summaryrefslogtreecommitdiff
path: root/source/luametatex/source/libraries/mimalloc/src/alloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'source/luametatex/source/libraries/mimalloc/src/alloc.c')
-rw-r--r--source/luametatex/source/libraries/mimalloc/src/alloc.c934
1 files changed, 934 insertions, 0 deletions
diff --git a/source/luametatex/source/libraries/mimalloc/src/alloc.c b/source/luametatex/source/libraries/mimalloc/src/alloc.c
new file mode 100644
index 000000000..1a36b5da8
--- /dev/null
+++ b/source/luametatex/source/libraries/mimalloc/src/alloc.c
@@ -0,0 +1,934 @@
+/* ----------------------------------------------------------------------------
+Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+#ifndef _DEFAULT_SOURCE
+#define _DEFAULT_SOURCE // for realpath() on Linux
+#endif
+
+#include "mimalloc.h"
+#include "mimalloc-internal.h"
+#include "mimalloc-atomic.h"
+
+#include <string.h> // memset, strlen
+#include <stdlib.h> // malloc, exit
+
+#define MI_IN_ALLOC_C
+#include "alloc-override.c"
+#undef MI_IN_ALLOC_C
+
+// ------------------------------------------------------
+// Allocation
+// ------------------------------------------------------
+
+// Fast allocation in a page: just pop from the free list.
+// Fall back to generic allocation only if the list is empty.
+extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept {
+ mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
+ mi_block_t* const block = page->free;
+ if (mi_unlikely(block == NULL)) {
+ return _mi_malloc_generic(heap, size);
+ }
+ mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
+ // pop from the free list
+ page->used++;
+ page->free = mi_block_next(page, block);
+ mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
+
+#if (MI_DEBUG>0)
+ if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); }
+#elif (MI_SECURE!=0)
+ block->next = 0; // don't leak internal data
+#endif
+
+#if (MI_STAT>0)
+ const size_t bsize = mi_page_usable_block_size(page);
+ if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
+ mi_heap_stat_increase(heap, normal, bsize);
+ mi_heap_stat_counter_increase(heap, normal_count, 1);
+#if (MI_STAT>1)
+ const size_t bin = _mi_bin(bsize);
+ mi_heap_stat_increase(heap, normal_bins[bin], 1);
+#endif
+ }
+#endif
+
+#if (MI_PADDING > 0) && defined(MI_ENCODE_FREELIST)
+ mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
+ ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
+ mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
+ padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
+ padding->delta = (uint32_t)(delta);
+ uint8_t* fill = (uint8_t*)padding - delta;
+ const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
+ for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
+#endif
+
+ return block;
+}
+
+// allocate a small block
+extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
+ mi_assert(heap!=NULL);
+ mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
+ mi_assert(size <= MI_SMALL_SIZE_MAX);
+ #if (MI_PADDING)
+ if (size == 0) {
+ size = sizeof(void*);
+ }
+ #endif
+ mi_page_t* page = _mi_heap_get_free_small_page(heap,size + MI_PADDING_SIZE);
+ void* p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE);
+ mi_assert_internal(p==NULL || mi_usable_size(p) >= size);
+ #if MI_STAT>1
+ if (p != NULL) {
+ if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
+ mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
+ }
+ #endif
+ return p;
+}
+
+extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept {
+ return mi_heap_malloc_small(mi_get_default_heap(), size);
+}
+
+// The main allocation function
+extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
+ if (mi_likely(size <= MI_SMALL_SIZE_MAX)) {
+ return mi_heap_malloc_small(heap, size);
+ }
+ else {
+ mi_assert(heap!=NULL);
+ mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
+ void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE); // note: size can overflow but it is detected in malloc_generic
+ mi_assert_internal(p == NULL || mi_usable_size(p) >= size);
+ #if MI_STAT>1
+ if (p != NULL) {
+ if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
+ mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
+ }
+ #endif
+ return p;
+ }
+}
+
+extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept {
+ return mi_heap_malloc(mi_get_default_heap(), size);
+}
+
+
+void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) {
+ // note: we need to initialize the whole usable block size to zero, not just the requested size,
+ // or the recalloc/rezalloc functions cannot safely expand in place (see issue #63)
+ MI_UNUSED(size);
+ mi_assert_internal(p != NULL);
+ mi_assert_internal(mi_usable_size(p) >= size); // size can be zero
+ mi_assert_internal(_mi_ptr_page(p)==page);
+ if (page->is_zero && size > sizeof(mi_block_t)) {
+ // already zero initialized memory
+ ((mi_block_t*)p)->next = 0; // clear the free list pointer
+ mi_assert_expensive(mi_mem_is_zero(p, mi_usable_size(p)));
+ }
+ else {
+ // otherwise memset
+ memset(p, 0, mi_usable_size(p));
+ }
+}
+
+// zero initialized small block
+mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept {
+ void* p = mi_malloc_small(size);
+ if (p != NULL) {
+ _mi_block_zero_init(_mi_ptr_page(p), p, size); // todo: can we avoid getting the page again?
