%D \module %D [ file=meta-pdf, %D version=2006.06.07, %D title=\METAPOST\ Graphics, %D subtitle=Conversion to \PDF, %D author=Hans Hagen \& others (see text), %D date=\currentdate, %D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}] %C %C This module is part of the \CONTEXT\ macro||package and is %C therefore copyrighted by \PRAGMA. See mreadme.pdf for %C details. %D Formerly known as supp-pdf.tex and supp-mpe.tex. %D We will clean up the color mess later. %D These macros are written as generic as possible. Some %D general support macro's are loaded from a small module %D especially made for non \CONTEXT\ use. In this module I %D use a matrix transformation macro written by Tanmoy %D Bhattacharya. Thanks to extensive testing by Sebastian %D Ratz I was able to complete this module within reasonable %D time. This module has support for \METAPOST\ extensions %D built in. %D %D Daniel H. Luecking came up with a better (more precise) %D transformation method. You can recognize his comment by %D his initials. (We keep the old code around because it's a %D nice illustration on how a module like this evolves.) % Beware, we cannot use 0pt here by defaukt since it may be % defined in the range \dimen 0 - 20 which we happen to use % as scratch registers; for this reason we start allocating % scratch registers > 20 %D This module handles some \PDF\ conversion and insertions %D topics. By default, the macros use the \PDFTEX\ primitive %D \type{\pdfliteral} when available. Since \PDFTEX\ is now the %D default engine for \TEX\ distributions, we need a more complex %D test. \writestatus{loading}{MetaPost Graphics / MPS to PDF} \unprotect \ifx\PDFcode \undefined \let\PDFcode \gobbleoneargument \fi \ifx\PDFcomment\undefined \def\PDFcomment#1{\PDFcode{\letterpercent\space#1}} \fi %D First we define a handy constant: \bgroup \catcode`\%=\@@other \xdef\letterpercent{\string%} \egroup %D \macros %D {pdfimage,pdfimages,pdfclippedimage} %D %D Starting with pdftex version 14, images are included more %D natural to the form embedding. This enables alternative %D images to be embedded. %D %D \starttyping %D \pdfimage {file} %D \pdfimages {high res file} {low res file} %D \stoptyping %D %D The first one replaces the pre||version||14 original, %D while the latter provides alternative images. %D %D The next macro is dedicated to Maarten Gelderman, who %D needed to paste prepared \PDF\ pages into conference %D proceedings. %D %D \starttyping %D \pdfclippedimage {file} {l} {r} {t} {b} %D \stoptyping \ifx\pdftexversion\undefined \else \ifnum\pdftexversion>13 % still relevant? \def\pdfimage#1#% {\dopdfimage{#1}} \def\dopdfimage#1#2% {\immediate\pdfximage#1{#2}% \pdfrefximage\pdflastximage} \def\pdfimages#1#% {\dopdfimages{#1}} \def\dopdfimages#1#2#3% {\immediate\pdfximage#1{#2}% \immediate\pdfobj{[ << /Image \the\pdflastximage\space0 R /DefaultForPrinting true >> ]}% \immediate\pdfximage#1 attr {/Alternates \the\pdflastobj\space0 R}{#3}% \pdfrefximage\pdflastximage} \def\pdfclippedimage#1#% specs {file}{left}{right}{top}{bottom} {\dopdfclippedimage{#1}} \def\dopdfclippedimage#1#2#3#4#5#6% {\bgroup \pdfximage#1{#2}% \setbox\scratchbox\hbox{\pdfrefximage\pdflastximage}% \hsize\dimexpr\wd\scratchbox-#3-#4\relax \vsize\dimexpr\ht\scratchbox-#5-#6\relax \setbox\scratchbox\vbox to \vsize {\vskip-#5\hbox to \hsize{\hskip-#3\box\scratchbox\hss}}% \pdfxform\scratchbox \pdfrefxform\pdflastxform \egroup} \fi \fi %D \macros %D {convertMPtoPDF} %D %D The next set of macros implements \METAPOST\ to \PDF\ %D conversion. The traditional method is in the MkII file. %D The main conversion command is: %D %D \starttyping %D \convertMPtoPDF {filename} {x scale} {y scale} %D \stoptyping %D %D The dimensions are derived from the bounding box. So we %D only have to say: %D %D \starttyping %D \convertMPtoPDF{mp-pra-1.eps}{1}{1} %D \convertMPtoPDF{mp-pra-1.eps}{.5}{.5} %D \stoptyping %D \macros %D {makeMPintoPDFobject,lastPDFMPobject} %D %D For experts there are a few more options. When attributes %D are to be added, the code must be embedded in an object %D accompanied with the appropriate directives. One can %D influence this process with \type {\makeMPintoPDFobject}. %D %D This option defaults to~0, because \CONTEXT\ takes care %D of objects at another level, which saves some bytes. %D %D \starttabulate[|l|l|p|] %D \NC 0 \NC never \NC don't use an object \NC\NR %D \NC 1 \NC always \NC always use an object \NC\NR %D \NC 2 \NC optional \NC use object when needed \NC\NR %D \stoptabulate %D %D The last object number used is avaliable in the macro %D \type {\lastPDFMPobject}. \ifx\makeMPintoPDFobject \undefined \newcount\makeMPintoPDFobject \fi \ifx\blackoutMPgraphic \undefined \chardef\blackoutMPgraphic\plusone \fi \ifx\everyMPtoPDFconversion\undefined \newtoks\everyMPtoPDFconversion \fi \let\lastPDFMPobject \!!zerocount \let\currentPDFresources\empty \let\setMPextensions \relax \def\PDFMPformoffset {\ifx\objectoffset\undefined\zeropoint\else\objectoffset\fi} \def\resetMPvariables#1#2#3% {\global\let\MPwidth \!!zeropoint \global\let\MPheight\!!zeropoint \global\let\MPllx \!!zerocount \global\let\MPlly \!!zerocount \global\let\MPurx \!!zerocount \global\let\MPury \!!zerocount \xdef\MPxscale {#2}\ifx\MPxscale\empty\let\MPxscale\!!plusone\fi \xdef\MPyscale {#3}\ifx\MPyscale\empty\let\MPyscale\!!plusone\fi \xdef\MPfilename {#1}} %D The main macro: \def\convertMPtoPDF#1#2#3% {\resetMPvariables{#1}{#2}{#3}% \vbox\bgroup \forgetall \offinterlineskip \ifx\pdfdecimaldigits\undefined\else \pdfdecimaldigits=5 \fi % new \global\let\MPheight\!!zeropoint \global\let\MPwidth \!!zeropoint \setbox\scratchbox\vbox\bgroup \message{[MP to PDF]}% \startMPresources \PDFcomment{mps begin}% \PDFcode{q}% \PDFcode{1 0 0 1 0 0 cm}% \ifcase\blackoutMPgraphic\or\PDFcode{0 g 0 G}\fi \doprocessMPtoPDFfile} \def\processMPtoPDFfile#1#2#3% obsolete {\resetMPvariables{#1}{#2}{#3}% \bgroup \let\finishMPgraphic\egroup \doprocessMPtoPDFfile} \def\doprocessMPtoPDFfile {\setMPspecials \setMPextensions \the\everyMPtoPDFconversion \catcode`\^^M=\@@endofline \startMPscanning \let\do\empty \donefalse \let\handleMPsequence\dohandleMPsequence \input\MPfilename\relax} \def\finishMPgraphic {\PDFcode{Q}% \PDFcomment{mps end}% \stopMPresources \egroup \setbox\scratchbox\hbox\bgroup \hskip-\MPllx\onebasepoint \raise-\MPlly\onebasepoint \box\scratchbox \egroup \setbox\scratchbox\vbox to \MPheight\bgroup \vfill \hsize\MPwidth \smashbox\scratchbox \box\scratchbox \egroup \wd\scratchbox\MPwidth \ht\scratchbox\MPheight \dopackageMPgraphic\scratchbox \egroup \endinput} %D A common hook. \let\MPfshowcommand\empty %D Objects. \def\dopackageMPgraphic#1% #1 = boxregister {\ifcase\makeMPintoPDFobject\or\or\ifx\currentPDFresources\empty\else % an existing value of 2 signals object support (set elsewhere) \makeMPintoPDFobject\plusone \fi\fi \ifcase\makeMPintoPDFobject \box#1% \or \scratchdimen\PDFMPformoffset\relax \ifdim\scratchdimen>\zeropoint % compensate for error \setbox#1\vbox spread 2\scratchdimen {\forgetall\vss\hbox spread 2\scratchdimen{\hss\box#1\hss}\vss}% \fi \setMPPDFobject{\currentPDFresources}{#1}% \ifdim\scratchdimen>\zeropoint % compensate for error \vbox to \MPheight {\forgetall\vss\hbox to \MPwidth{\hss\getMPPDFobject\hss}\vss}% \else \getMPPDFobject \fi \global\let\currentPDFresources\empty \else \box#1% \fi} \def\setMPPDFobject#1#2% resources boxnumber {\ifx\pdfxform\undefined \def\getMPPDFobject{\box#2}% \else\ifx\pdftexversion\undefined \def\getMPPDFobject{\box#2}% \else\ifnum\pdftexversion<14 \def\getMPPDFobject{\box#2}% \else \ifx\everyPDFxform\undefined\else\the\everyPDFxform\fi \immediate\pdfxform resources{#1}#2% \edef\getMPPDFobject{\noexpand\pdfrefxform\the\pdflastxform}% \fi\fi\fi} \let\getMPPDFobject\relax %D \macros %D {deleteMPgraphic, %D startMPresources, %D stopMPresources} \ifx\deleteMPgraphic\undefined \def\deleteMPgraphic#1{} \fi \ifx\startMPresources\undefined \let\startMPresources\relax \let\stopMPresources\relax \fi %D We implement extensions by using the \METAPOST\ special %D mechanism. Opposite to \TEX's specials, the \METAPOST\ ones %D are flushed before or after the graphic data, but thereby %D are no longer connected to a position. %D %D We implement specials by overloading the \type {fill} %D operator. By counting the fills, we can let the converter %D treat the appropriate fill in a special way. The %D specification of the speciality can have two forms, %D determined by the setting of a boolean variable: %D %D \starttyping %D _inline_specials_ := false ; % comment like code (default) %D _inline_specials_ := true ; % command like code %D \stoptyping %D %D When the specification is embedded as comment, it looks %D like: %D %D \starttyping %D %%MetaPostSpecial %D \stoptyping %D %D The in||line alternative is more tuned for \POSTSCRIPT, %D since it permits us to define a macro \type {special}. %D %D \starttyping %D inline : special %D \stoptyping %D %D The \type {identifier} determines what to do, and the data %D can be used to accomplish this. A type~2 shading function %D has identifier~2. Alltogether, the number of parameters is %D specified in \type {size}. The \type {number} is the number %D of the fill that needs the special treatment. For a type~2 %D and~3 shaded fill, the datablock contains the following %D data: %D %D \starttyping %D from to n inner_r g b x y outer_r g b x y %D from to n inner_r g b x y radius outer_r g b x y radius %D \stoptyping \newconditional\manyMPspecials \settrue\manyMPspecials %D In case of \PDF, we need to prepare resourcs. \newtoks\MPstartresources \newtoks\MPstopresources \def\startMPresources {\the\MPstartresources} \def\stopMPresources {\the\MPstopresources} %D Some day we may consider collecting local resources. \appendtoks \global\let\currentPDFresources\empty % kind of redundant \to \MPstartresources % \appendtoks % \collectPDFresources % \global\let\currentPDFresources\collectedPDFresources % \to \MPstopresources \appendtoksonce \the\everyPDFxform \to \MPstopresources %D Since colors are not subjected to transformations, we can %D only use colors as signal. In our case, we use a dummy colored %D path with a red color component of \type {0.n}, so \type %D {0.001} is the first path and \type {0.010} the tenth. Since %D \METAPOST strips trailing zeros, we have to padd the string. \newif\ifMPcmykcolors \newif\ifMPspotcolors \def\dohandleMPrgb #1#2#3{\revokeMPtransparencyspecial\execcolorR #1:#2:#3:0:0\od} \def\dohandleMPcmyk#1#2#3#4{\revokeMPtransparencyspecial\execcolorC#1:#2:#3:#4:0:0\od} \def\dohandleMPgray #1{\revokeMPtransparencyspecial\execcolorS #1:0:0\od} \def\dohandleMPspot#1#2#3#4{\revokeMPtransparencyspecial\execcolorP#1:#2:#3:#4:0:0\od} %D Specials: \settrue \manyMPspecials \newcount\nofMParguments \let\extraMPpathcode\empty \def\@@MP {@@MP} \def\@@MPSK{@MPSK@} \def\MPspecial{\@@MPSK\@@MPSK\gMPs\nofMParguments} \def\defineMPspecial#1#2% {\setvalue{\@@MPSK\@@MPSK#1}{#2}} %D Special number~1 is dedicated to \CMYK\ support. If you %D want to know why: look at this: %D %D \startbuffer[mp] %D fill fullcircle xyscaled (3cm,1cm) withcolor \MPcolor{test} ; %D \stopbuffer %D %D \startbuffer[cmyk] %D \startcombination[4*1] %D {\definecolor[test][c=1,y=.3,k=.3] \processMPbuffer[mp]} {c=1 y=.3 k=.3} %D {\definecolor[test][c=.9,y=.15] \processMPbuffer[mp]} {c=.9 y=.15} %D {\definecolor[test][c=.25,y=.8] \processMPbuffer[mp]} {c=.25 y=.8} %D {\definecolor[test][c=.45,y=.1] \processMPbuffer[mp]} {c=.45 y=.1} %D \stopcombination %D \stopbuffer %D %D \placefigure %D {\CMYK\ support disabled, %D conversion to \RGB.