mi_os_free(p, MI_HUGE_OS_PAGE_SIZE, &_mi_stats_main);
}
break;
}
// success, record it
+ page++; // increase before timeout check (see issue #711)
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
_mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
@@ -1315,7 +555,7 @@ void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_mse
}
}
if (elapsed > max_msecs) {
- _mi_warning_message("huge page allocation timed out\n");
+ _mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page);
break;
}
}
@@ -1341,113 +581,6 @@ void _mi_os_free_huge_pages(void* p, size_t size, mi_stats_t* stats) {
/* ----------------------------------------------------------------------------
Support NUMA aware allocation
-----------------------------------------------------------------------------*/
-#ifdef _WIN32
-static size_t mi_os_numa_nodex(void) {
- USHORT numa_node = 0;
- if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) {
- // Extended API is supported
- MI_PROCESSOR_NUMBER pnum;
- (*pGetCurrentProcessorNumberEx)(&pnum);
- USHORT nnode = 0;
- BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode);
- if (ok) { numa_node = nnode; }
- }
- else if (pGetNumaProcessorNode != NULL) {
- // Vista or earlier, use older API that is limited to 64 processors. Issue #277
- DWORD pnum = GetCurrentProcessorNumber();
- UCHAR nnode = 0;
- BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode);
- if (ok) { numa_node = nnode; }
- }
- return numa_node;
-}
-
-static size_t mi_os_numa_node_countx(void) {
- ULONG numa_max = 0;
- GetNumaHighestNodeNumber(&numa_max);
- // find the highest node number that has actual processors assigned to it. Issue #282
- while(numa_max > 0) {
- if (pGetNumaNodeProcessorMaskEx != NULL) {
- // Extended API is supported
- GROUP_AFFINITY affinity;
- if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) {
- if (affinity.Mask != 0) break; // found the maximum non-empty node
- }
- }
- else {
- // Vista or earlier, use older API that is limited to 64 processors.
- ULONGLONG mask;
- if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) {
- if (mask != 0) break; // found the maximum non-empty node
- };
- }
- // max node was invalid or had no processor assigned, try again
- numa_max--;
- }
- return ((size_t)numa_max + 1);
-}
-#elif defined(__linux__)
-#include <sys/syscall.h> // getcpu
-#include <stdio.h> // access
-
-static size_t mi_os_numa_nodex(void) {
-#ifdef SYS_getcpu
- unsigned long node = 0;
- unsigned long ncpu = 0;
- long err = syscall(SYS_getcpu, &ncpu, &node, NULL);
- if (err != 0) return 0;
- return node;
-#else
- return 0;
-#endif
-}
-static size_t mi_os_numa_node_countx(void) {
- char buf[128];
- unsigned node = 0;
- for(node = 0; node < 256; node++) {
- // enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation)
- snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1);
- if (access(buf,R_OK) != 0) break;
- }
- return (node+1);
-}
-#elif defined(__FreeBSD__) && __FreeBSD_version >= 1200000
-static size_t mi_os_numa_nodex(void) {
- domainset_t dom;
- size_t node;
- int policy;
- if (cpuset_getdomain(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(dom), &dom, &policy) == -1) return 0ul;
- for (node = 0; node < MAXMEMDOM; node++) {
- if (DOMAINSET_ISSET(node, &dom)) return node;
- }
- return 0ul;
-}
-static size_t mi_os_numa_node_countx(void) {
- size_t ndomains = 0;
- size_t len = sizeof(ndomains);
- if (sysctlbyname("vm.ndomains", &ndomains, &len, NULL, 0) == -1) return 0ul;
- return ndomains;
-}
-#elif defined(__DragonFly__)
-static size_t mi_os_numa_nodex(void) {
- // TODO: DragonFly does not seem to provide any userland means to get this information.
- return 0ul;
-}
-static size_t mi_os_numa_node_countx(void) {
- size_t ncpus = 0, nvirtcoresperphys = 0;
- size_t len = sizeof(size_t);
- if (sysctlbyname("hw.ncpu", &ncpus, &len, NULL, 0) == -1) return 0ul;
- if (sysctlbyname("hw.cpu_topology_ht_ids", &nvirtcoresperphys, &len, NULL, 0) == -1) return 0ul;
- return nvirtcoresperphys * ncpus;
-}
-#else
-static size_t mi_os_numa_nodex(void) {
- return 0;
-}
-static size_t mi_os_numa_node_countx(void) {
- return 1;
-}
-#endif
_Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count
@@ -1459,7 +592,7 @@ size_t _mi_os_numa_node_count_get(void) {
count = (size_t)ncount;
}
else {
- count = mi_os_numa_node_countx(); // or detect dynamically
+ count = _mi_prim_numa_node_count(); // or detect dynamically
if (count == 0) count = 1;
}
mi_atomic_store_release(&_mi_numa_node_count, count); // save it
@@ -1473,7 +606,7 @@ int _mi_os_numa_node_get(mi_os_tld_t* tld) {
size_t numa_count = _mi_os_numa_node_count();
if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0
// never more than the node count and >= 0
- size_t numa_node = mi_os_numa_nodex();
+ size_t numa_node = _mi_prim_numa_node();
if (numa_node >= numa_count) { numa_node = numa_node % numa_count; }
return (int)numa_node;
}