+ }
+ return p;
+}
+
+void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
+ void* p = mi_heap_malloc(heap,size);
+ if (zero && p != NULL) {
+ _mi_block_zero_init(_mi_ptr_page(p),p,size); // todo: can we avoid getting the page again?
+ }
+ return p;
+}
+
+extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
+ return _mi_heap_malloc_zero(heap, size, true);
+}
+
+mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept {
+ return mi_heap_zalloc(mi_get_default_heap(),size);
+}
+
+
+// ------------------------------------------------------
+// Check for double free in secure and debug mode
+// This is somewhat expensive so only enabled for secure mode 4
+// ------------------------------------------------------
+
+#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
+// linear check if the free list contains a specific element
+static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
+ while (list != NULL) {
+ if (elem==list) return true;
+ list = mi_block_next(page, list);
+ }
+ return false;
+}
+
+static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
+ // The decoded value is in the same page (or NULL).
+ // Walk the free lists to verify positively if it is already freed
+ if (mi_list_contains(page, page->free, block) ||
+ mi_list_contains(page, page->local_free, block) ||
+ mi_list_contains(page, mi_page_thread_free(page), block))
+ {
+ _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
+ return true;
+ }
+ return false;
+}
+
+static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
+ mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
+ if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
+ (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
+ {
+ // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
+ // (continue in separate function to improve code generation)
+ return mi_check_is_double_freex(page, block);
+ }
+ return false;
+}
+#else
+static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(page);
+ MI_UNUSED(block);
+ return false;
+}
+#endif
+
+// ---------------------------------------------------------------------------
+// Check for heap block overflow by setting up padding at the end of the block
+// ---------------------------------------------------------------------------
+
+#if (MI_PADDING>0) && defined(MI_ENCODE_FREELIST)
+static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
+ *bsize = mi_page_usable_block_size(page);
+ const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
+ *delta = padding->delta;
+ return ((uint32_t)mi_ptr_encode(page,block,page->keys) == padding->canary && *delta <= *bsize);
+}
+
+// Return the exact usable size of a block.
+static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
+ size_t bsize;
+ size_t delta;
+ bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
+ mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
+ return (ok ? bsize - delta : 0);
+}
+
+static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
+ size_t bsize;
+ size_t delta;
+ bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
+ *size = *wrong = bsize;
+ if (!ok) return false;
+ mi_assert_internal(bsize >= delta);
+ *size = bsize - delta;
+ uint8_t* fill = (uint8_t*)block + bsize - delta;
+ const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
+ for (size_t i = 0; i < maxpad; i++) {
+ if (fill[i] != MI_DEBUG_PADDING) {
+ *wrong = bsize - delta + i;
+ return false;
+ }
+ }
+ return true;
+}
+
+static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
+ size_t size;
+ size_t wrong;
+ if (!mi_verify_padding(page,block,&size,&wrong)) {
+ _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
+ }
+}
+
+// When a non-thread-local block is freed, it becomes part of the thread delayed free
+// list that is freed later by the owning heap. If the exact usable size is too small to
+// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
+// so it will later not trigger an overflow error in `mi_free_block`.