} %D {\setupcolors[cmyk=nee,state=start]\getbuffer[cmyk]} %D %D \placefigure %D {\CMYK\ support enabled, %D no support in \METAPOST.} %D {\setupcolors[cmyk=ja,mpcmyk=nee,state=start]\getbuffer[cmyk]} %D %D \placefigure %D {\CMYK\ support enabled, %D no conversion to \RGB, %D support in \METAPOST} %D {\setupcolors[cmyk=ja,state=start]\getbuffer[cmyk]} \defineMPspecial{1} {\ifMPcmykcolors \setxvalue{\@@MPSK\gMPs6}{\noexpand\dohandleMPcmykcolor{\gMPs2}{\gMPs3}{\gMPs4}{\gMPs5}}% \fi} \defineMPspecial{2} {\ifMPspotcolors \setxvalue{\@@MPSK\gMPs6}{\noexpand\dohandleMPspotcolor{\gMPs2}{\gMPs3}{\gMPs4}{\gMPs5}}% % \checkMPspot{\gMPs2}{\gMPs3}{\gMPs4}{\gMPs5}% \fi} % \def\checkMPspot#1#2#3#4% % {\expanded{\resolveMPspotcolor#1 #2 #3 #4}\end % \ifx\MPspotspace\MPresolvedspace % \edef\MPspotspacespec{/\MPspotspace\space}% % \doifinstringelse\MPspotspacespec\currentMPcolorspaces % \donothing\registerMPcolorspace % \fi} \let\revokeMPtransparencyspecial\relax \def\dohandleMPrgbcolor #1#2#3{\revokeMPtransparencyspecial\execcolorR #1:#2:#3:0:0\od} \def\dohandleMPcmykcolor#1#2#3#4{\revokeMPtransparencyspecial\execcolorC#1:#2:#3:#4:0:0\od} \def\dohandleMPgraycolor #1{\revokeMPtransparencyspecial\execcolorS #1:0:0\od} \def\dohandleMPspotcolor#1#2#3#4{\revokeMPtransparencyspecial\execcolorP#1:#2:#3:#4:0:0\od} %D Transparency support used specials 60 (rgb) and 61 %D (cmyk). %D %D \startbufferFshade %D u := 2cm ; path p ; p := fullcircle scaled u shifted (u/4,0); %D %D fill p rotated 90 withcolor transparent(1,.5,yellow) ; %D fill p rotated 210 withcolor transparent(1,.5,green) ; %D fill p rotated 330 withcolor transparent(1,.5,blue) ; %D \stopbuffer %D %D \typebuffer %D %D \startlinecorrection \processMPbuffer \stoplinecorrection %D %D One can also communicate colors between \CONTEXT\ and %D \METAPOST: %D %D \startbuffer %D \definecolor[tcyan] [c=1,k=.2,t=.5] %D \definecolor[tmagenta][m=1,k=.2,t=.5] %D \definecolor[tyellow] [y=1,k=.2,t=.5] %D \stopbuffer %D %D \typebuffer \getbuffer %D %D \startbuffer %D u := 2cm ; path p ; p := fullcircle scaled u shifted (u/4,0); %D %D fill p rotated 90 withcolor \MPcolor{tcyan} ; %D fill p rotated 210 withcolor \MPcolor{tmagenta} ; %D fill p rotated 330 withcolor \MPcolor{tyellow} ; %D \stopbuffer %D %D \startlinecorrection \processMPbuffer \stoplinecorrection %D %D We save all the three components needed in one macro, %D just to save hash space. \def\dohandleMPrgbtransparency #1#2#3#4#5{\execcolorR #1:#2:#3:#4:#5\od\let\revokeMPtransparencyspecial\dorevokeMPtransparencyspecial} \def\dohandleMPcmyktransparency#1#2#3#4#5#6{\execcolorC#1:#2:#3:#4:#5:#6\od\let\revokeMPtransparencyspecial\dorevokeMPtransparencyspecial} \def\dohandleMPgraytransparency #1#2#3{\execcolorS #1:#2:#3\od\let\revokeMPtransparencyspecial\dorevokeMPtransparencyspecial} \def\dohandleMPspottransparency#1#2#3#4#5#6{\execcolorP#1:#2:#3:#4:#5:#6\od\let\revokeMPtransparencyspecial\dorevokeMPtransparencyspecial} \def\dorevokeMPtransparencyspecial {\PDFcode{\PDFtransparencyresetidentifier\space gs}% \let\revokeMPtransparencyspecial\relax} \defineMPspecial{3} % rgb {\setxvalue{\@@MPSK\gMPs6}{\noexpand\dohandleMPrgbtransparency{\gMPs3}{\gMPs4}{\gMPs5}{\gMPs1}{\gMPs2}}} \defineMPspecial{4} % cmyk {\setxvalue{\@@MPSK\gMPs7}{\noexpand\dohandleMPcmyktransparency{\gMPs3}{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs1}{\gMPs2}}} \defineMPspecial{5} % spot {\setxvalue{\@@MPSK\gMPs7}{\noexpand\dohandleMPspottransparency{\gMPs3}{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs1}{\gMPs2}}% }%\checkMPspot{\gMPs3}{\gMPs4}{\gMPs5}{\gMPs6}} %D Shading is an example of a more advanced graphic feature, %D but users will seldom encounter those complications. Here %D we only show a few simple examples, but many other %D alternatives are possible by setting up the functions built %D in \PDF\ in the appropriate way. %D %D Shading has to do with interpolation between two or more %D points or user supplied ranges. In \PDF, the specifications %D of a shade has to be encapsulated in objects and passed on %D as resources. This is a \PDF\ level 1.3. feature. One can %D simulate three dimensional shades as well and define simple %D functions using a limited set of \POSTSCRIPT\ primitives. %D Given the power of \METAPOST\ and these \PDF\ features, we %D can achieve superb graphic effects. %D %D Since everything is hidden in \TEX\ and \METAPOST\ graphics, %D we can stick to high level \CONTEXT\ command, as shown in %D the following exmples. %D %D \startbuffer %D \startuniqueMPgraphic{CircularShade} %D path p ; p := unitsquare xscaled \overlaywidth yscaled \overlayheight ; %D circular_shade(p,0,.2red,.9red) ; %D \stopuniqueMPgraphic %D %D \startuniqueMPgraphic{LinearShade} %D path p ; p := unitsquare xscaled \overlaywidth yscaled \overlayheight ; %D linear_shade(p,0,.2blue,.9blue) ; %D \stopuniqueMPgraphic %D %D \startuniqueMPgraphic{DuotoneShade} %D path p ; p := unitsquare xscaled \overlaywidth yscaled \overlayheight ; %D linear_shade(p,2,.5green,.5red) ; %D \stopuniqueMPgraphic %D \stopbuffer %D %D \typebuffer %D %D \getbuffer %D %D These graphics can be hooked into the overlay mechanism, %D which is available in many commands. %D %D \startbuffer %D \defineoverlay[demo 1][\uniqueMPgraphic{CircularShade}] %D \defineoverlay[demo 2][\uniqueMPgraphic {LinearShade}] %D \defineoverlay[demo 3][\uniqueMPgraphic {DuotoneShade}] %D \stopbuffer %D %D \typebuffer %D %D \getbuffer %D %D These backgrounds can for instance be applied to \type %D {\framed}: %D %D \startbuffer %D \setupframed[width=3cm,height=2cm,frame=off] %D \startcombination[3*1] %D {\framed[backgroundachtergrond=demo 1]{\bfd \white Demo 1}} {} %D {\framed[backgroundachtergrond=demo 2]{\bfd \white Demo 2}} {} %D {\framed[backgroundachtergrond=demo 3]{\bfd \white Demo 3}} {} %D \stopcombination %D \stopbuffer %D %D \typebuffer %D %D \startlinecorrection %D \getbuffer %D \stoplinecorrection %D %D There are a few more alternatives, determined by the second %D parameter passed to \type {circular_shade} and alike. %D %D \def\SomeShade#1#2#3#4#5% %D {\startuniqueMPgraphic{Shade-#1} %D width := \overlaywidth ; %D height := \overlayheight ; %D path p ; p := unitsquare xscaled width yscaled height ; %D #2_shade(p,#3,#4,#5) ; %D \stopuniqueMPgraphic %D \defineoverlay[Shade-#1][\uniqueMPgraphic{Shade-#1}]% %D \framed[backgroundachtergrond=Shade-#1,width=2cm,height=2cm,frame=off]{}} %D %D \startlinecorrection %D \startcombination[5*1] %D {\SomeShade{10}{circular}{0}{.3blue}{.9blue}} {circular 0} %D {\SomeShade{11}{circular}{1}{.3blue}{.9blue}} {circular 1} %D {\SomeShade{12}{circular}{2}{.3blue}{.9blue}} {circular 2} %D {\SomeShade{13}{circular}{3}{.3blue}{.9blue}} {circular 3} %D {\SomeShade{14}{circular}{4}{.3blue}{.9blue}} {circular 4} %D \stopcombination %D \stoplinecorrection %D %D \blank %D %D \startlinecorrection %D \startcombination[5*1] %D {\SomeShade{20}{circular}{0}{.9green}{.3green}} {circular 0} %D {\SomeShade{21}{circular}{1}{.9green}{.3green}} {circular 1} %D {\SomeShade{22}{circular}{2}{.9green}{.3green}} {circular 2} %D {\SomeShade{23}{circular}{3}{.9green}{.3green}} {circular 3} %D {\SomeShade{24}{circular}{4}{.9green}{.3green}} {circular 4} %D \stopcombination %D \stoplinecorrection %D %D \blank %D %D \startlinecorrection %D \startcombination[4*1] %D {\SomeShade{30}{linear}{0}{.3red}{.9red}} {linear 0} %D {\SomeShade{31}{linear}{1}{.3red}{.9red}} {linear 1} %D {\SomeShade{32}{linear}{2}{.3red}{.9red}} {linear 2} %D {\SomeShade{33}{linear}{3}{.3red}{.9red}} {linear 3} %D \stopcombination %D \stoplinecorrection %D %D These macros closely cooperate with the \METAPOST\ module %D \type {mp-spec.mp}, which is part of the \CONTEXT\ %D distribution. %D %D The low level (\PDF) implementation is based on the \TEX\ %D based \METAPOST\ to \PDF\ converter. Shading is supported %D by overloading the \type {fill} operator as implemented %D earlier. In \PDF\ type~2 and~3 shading functions are %D specified in terms of: %D %D \starttabulate[|Tl|l|] %D \NC /Domain \NC sort of meeting range \NC \NR %D \NC /C0 \NC inner shade \NC \NR %D \NC /C1 \NC outer shade \NC \NR %D \NC /N \NC smaller values, bigger inner circles \NC \NR %D \stoptabulate \newcount\currentPDFshade % 0 % global (document wide) counter % \def\dosetMPsomePDFshade#1#2% generic but needs refs % {\global\advance\currentPDFshade \plusone % \doPDFdictionaryobject{FDF}{ftn:Sh:\the\currentPDFshade} % {/FunctionType 2 % /Domain [\gMPs1 \gMPs2] % /C0 [\MPshadeA] % /C1 [\MPshadeB] % /N \gMPs3}% % \doPDFgetobjectreference{FDF}{ftn:Sh:\the\currentPDFshade}\PDFobjectreference % \doPDFdictionaryobject{FDF}{obj:Sh:\the\currentPDFshade} % {/ShadingType #1 % /ColorSpace /\MPresolvedspace % /Function \PDFobjectreference\space % /Coords [\MPshadeC] % /Extend [true true]}% % \doPDFgetobjectreference{FDF}{obj:Sh:\the\currentPDFshade}\PDFobjectreference % \appendtoPDFdocumentshades{/Sh\the\currentPDFshade\space\PDFobjectreference}% % \setxvalue{\@@MPSK#2}{\noexpand\dohandleMPshade{\the\currentPDFshade}}} \def\dosetMPsomePDFshade#1#2% {\immediate\pdfobj {<>}% \immediate\pdfobj {<>}% \global\advance\currentPDFshade \plusone \appendtoPDFdocumentshades{/Sh\the\currentPDFshade\space\the\pdflastobj\space0 R }% \setxvalue{\@@MPSK#2}{\noexpand\dohandleMPshade{\the\currentPDFshade}}} \def\dosetMPlinearshade {\dosetMPsomePDFshade2}% #1 \def\dosetMPcircularshade{\dosetMPsomePDFshade3}% #1 \defineMPspecial{30} {\expanded{\resolveMPrgbcolor{\gMPs4}{\gMPs5}{\gMPs6}}\to\MPshadeA \expanded{\resolveMPrgbcolor{\gMPs{9}}{\gMPs{10}}{\gMPs{11}}}\to\MPshadeB \edef\MPshadeC{\gMPs7 \gMPs8 \gMPs{12} \gMPs{13}}% \dosetMPlinearshade{\gMPs{14}}} \defineMPspecial{31} {\expanded{\resolveMPrgbcolor{\gMPs4}{\gMPs5}{\gMPs6}}\to\MPshadeA \expanded{\resolveMPrgbcolor{\gMPs{10}}{\gMPs{11}}{\gMPs{12}}}\to\MPshadeB \edef\MPshadeC{\gMPs7 \gMPs8 \gMPs9 \gMPs{13} \gMPs{14} \gMPs{15}}% \dosetMPcircularshade{\gMPs{16}}} \defineMPspecial{32} {\expanded{\resolveMPcmykcolor{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs7}}\to\MPshadeA \expanded{\resolveMPcmykcolor{\gMPs{10}}{\gMPs{11}}{\gMPs{12}}{\gMPs{13}}}\to\MPshadeB \edef\MPshadeC{\gMPs8 \gMPs9 \gMPs{14} \gMPs{15}}% \dosetMPlinearshade{\gMPs{16}}} \defineMPspecial{33} {\expanded{\resolveMPcmykcolor{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs7}}\to\MPshadeA \expanded{\resolveMPcmykcolor{\gMPs{11}}{\gMPs{12}}{\gMPs{13}}{\gMPs{14}}}\to\MPshadeB \edef\MPshadeC{\gMPs8 \gMPs9 \gMPs{10} \gMPs{15} \gMPs{16} \gMPs{17}}% \dosetMPcircularshade{\gMPs{18}}} \defineMPspecial{34} {\expanded{\resolveMPspotcolor{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs7}}\to\MPshadeA \expanded{\resolveMPspotcolor{\gMPs{10}}{\gMPs{11}}{\gMPs{12}}{\gMPs{13}}}\to\MPshadeB \edef\MPshadeC{\gMPs8 \gMPs9 \gMPs{14} \gMPs{15}}% \dosetMPlinearshade{\gMPs{16}}} \defineMPspecial{35} {\expanded{\resolveMPcmykcolor{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs7}}\to\MPshadeA \expanded{\resolveMPcmykcolor{\gMPs{11}}{\gMPs{12}}{\gMPs{13}}{\gMPs{14}}}\to\MPshadeB \edef\MPshadeC{\gMPs8 \gMPs9 \gMPs{10} \gMPs{15} \gMPs{16} \gMPs{17}}% \dosetMPcircularshade{\gMPs{18}}} \newconditional\ignoreMPpath \def\dohandleMPshade#1% {\revokeMPtransparencyspecial \settrue\ignoreMPpath \def\extraMPpathcode{/Sh#1 sh Q}% \chardef\finiMPpath\zerocount \PDFcode{q /Pattern cs}} %D Figure inclusion is kind of strange to \METAPOST, but when %D Santiago Muelas started discussing this with me, I was able %D to cook up a solution using specials. \defineMPspecial{10} {\setxvalue{\@@MPSK\gMPs8}% {\noexpand\handleMPfigurespecial{\gMPs1}{\gMPs2}{\gMPs3}{\gMPs4}{\gMPs5}{\gMPs6}{\gMPs7}{\gMPs8}}} \def\handleMPfigurespecial#1#2#3#4#5#6#7#8% todo : combine with ext fig {\global\letvalue{\@@MPSK#8}\empty \vbox to \zeropoint {\vss \hbox to \zeropoint {\ifcase\pdfoutput\or % will be hooked into the special driver \doiffileelse{#7} {\doifundefinedelse{mps:x:#7} {\immediate\pdfximage\!!width\onebasepoint\!!height\onebasepoint{#7}% \setxvalue{mps:x:#7}{\pdfrefximage\the\pdflastximage}}% {\message{[reusing figure #7]}}% \PDFcode{q #1 #2 #3 #4 #5 #6 cm}% \rlap{\getvalue{mps:x:#7}}% \PDFcode{Q}} {\message{[unknown figure #7]}}% \fi \hss}}} %D An example of using both special features is the %D following. %D %D \starttyping %D \startMPpage %D externalfigure "hakker1b.png" scaled 22cm rotated 10 shifted (-2cm,0cm); %D externalfigure "hakker1b.png" scaled 10cm rotated -10 ; %D externalfigure "hakker1b.png" scaled 7cm rotated 45 shifted (8cm,12cm) ; %D path p ; p := unitcircle xscaled 15cm yscaled 20cm; %D path q ; q := p rotatedaround(center p,90) ; %D path r ; r := buildcycle(p,q) ; clip currentpicture to r ; %D path s ; s := boundingbox currentpicture enlarged 5mm ; %D picture c ; c := currentpicture ; currentpicture := nullpicture ; %D circular_shade(s,0,.2red,.9red) ; %D addto currentpicture also c ; %D \stopMPpage %D \stoptyping %D This is some experimental hyperlink driver that I wrote %D for Mark Wicks. \defineMPspecial{20} {\setxvalue{\@@MPSK\gMPs6}% {\noexpand\handleMPhyperlink{\gMPs1}{\gMPs2}{\gMPs3}{\gMPs4}{\gMPs5}{\gMPs6}}} \def\handleMPhyperlink#1#2#3#4#5#6% {\global\letvalue{\@@MPSK#6}\empty \setbox\scratchbox\hbox {\setbox\scratchbox\null \wd\scratchbox\dimexpr-#1\onebasepoint+#3\onebasepoint\relax \ht\scratchbox\dimexpr-#2\onebasepoint+#4\onebasepoint\relax \incolorfalse \gotobox{\box\scratchbox}[#5]}% \setbox\scratchbox\hbox {\hskip\dimexpr\MPxoffset\onebasepoint+#1\onebasepoint\relax \raise\dimexpr\MPyoffset\onebasepoint+#2\onebasepoint\relax \box\scratchbox}% \smashbox\scratchbox \box\scratchbox} %D This special (number 50) passes positions to a tex file. %D This method uses a two||pass approach an (mis|)|used the %D context positioning macros. In \type {core-pos} we will %D implement the low level submacro needed. %D %D \startbuffer %D \definelayer[test] %D %D \setlayer %D [test] %D [x=\MPx{somepos-1},y=\MPy{somepos-1}] %D {Whatever we want here!} %D %D \setlayer %D [test] %D [x=\MPx{somepos-2},y=\MPy{somepos-2}] %D {Whatever we need there!} %D %D \startuseMPgraphic{oeps} %D draw fullcircle scaled 6cm withcolor red ; %D register ("somepos-1",1cm,2cm,center currentpicture) ; %D register ("somepos-2",4cm,3cm,(-1cm,-2cm)) ; %D \stopuseMPgraphic %D %D \framed[background=test,offset=overlay]{\useMPgraphic{oeps}} %D \stopbuffer %D %D \typebuffer %D %D Here the width and height are not realy used, but one can %D imagine situations where tex has to work with values %D calculated by \METAPOST. %D %D \startlinecorrection %D \getbuffer %D \stoplinecorrection %D %D Later we will implement a more convenient macro: %D %D \starttyping %D \setMPlayer [test] [somepos-1] {Whatever we want here!} %D \setMPlayer [test] [somepos-2] {Whatever we need there!} %D \stoptyping \defineMPspecial{50} % x y width height label {\dosavepositionwhd {\gMPs5}% {0}% {\the\dimexpr-\MPllx\onebasepoint+\gMPs1\onebasepoint\relax} {\the\dimexpr\gMPs2\onebasepoint-\scratchdimen+\MPury\onebasepoint\relax}% {\the\dimexpr\gMPs3\onebasepoint\relax}% {\the\dimexpr\gMPs4\onebasepoint\relax}% {0pt}} %D A few auxiliary macros. This will move to colo-ini. \def\MPgrayspace{DeviceGray} \def\MPrgbspace {DeviceRGB} \def\MPcmykspace{DeviceCMYK} \let\MPspotspace\MPgrayspace \def\MPcmykBlack{0 0 0 0} \def\MPcmykWhite{0 0 0 1} \def\startMPcolorresolve {\bgroup \def\dostartgraycolormode##1% {\global\let\MPresolvedspace\MPgrayspace \xdef\MPresolvedcolor{##1}}% \def\dostartrgbcolormode ##1##2##3% {\global\let\MPresolvedspace\MPrgbspace \xdef\MPresolvedcolor{##1 ##2 ##3}}% \def\dostartcmykcolormode##1##2##3##4% {\global\let\MPresolvedspace\MPcmykspace \xdef\MPresolvedcolor{##1 ##2 ##3 ##4}}% \def\dostartspotcolormode##1##2% {\global\let\MPspotspace\empty % left over ? \xdef\MPresolvedspace{##1}% \xdef\MPresolvedcolor{##2}% \global\let\MPspotspace\MPresolvedspace}% signal \dostartgraycolormode\!!zerocount} % kind of hackery initialization \let\stopMPcolorresolve\egroup \def\resolveMPrgbcolor#1#2#3\to#4% {\startMPcolorresolve \execcolorR#1:#2:#3:0:0\od \stopMPcolorresolve \let#4\MPresolvedcolor} \def\resolveMPcmykcolor#1#2#3#4\to#5% {\startMPcolorresolve \execcolorC#1:#2:#3:#4:0:0\od \stopMPcolorresolve \let#5\MPresolvedcolor} \def\resolveMPgraycolor#1\end\to#2% {\startMPcolorresolve \execcolorS#1:0:0\od \stopMPcolorresolve \let#2\MPresolvedcolor} \def\resolveMPspotcolor#1#2#3#4\end\to#5% {\startMPcolorresolve \ifnum#2>\plusone \checkmultitonecolor{#1}% \fi \execcolorP#1:#2:#3:#4:0:0\od \stopMPcolorresolve \let#5\MPresolvedcolor} %D \macros %D {dogetPDFmediabox} %D %D The next macro can be used to find the mediabox of a \PDF\ %D illustration. %D %D \starttyping %D \dogetPDFmediabox %D {filename} %D {new dimen}{new dimen}{new dimen}{new dimen} %D \stoptyping %D %D Beware of dimen clashes: this macro uses the 5~default %D scratch registers! When no file or mediabox is found, the %D dimensions are zeroed. \def\dogetPDFmediabox#1#2#3#4#5% {\bgroup \def\PDFxscale{1}% \def\PDFyscale{1}% \uncatcodespecials \endlinechar\minusone \def\checkPDFtypepage##1/Type /Page##2##3\done% {\ifx##2\relax \else\if##2s% accept /Page and /Pages \let\doprocessPDFline\findPDFmediabox \else \let\doprocessPDFline\findPDFmediabox \fi\fi}% \def\findPDFtypepage {\expandafter\checkPDFtypepage\fileline/Type /Page\relax\done}% \def\checkPDFmediabox##1/MediaBox##2##3\done% {\ifx##2\relax \else \setPDFmediabox##2##3\done \fileprocessedtrue \fi}% \def\findPDFmediabox {\expandafter\checkPDFmediabox\fileline/MediaBox\relax\done}% \let\doprocessPDFline\findPDFtypepage \doprocessfile\scratchread{#1}\doprocessPDFline \egroup \ifx\PDFxoffset\undefined #2=\zeropoint #3=\zeropoint #4=\zeropoint #5=\zeropoint \else #2=\PDFxoffset\onebasepoint #3=\PDFyoffset\onebasepoint #4=\PDFwidth #5=\PDFheight \fi} \def\setPDFboundingbox#1#2#3#4#5#6% {\dimen0=#1\dimen0=#5\dimen0 \ScaledPointsToBigPoints{\number\dimen0}\PDFxoffset \dimen0=#3\dimen0=#5\dimen0 \xdef\PDFwidth{\the\dimen0}% \dimen0=#2\dimen0=#6\dimen0 \ScaledPointsToBigPoints{\number\dimen0}\PDFyoffset \dimen0=#4\dimen0=#6\dimen0 \xdef\PDFheight{\the\dimen0}% \global\let\PDFxoffset\PDFxoffset \global\let\PDFyoffset\PDFyoffset} \def\setPDFmediabox#1[#2 #3 #4 #5]#6\done {\dimen2=#2\onebasepoint\dimen2=-\dimen2 % \dimen2=-#2\onebasepoint also works since tex handles -- \dimen4=#3\onebasepoint\dimen4=-\dimen4 % \dimen4=-#3\onebasepoint also works since tex handles -- \dimen6=#4\onebasepoint\advance\dimen6 \dimen2 \dimen8=#5\onebasepoint\advance\dimen8 \dimen4 \setPDFboundingbox{\dimen2}{\dimen4}{\dimen6}{\dimen8}\PDFxscale\PDFyscale} %D End of soon obsolete code. \startMPinitializations mp_shade_version := 2 ; \stopMPinitializations %D Here comes the traditional \MKII\ converter. %D %D Because we want to test as fast as possible, we first %D define the \POSTSCRIPT\ operators that \METAPOST\ uses. %D We don't define irrelevant ones, because these are %D skipped anyway. %D %D The converter can be made a bit faster by replacing the %D two test macros (the ones with the many \type {\if's}) by %D a call to named branch macros (something \typ {\getvalue %D {xPSmoveto}}. For everyday documents with relatively %D small graphics the gain in speed can be neglected. \def \PScurveto {curveto} \def \PSlineto {lineto} \def \PSmoveto {moveto} \def \PSshowpage {showpage} \def \PSnewpath {newpath} \def \PSfshow {fshow} \def \PSclosepath {closepath} \def \PSfill {fill} \def \PSstroke {stroke} \def \PSclip {clip} \def \PSrlineto {rlineto} \def \PSsetlinejoin {setlinejoin} \def \PSsetlinecap {setlinecap} \def \PSsetmiterlimit {setmiterlimit} \def \PSsetgray {setgray} \def \PSsetrgbcolor {setrgbcolor} \def \PSsetcmykcolor {setcmykcolor} \def \PSsetdash {setdash} \def \PSgsave {gsave} \def \PSgrestore {grestore} \def \PStranslate {translate} \def \PSscale {scale} \def \PSconcat {concat} \def \PSdtransform {dtransform} \def \PSsetlinewidth {setlinewidth} \def \PSpop {pop} \def \PSnfont {nfont} % was needed for TUG98 proceedings \def \PSspecial {special} % extensions to MetaPost %D A previous version set \type {%} to ignore, which %D simplified the following definitions. At the start of %D conversion the percent character was made active again. %D Because the whole graphic is one paragraph (there are no %D empty lines) this does not give the desired effect. This %D went unnoticed untill Scott Pakin sent me a test file %D percent characters in a string. So, from now on we have %D to prefix the following strings with percentages. %D Some day I'll figure out a better solution (line by line reading %D using \ETEX). \edef \PSBoundingBox {\letterpercent\letterpercent BoundingBox:} \edef \PSHiResBoundingBox {\letterpercent\letterpercent HiResBoundingBox:} \edef \PSExactBoundingBox {\letterpercent\letterpercent ExactBoundingBox:} \edef \PSMetaPostSpecial {\letterpercent\letterpercent MetaPostSpecial:} \edef \PSMetaPostSpecials {\letterpercent\letterpercent MetaPostSpecials:} \edef \PSPage {\letterpercent\letterpercent Page:} \edef \PSBeginProlog {\letterpercent\letterpercent BeginProlog} \edef \PSEndProlog {\letterpercent\letterpercent EndProlog} \edef \PSEof {\letterpercent\letterpercent EOF} %D By the way, the \type {setcmykcolor} operator is not %D output by \METAPOST\ but can result from converting the %D \cap{RGB} color specifications, as implemented in %D \type{supp-mps}. %D In \POSTSCRIPT\ arguments precede the operators. Due to the %D fact that in some translations we need access to those %D arguments, and also because sometimes we have to skip them, %D we stack them up. The stack is one||dimensional for non path %D operators and two||dimensional for operators inside a path. %D This is because we have to save the whole path for %D (optional) postprocessing. Values are pushed onto the stack %D by: %D %D \starttyping %D \setMPargument {value} %D \stoptyping %D %D They can be retrieved by the short named macros: %D %D \starttyping %D \gMPa {number} %D \gMPs {number} %D \stoptyping %D %D When scanning a path specification, we also save the %D operator, using %D %D \starttyping %D \setMPkeyword {n} %D \stoptyping %D %D The path drawing operators are coded for speed: \type{clip}, %D \type{stroke}, \type{fill} and \type{fillstroke} become %D 1, 2, 3 and~4. %D %D When processing the path this code can be retrieved %D using %D %D \starttyping %D \getMPkeyword % {n} %D \stoptyping %D %D When setting an argument, the exact position on the stack %D depends on the current value of the \COUNTERS\ %D \type{\nofMPsegments} and \type{\nofMParguments}. \newcount\nofMPsegments \newcount\nofMParguments %D These variables hold the coordinates. The argument part of %D the stack is reset by: %D %D \starttyping %D \resetMPstack %D \stoptyping %D %D We use the prefix \type{@@MP} to keep the stack from %D conflicting with existing macros. To speed up things a bit %D more, we use the constant \type{\@@MP}. \def\@@MP{@@MP} \def\setMPargument% #1% {\advance\nofMParguments \plusone \expandafter\def\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname} % {#1} \def\letMPargument {\advance\nofMParguments \plusone \expandafter\let\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname} \def\setMPsequence#1 % {\advance\nofMParguments \plusone \expandafter\def\csname\@@MP\the\nofMPsegments\the\nofMParguments\endcsname{#1}% \handleMPsequence} \def\gMPa#1% {\csname\@@MP0\number#1\endcsname} \def\gMPs#1% {\csname\@@MP\the\nofMPsegments\number#1\endcsname} \def\dogMPa#1% {\@EAEAEA\do\csname\@@MP0\number#1\endcsname} \def\setMPkeyword#1 % {\expandafter\def\csname\@@MP\the\nofMPsegments0\endcsname{#1}% \advance\nofMPsegments \plusone \nofMParguments\zerocount} \def\getMPkeyword% #1% {\csname\@@MP\the\nofMPsegments0\endcsname} % {\csname\@@MP#10\endcsname} \def\docleanupMPargument#1% we need this because args can have [ or ] pre/appended {\expandafter\edef\csname\@@MP\the\nofMPsegments\number#1\endcsname {\csname\@@MP\the\nofMPsegments\number#1\endcsname}} %D When we reset the stack, we can assume that all further %D comment is to be ignored and handled in strings. %D By redefining the reset macro after the first call, we %D save some run time. Only use this macro after all %D comments are processed and use the simple alternative %D when dealing with comments. \def\doresetMPstack {\nofMParguments\zerocount} \def\resetMPstack {\let\handleMPgraphic\handleMPendgraphic \let\resetMPstack\doresetMPstack \resetMPstack} %D The arguments are saved with the preceding command %D \type{\do}. By default this command expands to nothing, but %D when we deal with strings it's used to strip off the %D \type{(} and \type{)}. %D %D Strings are kind of tricky, because characters can be %D passed verbatim \type{(hello)}, by octal number %D \type{(\005)} or as command \type{(\()}. We therefore %D cannot simply ignore \type{(} and \type{)}, the way we do %D with \type{[} and \type{]}. Another complication is that %D strings may contain characters that normally have a %D special meaning in \TEX, like \type{$} and \type{{}}. %D %D A previous solution made \type{\} an active character and %D let it look ahead for a number or characters. We had to %D abandon this scheme because of the need for verbatim %D support. The next solution involved some \CATCODE\ %D trickery but works well. \def\octalMPcharacter#1#2#3% {\char'#1#2#3\relax} %D curly braces and squarly brackets are stored in the argument stack %D as part of strings, for instance in: %D %D \starttyping %D /fshow {exch findfont exch scalefont setfont show}bind def %D [3 3 ] 0 setdash %D \stoptyping %D %D but we need to keep them in situation like %D %D \starttyping %D ([bla bla] bla bla) ec-lmr10 9.96265 fshow %D ({bla bla} bla bla) ec-lmr10 9.96265 fshow %D \stoptyping %D %D So, when we store the snippets, we keep the special tokens, and %D when needed we either ignore or obey them %D We could use a catcodetable here. \bgroup \catcode`\|=\@@comment \catcode`\%=\@@active \catcode`\[=\@@active \catcode`\]=\@@active \catcode`\{=\@@active \catcode`\}=\@@active \catcode`B=\@@begingroup \catcode`E=\@@endgroup \gdef\keepMPspecials| B\let%\letterpercent| \def[B\noexpand[E| \def]B\noexpand]E| \def{B\noexpand{E| \def}B\noexpand}EE \gdef\ignoreMPspecials| B\let%\letterpercent| \def[BE| \def]BE| \def{BE| \def}BEE \gdef\obeyMPspecials| B\def%B\char 37\relax E| \def[B\char 91\relax E| \def]B\char 93\relax E| \def{B\char123\relax E| \def}B\char125\relax EE \gdef\setMPspecials| B\setnaturalcatcodes \catcode`\\=\@@escape \catcode`\%=\@@active \catcode`\[=\@@active \catcode`\]=\@@active \catcode`\{=\@@active \catcode`\}=\@@active \lccode`\-=0 | latex sets this to `\- \lccode`\%=`\%| otherwise it's seen as a number \def\(B\char40\relax E| \def\)B\char41\relax E| \def\\B\char92\relax E| \def\0B\octalMPcharacter0E| \def\1B\octalMPcharacter1E| \def\2B\octalMPcharacter2E| \def\3B\octalMPcharacter3E| \def\4B\octalMPcharacter4E| \def\5B\octalMPcharacter5E| \def\6B\octalMPcharacter6E| \def\7B\octalMPcharacter7E| \def\8B\octalMPcharacter8E| \def\9B\octalMPcharacter9EE \egroup %D We use the comment symbol as a sort of trigger. Beware! %D The whole graphic is seen as on eparagraph, which means %D that we cannot change the catcodes in between. \bgroup \catcode`\%=\@@active \gdef\startMPscanning{\let%=\startMPconversion} \egroup %D In earlier versions we used the sequence %D %D \starttyping %D \expandafter\handleMPsequence\input filename\relax %D \stoptyping %D %D Persistent problems in \LATEX\ however forced us to use a %D different scheme. Every \POSTSCRIPT\ file starts with a %D \type{%}, so we temporary make this an active character %D that starts the scanning and redefines itself. (The problem %D originates in the redefinition by \LATEX\ of the %D \type{\input} primitive.) \def\startMPconversion {\keepMPspecials \handleMPsequence} %D Here comes the main loop. Most arguments are numbers. This %D means that they can be recognized by their \type{\lccode}. %D This method saves a lot of processing time. We could %D speed up the conversion by handling the \type{path} %D seperately. \def\dohandleMPsequence#1% {\ifdone \ifcase\lccode`#1\relax \@EAEAEA\dohandleMPsequenceA \else \@EAEAEA\dohandleMPsequenceB \fi \else \@EA\dohandleMPsequenceC \fi#1} \let\dohandleMPsequenceA\setMPsequence \def\installMPSkeywordN#1#2% {\expandafter\def\csname\@@MP:N:#1\endcsname{#2}} \def\installMPSshortcutN#1#2% todo: \let {\expandafter\let\csname\@@MP:N:#1\expandafter\endcsname\csname\@@MP:N:#2\endcsname} \def\dohandleMPsequenceB#1 % {\edef\somestring{#1}% \executeifdefined{\@@MP:N:\somestring}\handleMPgraphic \handleMPsequence} \installMPSkeywordN \PSmoveto {\edef\lastMPmoveX{\gMPa1}% \edef\lastMPmoveY{\gMPa2}% \resetMPstack} \installMPSkeywordN \PSnewpath {\let\handleMPsequence\handleMPpath} \installMPSkeywordN \PSgsave {\PDFcode{q}% \resetMPstack} \installMPSkeywordN \PSgrestore {\PDFcode{Q}% \resetMPstack} \installMPSkeywordN \PSdtransform % == setlinewidth {\let\handleMPsequence\handleMPdtransform} % after that we will encounter more tokens until setlinewidth+pop % or pop+setlinewidth which we catch next; we explicitly need to % reset the stack since [] n setdash may follow; a more clever % approach would be to read on till the condition is met, but it's % the only pop / setlinewidth we will encounter so ... \installMPSkeywordN \PSsetlinewidth {% already handled in dtransform \resetMPstack} \installMPSkeywordN \PSpop {% already handled in dtransform \resetMPstack} \installMPSkeywordN \PSconcat {\cleanupMPconcat \PDFcode{\gMPa1 \gMPa2 \gMPa3 \gMPa4 \gMPa5 \gMPa6 cm}% \resetMPstack} \installMPSkeywordN \PSsetrgbcolor {\handleMPrgbcolor \resetMPstack} \installMPSkeywordN \PSsetcmykcolor {\handleMPcmykcolor \resetMPstack} \installMPSkeywordN \PSsetgray {\handleMPgraycolor \resetMPstack} \installMPSkeywordN \PStranslate {\PDFcode{1 0 0 1 \gMPa1 \gMPa2 cm}% \resetMPstack} \installMPSkeywordN \PSsetdash {\handleMPsetdash \resetMPstack} \installMPSkeywordN \PSsetlinejoin {\PDFcode{\gMPa1 j}% \resetMPstack} \installMPSkeywordN \PSsetmiterlimit {\PDFcode{\gMPa1 M}% \resetMPstack} \installMPSkeywordN \PSfshow {%\PDFcode{n}% removed ! \handleMPfshow \resetMPstack} \installMPSkeywordN \PSsetlinecap {\PDFcode{\gMPa1 J}% \resetMPstack} \installMPSkeywordN \PSrlineto {\flushMPmoveto \PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}% \resetMPmoveto \resetMPstack} \installMPSkeywordN \PSscale {\PDFcode{\gMPa1 0 0 \gMPa2 0 0 cm}% \resetMPstack} \installMPSkeywordN \PSspecial {\handleMPspecialcommand \resetMPstack} \installMPSshortcutN {n} \PSnewpath \installMPSshortcutN {p} \PSclosepath \installMPSshortcutN {l} \PSlineto \installMPSshortcutN {r} \PSrlineto \installMPSshortcutN {m} \PSmoveto \installMPSshortcutN {c} \PScurveto \installMPSshortcutN {C} \PSsetcmykcolor \installMPSshortcutN {G} \PSsetgray \installMPSshortcutN {R} \PSsetrgbcolor \installMPSshortcutN {lj} \PSsetlinejoin \installMPSshortcutN {ml} \PSsetmiterlimit \installMPSshortcutN {lc} \PSsetlinecap \installMPSshortcutN {sd} \PSsetdash \installMPSshortcutN {S} \PSstroke \installMPSshortcutN {F} \PSfill \installMPSshortcutN {W} \PSclip \installMPSshortcutN {q} \PSgsave \installMPSshortcutN {Q} \PSgrestore \installMPSshortcutN {s} \PSscale \installMPSshortcutN {t} \PSconcat \installMPSshortcutN {P} \PSshowpage \installMPSkeywordN {hlw} {\PDFcode{\gMPa1 w}\resetMPstack} \installMPSkeywordN {vlw} {\PDFcode{\gMPa1 w}\resetMPstack} \installMPSkeywordN {rd} {\PDFcode{[] 0 d}\resetMPstack} \def\dohandleMPsequenceC#1 % {\edef\somestring{#1}% \handleMPgraphic \handleMPsequence} %D Since colors are not sensitive to transformations, they %D are sometimes used for signaling. Therefore, we handle them %D separately. The next macro can be redefined if needed. \def\handleMPrgbcolor {\PDFcode{\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 rg \!MPgMPa1 \!MPgMPa2 \!MPgMPa3 RG}} \def\handleMPcmykcolor {\PDFcode{\!MPgMPa1 \!MPgMPa2 \!MPgMPa3 \!MPgMPa4 k \!MPgMPa1 \!MPgMPa2 \!MPgMPa3 \!MPgMPa4 K}} \def\handleMPgraycolor {\PDFcode{\!MPgMPa1 g \!MPgMPa1 G}} \def\handleMPspotcolor {\PDFcode{0 g 0 G}} %D Beginning and ending the graphics is taken care of by the %D macro \type{\handleMPgraphic}, which is redefined when %D the first graphics operator is met. \def\handleMPendgraphic % #1% {\ifx\somestring\PSshowpage \let\handleMPsequence\finishMPgraphic \else\ifx\somestring\PSEof \let\handleMPsequence\finishMPgraphic \else \letMPargument\somestring % {#1}% \fi\fi} \def\handleMPbegingraphic % #1% {\ifx\somestring\PSBoundingBox \def\handleMPsequence{\handleMPboundingbox1}% \else\ifx\somestring\PSHiResBoundingBox \def\handleMPsequence{\handleMPboundingbox2}% \else\ifx\somestring\PSExactBoundingBox \def\handleMPsequence{\handleMPboundingbox3}% \else\ifx\somestring\PSshowpage \let\handleMPsequence\finishMPgraphic \else\ifx\somestring\PSEof \let\handleMPsequence\finishMPgraphic \else\ifx\somestring\PSPage \let\handleMPsequence\handleMPpage \else\ifx\somestring\PSMetaPostSpecials \let\handleMPsequence\handleMPspecialscomment \else\ifx\somestring\PSMetaPostSpecial \let\handleMPsequence\handleMPspecialcomment \else\ifx\somestring\PSBeginProlog \let\handleMPsequence\handleMPprolog \else \letMPargument\somestring % {#1}% \fi\fi\fi\fi\fi\fi\fi\fi\fi} \let\handleMPgraphic=\handleMPbegingraphic %D New: we can best filter the prolog because nowdays it can contain %D quite some code. % hm, catcode mess, so we need to tweak %'s catcode here % \long\expandafter\def\expandafter\handleMPprolog\expandafter#\expandafter1\PSEndProlog% % but today i'm not in the mood for ugly stuff \long\def\handleMPprolog#1EndProlog % {\doresetMPstack \let\handleMPsequence\dohandleMPsequence \handleMPsequence} %D We check for three kind of bounding boxes: the normal one %D and two high precision ones: %D %D \starttyping %D BoundingBox: llx lly ucx ucy %D HiResBoundingBox: llx lly ucx ucy %D ExactBoundingBox: llx lly ucx ucy %D \stoptyping %D %D The original as well as the recalculated dimensions are %D saved for later use. \newif\ifskipemptyMPgraphic \skipemptyMPgraphicfalse \chardef\currentMPboundingbox=0 \def\handleMPboundingbox#1#2 #3 #4 #5 {\ifnum#1>\currentMPboundingbox \chardef\currentMPboundingbox#1\relax \xdef\MPllx {#2}% \xdef\MPlly {#3}% \xdef\MPurx {#4}% \xdef\MPury {#5}% \xdef\MPwidth {\the\dimexpr\MPurx\onebasepoint-\MPllx\onebasepoint\relax}% \xdef\MPheight{\the\dimexpr\MPury\onebasepoint-\MPlly\onebasepoint\relax}% \fi \doresetMPstack \let\handleMPsequence\dohandleMPsequence \let\next\handleMPsequence \ifskipemptyMPgraphic \ifdim\MPheight=\zeropoint\ifdim\MPwidth=\zeropoint \def\next{\endinput\finishMPgraphic}% \fi\fi \fi \next} %D Unless defined otherwise, we simply ignore specialcomments. \def\handleMPspecialcomment {\doresetMPstack \let\handleMPsequence\dohandleMPsequence \handleMPsequence} \let\handleMPspecialscomment\handleMPspecialcomment %D We use the \type{page} comment as a signal that %D stackbuilding can be started. \def\handleMPpage #1 #2 {\doresetMPstack \donetrue \let\handleMPsequence\dohandleMPsequence \handleMPsequence} %D The same applies to the special extensions. \def\handleMPspecialcommand {\doresetMPstack \let\handleMPsequence\dohandleMPsequence \handleMPsequence} %D \METAPOST\ draws its dots by moving to a location and %D invoking \type{0 0 rlineto}. This operator is not %D available in \PDF. Our solution is straightforward: we draw %D a line from $(current\_x, current\_y)$ to itself. This %D means that the arguments of the preceding \type{moveto} have %D to be saved. %D These saved coordinates are also used when we handle the %D texts. Text handling proved to be a bit of a nuisance, but %D finally I saw the light. It proved that we also had to %D take care of \type{(split arguments)}. % \startMPcode % draw btex Ga toch effe f\kern0ptietsen?{}` etex ; % \stopMPcode \newtoks \everyMPshowfont \def\setMPfshowfont#1#2% {\font\temp=#1\space at #2\relax\temp \the\everyMPshowfont} \let\MPfshowcommand\empty \def\dohandleMPfshow {\setbox\scratchbox\hbox {\obeyMPspecials \edef\MPtextsize{\gMPa\nofMParguments}% \def\do(##1){##1}% only works in latest mp \edef\MPtextdata{\dogMPa1}% beware, stack can have more \handleMPtext}% \setbox\scratchbox\hbox {\hskip\lastMPmoveX\onebasepoint \raise\lastMPmoveY\onebasepoint \box\scratchbox}% \smashbox\scratchbox \box\scratchbox} \def\handleMPtext {\handleMPtextnormal} % so we can overload this one later \def\handleMPfshow{\dohandleMPfshow } % so we can overload this one later \def\handleMPtext {\ifnum\nofMParguments>\plusthree \handleMPtextnormal \else \defconvertedcommand\MPtextdata\MPtextdata \expanded{\splitstring\MPtextdata}\at::::\to\MPtexttag\and\MPtextnumber \executeifdefined{handleMPtext\MPtexttag}\handleMPtextnormal \fi} % elsewhere we will implement \handleMPtextmptxt \def\doflushMPtext#1% {\edef\!!stringa{#1}% \@EA\dodoflushMPtext\!!stringa\relax} \def\dodoflushMPtext {\afterassignment\dododoflushMPtext\let\nexttoken=} \def\dododoflushMPtext {\ifx\nexttoken\relax % done \else\ifx\nexttoken\char \@EA\@EA\@EA\dodododoflushMPtext \else {\nexttoken}% \@EA\@EA\@EA\dodoflushMPtext \fi\fi} \def\dodododoflushMPtext {\afterassignment\dododododoflushMPtext\scratchcounter} \def\dododododoflushMPtext {{\char\scratchcounter}\let\next\dodoflushMPtext} \def\handleMPtextnormal {\let\ \relax % mp breaks long lines and appends a \ \ifx\MPtextsize\PSnfont % round font size (to pt) \advance\nofMParguments \minusone \expandafter\scratchdimen\gMPa\nofMParguments\onepoint\relax \ifdim\scratchdimen<\onepoint \def\MPtextsize{1pt}% \else \advance\scratchdimen .5\onepoint \def\MPtextsize##1.##2\relax{\def\MPtextsize{##1pt}}% \expandafter\MPtextsize\the\scratchdimen\relax \fi \else \edef\MPtextsize{\MPtextsize bp}% \fi \advance\nofMParguments \minusone \setMPfshowfont{\gMPa\nofMParguments}\MPtextsize \advance\nofMParguments \minusone \temp \MPfshowcommand {\ifnum\nofMParguments=\plusone \def\do(##1){##1}% \doflushMPtext{\dogMPa1}% \else % can't happen anymore in mp version 1+ % we need to catch ( a ) (a a a) (\123 \123 \123) etc \scratchcounter\plusone \def\dodo##1% Andreas Fieger's bug: (\304...) {\edef\!!stringa{##1\empty\empty}% and another one: ( 11) -> \ifx 11 \ifx\!!stringa\MPspacechar\MPspacechar\else\expandafter##1\fi}% \def\do(##1{\dodo{##1}}% \dogMPa\scratchcounter\MPspacechar \let\do\relax \loop \advance\scratchcounter \plusone \ifnum\scratchcounter<\nofMParguments\relax \gMPa\scratchcounter\MPspacechar \repeat \def\do##1){\dodo{##1}}% \dogMPa\scratchcounter \fi \unskip}} %D You could consider the following definition to be the most %D natural one. % \def\MPspacechar{\space} % normal case \def\MPspacechar{\char32\relax} % old solution does not work with math %D However, the following implementation is more robust, since %D some fonts have funny visible spaces in the space slot. This %D gives a mismatch between the space that \METAPOST\ took into %D account and the \quote {natural} space. This only happens in %D labels, since \type {btex}||\type {etex} thingies don't have %D spaces. This phenomena showed up when preparing the %D \METAFUN\ manual, where Palatino fonts are used. We can %D safely assume that \METAPOST\ considers \type {\char32} to %D be the space. \def\MPspacechar{\setbox\scratchbox\hbox{\char32}\kern\wd\scratchbox} %D Well, this does not work with math fonts, so: \def\MPspacechar{\char32\relax} %D Most operators are just converted and keep their %D arguments. Dashes however need a bit different treatment, %D otherwise \PDF\ viewers complain loudly. Another %D complication is that one argument comes after the \type{]}. %D When reading the data, we simply ignore the array boundary %D characters. We save ourselves some redundant newlines and %D at the same time keep the output readable by packing the %D literals. \def\handleMPsetdash {\bgroup \ignoreMPspecials \let\somestring\empty \scratchcounter\plusone \loop \ifnum\scratchcounter<\nofMParguments \edef\somestring{\somestring\space\gMPa\scratchcounter}% \advance\scratchcounter \plusone \repeat \edef\somestring{[\somestring]\space\gMPa\scratchcounter\space d}% \PDFcode{\somestring}% \egroup} %D The \type{setlinewidth} commands looks a bit complicated. There are %D two alternatives, that result in a similar look in both %D $x$- and $y$-dorection. As John Hobby says: %D %D \startnarrower \switchtobodyfont[ss] %D \starttyping %D x 0 dtransform exch truncate exch idtransform pop setlinewidth %D 0 y dtransform truncate idtransform setlinewidth pop %D \stoptyping %D %D These are just fancy versions of \type{x setlinewidth} and %D \type{y setlinewidth}. The \type{x 0 ...} form is used if %D the path is {\em primarily vertical}. It rounds the width %D so that vertical lines come out an integer number of pixels %D wide in device space. The \type{0 y ...