if not modules then modules = { } end modules ['char-utf'] = { version = 1.001, comment = "companion to char-utf.mkiv", author = "Hans Hagen, PRAGMA-ADE, Hasselt NL", copyright = "PRAGMA ADE / ConTeXt Development Team", license = "see context related readme files" } --[[ldx--
When a sequence of
This module implements methods for collapsing and expanding
We implement these manipulations as filters. One can run multiple filters over a string.
--ldx]]-- local utf = unicode.utf8 local concat, gmatch = table.concat, string.gmatch local utfcharacters, utfvalues = string.utfcharacters, string.utfvalues local ctxcatcodes = tex.ctxcatcodes characters = characters or { } characters.graphemes = characters.graphemes or { } characters.filters = characters.filters or { } characters.filters.utf = characters.filters.utf or { } characters.filters.utf.initialized = false characters.filters.utf.collapsing = true characters.filters.utf.expanding = true local graphemes = characters.graphemes local utffilters = characters.filters.utf local utfchar, utfbyte, utfgsub = utf.char, utf.byte, utf.gsub --[[ldx--It only makes sense to collapse at runtime, since we don't expect source code to depend on collapsing.
--ldx]]-- function utffilters.initialize() if utffilters.collapsing and not utffilters.initialized then for k,v in next, characters.data do -- using vs and first testing for length is faster (.02->.01 s) local vs = v.specials if vs and #vs == 3 and vs[1] == 'char' then local first, second = utfchar(vs[2]), utfchar(vs[3]) local cgf = graphemes[first] if not cgf then cgf = { } graphemes[first] = cgf end cgf[second] = utfchar(k) end end utffilters.initialized = true end end -- utffilters.add_grapheme(utfchar(318),'l','\string~') -- utffilters.add_grapheme('c','a','b') function utffilters.add_grapheme(result,first,second) local r, f, s = tonumber(result), tonumber(first), tonumber(second) if r then result = utfchar(r) end if f then first = utfchar(f) end if s then second = utfchar(s) end if not graphemes[first] then graphemes[first] = { [second] = result } else graphemes[first][second] = result end end function utffilters.collapse(str) -- old one if utffilters.collapsing and str and #str > 1 then if not utffilters.initialized then -- saves a call utffilters.initialize() end local tokens, first, done = { }, false, false for second in utfcharacters(str) do local cgf = graphemes[first] if cgf and cgf[second] then first, done = cgf[second], true elseif first then tokens[#tokens+1] = first first = second else first = second end end if done then tokens[#tokens+1] = first return concat(tokens) end end return str end --[[ldx--In order to deal with 8-bit output, we need to find a way to
go from
This leaves us problems with characters that are specific to
We can remap some chars that tex input files are sensitive for to a private area (while writing to a utility file) and revert then to their original slot when we read in such a file. Instead of reverting, we can (when we resolve characters to glyphs) map them to their right glyph there.
For this purpose we can use the private planes 0x0F0000 and 0x100000.
--ldx]]-- utffilters.private = { high = { }, low = { }, escapes = { }, } local low = utffilters.private.low local high = utffilters.private.high local escapes = utffilters.private.escapes local special = "~#$%^&_{}\\|" function utffilters.private.set(ch) local cb if type(ch) == "number" then cb, ch = ch, utfchar(ch) else cb = utfbyte(ch) end if cb < 256 then low[ch] = utfchar(0x0F0000 + cb) high[utfchar(0x0F0000 + cb)] = ch escapes[ch] = "\\" .. ch end end function utffilters.private.replace(str) return utfgsub(str,"(.)", low ) end function utffilters.private.revert(str) return utfgsub(str,"(.)", high ) end function utffilters.private.escape(str) return utfgsub(str,"(.)", escapes) end local set = utffilters.private.set for ch in gmatch(special,".") do set(ch) end --[[ldx--We get a more efficient variant of this when we integrate replacements in collapser. This more or less renders the previous private code redundant. The following code is equivalent but the first snippet uses the relocated dollars.
The next variant has lazy token collecting, on a 140 page mk.tex this saves about .25 seconds, which is understandable because we have no graphmes and not collecting tokens is not only faster but also saves garbage collecting.
--ldx]]-- -- lpeg variant is not faster function utffilters.collapse(str) -- not really tested (we could preallocate a table) if cf.collapsing and str then if #str > 1 then if not cf.initialized then -- saves a call cf.initialize() end local tokens, first, done, n = { }, false, false, 0 for second in utfcharacters(str) do if done then local crs = cr[second] if crs then if first then tokens[#tokens+1] = first end first = crs else local cgf = graphemes[first] if cgf and cgf[second] then first = cgf[second] elseif first then tokens[#tokens+1] = first first = second else first = second end end else local crs = cr[second] if crs then for s in utfcharacters(str) do if n == 1 then break else tokens[#tokens+1], n = s, n - 1 end end if first then tokens[#tokens+1] = first end first, done = crs, true else local cgf = graphemes[first] if cgf and cgf[second] then for s in utfcharacters(str) do if n == 1 then break else tokens[#tokens+1], n = s, n -1 end end first, done = cgf[second], true else first, n = second, n + 1 end end end end if done then tokens[#tokens+1] = first return concat(tokens) -- seldom called end elseif #str > 0 then return cr[str] or str end end return str end --[[ldx--Next we implement some commands that are used in the user interface.
--ldx]]-- commands = commands or { } function commands.uchar(first,second) tex.sprint(ctxcatcodes,utfchar(first*256+second)) end --[[ldx--A few helpers (used to be