+static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
+ size_t bsize;
+ size_t delta;
+ bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
+ mi_assert_internal(ok);
+ if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
+ mi_assert_internal(bsize >= min_size);
+ if (bsize < min_size) return; // should never happen
+ size_t new_delta = (bsize - min_size);
+ mi_assert_internal(new_delta < bsize);
+ mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
+ padding->delta = (uint32_t)new_delta;
+}
+#else
+static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(page);
+ MI_UNUSED(block);
+}
+
+static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(block);
+ return mi_page_usable_block_size(page);
+}
+
+static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
+ MI_UNUSED(page);
+ MI_UNUSED(block);
+ MI_UNUSED(min_size);
+}
+#endif
+
+// only maintain stats for smaller objects if requested
+#if (MI_STAT>0)
+static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
+ #if (MI_STAT < 2)
+ MI_UNUSED(block);
+ #endif
+ mi_heap_t* const heap = mi_heap_get_default();
+ const size_t bsize = mi_page_usable_block_size(page);
+ #if (MI_STAT>1)
+ const size_t usize = mi_page_usable_size_of(page, block);
+ mi_heap_stat_decrease(heap, malloc, usize);
+ #endif
+ if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
+ mi_heap_stat_decrease(heap, normal, bsize);
+ #if (MI_STAT > 1)
+ mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
+ #endif
+ }
+ else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
+ mi_heap_stat_decrease(heap, large, bsize);
+ }
+ else {
+ mi_heap_stat_decrease(heap, huge, bsize);
+ }
+}
+#else
+static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(page); MI_UNUSED(block);
+}
+#endif
+
+#if (MI_STAT>0)
+// maintain stats for huge objects
+static void mi_stat_huge_free(const mi_page_t* page) {
+ mi_heap_t* const heap = mi_heap_get_default();
+ const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
+ if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
+ mi_heap_stat_decrease(heap, large, bsize);
+ }
+ else {
+ mi_heap_stat_decrease(heap, huge, bsize);
+ }
+}
+#else
+static void mi_stat_huge_free(const mi_page_t* page) {
+ MI_UNUSED(page);
+}
+#endif
+
+// ------------------------------------------------------
+// Free
+// ------------------------------------------------------
+
+// multi-threaded free
+static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
+{
+ // The padding check may access the non-thread-owned page for the key values.
+ // that is safe as these are constant and the page won't be freed (as the block is not freed yet).
+ mi_check_padding(page, block);
+ mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
+ #if (MI_DEBUG!=0)
+ memset(block, MI_DEBUG_FREED, mi_usable_size(block));
+ #endif
+
+ // huge page segments are always abandoned and can be freed immediately
+ mi_segment_t* segment = _mi_page_segment(page);
+ if (segment->kind==MI_SEGMENT_HUGE) {
+ mi_stat_huge_free(page);
+ _mi_segment_huge_page_free(segment, page, block);
+ return;
+ }
+
+ // Try to put the block on either the page-local thread free list, or the heap delayed free list.