} form does the same %D for paths that are {\em primarily horizontal}. The reason %D why I did this is Knuth insists on getting exactly the %D widths \TEX\ intends for the horizontal and vertical rules %D in \type{btex...etex} output. (Note that PostScript scan %D conversion rules cause a horizontal or vertical line of %D integer width $n$ in device space to come out $n+1$ pixels %D wide, regardless of the phase relative to the pixel grid.) %D \stopnarrower %D %D The common operator in these sequences is \type{dtransform}, %D so we can use this one to trigger setting the linewidth. \def\handleMPdtransform {\ifdim\gMPa1\onepoint>\zeropoint \PDFcode{\gMPa1 w}% \def\next##1 ##2 ##3 ##4 ##5 ##6 {\handleMPsequence}% \else \PDFcode{\gMPa2 w}% \def\next##1 ##2 ##3 ##4 {\handleMPsequence}% \fi \let\handleMPsequence\dohandleMPsequence \resetMPstack \next} %D The most complicated command is \type{concat}. \METAPOST\ %D applies this operator to \type{stroke}. At that moment the %D points set by \type{curveto} and \type{moveto}, are already %D fixed. In \PDF\ however the \type{cm} operator affects the %D points as well as the pen (stroke). Like more \PDF\ %D operators, \type{cm} is defined in a bit ambiguous way. %D The only save route for non||circular penshapes, is saving %D the path, recalculating the points and applying the %D transformation matrix in such a way that we can be sure %D that its behavior is well defined. This comes down to %D inverting the path and applying \type{cm} to that path as %D well as the pen. This all means that we have to save the %D path. %D In \METAPOST\ there are three ways to handle a path $p$: %D %D \starttyping %D draw p; fill p; filldraw p; %D \stoptyping %D %D The last case outputs a \type{gsave fill grestore} before %D \type{stroke}. Handling the path outside the main loops %D saves about 40\% run time.\footnote{We can save some more by %D following the \METAPOST\ output routine, but for the moment %D we keep things simple.} Switching between the main loop and %D the path loop is done by means of the recursely called %D macro \type{\handleMPsequence}. \def\handleMPpath {\chardef\finiMPpath\zerocount \let\closeMPpath\relax \let\flushMPpath\flushnormalMPpath \resetMPstack \nofMPsegments\plusone \let\handleMPsequence\dohandleMPpath \dohandleMPpath} %D Most paths are drawn with simple round pens. Therefore we've %D split up the routine in two. \def\resetMPmoveto {\let\lastMPmoveX\empty \let\lastMPmoveY\empty} \resetMPmoveto \def\flushMPmoveto {\ifx\lastMPmoveX\empty \else \PDFcode{\!MP\lastMPmoveX\space \!MP\lastMPmoveY\space m}% \fi} \def\flushnormalMPsegment {\ifcase\getMPkeyword\relax \flushMPmoveto \resetMPmoveto \PDFcode{\!MPgMPs1 \!MPgMPs2 l}% \or \flushMPmoveto \resetMPmoveto \PDFcode{\!MPgMPs1 \!MPgMPs2 \!MPgMPs3 \!MPgMPs4 \!MPgMPs5 \!MPgMPs6 c}% \or \ifx\lastMPmoveX\empty \else % we assume 0,0 rlineto \flushMPmoveto \PDFcode{\!MP\lastMPmoveX\space \!MP\lastMPmoveY\space l}% \resetMPmoveto \fi \or % \flushMPmoveto % \resetMPmoveto \fi} \def\flushMPconcatmoveto {\ifx\lastMPmoveX\empty\else \doMPconcat\lastMPmoveX\lastMPmoveX\lastMPmoveY\lastMPmoveY \flushMPmoveto \fi} \def\flushconcatMPsegment {\ifcase\getMPkeyword\relax \flushMPconcatmoveto \resetMPmoveto \doMPconcat{\gMPs1}\a{\gMPs2}\b% \PDFcode{\!MP\a\space\!MP\b\space l}% \or \flushMPconcatmoveto \resetMPmoveto \doMPconcat{\gMPs1}\a{\gMPs2}\b% \doMPconcat{\gMPs3}\c{\gMPs4}\d% \doMPconcat{\gMPs5}\e{\gMPs6}\f% \PDFcode{\!MP\a\space\!MP\b\space \!MP\c\space\!MP\d\space \!MP\e\space\!MP\f\space c}% \or % rather mp specific ... rline always has 0,0 \bgroup \noMPtranslate \flushMPconcatmoveto % next should be \lastMPmoveX+\a,\lastMPmoveY+\b but we know it's 0,0 \PDFcode{\!MP\lastMPmoveX\space\!MP\lastMPmoveY\space l S}% \resetMPmoveto \egroup \or % \flushMPconcatmoveto % \resetMPmoveto \fi} \def\doflushsomeMPpath {\dodoflushsomeMPpath \advance\nofMPsegments \plusone \ifnum\nofMPsegments<\scratchcounter \expandafter\doflushsomeMPpath \fi} \def\flushsomeMPpath {\scratchcounter\nofMPsegments \nofMPsegments\plusone \doflushsomeMPpath} \def\flushnormalMPpath{\let\dodoflushsomeMPpath\flushnormalMPsegment\flushsomeMPpath} %OLD \def\flushconcatMPpath{\let\dodoflushsomeMPpath\flushconcatMPsegment\flushsomeMPpath} %NEW pre-calculate 1/D so it needn't be repeated for each control point. \def\flushconcatMPpath {\MPreciprocaldeterminant \let\dodoflushsomeMPpath\flushconcatMPsegment\flushsomeMPpath} %D The transformation of the coordinates is handled by one of %D the macros Tanmoy posted to the \PDFTEX\ mailing list. %D I rewrote and optimized the original macro to suit the other %D macros in this module. %D %D \starttyping %D \doMPconcat {x position} \xresult {y position} \yresult %D \stoptyping %D %D By setting the auxiliary \DIMENSIONS\ \type{\dimen0} upto %D \type{\dimen10} only once per path, we save over 20\% run %D time. Some more speed was gained by removing some parameter %D passing. These macros can be optimized a bit more by using %D more constants. There is however not much need for further %D optimization because penshapes usually are round and %D therefore need no transformation. Nevertheless we move the %D factor to the outer level and use a bit different \type{pt} %D removal macro. Although the values represent base points, %D we converted them to pure points, simply because those can %D be converted back. %OLD \mathchardef\MPconcatfactor=256 % beware don't remove spaces before it %OLD \def\doMPreducedimen#1 %OLD {\count0\MPconcatfactor %OLD \advance\dimen#1 \ifdim\dimen#1>\zeropoint .5\else -.5\fi\count0 %OLD \divide\dimen#1 \count0\relax} %OLD % too inaccurate (see old pragma logo) %OLD %OLD \def\doMPreducedimen#1 %OLD {\count0=\MPconcatfactor %OLD \divide\dimen#1 \count0\relax} %OLD \def\doMPreducedimen#1 %OLD {\advance\dimen#1 \ifdim\dimen#1>\zeropoint .5\else -.5\fi\MPconcatfactor %OLD \divide\dimen#1 \MPconcatfactor} %D The transformation code is rewritten by Daniel H. Luecking who %D describes his patch as follows: %D %D We would like to divide 1 by $X$, but all divisions are integer so %D for accuracy we want to convert to large integers and make sure the %D integer quotient has as many significant digits as possible. Thus we %D need to replace $1/X$ with $M/N$ where $N$ is as large as possible %D and $M/N$ is as large as possible. Also for simplicity $M$ should be %D a power of 2. So we make $M = 2^{30}$ \footnote{$2^{31} - 1$ is the %D largest legal integer. Using it (and simply ignoring the inaccuracy %D caused by $-1$) turns out to be at least as accurate in all cases, %D and more accurate in some.} (largest legal power of 2) and adjust %D $X$ downward (if necessary) to the the range $1-2^{16}$. This gives %D at least 15 significant binary digits, (almost as accurate as %D \METAPOST\ for numbers near 1) or almost 5 significant figures %D (decimal). \newcount\MPscratchCnt \newdimen\MPscratchDim % will be assigned global \def\MPadjustdimen % sets \MPscratchDim and \MPscratchCnt {\MPscratchCnt\zerocount \doMPadjustdimen} \def\doMPadjustdimen {\ifdim\MPscratchDim>\onepoint \divide \MPscratchDim\plustwo \advance\MPscratchCnt\plusone \expandafter\doMPadjustdimen \fi} %OLD \def\doMPexpanddimen#1 %OLD {\multiply\dimen#1 \MPconcatfactor\relax} %D DHL: When viewed as an integer, $1 \hbox{pt}=2^{16}$ so $2^{32}/X$ %D is the right way to do $(1 \hbox{pt})/(X \hbox{pt})$ and get the %D answer in points. But we are limited to $2^{30}/X$. However, we %D actually do $[ 2^{30} / (X/2^K) ]*2^{2-K}$ where $K$ is the number %D of halvings it takes to bring $X$ below $1 \hbox{pt}$. If $K$ is 0 %D or 1 we readjust by multiplying by 4 or 2, otherwise by halving %D $(K-2)$ times \type {\MPscratchCnt} holds the value of $K$ from %D \type {\MPadjustdimen}. \def\MPreadjustdimen % acts on \MPscratchDim and MPscratchCnt {\ifcase\MPscratchCnt \multiply\scratchdimen \plusfour \or \multiply\scratchdimen \plustwo \else \expandafter\doMPreadjustdimen \fi} \def\doMPreadjustdimen {\ifnum\MPscratchCnt>\plustwo \divide \scratchdimen\plustwo \advance\MPscratchCnt\minusone \expandafter\doMPreadjustdimen \fi} \def\MPreciprocaldeterminant {\scratchdimen\withoutpt\the\dimen0 \dimen6 % s_x*s_y \advance\scratchdimen -\withoutpt\the\dimen2 \dimen4 % s_x*s_y - r_x*r_y \ifdim\scratchdimen<\zeropoint % we need a positive dimension \scratchdimen-\scratchdimen % for \MPadjustdimen (?) \doMPreciprocal \scratchdimen-\scratchdimen \else \doMPreciprocal \fi \edef\MPreciprocal{\withoutpt\the\scratchdimen}} \newcount\MPnumerator \MPnumerator = 1073741824 % 2^{30} % todo: dimexpr \def\doMPreciprocal % replace \scratchdimen with its reciprocal {\ifdim\scratchdimen=\onepoint \else \MPadjustdimen \scratchcounter\MPnumerator \divide\scratchcounter\scratchdimen \scratchdimen1\scratchcounter % 1 needed \MPreadjustdimen \fi} %OLD \def\presetMPconcat %OLD {\dimen 0=\gMPs1\onepoint \doMPreducedimen 0 % r_x %OLD \dimen 2=\gMPs2\onepoint \doMPreducedimen 2 % s_x %OLD \dimen 4=\gMPs3\onepoint \doMPreducedimen 4 % s_y %OLD \dimen 6=\gMPs4\onepoint \doMPreducedimen 6 % r_y %OLD \dimen 8=\gMPs5\onepoint \doMPreducedimen 8 % t_x %OLD \dimen10=\gMPs6\onepoint \doMPreducedimen10 } % t_y %OLD %OLD \def\presetMPscale %OLD {\dimen 0=\gMPs1\onepoint \doMPreducedimen 0 %OLD \dimen 2 \zeropoint %OLD \dimen 4 \zeropoint %OLD \dimen 6=\gMPs2\onepoint \doMPreducedimen 6 %OLD \dimen 8 \zeropoint %OLD \dimen10 \zeropoint} \def\cleanupMPconcat {\ignoreMPspecials \docleanupMPargument1% \docleanupMPargument6% \keepMPspecials} \def\presetMPconcat {\dimen 0=\gMPs1\onepoint % s_x \dimen 2=\gMPs2\onepoint % r_x \dimen 4=\gMPs3\onepoint % r_y \dimen 6=\gMPs4\onepoint % s_y \dimen 8=\gMPs5\onepoint % t_x \dimen10=\gMPs6\onepoint} % t_y \def\presetMPscale {\dimen 0=\gMPs1\onepoint \dimen 2 \zeropoint \dimen 4 \zeropoint \dimen 6=\gMPs2\onepoint \dimen 8 \zeropoint \dimen10 \zeropoint} \def\noMPtranslate % use this one grouped {\dimen 8 \zeropoint % t_x \dimen10 \zeropoint} % t_y %D \starttyping %D \def\doMPconcat#1#2#3#4% %D {\dimen12=#1 pt \doMPreducedimen12 % p_x %D \dimen14=#3 pt \doMPreducedimen14 % p_y %D % %D \dimen16 \dimen 0 %D \multiply \dimen16 \dimen 6 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 4 %D \advance \dimen16 -\dimen20 %D % %D \dimen18 \dimen12 %D \multiply \dimen18 \dimen 6 %D \dimen20 \dimen14 %D \multiply \dimen20 \dimen 4 %D \advance \dimen18 -\dimen20 %D \dimen20 \dimen 4 %D \multiply \dimen20 \dimen10 %D \advance \dimen18 \dimen20 %D \dimen20 \dimen 6 %D \multiply \dimen20 \dimen 8 %D \advance \dimen18 -\dimen20 %D % %D \multiply \dimen12 -\dimen 2 %D \multiply \dimen14 \dimen 0 %D \advance \dimen12 \dimen14 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 8 %D \advance \dimen12 \dimen20 %D \dimen20 \dimen 0 %D \multiply \dimen20 \dimen10 %D \advance \dimen12 -\dimen20 %D % %D \doMPreducedimen16 %D \divide \dimen18 \dimen16 \doMPexpanddimen18 %D \divide \dimen12 \dimen16 \doMPexpanddimen12 %D % %D \edef#2{\withoutpt\the\dimen18}% % p_x^\prime %D \edef#4{\withoutpt\the\dimen12}} % p_y^\prime %D \stoptyping %D The following optimization resulted from some tests by %D and email exchanges with Sanjoy Mahajan. %D %D \starttyping %D \def\doMPconcat#1#2#3#4% %D {\dimen12=#1 pt \doMPreducedimen12 % p_x %D \dimen14=#3 pt \doMPreducedimen14 % p_y %D % %D \dimen16 \dimen 0 %D \multiply \dimen16 \dimen 6 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 4 %D \advance \dimen16 -\dimen20 %D % %D \dimen18 \dimen12 %D \multiply \dimen18 \dimen 6 %D \dimen20 \dimen14 %D \multiply \dimen20 \dimen 4 %D \advance \dimen18 -\dimen20 %D \dimen20 \dimen 4 %D \multiply \dimen20 \dimen10 %D \advance \dimen18 \dimen20 %D \dimen20 \dimen 6 %D \multiply \dimen20 \dimen 8 %D \advance \dimen18 -\dimen20 %D % %D \multiply \dimen12 -\dimen 2 %D \multiply \dimen14 \dimen 0 %D \advance \dimen12 \dimen14 %D \dimen20 \dimen 2 %D \multiply \dimen20 \dimen 8 %D \advance \dimen12 \dimen20 %D \dimen20 \dimen 0 %D \multiply \dimen20 \dimen10 %D \advance \dimen12 -\dimen20 %D % %D %\ifdim\dimen16>\onepoint % oeps, can be < 1pt too %D \ifdim\dimen16=\onepoint \else %D \ifdim\dimen16>\MPconcatfactor pt %D \doMPreducedimen16 %D \divide \dimen18 \dimen16 \doMPexpanddimen18 %D \divide \dimen12 \dimen16 \doMPexpanddimen12 %D \else %D \divide \dimen18 \dimen16 \doMPexpanddimen18 \doMPexpanddimen18 %D \divide \dimen12 \dimen16 \doMPexpanddimen12 \doMPexpanddimen12 %D \fi %D \fi %D % %D \edef#2{\withoutpt\the\dimen18}% % p_x^\prime %D \edef#4{\withoutpt\the\dimen12}} % p_y^\prime %D \stoptyping %D %D But, this one is still too inaccurate, so we now have: %D DHL: Ideally, $r_x$, $r_y$, $s_x$, $s_y$ should be in macros, not %D dimensions (they are scalar quantities after all, not lengths). I %D suppose the authors decided to do calculations with integer %D arithmetic instead of using real factors because it's faster. %D However, the actual macros test slower, possibly because I've %D omitted three nested loops. In my test files, my approach is more %D accurate. It is also far simpler and overflow does not seem to be a %D significant concern. The scale factors written by Metapost are (?) %D always $<=1$ (it scales coordinates internally) and coordinates are %D always likely to be less than \type {\maxdimen}. %D %D If this should ever cause problems, the scale factors can be reduced. % the original: % % \def\doMPconcat#1#2#3#4% % {\dimen12=#1\onepoint% p_x % #1\onepoint % \dimen14=#3\onepoint% p_y % #3\onepoint % \advance\dimen12 -\dimen8 % p_x - t_x % \advance\dimen14 -\dimen10 % p_y - t_y % \dimen18=\withoutpt\the\dimen6 \dimen12 % s_y(p_x - t_x) % \advance\dimen18 -\withoutpt\the\dimen4 \dimen14 % - r_y(p_y-t_y) % \dimen14=\withoutpt\the\dimen0 \dimen14 % s_x(p_y-t_y) % \advance\dimen14 -\withoutpt\the\dimen2 \dimen12 % - r_x(p_x-t_x) % % \MPreciprocal contains precomputed 1/D: % \dimen18=\MPreciprocal\dimen18 % \dimen14=\MPreciprocal\dimen14 % \edef#2{\withoutpt\the\dimen18}% % p_x^\prime % \edef#4{\withoutpt\the\dimen14}} % p_y^\prime % % faster but not that often used \def\doMPconcat#1#2#3#4% {\dimen12\dimexpr#1\points-\dimen 8\relax % p_x-t_x \dimen14\dimexpr#3\points-\dimen10\relax % p_y-t_y \dimen18\dimexpr\withoutpt\the\dimen6\dimen12-\withoutpt\the\dimen4\dimen14\relax % s_y(p_x-t_x)-r_y(p_y-t_y) \dimen14\dimexpr\withoutpt\the\dimen0\dimen14-\withoutpt\the\dimen2\dimen12\relax % s_x(p_y-t_y)-r_x(p_x-t_x) \edef#2{\withoutpt\the\dimexpr\MPreciprocal\dimen18\relax}% % p_x^\prime \edef#4{\withoutpt\the\dimexpr\MPreciprocal\dimen14\relax}} % p_y^\prime %D One reason for Daniel to write this patch was that at small sizes %D the accuracy was less than optimal. Here is a test that demonstrates %D that his alternative is pretty good: %D %D \startlinecorrection %D \startMPcode %D for i = 5cm,1cm,5mm,1mm,.5mm,.1mm,.01mm : %D draw fullcircle scaled i withpen pencircle xscaled (i/10) yscaled (i/20) rotated 45 ; %D endfor ; %D \stopMPcode %D \stoplinecorrection %D The following explanation of the conversion process was %D posted to the \PDFTEX\ mailing list by Tanmoy. The original %D macro was part of a set of macro's that included sinus and %D cosinus calculations as well as scaling and translating. The %D \METAPOST\ to \PDF\ conversion however only needs %D transformation. %M \start \switchtobodyfont [ss] %D Given a point $(U_x, U_y)$ in user coordinates, the business %D of \POSTSCRIPT\ is to convert it to device space. Let us say %D that the device space coordinates are $(D_x, D_y)$. Then, in %D \POSTSCRIPT\ $(D_x, D_y)$ can be written in terms of %D $(U_x, U_y)$ in matrix notation, either as %D %D \placeformula %D \startformula %D \pmatrix{D_x&D_y&1\cr} = \pmatrix{U_x&U_y&1\cr} %D \pmatrix{s_x&r_x&0\cr %D r_y&s_y&0\cr %D t_x&t_y&1\cr} %D \stopformula %D %D or %D %D \placeformula %D \startformula %D \pmatrix{D_x\cr D_y\cr 1} = \pmatrix{s_x&r_y&t_x\cr %D r_x&s_y&t_y\cr %D 0 &0 &1 \cr} %D \pmatrix{U_x\cr %D U_y\cr %D 1 \cr} %D \stopformula %D %D both of which is a shorthand for the same set of equations: %D %D \placeformula %D \startformula %D D_x = s_x U_x + r_y U_y + t_x %D \stopformula %D %D \placeformula %D \startformula %D D_y = r_x U_x + s_y U_y + t_y %D \stopformula %D %D which define what is called an `affine transformation'. %D %D \POSTSCRIPT\ represents the `transformation matrix' as a %D six element matrix instead of a $3\times 3$ array because %D three of the elements are always~0, 0 and~1. Thus the above %D transformation is written in postscript as $[s_x\, r_x\, %D r_y\, s_y\, t_x\, t_y]$. However, when doing any %D calculations, it is useful to go back to the original %D matrix notation (whichever: I will use the second) and %D continue from there. %D %D As an example, if the current transformation matrix is %D $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$ and you say \typ{[a b %D c d e f] concat}, this means: %D %D \startnarrower %D Take the user space coordinates and transform them to an %D intermediate set of coordinates using array $[a\, b\, c\, d\, %D e\, f]$ as the transformation matrix. %D %D Take the intermediate set of coordinates and change them to %D device coordinates using array $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$ %D as the transformation matrix. %D \stopnarrower %D %D Well, what is the net effect? In matrix notation, it is %D %D \placeformula %D \startformula %D \pmatrix{I_x\cr I_y\cr 1\cr} = \pmatrix{a&c&e\cr %D b&d&f\cr %D 0&0&1\cr} %D \pmatrix{U_x\cr %D U_y\cr %D 1 \cr} %D \stopformula %D %D \placeformula %D \startformula %D \pmatrix{D_y\cr D_y\cr 1\cr} = \pmatrix{s_x&r_y&t_x\cr %D r_x&s_y&t_y\cr %D 0 &0 &1 \cr} %D \pmatrix{I_x\cr %D I_y\cr %D 1 \cr} %D \stopformula %D %D where $(I_x, I_y)$ is the intermediate coordinate. %D %D Now, the beauty of the matrix notation is that when there is %D a chain of such matrix equations, one can always compose %D them into one matrix equation using the standard matrix %D composition law. The composite matrix from two matrices can %D be derived very easily: the element in the $i$\high{th} %D horizontal row and $j$\high{th} vertical column is %D calculated by`multiplying' the $i$\high{th} row of the first %D matrix and the $j$\high{th} column of the second matrix (and %D summing over the elements). Thus, in the above: %D %D \placeformula %D \startformula %D \pmatrix{D_x\cr D_y\cr 1} = \pmatrix{s_x^\prime&r_y^\prime&t_x^\prime\cr %D r_x^\prime&s_y^\prime&t_y^\prime\cr %D 0 &0 &0 \cr} %D \pmatrix{U_x\cr %D U_y\cr %D 1 \cr} %D \stopformula %D %D with %D %D \placeformula %D \startformula %D \eqalign %D {s_x^\prime & = s_x a + r_y b \cr %D r_x^\prime & = r_x a + s_y b \cr %D r_y^\prime & = s_x c + r_y d \cr %D s_y^\prime & = r_x c + s_y d \cr %D t_x^\prime & = s_x e + r_y f + t_x \cr %D t_y^\prime & = r_x e + s_y f + t_y \cr} %D \stopformula %D In fact, the same rule is true not only when one is going %D from user coordinates to device coordinates, but whenever %D one is composing two `transformations' together %D (transformations are `associative'). Note that the formula %D is not symmetric: you have to keep track of which %D transformation existed before (i.e.\ the equivalent of %D $[s_x\, r_x\, r_y\, s_y\, t_x\, t_y]$) and which was %D specified later (i.e.\ the equivalent of $[a\, b\, c\, d\, %D e\, f]$). Note also that the language can be rather %D confusing: the one specified later `acts earlier', %D converting the user space coordinates to intermediate %D coordinates, which are then acted upon by the pre||existing %D transformation. The important point is that order of %D transformation matrices cannot be flipped (transformations %D are not `commutative'). %D %D Now what does it mean to move a transformation matrix %D before a drawing? What it means is that given a point %D $(P_x, P_y)$ we need a different set of coordinates %D $(P_x^\prime, P_y^\prime)$ such that if the transformation %D acts on $(P_x^\prime, P_y^\prime)$, they produce $(P_x, %D P_y)$. That is we need to solve the set of equations: %D %D \placeformula %D \startformula %D \pmatrix{P_x\cr P_y\cr 1\cr} = \pmatrix{s_x&r_y&t_x\cr %D r_x&s_y&t_y\cr %D 0 &0 &1 \cr} %D \pmatrix{P_x^\prime\cr %D P_y^\prime\cr %D 1 \cr} %D \stopformula %D %D Again matrix notation comes in handy (i.e. someone has %D already solved the problem for us): we need the inverse %D transformation matrix. The inverse transformation matrix can %D be calculated very easily: %D %D \placeformula %D \startformula %D \pmatrix{P_x^\prime\cr P_y^\prime\cr 1\cr} = %D \pmatrix{s_x^\prime&r_y^\prime&t_x^\prime\cr %D r_x^\prime&s_y^\prime&t_y^\prime\cr %D 0 &0 &1 \cr} %D \pmatrix{P_x\cr %D P_y\cr %D 1 \cr} %D \stopformula %D %D where, the inverse transformation matrix is given by %D %D \placeformula %D \startformula %D \eqalign %D {D & = s_x s_y - r_x r_y \cr %D s_x^\prime & = s_y / D \cr %D s_y^\prime & = s_x / D \cr %D r_x^\prime & = - r_x / D \cr %D r_y^\prime & = - r_y / D \cr %D t_x^\prime & = ( - s_y t_x + r_y t_y ) / D \cr %D t_y^\prime & = ( r_x t_x - s_x t_y ) / D \cr} %D \stopformula %D %D And you can see that when expanded out, this does %D give the formulas: %D %D \placeformula %D \startformula %D P_x^\prime = { { s_y(p_x-t_x) + r_y(t_y-p_y) } \over %D { s_x s_y-r_x r_y } } %D \stopformula %D %D \placeformula %D \startformula %D P_y^\prime = { { s_x(p_y-t_y) + r_x(t_x-p_x) } \over %D { s_x*s_y-r_x*r_y } } %D \stopformula %D %D The code works by representing a real number by converting %D it to a dimension to be put into a \DIMENSION\ register: 2.3 would %D be represented as 2.3pt for example. In this scheme, %D multiplying two numbers involves multiplying the \DIMENSION\ %D registers and dividing by 65536. Accuracy demands that the %D division be done as late as possible, but overflow %D considerations need early division. %D %D Division involves dividing the two \DIMENSION\ registers and %D multiplying the result by 65536. Again, accuracy would %D demand that the numerator be multiplied (and|/|or the %D denominator divided) early: but that can lead to overflow %D which needs to be avoided. %D %D If nothing is known about the numbers to start with (in %D concat), I have chosen to divide the 65536 as a 256 in each %D operand. However, in the series calculating the sine and %D cosine, I know that the terms are small (because I never %D have an angle greater than 45 degrees), so I chose to %D apportion the factor in a different way. %M \stop %D The path is output using the values saved on the stack. If %D needed, all coordinates are recalculated. \def\finishMPpath {\PDFcode{\ifcase\finiMPpath W n\or S\or f\or B\fi}} \def\processMPpath {\checkMPpath \ifcase\nofMPsegments\else \flushMPpath \closeMPpath \finishMPpath \fi \let\handleMPsequence\dohandleMPsequence \resetMPstack \nofMPsegments\zerocount \handleMPsequence} %D The following \METAPOST\ code is quite valid but, when %D processed and converted to \PDF, will make a file %D unprintable on a Hewlett Packard printer (from Acrobat %D $v<=5$). Who is to blame, the driver of the OS layer in %D between, is hard to determine, so we add an additional %D check. %D %D \starttyping %D clip currentpicture to origin -- cycle ; %D setbounds currentpicture to fullsquare scaled 5cm ; %D \stoptyping \def\checkMPpath {\ifcase\finiMPpath \ifnum\nofMPsegments<\plusthree % n is one ahead \message{omitting zero clip path}% \nofMPsegments\zerocount \fi \fi} %D In \PDF\ the \type{cm} operator must precede the path %D specification. We therefore can output the \type{cm} at %D the moment we encounter it. \def\handleMPpathconcat {\presetMPconcat \PDFcode{\gMPs1 \gMPs2 \gMPs3 \gMPs4 \gMPs5 \gMPs6 cm}% \resetMPstack} \def\handleMPpathscale {\presetMPscale \PDFcode{\gMPs1 0 0 \gMPs2 0 0 cm}% \resetMPstack} %D This macro interprets the path and saves it as compact as %D possible. \def\dohandleMPpath#1% {\ifcase\lccode`#1\relax \@EA\dohandleMPpathA \else \@EA\dohandleMPpathB \fi#1} \let\dohandleMPpathA\setMPsequence \def\installMPSkeywordP#1#2% {\expandafter\def\csname\@@MP:P:#1\endcsname{#2}} \def\installMPSshortcutP#1#2% todo: \let {\expandafter\let\csname\@@MP:P:#1\expandafter\endcsname\csname\@@MP:P:#2\endcsname} \def\dohandleMPpathB#1 % {\def\somestring{#1}% \executeifdefined{\@@MP:P:\somestring}\relax \handleMPsequence} \installMPSkeywordP \PSlineto {\setMPkeyword0 } \installMPSkeywordP \PScurveto {\setMPkeyword1 } \installMPSkeywordP \PSrlineto {\setMPkeyword2 } \installMPSkeywordP \PSmoveto {\edef\lastMPmoveX{\gMPs1}% \edef\lastMPmoveY{\gMPs2}% \resetMPstack \setMPkeyword3 } \installMPSkeywordP \PSclip {% \chardef\finiMPpath\zerocount % already \let\handleMPsequence\processMPpath} \installMPSkeywordP \PSgsave {\chardef\finiMPpath\plusthree} \installMPSkeywordP \PSgrestore {} \installMPSkeywordP \PSfill {\ifcase\finiMPpath \chardef\finiMPpath\plustwo \let\handleMPsequence\processMPpath \fi} \installMPSkeywordP \PSstroke {\ifcase\finiMPpath \chardef\finiMPpath\plusone \fi \let\handleMPsequence\processMPpath} \installMPSkeywordP \PSclosepath {\def\closeMPpath{\PDFcode{h}}} \installMPSkeywordP \PSconcat {\cleanupMPconcat \let\flushMPpath\flushconcatMPpath \handleMPpathconcat} \installMPSkeywordP \PSscale {\let\flushMPpath\flushconcatMPpath \handleMPpathscale} \installMPSshortcutP {l} \PSlineto \installMPSshortcutP {r} \PSrlineto \installMPSshortcutP {m} \PSmoveto \installMPSshortcutP {c} \PScurveto \installMPSshortcutP {q} \PSgsave \installMPSshortcutP {Q} \PSgrestore \installMPSshortcutP {S} \PSstroke \installMPSshortcutP {F} \PSfill \installMPSshortcutP {B} \PSgsave \installMPSshortcutP {W} \PSclip \installMPSshortcutP {p} \PSclosepath \installMPSshortcutP {s} \PSscale \installMPSshortcutP {t} \PSconcat %D \macros %D {twodigitMPoutput} %D %D We can limit the precision to two digits after the comma %D by saying: %D %D \starttyping %D \twodigitMPoutput %D \stoptyping %D %D This option only works in \CONTEXT\ combined with \ETEX. \def\twodigitMPoutput {\let\!MP \twodigitrounding \def\!MPgMPs##1{\twodigitrounding{\gMPs##1}}% \def\!MPgMPa##1{\twodigitrounding{\gMPa##1}}} \let\!MP \empty \let\!MPgMPa\gMPa \let\!MPgMPs\gMPs %D Here comes the special-specific code: \def\setMPextensions {\ifconditional\manyMPspecials \def\MPrgbnumber##1{\expandafter\doMPrgbnumber##10000.00000\relax}% \def\doMPrgbnumber##1.##2##3##4##5##6\relax{##2##3##4##5}% \else \def\MPrgbnumber##1{\expandafter\doMPrgbnumber##1000.0000\relax}% \def\doMPrgbnumber##1.##2##3##4##5\relax{##2##3##4}% \fi} % \settrue\manyMPspecials \setMPextensions %D This macro handles the special definitions that are %D passed as comment. %D The implementation below saves the data on the stack in %D a way similar to the macros in \type {supp-pdf.tex}, and %D just overload a few already defined handlers. That way, %D the existing macros are still generic. \footnote {Actually, %D the macros here are just as generic.} %D %D Currently the only extension concerns shading, which is %D accomplished by handling yet another value of \type %D {\finiMPpath}. The recource disctionary is stored and %D later picked up by the general \CONTEXT\ figure inclusion %D macros. %D The \type {%%MetaPostSpecials: version.revision signal} line %D triggers this module into handling color specifications kind %D of special. We need this safeguard for non||special %D usage. %D When defined inline, we use another macro to handle the %D definitions. Actually, this macro is called by the %D previous ones. \chardef\MPspecialversion = 0 % specials when >1 \chardef\MPspecialrevision = 0 % specials when >1 \chardef\MPspecialsignal = 0 % passed on by graphic \chardef\inlineMPspecials = 1 % only needed for stack resetting \def\dohandleMPspecialcomment#1 {\setMPargument{#1}% \advance\scratchcounter \minusone \ifcase\scratchcounter \handleMPspecialcommand \donetrue \doresetMPstack \let\handleMPsequence\dohandleMPsequence \expandafter\handleMPsequence \else \expandafter\dohandleMPspecialcomment \fi} \def\handleMPspecialcomment #1 % number of arguments {\doresetMPstack \scratchcounter#1\relax \ifcase\scratchcounter % when zero, inline shading is used \chardef\inlineMPspecials\plusone \let\handleMPsequence\dohandleMPsequence \expandafter\handleMPsequence \else \chardef\inlineMPspecials\zerocount \expandafter\dohandleMPspecialcomment \fi} %D When defined inline, we use another macro to handle the %D definitions. Actually, this macro is called by the %D previous ones. \def\handleMPspecialcommand {\ifcase\inlineMPspecials\or \advance\nofMParguments \minusone % pop the size \fi \ifundefined\MPspecial % beware, no real \if \message{[unknown \MPspecial]}% \else \csname\MPspecial\endcsname \fi \ifcase\inlineMPspecials \doresetMPstack % 0 \else \resetMPstack % 1 \fi} \def\handleMPspecialscomment #1.#2 #3 % version.revision signal #4=div=1000|10000 {\doresetMPstack \chardef\MPspecialversion #1% \chardef\MPspecialrevision#2% \chardef\MPspecialsignal #3% \let\handleMPsequence\dohandleMPsequence \ifnum#1=\plusone \expandafter\handleMPsequence \else \expandafter\handleMPspecialscommentx \fi} \def\handleMPspecialscommentx #1 % version 2 {\ifnum10000=0#1\relax \settrue \manyMPspecials \else \setfalse\manyMPspecials \fi \setMPextensions \handleMPsequence} \def\handleMPrgbcolor {\edef\lastMPrvalue{\csname\@@MP01\endcsname}%{\gMPs1}% \edef\lastMPgvalue{\csname\@@MP02\endcsname}%{\gMPs2}% \edef\lastMPbvalue{\csname\@@MP03\endcsname}%{\gMPs3}% \ifnum\MPrgbnumber\lastMPrvalue=123\relax \csname\@@MPSK\number\MPrgbnumber\lastMPbvalue\endcsname \else \dohandleMPrgb\lastMPrvalue\lastMPgvalue\lastMPbvalue \fi} \def\handleMPgraycolor{\dohandleMPgray{\gMPs1}} \def\handleMPcmykcolor{\dohandleMPcmyk{\gMPs1}{\gMPs2}{\gMPs3}{\gMPs4}} \def\handleMPspotcolor{\dohandleMPspot{\gMPs1}{\gMPs2}{\gMPs3}{\gMPs4}} % \newcontitional\ignoreMPpath \def\finishMPpath {\ifconditional\ignoreMPpath \PDFcode{W n\space}% \else \PDFcode{\ifcase\finiMPpath W n\or S\or f\or B\else W n\fi}% \fi \ifx\extraMPpathcode\empty\else \PDFcode{\extraMPpathcode}% \let\extraMPpathcode\empty \fi \setfalse\ignoreMPpath} \def\processMPpath {\checkMPpath % ! \flushMPpath \closeMPpath \finishMPpath \let\handleMPsequence\dohandleMPsequence \resetMPstack \nofMPsegments\zerocount \handleMPsequence} \protect \endinput % When i'm bored ... % \newcatcodetable\mpscatcodes % \startcatcodetable \mpscatcodes % \catcode`\| \@@comment % \catcode`\% \@@active % \catcode`\[ \@@active % \catcode`\] \@@active % \catcode`\{ \@@active % \catcode`\} \@@active % \stopcatcodetable % \def\keepMPspecials % {\setcatcodecommand \mpscatcodes `\% \letterpercent % \setcatcodecommand \mpscatcodes `\[ \letterleftbracket % \setcatcodecommand \mpscatcodes `\] \letterrightbracket % \setcatcodecommand \mpscatcodes `\{ \letterleftbrace % \setcatcodecommand \mpscatcodes `\} \letterrightbrace} % \def\ignoreMPspecials % {\setcatcodecommand \mpscatcodes `\% \letterpercent % \setcatcodecommand \mpscatcodes `\[ \empty % \setcatcodecommand \mpscatcodes `\] \empty % \setcatcodecommand \mpscatcodes `\{ \empty % \setcatcodecommand \mpscatcodes `\} \empty} % \def\obeyMPspecials % {\setcatcodecommand \mpscatcodes `\% \letterpercent % \setcatcodecommand \mpscatcodes `\[ \letterleftbracket % \setcatcodecommand \mpscatcodes `\] \letterrightbracket % \setcatcodecommand \mpscatcodes `\{ \letterleftbrace % \setcatcodecommand \mpscatcodes `\} \letterrightbrace} % \gdef\setMPspecials| % {\setcatcodetable\mpscatcodes % \lccode`\-=\zerocount % to be sure, it could be a letter % \lccode`\%=`\%% % otherwise it's seen as a number % \def\({\char40\relax }% % \def\){\char41\relax }% % \def\\{\char92\relax }% % \def\0{\octalMPcharacter0}% % \def\1{\octalMPcharacter1}% % \def\2{\octalMPcharacter2}% % \def\3{\octalMPcharacter3}% % \def\4{\octalMPcharacter4}% % \def\5{\octalMPcharacter5}% % \def\6{\octalMPcharacter6}% % \def\7{\octalMPcharacter7}% % \def\8{\octalMPcharacter8}% % \def\9{\octalMPcharacter9}}