+ mi_thread_free_t tfreex;
+ bool use_delayed;
+ mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
+ do {
+ use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
+ if (mi_unlikely(use_delayed)) {
+ // unlikely: this only happens on the first concurrent free in a page that is in the full list
+ tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
+ }
+ else {
+ // usual: directly add to page thread_free list
+ mi_block_set_next(page, block, mi_tf_block(tfree));
+ tfreex = mi_tf_set_block(tfree,block);
+ }
+ } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
+
+ if (mi_unlikely(use_delayed)) {
+ // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
+ mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
+ mi_assert_internal(heap != NULL);
+ if (heap != NULL) {
+ // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
+ mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
+ do {
+ mi_block_set_nextx(heap,block,dfree, heap->keys);
+ } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
+ }
+
+ // and reset the MI_DELAYED_FREEING flag
+ tfree = mi_atomic_load_relaxed(&page->xthread_free);
+ do {
+ tfreex = tfree;
+ mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
+ tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
+ } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
+ }
+}
+
+// regular free
+static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
+{
+ // and push it on the free list
+ if (mi_likely(local)) {
+ // owning thread can free a block directly
+ if (mi_unlikely(mi_check_is_double_free(page, block))) return;
+ mi_check_padding(page, block);
+ #if (MI_DEBUG!=0)
+ memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
+ #endif
+ mi_block_set_next(page, block, page->local_free);
+ page->local_free = block;
+ page->used--;
+ if (mi_unlikely(mi_page_all_free(page))) {
+ _mi_page_retire(page);
+ }
+ else if (mi_unlikely(mi_page_is_in_full(page))) {
+ _mi_page_unfull(page);
+ }
+ }
+ else {
+ _mi_free_block_mt(page,block);
+ }
+}
+
+
+// Adjust a block that was allocated aligned, to the actual start of the block in the page.
+mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
+ mi_assert_internal(page!=NULL && p!=NULL);
+ const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
+ const size_t adjust = (diff % mi_page_block_size(page));
+ return (mi_block_t*)((uintptr_t)p - adjust);
+}
+
+
+static void mi_decl_noinline mi_free_generic(const mi_segment_t* segment, bool local, void* p) mi_attr_noexcept {
+ mi_page_t* const page = _mi_segment_page_of(segment, p);
+ mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
+ mi_stat_free(page, block);
+ _mi_free_block(page, local, block);
+}
+
+// Get the segment data belonging to a pointer
+// This is just a single `and` in assembly but does further checks in debug mode
+// (and secure mode) if this was a valid pointer.
+static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
+{
+ MI_UNUSED(msg);
+#if (MI_DEBUG>0)
+ if (mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0)) {
+ _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
+ return NULL;
+ }
+#endif
+
+ mi_segment_t* const segment = _mi_ptr_segment(p);
+ if (mi_unlikely(segment == NULL)) return NULL; // checks also for (p==NULL)
+
+#if (MI_DEBUG>0)
+ if (mi_unlikely(!mi_is_in_heap_region(p))) {
+ _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
+ "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
+ if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) {
+ _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
+ }
+ }
+#endif
+#if (MI_DEBUG>0 || MI_SECURE>=4)
+ if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) {
+ _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
+ return NULL;
+ }
+#endif
+ return segment;
+}
+
+// Free a block
+void mi_free(void* p) mi_attr_noexcept
+{
+ mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
+ if (mi_unlikely(segment == NULL)) return;
+
+ mi_threadid_t tid = _mi_thread_id();
+ mi_page_t* const page = _mi_segment_page_of(segment, p);
+
+ if (mi_likely(tid == mi_atomic_load_relaxed(&segment->thread_id) && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks
+ // local, and not full or aligned
+ mi_block_t* block = (mi_block_t*)(p);
+ if (mi_unlikely(mi_check_is_double_free(page,block))) return;
+ mi_check_padding(page, block);
+ mi_stat_free(page, block);
+ #if (MI_DEBUG!=0)
+ memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
+ #endif
+ mi_block_set_next(page, block, page->local_free);
+ page->local_free = block;
+ if (mi_unlikely(--page->used == 0)) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
+ _mi_page_retire(page);
+ }
+ }
+ else {
+ // non-local, aligned blocks, or a full page; use the more generic path
+ // note: recalc page in generic to improve code generation
+ mi_free_generic(segment, tid == segment->thread_id, p);
+ }
+}
+
+bool _mi_free_delayed_block(mi_block_t* block) {
+ // get segment and page
+ const mi_segment_t* const segment = _mi_ptr_segment(block);
+ mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
+ mi_assert_internal(_mi_thread_id() == segment->thread_id);
+ mi_page_t* const page = _mi_segment_page_of(segment, block);
+
+ // Clear the no-delayed flag so delayed freeing is used again for this page.
+ // This must be done before collecting the free lists on this page -- otherwise
+ // some blocks may end up in the page `thread_free` list with no blocks in the
+ // heap `thread_delayed_free` list which may cause the page to be never freed!
+ // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
+ _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */);
+
+ // collect all other non-local frees to ensure up-to-date `used` count
+ _mi_page_free_collect(page, false);
+
+ // and free the block (possibly freeing the page as well since used is updated)
+ _mi_free_block(page, true, block);
+ return true;
+}
+
+// Bytes available in a block
+mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
+ const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
+ const size_t size = mi_page_usable_size_of(page, block);
+ const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
+ mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
+ return (size - adjust);
+}
+
+static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
+ const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
+ if (segment==NULL) return 0; // also returns 0 if `p == NULL`
+ const mi_page_t* const page = _mi_segment_page_of(segment, p);
+ if (mi_likely(!mi_page_has_aligned(page))) {
+ const mi_block_t* block = (const mi_block_t*)p;
+ return mi_page_usable_size_of(page, block);
+ }
+ else {
+ // split out to separate routine for improved code generation
+ return mi_page_usable_aligned_size_of(segment, page, p);
+ }
+}
+
+size_t mi_usable_size(const void* p) mi_attr_noexcept {
+ return _mi_usable_size(p, "mi_usable_size");
+}
+
+
+// ------------------------------------------------------
+// ensure explicit external inline definitions are emitted!
+// ------------------------------------------------------
+
+#ifdef __cplusplus
+void* _mi_externs[] = {
+ (void*)&_mi_page_malloc,
+ (void*)&mi_malloc,
+ (void*)&mi_malloc_small,
+ (void*)&mi_zalloc_small,
+ (void*)&mi_heap_malloc,
+ (void*)&mi_heap_zalloc,
+ (void*)&mi_heap_malloc_small
+};
+#endif
+
+
+// ------------------------------------------------------
+// Allocation extensions
+// ------------------------------------------------------
+
+void mi_free_size(void* p, size_t size) mi_attr_noexcept {
+ MI_UNUSED_RELEASE(size);
+ mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
+ mi_free(p);
+}
+
+void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
+ MI_UNUSED_RELEASE(alignment);
+ mi_assert(((uintptr_t)p % alignment) == 0);
+ mi_free_size(p,size);
+}
+
+void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
+ MI_UNUSED_RELEASE(alignment);
+ mi_assert(((uintptr_t)p % alignment) == 0);
+ mi_free(p);
+}
+
+extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
+ size_t total;
+ if (mi_count_size_overflow(count,size,&total)) return NULL;
+ return mi_heap_zalloc(heap,total);
+}
+
+mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
+ return mi_heap_calloc(mi_get_default_heap(),count,size);
+}
+
+// Uninitialized `calloc`
+extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
+ size_t total;
+ if (mi_count_size_overflow(count, size, &total)) return NULL;
+ return mi_heap_malloc(heap, total);
+}
+
+mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
+ return mi_heap_mallocn(mi_get_default_heap(),count,size);
+}
+
+// Expand (or shrink) in place (or fail)
+void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
+ #if MI_PADDING
+ // we do not shrink/expand with padding enabled
+ MI_UNUSED(p); MI_UNUSED(newsize);
+ return NULL;
+ #else
+ if (p == NULL) return NULL;
+ const size_t size = _mi_usable_size(p,"mi_expand");
+ if (newsize > size) return NULL;
+ return p; // it fits
+ #endif
+}
+
+void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept {
+ const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL
+ if (mi_unlikely(newsize <= size && newsize >= (size / 2))) {
+ // todo: adjust potential padding to reflect the new size?
+ return p; // reallocation still fits and not more than 50% waste
+ }
+ void* newp = mi_heap_malloc(heap,newsize);
+ if (mi_likely(newp != NULL)) {
+ if (zero && newsize > size) {
+ // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
+ const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
+ memset((uint8_t*)newp + start, 0, newsize - start);
+ }
+ if (mi_likely(p != NULL)) {
+ _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
+ mi_free(p); // only free the original pointer if successful
+ }
+ }
+ return newp;
+}
+
+void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
+ return _mi_heap_realloc_zero(heap, p, newsize, false);
+}
+
+void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
+ size_t total;
+ if (mi_count_size_overflow(count, size, &total)) return NULL;
+ return mi_heap_realloc(heap, p, total);
+}
+
+
+// Reallocate but free `p` on errors
+void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
+ void* newp = mi_heap_realloc(heap, p, newsize);
+ if (newp==NULL && p!=NULL) mi_free(p);
+ return newp;
+}
+
+void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
+ return _mi_heap_realloc_zero(heap, p, newsize, true);
+}
+
+void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
+ size_t total;
+ if (mi_count_size_overflow(count, size, &total)) return NULL;
+ return mi_heap_rezalloc(heap, p, total);
+}
+
+
+void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
+ return mi_heap_realloc(mi_get_default_heap(),p,newsize);
+}
+
+void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
+ return mi_heap_reallocn(mi_get_default_heap(),p,count,size);
+}
+
+// Reallocate but free `p` on errors
+void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
+ return mi_heap_reallocf(mi_get_default_heap(),p,newsize);
+}
+
+void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
+ return mi_heap_rezalloc(mi_get_default_heap(), p, newsize);
+}
+
+void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
+ return mi_heap_recalloc(mi_get_default_heap(), p, count, size);
+}
+
+
+
+// ------------------------------------------------------
+// strdup, strndup, and realpath
+// ------------------------------------------------------
+
+// `strdup` using mi_malloc
+mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept {
+ if (s == NULL) return NULL;
+ size_t n = strlen(s);
+ char* t = (char*)mi_heap_malloc(heap,n+1);
+ if (t != NULL) _mi_memcpy(t, s, n + 1);
+ return t;
+}
+
+mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept {
+ return mi_heap_strdup(mi_get_default_heap(), s);
+}
+
+// `strndup` using mi_malloc
+mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept {
+ if (s == NULL) return NULL;
+ const char* end = (const char*)memchr(s, 0, n); // find end of string in the first `n` characters (returns NULL if not found)
+ const size_t m = (end != NULL ? (size_t)(end - s) : n); // `m` is the minimum of `n` or the end-of-string
+ mi_assert_internal(m <= n);
+ char* t = (char*)mi_heap_malloc(heap, m+1);
+ if (t == NULL) return NULL;
+ _mi_memcpy(t, s, m);
+ t[m] = 0;
+ return t;
+}
+
+mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept {
+ return mi_heap_strndup(mi_get_default_heap(),s,n);
+}
+
+#ifndef __wasi__
+// `realpath` using mi_malloc
+#ifdef _WIN32
+#ifndef PATH_MAX
+#define PATH_MAX MAX_PATH
+#endif
+#include <windows.h>
+mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
+ // todo: use GetFullPathNameW to allow longer file names
+ char buf[PATH_MAX];
+ DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL);
+ if (res == 0) {
+ errno = GetLastError(); return NULL;
+ }
+ else if (res > PATH_MAX) {
+ errno = EINVAL; return NULL;
+ }
+ else if (resolved_name != NULL) {
+ return resolved_name;
+ }
+ else {
+ return mi_heap_strndup(heap, buf, PATH_MAX);
+ }
+}
+#else
+#include <unistd.h> // pathconf
+static size_t mi_path_max(void) {
+ static size_t path_max = 0;
+ if (path_max <= 0) {
+ long m = pathconf("/",_PC_PATH_MAX);
+ if (m <= 0) path_max = 4096; // guess
+ else if (m < 256) path_max = 256; // at least 256
+ else path_max = m;
+ }
+ return path_max;
+}
+
+char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
+ if (resolved_name != NULL) {
+ return realpath(fname,resolved_name);
+ }
+ else {
+ size_t n = mi_path_max();
+ char* buf = (char*)mi_malloc(n+1);
+ if (buf==NULL) return NULL;
+ char* rname = realpath(fname,buf);
+ char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL`
+ mi_free(buf);
+ return result;
+ }
+}
+#endif
+
+mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept {
+ return mi_heap_realpath(mi_get_default_heap(),fname,resolved_name);
+}
+#endif
+
+/*-------------------------------------------------------
+C++ new and new_aligned
+The standard requires calling into `get_new_handler` and
+throwing the bad_alloc exception on failure. If we compile
+with a C++ compiler we can implement this precisely. If we
+use a C compiler we cannot throw a `bad_alloc` exception
+but we call `exit` instead (i.e. not returning).
+-------------------------------------------------------*/
+
+#ifdef __cplusplus
+#include <new>
+static bool mi_try_new_handler(bool nothrow) {
+ #if defined(_MSC_VER) || (__cplusplus >= 201103L)
+ std::new_handler h = std::get_new_handler();
+ #else
+ std::new_handler h = std::set_new_handler();
+ std::set_new_handler(h);
+ #endif
+ if (h==NULL) {
+ _mi_error_message(ENOMEM, "out of memory in 'new'");
+ if (!nothrow) {
+ throw std::bad_alloc();
+ }
+ return false;
+ }
+ else {
+ h();
+ return true;
+ }
+}
+#else
+typedef void (*std_new_handler_t)(void);
+
+#if (defined(__GNUC__) || defined(__clang__))
+std_new_handler_t __attribute((weak)) _ZSt15get_new_handlerv(void) {
+ return NULL;
+}
+static std_new_handler_t mi_get_new_handler(void) {
+ return _ZSt15get_new_handlerv();
+}
+#else
+// note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`.
+static std_new_handler_t mi_get_new_handler() {
+ return NULL;
+}
+#endif
+
+static bool mi_try_new_handler(bool nothrow) {
+ std_new_handler_t h = mi_get_new_handler();
+ if (h==NULL) {
+ _mi_error_message(ENOMEM, "out of memory in 'new'");
+ if (!nothrow) {
+ abort(); // cannot throw in plain C, use abort
+ }
+ return false;
+ }
+ else {
+ h();
+ return true;
+ }
+}
+#endif
+
+static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow ) {
+ void* p = NULL;
+ while(p == NULL && mi_try_new_handler(nothrow)) {
+ p = mi_malloc(size);
+ }
+ return p;
+}
+
+mi_decl_restrict void* mi_new(size_t size) {
+ void* p = mi_malloc(size);
+ if (mi_unlikely(p == NULL)) return mi_try_new(size,false);
+ return p;
+}
+
+mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept {
+ void* p = mi_malloc(size);
+ if (mi_unlikely(p == NULL)) return mi_try_new(size, true);
+ return p;
+}
+
+mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) {
+ void* p;
+ do {
+ p = mi_malloc_aligned(size, alignment);
+ }
+ while(p == NULL && mi_try_new_handler(false));
+ return p;
+}
+
+mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept {
+ void* p;
+ do {
+ p = mi_malloc_aligned(size, alignment);
+ }
+ while(p == NULL && mi_try_new_handler(true));
+ return p;
+}
+
+mi_decl_restrict void* mi_new_n(size_t count, size_t size) {
+ size_t total;
+ if (mi_unlikely(mi_count_size_overflow(count, size, &total))) {
+ mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
+ return NULL;
+ }
+ else {
+ return mi_new(total);
+ }
+}
+
+void* mi_new_realloc(void* p, size_t newsize) {
+ void* q;
+ do {
+ q = mi_realloc(p, newsize);
+ } while (q == NULL && mi_try_new_handler(false));
+ return q;
+}
+
+void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
+ size_t total;
+ if (mi_unlikely(mi_count_size_overflow(newcount, size, &total))) {
+ mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
+ return NULL;
+ }
+ else {
+ return mi_new_realloc(p, total);
+ }
+}