% This file is part of MetaPost. The MetaPost program is in the public domain. @ Introduction. @c # include "mpconfig.h" # include "mpmathdouble.h" @h @ @c @ @ @(mpmathdouble.h@>= # ifndef MPMATHDOUBLE_H # define MPMATHDOUBLE_H 1 # include "mp.h" math_data *mp_initialize_double_math (MP mp); # endif @* Math initialization. First, here are some very important constants. @d PI 3.1415926535897932384626433832795028841971 @d fraction_multiplier 4096.0 @d angle_multiplier 16.0 @d coef_bound ((7.0/3.0)*fraction_multiplier) /* |fraction| approximation to 7/3 */ @d fraction_threshold 0.04096 /* a |fraction| coefficient less than this is zeroed */ @d half_fraction_threshold (fraction_threshold/2) /* half of |fraction_threshold| */ @d scaled_threshold 0.000122 /* a |scaled| coefficient less than this is zeroed */ @d half_scaled_threshold (scaled_threshold/2) /* half of |scaled_threshold| */ @d near_zero_angle (0.0256*angle_multiplier) /* an angle of about 0.0256 */ @d p_over_v_threshold 0x80000 /* TODO */ @d equation_threshold 0.001 @d warning_limit pow(2.0,52.0) /* this is a large value that can just be expressed without loss of precision */ @d epsilon pow(2.0,-52.0) @d unity 1.0 @d two 2.0 @d three 3.0 @d half_unit 0.5 @d three_quarter_unit 0.75 @d EL_GORDO (DBL_MAX/2.0-1.0) /* the largest value that \MP\ likes. */ @d negative_EL_GORDO (-EL_GORDO) @d one_third_EL_GORDO (EL_GORDO/3.0) @d fraction_half (0.5*fraction_multiplier) @d fraction_one (1.0*fraction_multiplier) @d fraction_two (2.0*fraction_multiplier) @d fraction_three (3.0*fraction_multiplier) @d fraction_four (4.0*fraction_multiplier) @d no_crossing (fraction_one + 1) @d one_crossing fraction_one @d zero_crossing 0 @d one_eighty_deg (180.0*angle_multiplier) @d negative_one_eighty_deg (-180.0*angle_multiplier) @d three_sixty_deg (360.0*angle_multiplier) @d odd(A) (abs(A)%2==1) @d two_to_the(A) (1<<(unsigned)(A)) @d set_cur_cmd(A) mp->cur_mod_->command = (A) @d set_cur_mod(A) mp->cur_mod_->data.n.data.dval = (A) @ Here are the functions that are static as they are not used elsewhere. @= static int mp_ab_vs_cd (mp_number *a, mp_number *b, mp_number *c, mp_number *d); static void mp_allocate_abs (MP mp, mp_number *n, mp_number_type t, mp_number *v); static void mp_allocate_clone (MP mp, mp_number *n, mp_number_type t, mp_number *v); static void mp_allocate_double (MP mp, mp_number *n, double v); static void mp_allocate_number (MP mp, mp_number *n, mp_number_type t); static int mp_double_ab_vs_cd (mp_number *a, mp_number *b, mp_number *c, mp_number *d); static void mp_double_abs (mp_number *A); static void mp_double_crossing_point (MP mp, mp_number *ret, mp_number *a, mp_number *b, mp_number *c); static void mp_double_fraction_to_round_scaled (mp_number *x); static void mp_double_m_exp (MP mp, mp_number *ret, mp_number *x_orig); static void mp_double_m_log (MP mp, mp_number *ret, mp_number *x_orig); static void mp_double_m_norm_rand (MP mp, mp_number *ret); static void mp_double_m_unif_rand (MP mp, mp_number *ret, mp_number *x_orig); static void mp_double_n_arg (MP mp, mp_number *ret, mp_number *x, mp_number *y); static void mp_double_number_make_fraction (MP mp, mp_number *r, mp_number *p, mp_number *q); static void mp_double_number_make_scaled (MP mp, mp_number *r, mp_number *p, mp_number *q); static void mp_double_number_take_fraction (MP mp, mp_number *r, mp_number *p, mp_number *q); static void mp_double_number_take_scaled (MP mp, mp_number *r, mp_number *p, mp_number *q); static void mp_double_power_of (MP mp, mp_number *r, mp_number *a, mp_number *b); static void mp_double_print_number (MP mp, mp_number *n); static void mp_double_pyth_add (MP mp, mp_number *r, mp_number *a, mp_number *b); static void mp_double_pyth_sub (MP mp, mp_number *r, mp_number *a, mp_number *b); static void mp_double_scan_fractional_token (MP mp, int n); static void mp_double_scan_numeric_token (MP mp, int n); static void mp_double_set_precision (MP mp); static void mp_double_sin_cos (MP mp, mp_number *z_orig, mp_number *n_cos, mp_number *n_sin); static void mp_double_slow_add (MP mp, mp_number *ret, mp_number *x_orig, mp_number *y_orig); static void mp_double_square_rt (MP mp, mp_number *ret, mp_number *x_orig); static void mp_double_velocity (MP mp, mp_number *ret, mp_number *st, mp_number *ct, mp_number *sf, mp_number *cf, mp_number *t); static void mp_free_double_math (MP mp); static void mp_free_number (MP mp, mp_number *n); static void mp_init_randoms (MP mp, int seed); static void mp_number_abs_clone (mp_number *A, mp_number *B); static void mp_number_add (mp_number *A, mp_number *B); static void mp_number_add_scaled (mp_number *A, int B); /* also for negative B */ static void mp_number_angle_to_scaled (mp_number *A); static void mp_number_clone (mp_number *A, mp_number *B); static void mp_number_divide_int (mp_number *A, int B); static void mp_number_double (mp_number *A); static int mp_number_equal (mp_number *A, mp_number *B); static void mp_number_floor (mp_number *i); static void mp_number_fraction_to_scaled (mp_number *A); static int mp_number_greater (mp_number *A, mp_number *B); static void mp_number_half (mp_number *A); static int mp_number_less (mp_number *A, mp_number *B); static void mp_number_modulo (mp_number *a, mp_number *b); static void mp_number_multiply_int (mp_number *A, int B); static void mp_number_negate (mp_number *A); static void mp_number_negated_clone (mp_number *A, mp_number *B); static int mp_number_nonequalabs (mp_number *A, mp_number *B); static int mp_number_odd (mp_number *A); static void mp_number_scaled_to_angle (mp_number *A); static void mp_number_scaled_to_fraction (mp_number *A); static void mp_number_subtract (mp_number *A, mp_number *B); static void mp_number_swap (mp_number *A, mp_number *B); static int mp_number_to_boolean (mp_number *A); static double mp_number_to_double (mp_number *A); static int mp_number_to_int (mp_number *A); static int mp_number_to_scaled (mp_number *A); static int mp_round_unscaled (mp_number *x_orig); static void mp_set_double_from_addition (mp_number *A, mp_number *B, mp_number *C); static void mp_set_double_from_boolean (mp_number *A, int B); static void mp_set_double_from_div (mp_number *A, mp_number *B, mp_number *C); static void mp_set_double_from_double (mp_number *A, double B); static void mp_set_double_from_int (mp_number *A, int B); static void mp_set_double_from_int_div (mp_number *A, mp_number *B, int C); static void mp_set_double_from_int_mul (mp_number *A, mp_number *B, int C); static void mp_set_double_from_mul (mp_number *A, mp_number *B, mp_number *C); static void mp_set_double_from_of_the_way (MP mp, mp_number *A, mp_number *t, mp_number *B, mp_number *C); static void mp_set_double_from_scaled (mp_number *A, int B); static void mp_set_double_from_subtraction (mp_number *A, mp_number *B, mp_number *C); static void mp_set_double_half_from_addition (mp_number *A, mp_number *B, mp_number *C); static void mp_set_double_half_from_subtraction(mp_number *A, mp_number *B, mp_number *C); static void mp_wrapup_numeric_token (MP mp, unsigned char *start, unsigned char *stop); static char *mp_double_number_tostring (MP mp, mp_number *n); inline static double mp_double_make_fraction (double p, double q) { return (p / q) * fraction_multiplier; } inline static double mp_double_take_fraction (double p, double q) { return (p * q) / fraction_multiplier; } inline static double mp_double_make_scaled (double p, double q) { return p / q; } @c math_data *mp_initialize_double_math(MP mp) { math_data *math = (math_data *) mp_memory_allocate(sizeof(math_data)); /* alloc */ math->md_allocate = mp_allocate_number; math->md_free = mp_free_number; math->md_allocate_clone = mp_allocate_clone; math->md_allocate_abs = mp_allocate_abs; math->md_allocate_double = mp_allocate_double; /* precission */ mp_allocate_number(mp, &math->md_precision_default, mp_scaled_type); mp_allocate_number(mp, &math->md_precision_max, mp_scaled_type); mp_allocate_number(mp, &math->md_precision_min, mp_scaled_type); /* here are the constants for |scaled| objects */ mp_allocate_number(mp, &math->md_epsilon_t, mp_scaled_type); mp_allocate_number(mp, &math->md_inf_t, mp_scaled_type); mp_allocate_number(mp, &math->md_negative_inf_t, mp_scaled_type); mp_allocate_number(mp, &math->md_warning_limit_t, mp_scaled_type); mp_allocate_number(mp, &math->md_one_third_inf_t, mp_scaled_type); mp_allocate_number(mp, &math->md_unity_t, mp_scaled_type); mp_allocate_number(mp, &math->md_two_t, mp_scaled_type); mp_allocate_number(mp, &math->md_three_t, mp_scaled_type); mp_allocate_number(mp, &math->md_half_unit_t, mp_scaled_type); mp_allocate_number(mp, &math->md_three_quarter_unit_t, mp_scaled_type); mp_allocate_number(mp, &math->md_zero_t, mp_scaled_type); /* |fractions| */ mp_allocate_number(mp, &math->md_arc_tol_k, mp_fraction_type); mp_allocate_number(mp, &math->md_fraction_one_t, mp_fraction_type); mp_allocate_number(mp, &math->md_fraction_half_t, mp_fraction_type); mp_allocate_number(mp, &math->md_fraction_three_t, mp_fraction_type); mp_allocate_number(mp, &math->md_fraction_four_t, mp_fraction_type); /* |angles| */ mp_allocate_number(mp, &math->md_three_sixty_deg_t, mp_angle_type); mp_allocate_number(mp, &math->md_one_eighty_deg_t, mp_angle_type); mp_allocate_number(mp, &math->md_negative_one_eighty_deg_t, mp_angle_type); /* various approximations */ mp_allocate_number(mp, &math->md_one_k, mp_scaled_type); mp_allocate_number(mp, &math->md_sqrt_8_e_k, mp_scaled_type); mp_allocate_number(mp, &math->md_twelve_ln_2_k, mp_fraction_type); mp_allocate_number(mp, &math->md_coef_bound_k, mp_fraction_type); mp_allocate_number(mp, &math->md_coef_bound_minus_1, mp_fraction_type); mp_allocate_number(mp, &math->md_twelvebits_3, mp_scaled_type); mp_allocate_number(mp, &math->md_twentysixbits_sqrt2_t, mp_fraction_type); mp_allocate_number(mp, &math->md_twentyeightbits_d_t, mp_fraction_type); mp_allocate_number(mp, &math->md_twentysevenbits_sqrt2_d_t, mp_fraction_type); /* thresholds */ mp_allocate_number(mp, &math->md_fraction_threshold_t, mp_fraction_type); mp_allocate_number(mp, &math->md_half_fraction_threshold_t, mp_fraction_type); mp_allocate_number(mp, &math->md_scaled_threshold_t, mp_scaled_type); mp_allocate_number(mp, &math->md_half_scaled_threshold_t, mp_scaled_type); mp_allocate_number(mp, &math->md_near_zero_angle_t, mp_angle_type); mp_allocate_number(mp, &math->md_p_over_v_threshold_t, mp_fraction_type); mp_allocate_number(mp, &math->md_equation_threshold_t, mp_scaled_type); /* initializations */ math->md_precision_default.data.dval = 16 * unity; math->md_precision_max.data.dval = 16 * unity; math->md_precision_min.data.dval = 16 * unity; math->md_epsilon_t.data.dval = epsilon; math->md_inf_t.data.dval = EL_GORDO; math->md_negative_inf_t.data.dval = negative_EL_GORDO; math->md_one_third_inf_t.data.dval = one_third_EL_GORDO; math->md_warning_limit_t.data.dval = warning_limit; math->md_unity_t.data.dval = unity; math->md_two_t.data.dval = two; math->md_three_t.data.dval = three; math->md_half_unit_t.data.dval = half_unit; math->md_three_quarter_unit_t.data.dval = three_quarter_unit; math->md_arc_tol_k.data.dval = (unity/4096); /* quit when change in arc length estimate reaches this */ math->md_fraction_one_t.data.dval = fraction_one; math->md_fraction_half_t.data.dval = fraction_half; math->md_fraction_three_t.data.dval = fraction_three; math->md_fraction_four_t.data.dval = fraction_four; math->md_three_sixty_deg_t.data.dval = three_sixty_deg; math->md_one_eighty_deg_t.data.dval = one_eighty_deg; math->md_negative_one_eighty_deg_t.data.dval = negative_one_eighty_deg; math->md_one_k.data.dval = 1.0/64 ; math->md_sqrt_8_e_k.data.dval = 1.71552776992141359295; /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */ math->md_twelve_ln_2_k.data.dval = 8.31776616671934371292 *256; /* $2^{24}\cdot12\ln2\approx139548959.6165$ */ math->md_coef_bound_k.data.dval = coef_bound; math->md_coef_bound_minus_1.data.dval = coef_bound - 1/65536.0; math->md_twelvebits_3.data.dval = 1365 / 65536.0; /* $1365\approx 2^{12}/3$ */ math->md_twentysixbits_sqrt2_t.data.dval = 94906266 / 65536.0; /* $2^{26}\sqrt2\approx94906265.62$ */ math->md_twentyeightbits_d_t.data.dval = 35596755 / 65536.0; /* $2^{28}d\approx35596754.69$ */ math->md_twentysevenbits_sqrt2_d_t.data.dval = 25170707 / 65536.0; /* $2^{27}\sqrt2\,d\approx25170706.63$ */ math->md_fraction_threshold_t.data.dval = fraction_threshold; math->md_half_fraction_threshold_t.data.dval = half_fraction_threshold; math->md_scaled_threshold_t.data.dval = scaled_threshold; math->md_half_scaled_threshold_t.data.dval = half_scaled_threshold; math->md_near_zero_angle_t.data.dval = near_zero_angle; math->md_p_over_v_threshold_t.data.dval = p_over_v_threshold; math->md_equation_threshold_t.data.dval = equation_threshold; /* functions */ math->md_from_int = mp_set_double_from_int; math->md_from_boolean = mp_set_double_from_boolean; math->md_from_scaled = mp_set_double_from_scaled; math->md_from_double = mp_set_double_from_double; math->md_from_addition = mp_set_double_from_addition; math->md_half_from_addition = mp_set_double_half_from_addition; math->md_from_subtraction = mp_set_double_from_subtraction; math->md_half_from_subtraction = mp_set_double_half_from_subtraction; math->md_from_oftheway = mp_set_double_from_of_the_way; math->md_from_div = mp_set_double_from_div; math->md_from_mul = mp_set_double_from_mul; math->md_from_int_div = mp_set_double_from_int_div; math->md_from_int_mul = mp_set_double_from_int_mul; math->md_negate = mp_number_negate; math->md_add = mp_number_add; math->md_subtract = mp_number_subtract; math->md_half = mp_number_half; math->md_do_double = mp_number_double; math->md_abs = mp_double_abs; math->md_clone = mp_number_clone; math->md_negated_clone = mp_number_negated_clone; math->md_abs_clone = mp_number_abs_clone; math->md_swap = mp_number_swap; math->md_add_scaled = mp_number_add_scaled; math->md_multiply_int = mp_number_multiply_int; math->md_divide_int = mp_number_divide_int; math->md_to_boolean = mp_number_to_boolean; math->md_to_scaled = mp_number_to_scaled; math->md_to_double = mp_number_to_double; math->md_to_int = mp_number_to_int; math->md_odd = mp_number_odd; math->md_equal = mp_number_equal; math->md_less = mp_number_less; math->md_greater = mp_number_greater; math->md_nonequalabs = mp_number_nonequalabs; math->md_round_unscaled = mp_round_unscaled; math->md_floor_scaled = mp_number_floor; math->md_fraction_to_round_scaled = mp_double_fraction_to_round_scaled; math->md_make_scaled = mp_double_number_make_scaled; math->md_make_fraction = mp_double_number_make_fraction; math->md_take_fraction = mp_double_number_take_fraction; math->md_take_scaled = mp_double_number_take_scaled; math->md_velocity = mp_double_velocity; math->md_n_arg = mp_double_n_arg; math->md_m_log = mp_double_m_log; math->md_m_exp = mp_double_m_exp; math->md_m_unif_rand = mp_double_m_unif_rand; math->md_m_norm_rand = mp_double_m_norm_rand; math->md_pyth_add = mp_double_pyth_add; math->md_pyth_sub = mp_double_pyth_sub; math->md_power_of = mp_double_power_of; math->md_fraction_to_scaled = mp_number_fraction_to_scaled; math->md_scaled_to_fraction = mp_number_scaled_to_fraction; math->md_scaled_to_angle = mp_number_scaled_to_angle; math->md_angle_to_scaled = mp_number_angle_to_scaled; math->md_init_randoms = mp_init_randoms; math->md_sin_cos = mp_double_sin_cos; math->md_slow_add = mp_double_slow_add; math->md_sqrt = mp_double_square_rt; math->md_print = mp_double_print_number; math->md_tostring = mp_double_number_tostring; math->md_modulo = mp_number_modulo; math->md_ab_vs_cd = mp_ab_vs_cd; math->md_crossing_point = mp_double_crossing_point; math->md_scan_numeric = mp_double_scan_numeric_token; math->md_scan_fractional = mp_double_scan_fractional_token; math->md_free_math = mp_free_double_math; math->md_set_precision = mp_double_set_precision; return math; } void mp_double_set_precision (MP mp) { (void) mp; } void mp_free_double_math (MP mp) { mp_free_number(mp, &(mp->math->md_three_sixty_deg_t)); mp_free_number(mp, &(mp->math->md_one_eighty_deg_t)); mp_free_number(mp, &(mp->math->md_negative_one_eighty_deg_t)); mp_free_number(mp, &(mp->math->md_fraction_one_t)); mp_free_number(mp, &(mp->math->md_zero_t)); mp_free_number(mp, &(mp->math->md_half_unit_t)); mp_free_number(mp, &(mp->math->md_three_quarter_unit_t)); mp_free_number(mp, &(mp->math->md_unity_t)); mp_free_number(mp, &(mp->math->md_two_t)); mp_free_number(mp, &(mp->math->md_three_t)); mp_free_number(mp, &(mp->math->md_one_third_inf_t)); mp_free_number(mp, &(mp->math->md_inf_t)); mp_free_number(mp, &(mp->math->md_negative_inf_t)); mp_free_number(mp, &(mp->math->md_warning_limit_t)); mp_free_number(mp, &(mp->math->md_one_k)); mp_free_number(mp, &(mp->math->md_sqrt_8_e_k)); mp_free_number(mp, &(mp->math->md_twelve_ln_2_k)); mp_free_number(mp, &(mp->math->md_coef_bound_k)); mp_free_number(mp, &(mp->math->md_coef_bound_minus_1)); mp_free_number(mp, &(mp->math->md_fraction_threshold_t)); mp_free_number(mp, &(mp->math->md_half_fraction_threshold_t)); mp_free_number(mp, &(mp->math->md_scaled_threshold_t)); mp_free_number(mp, &(mp->math->md_half_scaled_threshold_t)); mp_free_number(mp, &(mp->math->md_near_zero_angle_t)); mp_free_number(mp, &(mp->math->md_p_over_v_threshold_t)); mp_free_number(mp, &(mp->math->md_equation_threshold_t)); mp_memory_free(mp->math); } @ Creating an destroying |mp_number| objects @ @c void mp_allocate_number (MP mp, mp_number *n, mp_number_type t) { (void) mp; n->data.dval = 0.0; n->type = t; } @ @c void mp_allocate_clone (MP mp, mp_number *n, mp_number_type t, mp_number *v) { (void) mp; n->type = t; n->data.dval = v->data.dval; } @ @c void mp_allocate_abs (MP mp, mp_number *n, mp_number_type t, mp_number *v) { (void) mp; n->type = t; n->data.dval = fabs(v->data.dval); } @ @c void mp_allocate_double (MP mp, mp_number *n, double v) { (void) mp; n->type = mp_scaled_type; n->data.dval = v; } @ @c void mp_free_number (MP mp, mp_number *n) { (void) mp; n->type = mp_nan_type; } @ Here are the low-level functions on |mp_number| items, setters first. @c void mp_set_double_from_int(mp_number *A, int B) { A->data.dval = B; } void mp_set_double_from_boolean(mp_number *A, int B) { A->data.dval = B; } void mp_set_double_from_scaled(mp_number *A, int B) { A->data.dval = B / 65536.0; } void mp_set_double_from_double(mp_number *A, double B) { A->data.dval = B; } void mp_set_double_from_addition(mp_number *A, mp_number *B, mp_number *C) { A->data.dval = B->data.dval + C->data.dval; } void mp_set_double_half_from_addition(mp_number *A, mp_number *B, mp_number *C) { A->data.dval = (B->data.dval + C->data.dval) / 2.0; } void mp_set_double_from_subtraction(mp_number *A, mp_number *B, mp_number *C) { A->data.dval = B->data.dval - C->data.dval; } void mp_set_double_half_from_subtraction(mp_number *A, mp_number *B, mp_number *C) { A->data.dval = (B->data.dval - C->data.dval) / 2.0; } void mp_set_double_from_div(mp_number *A, mp_number *B, mp_number *C) { A->data.dval = B->data.dval / C->data.dval; } void mp_set_double_from_mul(mp_number *A, mp_number *B, mp_number *C) { A->data.dval = B->data.dval * C->data.dval; } void mp_set_double_from_int_div(mp_number *A, mp_number *B, int C) { A->data.dval = B->data.dval / C; } void mp_set_double_from_int_mul(mp_number *A, mp_number *B, int C) { A->data.dval = B->data.dval * C; } void mp_set_double_from_of_the_way (MP mp, mp_number *A, mp_number *t, mp_number *B, mp_number *C) { (void) mp; A->data.dval = B->data.dval - mp_double_take_fraction(B->data.dval - C->data.dval, t->data.dval); } void mp_number_negate(mp_number *A) { A->data.dval = -A->data.dval; if (A->data.dval == -0.0) { A->data.dval = 0.0; } } void mp_number_add(mp_number *A, mp_number *B) { A->data.dval = A->data.dval + B->data.dval; } void mp_number_subtract(mp_number *A, mp_number *B) { A->data.dval = A->data.dval - B->data.dval; } void mp_number_half(mp_number *A) { A->data.dval = A->data.dval / 2.0; } void mp_number_double(mp_number *A) { A->data.dval = A->data.dval * 2.0; } void mp_number_add_scaled(mp_number *A, int B) { /* also for negative B */ A->data.dval = A->data.dval + (B / 65536.0); } void mp_number_multiply_int(mp_number *A, int B) { A->data.dval = (double)(A->data.dval * B); } void mp_number_divide_int(mp_number *A, int B) { A->data.dval = A->data.dval / (double)B; } void mp_double_abs(mp_number *A) { A->data.dval = fabs(A->data.dval); } void mp_number_clone(mp_number *A, mp_number *B) { A->data.dval = B->data.dval; } void mp_number_negated_clone(mp_number *A, mp_number *B) { A->data.dval = -B->data.dval; if (A->data.dval == -0.0) { A->data.dval = 0.0; } } void mp_number_abs_clone(mp_number *A, mp_number *B) { A->data.dval = fabs(B->data.dval); } void mp_number_swap(mp_number *A, mp_number *B) { double swap_tmp = A->data.dval; A->data.dval = B->data.dval; B->data.dval = swap_tmp; } void mp_number_fraction_to_scaled(mp_number *A) { A->type = mp_scaled_type; A->data.dval = A->data.dval / fraction_multiplier; } void mp_number_angle_to_scaled(mp_number *A) { A->type = mp_scaled_type; A->data.dval = A->data.dval / angle_multiplier; } void mp_number_scaled_to_fraction(mp_number *A) { A->type = mp_fraction_type; A->data.dval = A->data.dval * fraction_multiplier; } void mp_number_scaled_to_angle(mp_number *A) { A->type = mp_angle_type; A->data.dval = A->data.dval * angle_multiplier; } @ Query functions @c int mp_number_to_scaled(mp_number *A) { return (int) lround(A->data.dval * 65536.0); } int mp_number_to_int(mp_number *A) { return (int) (A->data.dval); } int mp_number_to_boolean(mp_number *A) { return (int) (A->data.dval); } double mp_number_to_double(mp_number *A) { return A->data.dval; } int mp_number_odd(mp_number *A) { return odd((int) lround(A->data.dval)); } int mp_number_equal(mp_number *A, mp_number *B) { return A->data.dval == B->data.dval; } int mp_number_greater(mp_number *A, mp_number *B) { return A->data.dval > B->data.dval; } int mp_number_less(mp_number *A, mp_number *B) { return A->data.dval < B->data.dval; } int mp_number_nonequalabs(mp_number *A, mp_number *B) { return fabs(A->data.dval) != fabs(B->data.dval); } @ Fixed-point arithmetic is done on {\sl scaled integers} that are multiples of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit positions from the right end of a binary computer word. @ One of \MP's most common operations is the calculation of $\lfloor {a+b\over2} \rfloor$, the midpoint of two given integers |a| and~|b|. The most decent way to do this is to write |(a+b)/2|; but on many machines it is more efficient to calculate |(a+b)>>1|. Therefore the midpoint operation will always be denoted by |half(a+b)| in this program. If \MP\ is being implemented with languages that permit binary shifting, the |half| macro should be changed to make this operation as efficient as possible. Since some systems have shift operators that can only be trusted to work on positive numbers, there is also a macro |halfp| that is used only when the quantity being halved is known to be positive or zero. @ Here is a procedure analogous to |print_int|. The current version is fairly stupid, and it is not round-trip safe, but this is good enough for a beta test. @c char *mp_double_number_tostring (MP mp, mp_number *n) { static char set[64]; int l = 0; char *ret = mp_memory_allocate(64); (void) mp; snprintf(set, 64, "%.17g", n->data.dval); while (set[l] == ' ') { l++; } strcpy(ret, set+l); return ret; } @ @c void mp_double_print_number (MP mp, mp_number *n) { char *str = mp_double_number_tostring(mp, n); mp_print_e_str(mp, str); mp_memory_free(str); } @ Addition is not always checked to make sure that it doesn't overflow, but in places where overflow isn't too unlikely the |slow_add| routine is used. @c void mp_double_slow_add (MP mp, mp_number *ret, mp_number *x_orig, mp_number *y_orig) { double x = x_orig->data.dval; double y = y_orig->data.dval; if (x >= 0.0) { if (y <= EL_GORDO - x) { ret->data.dval = x + y; } else { mp->arith_error = 1; ret->data.dval = EL_GORDO; } } else if (-y <= EL_GORDO + x) { ret->data.dval = x + y; } else { mp->arith_error = 1; ret->data.dval = negative_EL_GORDO; } } @ The |make_fraction| routine produces the |fraction| equivalent of |p/q|, given integers |p| and~|q|; it computes the integer $f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are positive. If |p| and |q| are both of the same scaled type |t|, the \quote {type relation} |make_fraction(t,t)=fraction| is valid; and it's also possible to use the subroutine \quote {backwards,} using the relation |make_fraction(t,fraction)=t| between scaled types. If the result would have magnitude $2^{31}$ or more, |make_fraction| sets |arith_error:=true|. Most of \MP's internal computations have been designed to avoid this sort of error. If this subroutine were programmed in assembly language on a typical machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a double-precision product can often be input to a fixed-point division instruction. But when we are restricted to int-eger arithmetic it is necessary either to resort to multiple-precision maneuvering or to use a simple but slow iteration. The multiple-precision technique would be about three times faster than the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional multiplications and divisions. This operation is part of \MP's \quote {inner loop}; indeed, it will consume nearly 10\pct! of the running time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will therefore make \MP\ run faster. The present implementation is highly portable, but slow; it avoids multiplication and division except in the initial stage. System wizards should be careful to replace it with a routine that is guaranteed to produce identical results in all cases. @^system dependencies@> As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But when a procedure is not part of the \quote {inner loop,} such changes aren't advisable; simplicity and robustness are preferable to trickery, unless the cost is too high. @^inner loop@> @c void mp_double_number_make_fraction (MP mp, mp_number *ret, mp_number *p, mp_number *q) { (void) mp; ret->data.dval = mp_double_make_fraction(p->data.dval, q->data.dval); } @ The dual of |make_fraction| is |take_fraction|, which multiplies a given integer~|q| by a fraction~|f|. When the operands are positive, it computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function of |q| and~|f|. This routine is even more \quote {inner loopy} than |make_fraction|; the present implementation consumes almost 20\pct! of \MP's computation time during typical jobs, so a machine-language substitute is advisable. @^inner loop@> @^system dependencies@> @c void mp_double_number_take_fraction (MP mp, mp_number *ret, mp_number *p, mp_number *q) { (void) mp; ret->data.dval = mp_double_take_fraction(p->data.dval, q->data.dval); } @ When we want to multiply something by a |scaled| quantity, we use a scheme analogous to |take_fraction| but with a different scaling. Given positive operands, |take_scaled| computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$. Once again it is a good idea to use a machine-language replacement if possible; otherwise |take_scaled| will use more than 2\pct! of the running time when the Computer Modern fonts are being generated. @^inner loop@> @c void mp_double_number_take_scaled (MP mp, mp_number *ret, mp_number *p_orig, mp_number *q_orig) { (void) mp; ret->data.dval = p_orig->data.dval * q_orig->data.dval; } @ For completeness, there's also |make_scaled|, which computes a quotient as a |scaled| number instead of as a |fraction|. In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the operands are positive. \ (This procedure is not used especially often, so it is not part of \MP's inner loop.) @c void mp_double_number_make_scaled (MP mp, mp_number *ret, mp_number *p_orig, mp_number *q_orig) { (void) mp; ret->data.dval = p_orig->data.dval / q_orig->data.dval; } @ @* Scanning numbers in the input. @ @c void mp_wrapup_numeric_token (MP mp, unsigned char *start, unsigned char *stop) { double result; char *end = (char *) stop; errno = 0; result = strtod((char *) start, &end); if (errno == 0) { set_cur_mod(result); if (result >= warning_limit) { if (internal_value(mp_warning_check_internal).data.dval > 0 && (mp->scanner_status != mp_tex_flushing_state)) { char msg[256]; mp_snprintf(msg, 256, "Number is too large (%g)", result); @.Number is too large@> mp_error( mp, msg, "Continue and I'll try to cope with that big value; but it might be dangerous." "(Set warningcheck := 0 to suppress this message.)" ); } } } else if (mp->scanner_status != mp_tex_flushing_state) { mp_error( mp, "Enormous number has been reduced.", "I could not handle this number specification probably because it is out of" "range." ); @.Enormous number...@> set_cur_mod(EL_GORDO); } set_cur_cmd(mp_numeric_command); } @ @c static void mp_double_aux_find_exponent (MP mp) { if (mp->buffer[mp->cur_input.loc_field] == 'e' || mp->buffer[mp->cur_input.loc_field] == 'E') { mp->cur_input.loc_field++; if (!(mp->buffer[mp->cur_input.loc_field] == '+' || mp->buffer[mp->cur_input.loc_field] == '-' || mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class)) { mp->cur_input.loc_field--; return; } if (mp->buffer[mp->cur_input.loc_field] == '+' || mp->buffer[mp->cur_input.loc_field] == '-') { mp->cur_input.loc_field++; } while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class) { mp->cur_input.loc_field++; } } } void mp_double_scan_fractional_token (MP mp, int n) /* n is scaled */ { unsigned char *start = &mp->buffer[mp->cur_input.loc_field -1]; unsigned char *stop; (void) n; while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class) { mp->cur_input.loc_field++; } mp_double_aux_find_exponent(mp); stop = &mp->buffer[mp->cur_input.loc_field-1]; mp_wrapup_numeric_token(mp, start, stop); } @ Input format is the same as for the C language, so we just collect valid bytes in the buffer, then call |strtod()|. It looks like we have no buffer overflow check here. (Needs checking!) @c void mp_double_scan_numeric_token (MP mp, int n) /* n is scaled */ { unsigned char *start = &mp->buffer[mp->cur_input.loc_field -1]; unsigned char *stop; (void) n; while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class) { mp->cur_input.loc_field++; } if (mp->buffer[mp->cur_input.loc_field] == '.' && mp->buffer[mp->cur_input.loc_field+1] != '.') { mp->cur_input.loc_field++; while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == mp_digit_class) { mp->cur_input.loc_field++; } } mp_double_aux_find_exponent(mp); stop = &mp->buffer[mp->cur_input.loc_field-1]; mp_wrapup_numeric_token(mp, start, stop); } @ The |scaled| quantities in \MP\ programs are generally supposed to be less than $2^{12}$ in absolute value, so \MP\ does much of its internal arithmetic with 28~significant bits of precision. A |fraction| denotes a scaled integer whose binary point is assumed to be 28 bit positions from the right. @ Here is a typical example of how the routines above can be used. It computes the function $${1\over3\tau}f(\theta,\phi)= {\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi) (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over 3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$ where $\tau$ is a |scaled| \quote {tension} parameter. This is \MP's magic fudge factor for placing the first control point of a curve that starts at an angle $\theta$ and ends at an angle $\phi$ from the straight path. (Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.) The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$. (It's a sum of eight terms whose absolute values can be bounded using relations such as $\sin\theta\cos\theta|1\over2|$.) Thus the numerator is positive; and since the tension $\tau$ is constrained to be at least $3\over4$, the numerator is less than $16\over3$. The denominator is nonnegative and at most~6. The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction| arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$, $\sin\phi$, and $\cos\phi$, respectively. @c void mp_double_velocity (MP mp, mp_number *ret, mp_number *st, mp_number *ct, mp_number *sf, mp_number *cf, mp_number *t) { double acc, num, denom; /* registers for intermediate calculations */ (void) mp; acc = mp_double_take_fraction(st->data.dval - (sf->data.dval / 16.0), sf->data.dval - (st->data.dval / 16.0)); acc = mp_double_take_fraction(acc, ct->data.dval - cf->data.dval); num = fraction_two + mp_double_take_fraction(acc, sqrt(2)*fraction_one); denom = fraction_three + mp_double_take_fraction(ct->data.dval, 3*fraction_half*(sqrt(5.0)-1.0)) + mp_double_take_fraction(cf->data.dval, 3*fraction_half*(3.0-sqrt(5.0))); if (t->data.dval != unity) { num = mp_double_make_scaled(num, t->data.dval); } if (num / 4 >= denom) { ret->data.dval = fraction_four; } else { ret->data.dval = mp_double_make_fraction(num, denom); } } @ The following somewhat different subroutine tests rigorously if $ab$ is greater than, equal to, or less than~$cd$, given integers $(a,b,c,d)$. In most cases a quick decision is reached. The result is $+1$, 0, or~$-1$ in the three respective cases. @c int mp_ab_vs_cd (mp_number *a_orig, mp_number *b_orig, mp_number *c_orig, mp_number *d_orig) { return mp_double_ab_vs_cd(a_orig, b_orig, c_orig, d_orig); } @ @= if (a < 0) { a = -a; b = -b; } if (c < 0) { c = -c; d = -d; } if (d <= 0) { if (b >= 0) { if ((a == 0 || b == 0) && (c == 0 || d == 0)) { ret->data.dval = 0; } else { ret->data.dval = 1; } goto RETURN; } if (d == 0) { ret->data.dval = (a == 0 ? 0 : -1); goto RETURN; } else q = a; a = c; c = q; q = -b; b = -d; d = q; } } else if (b <= 0) { if (b < 0 && a > 0) { ret->data.dval = -1; return; } else ret->data.dval = (c == 0 ? 0 : -1); goto RETURN; } } @ Now here's a subroutine that's handy for all sorts of path computations: Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function returns the unique |fraction| value |t| between 0 and~1 at which $B(a,b,c;t)$ changes from positive to negative, or returns |t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$ is already negative at |t=0|), |crossing_point| returns the value zero. The general bisection method is quite simple when $n=2$, hence |crossing_point| does not take much time. At each stage in the recursion we have a subinterval defined by |l| and~|j| such that $B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to \quote {zero in} on the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$. It is convenient for purposes of calculation to combine the values of |l| and~|j| in a single variable $d=2^l+j$, because the operation of bisection then corresponds simply to doubling $d$ and possibly adding~1. Furthermore it proves to be convenient to modify our previous conventions for bisection slightly, maintaining the variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$. With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$. The following code maintains the invariant relations $0\L|x0|<\max(|x1|,|x1|+|x2|)$, $\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$; it has been constructed in such a way that no arithmetic overflow will occur if the inputs satisfy $a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$. @c static void mp_double_crossing_point (MP mp, mp_number *ret, mp_number *aa, mp_number *bb, mp_number *cc) { double d; /* recursive counter */ double xx, x0, x1, x2; /* temporary registers for bisection */ double a = aa->data.dval; double b = bb->data.dval; double c = cc->data.dval; (void) mp; if (a < 0.0) { ret->data.dval = zero_crossing; return; } if (c >= 0.0) { if (b >= 0.0) { if (c > 0.0) { ret->data.dval = no_crossing; } else if ((a == 0.0) && (b == 0.0)) { ret->data.dval = no_crossing; } else { ret->data.dval = one_crossing; } return; } if (a == 0.0) { ret->data.dval = zero_crossing; return; } } else if ((a == 0.0) && (b <= 0.0)) { ret->data.dval = zero_crossing; return; } /* Use bisection to find the crossing point... */ d = epsilon; x0 = a; x1 = a - b; x2 = b - c; do { /* not sure why the error correction has to be >= 1E-12 */ double x = (x1 + x2) / 2 + 1E-12; if (x1 - x0 > x0) { x2 = x; x0 += x0; d += d; } else { xx = x1 + x - x0; if (xx > x0) { x2 = x; x0 += x0; d += d; } else { x0 = x0 - xx; if ((x <= x0) && (x + x2 <= x0)) { ret->data.dval = no_crossing; return; } x1 = x; d = d + d + epsilon; } } } while (d < fraction_one); ret->data.dval = (d - fraction_one); } @ We conclude this set of elementary routines with some simple rounding and truncation operations. @ |round_unscaled| rounds a |scaled| and converts it to |int| @c int mp_round_unscaled(mp_number *x_orig) { return (int) lround(x_orig->data.dval); } @ |number_floor| floors a number @c void mp_number_floor(mp_number *i) { i->data.dval = floor(i->data.dval); } @ |fraction_to_scaled| rounds a |fraction| and converts it to |scaled| @c void mp_double_fraction_to_round_scaled(mp_number *x_orig) { double x = x_orig->data.dval; x_orig->type = mp_scaled_type; x_orig->data.dval = x/fraction_multiplier; } @* Algebraic and transcendental functions. \MP\ computes all of the necessary special functions from scratch, without relying on |real| arithmetic or system subroutines for sines, cosines, etc. @ @c void mp_double_square_rt (MP mp, mp_number *ret, mp_number *x_orig) /* return, x: scaled */ { double x = x_orig->data.dval; if (x > 0) { ret->data.dval = sqrt(x); } else { if (x < 0) { char msg[256]; char *xstr = mp_double_number_tostring(mp, x_orig); mp_snprintf(msg, 256, "Square root of %s has been replaced by 0", xstr); mp_memory_free(xstr); @.Square root...replaced by 0@> mp_error( mp, msg, "Since I don't take square roots of negative numbers, I'm zeroing this one.\n" "Proceed, with fingers crossed." ); } ret->data.dval = 0; } } @ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by a quick hack @c void mp_double_pyth_add (MP mp, mp_number *ret, mp_number *a_orig, mp_number *b_orig) { double a = fabs(a_orig->data.dval); double b = fabs(b_orig->data.dval); errno = 0; ret->data.dval = sqrt(a*a + b*b); if (errno) { mp->arith_error = 1; ret->data.dval = EL_GORDO; } } @ Here is a similar algorithm for $\psqrt{a^2-b^2}$. Same quick hack, also. @c void mp_double_pyth_sub (MP mp, mp_number *ret, mp_number *a_orig, mp_number *b_orig) { double a = fabs(a_orig->data.dval); double b = fabs(b_orig->data.dval); if (a > b) { a = sqrt(a*a - b*b); } else { if (a < b) { char msg[256]; char *astr = mp_double_number_tostring(mp, a_orig); char *bstr = mp_double_number_tostring(mp, b_orig); mp_snprintf(msg, 256, "Pythagorean subtraction %s+-+%s has been replaced by 0", astr, bstr); mp_memory_free(astr); mp_memory_free(bstr); @.Pythagorean...@> mp_error( mp, msg, "Since I don't take square roots of negative numbers, Im zeroing this one.\n" "Proceed, with fingers crossed." ); } a = 0; } ret->data.dval = a; } @ This power one is simple: @c void mp_double_power_of (MP mp, mp_number *ret, mp_number *a_orig, mp_number *b_orig) { errno = 0; ret->data.dval = pow(a_orig->data.dval, b_orig->data.dval); if (errno) { mp->arith_error = 1; ret->data.dval = EL_GORDO; } } @ The subroutines for logarithm and exponential involve two tables. The first is simple: |two_to_the[k]| equals $2^k$. @ Here is the routine that calculates $2^8$ times the natural logarithm of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$, when |x| is a given positive integer. @c void mp_double_m_log (MP mp, mp_number *ret, mp_number *x_orig) { if (x_orig->data.dval > 0) { ret->data.dval = log(x_orig->data.dval)*256.0; } else { char msg[256]; char *xstr = mp_double_number_tostring(mp, x_orig); mp_snprintf(msg, 256, "Logarithm of %s has been replaced by 0", xstr); mp_memory_free(xstr); mp_error( mp, msg, "Since I don't take logs of non-positive numbers, I'm zeroing this one.\n" "Proceed, with fingers crossed." ); ret->data.dval = 0; } } @ Conversely, the exponential routine calculates $\exp(x/2^8)$, when |x| is |scaled|. @c void mp_double_m_exp (MP mp, mp_number *ret, mp_number *x_orig) { errno = 0; ret->data.dval = exp(x_orig->data.dval/256.0); if (errno) { if (x_orig->data.dval > 0) { mp->arith_error = 1; ret->data.dval = EL_GORDO; } else { ret->data.dval = 0; } } } @ Given integers |x| and |y|, not both zero, the |n_arg| function returns the |angle| whose tangent points in the direction $(x,y)$. @c void mp_double_n_arg (MP mp, mp_number *ret, mp_number *x_orig, mp_number *y_orig) { if (x_orig->data.dval == 0.0 && y_orig->data.dval == 0.0) { mp_error( mp, "angle(0,0) is taken as zero", "The 'angle' between two identical points is undefined. I'm zeroing this one.\n" "Proceed, with fingers crossed." ); ret->data.dval = 0; } else { ret->type = mp_angle_type; ret->data.dval = atan2(y_orig->data.dval, x_orig->data.dval) * (180.0 / PI) * angle_multiplier; if (ret->data.dval == -0.0) ret->data.dval = 0.0; } } @ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine and cosine of that angle. The results of this routine are stored in global integer variables |n_sin| and |n_cos|. @ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees, the purpose of |n_sin_cos(z)| is to set |x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately), for some rather large number~|r|. The maximum of |x| and |y| will be between $2^{28}$ and $2^{30}$, so that there will be hardly any loss of accuracy. Then |x| and~|y| are divided by~|r|. @ Compute a multiple of the sine and cosine @c void mp_double_sin_cos (MP mp, mp_number *z_orig, mp_number *n_cos, mp_number *n_sin) { double rad = (z_orig->data.dval / angle_multiplier); /* still degrees */ (void) mp; if ((rad == 90.0) || (rad == -270)){ n_cos->data.dval = 0.0; n_sin->data.dval = fraction_multiplier; } else if ((rad == -90.0) || (rad == 270.0)) { n_cos->data.dval = 0.0; n_sin->data.dval = -fraction_multiplier; } else if ((rad == 180.0) || (rad == -180.0)) { n_cos->data.dval = -fraction_multiplier; n_sin->data.dval = 0.0; } else { rad = rad * PI/180.0; n_cos->data.dval = cos(rad) * fraction_multiplier; n_sin->data.dval = sin(rad) * fraction_multiplier; } } @ This is the http://www-cs-faculty.stanford.edu/~uno/programs/rng.c with small cosmetic modifications. @c # define KK 100 /* the long lag */ # define LL 37 /* the short lag */ # define MM (1L<<30) /* the modulus */ # define mod_diff(x,y) (((x)-(y))&(MM-1)) /* subtraction mod MM */ # define TT 70 /* guaranteed separation between streams */ # define is_odd(x) ((x)&1) /* units bit of x */ # define QUALITY 1009 /* recommended quality level for high-res use */ /* destination, array length (must be at least KK) */ typedef struct mp_double_random_info { long x[KK]; long buf[QUALITY]; long dummy; long started; long *ptr; } mp_double_random_info; static mp_double_random_info mp_double_random_data = { .dummy = -1, .started = -1, .ptr = &mp_double_random_data.dummy }; /* the following routines are from exercise 3.6--15 */ /* after calling |mp_aux_ran_start|, get new randoms by, e.g., |x=mp_aux_ran_arr_next()| */ static void mp_double_aux_ran_array(long aa[], int n) { int i, j; for (j = 0; j < KK; j++) { aa[j] = mp_double_random_data.x[j]; } for (; j < n; j++) { aa[j] = mod_diff(aa[j - KK], aa[j - LL]); } for (i = 0; i < LL; i++, j++) { mp_double_random_data.x[i] = mod_diff(aa[j - KK], aa[j - LL]); } for (; i < KK; i++, j++) { mp_double_random_data.x[i] = mod_diff(aa[j - KK], mp_double_random_data.x[i - LL]); } } /* Do this before using |mp_aux_ran_array|, long seed selector for different streams. */ static void mp_double_aux_ran_start(long seed) { int t, j; long x[KK + KK - 1]; /* the preparation buffer */ long ss = (seed+2) & (MM - 2); for (j = 0; j < KK; j++) { /* bootstrap the buffer */ x[j] = ss; /* cyclic shift 29 bits */ ss <<= 1; if (ss >= MM) { ss -= MM - 2; } } /* make x[1] (and only x[1]) odd */ x[1]++; for (ss = seed & (MM - 1), t = TT - 1; t;) { for (j = KK - 1; j > 0; j--) { /* "square" */ x[j + j] = x[j]; x[j + j - 1] = 0; } for (j = KK + KK - 2; j >= KK; j--) { x[j - (KK -LL)] = mod_diff(x[j - (KK - LL)], x[j]); x[j - KK] = mod_diff(x[j - KK], x[j]); } if (is_odd(ss)) { /* "multiply by z" */ for (j = KK; j>0; j--) { x[j] = x[j-1]; } x[0] = x[KK]; /* shift the buffer cyclically */ x[LL] = mod_diff(x[LL], x[KK]); } if (ss) { ss >>= 1; } else { t--; } } for (j = 0; j < LL; j++) { mp_double_random_data.x[j + KK - LL] = x[j]; } for (;j < KK; j++) { mp_double_random_data.x[j - LL] = x[j]; } for (j = 0; j < 10; j++) { /* warm things up */ mp_double_aux_ran_array(x, KK + KK - 1); } mp_double_random_data.ptr = &mp_double_random_data.started; } # define mp_double_aux_ran_arr_next() (*mp_double_random_data.ptr>=0? *mp_double_random_data.ptr++: mp_double_aux_ran_arr_cycle()) static long mp_double_aux_ran_arr_cycle(void) { if (mp_double_random_data.ptr == &mp_double_random_data.dummy) { /* the user forgot to initialize */ mp_double_aux_ran_start(314159L); } mp_double_aux_ran_array(mp_double_random_data.buf, QUALITY); mp_double_random_data.buf[KK] = -1; mp_double_random_data.ptr = mp_double_random_data.buf + 1; return mp_double_random_data.buf[0]; } @ To initialize the |randoms| table, we call the following routine. @c void mp_init_randoms (MP mp, int seed) { int k = 1; int j = abs(seed); int f = (int) fraction_one; /* avoid warnings */ while (j >= f) { j = j/2; } for (int i = 0; i <= 54; i++) { int jj = k; k = j - k; j = jj; if (k < 0) { k += f; } mp->randoms[(i * 21) % 55].data.dval = j; } mp_new_randoms(mp); mp_new_randoms(mp); mp_new_randoms(mp); /* warm up the array */ mp_double_aux_ran_start((unsigned long) seed); } @ Here |frac| contains what's beyond the |.|. @c /* static double modulus(double left, double right) { double quota = left / right; double tmp; double frac = modf(quota, &tmp); frac *= right; return frac; } */ void mp_number_modulo(mp_number *a, mp_number *b) { double tmp; a->data.dval = modf((double) a->data.dval / (double) b->data.dval, &tmp) * (double) b->data.dval; } @ To consume a random integer for the uniform generator, the program below will say |next_unif_random|. @c static void mp_next_unif_random (MP mp, mp_number *ret) { unsigned long int op = (unsigned) mp_double_aux_ran_arr_next(); double a = op / (MM * 1.0); (void) mp; ret->data.dval = a; } @ To consume a random fraction, the program below will say |next_random|. @c static void mp_next_random (MP mp, mp_number *ret) { if ( mp->j_random==0) { mp_new_randoms(mp); } else { mp->j_random = mp->j_random-1; } mp_number_clone(ret, &(mp->randoms[mp->j_random])); } @ To produce a uniform random number in the range |0<=u=u>x| or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here. Note that the call of |take_fraction| will produce the values 0 and~|x| with about half the probability that it will produce any other particular values between 0 and~|x|, because it rounds its answers. @c static void mp_double_m_unif_rand (MP mp, mp_number *ret, mp_number *x_orig) { mp_number x, abs_x, u, y; /* |y| is trial value */ mp_allocate_number(mp, &y, mp_fraction_type); mp_allocate_clone(mp, &x, mp_scaled_type, x_orig); mp_allocate_abs(mp, &abs_x, mp_scaled_type, &x); mp_allocate_number(mp, &u, mp_scaled_type); mp_next_unif_random(mp, &u); y.data.dval = abs_x.data.dval * u.data.dval; mp_free_number(mp, &u); if (mp_number_equal(&y, &abs_x)) { mp_number_clone(ret, &((math_data *)mp->math)->md_zero_t); } else if (mp_number_greater(&x, &((math_data *)mp->math)->md_zero_t)) { mp_number_clone(ret, &y); } else { mp_number_negated_clone(ret, &y); } mp_free_number(mp, &abs_x); mp_free_number(mp, &x); mp_free_number(mp, &y); } @ Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with the ratio method (Algorithm 3.4.1R in {\sl The Art of Computer Programming}). @c static void mp_double_m_norm_rand (MP mp, mp_number *ret) { mp_number abs_x, u, r, la, xa; mp_allocate_number(mp, &la, mp_scaled_type); mp_allocate_number(mp, &xa, mp_scaled_type); mp_allocate_number(mp, &abs_x, mp_scaled_type); mp_allocate_number(mp, &u, mp_scaled_type); mp_allocate_number(mp, &r, mp_scaled_type); do { do { mp_number v; mp_allocate_number(mp, &v, mp_scaled_type); mp_next_random(mp, &v); mp_number_subtract(&v, &((math_data *)mp->math)->md_fraction_half_t); mp_double_number_take_fraction(mp, &xa, &((math_data *)mp->math)->md_sqrt_8_e_k, &v); mp_free_number(mp, &v); mp_next_random(mp, &u); mp_number_clone(&abs_x, &xa); mp_double_abs(&abs_x); } while (! mp_number_less(&abs_x, &u)); mp_double_number_make_fraction(mp, &r, &xa, &u); mp_number_clone(&xa, &r); mp_double_m_log(mp, &la, &u); mp_set_double_from_subtraction(&la, &((math_data *)mp->math)->md_twelve_ln_2_k, &la); } while (mp_double_ab_vs_cd(&((math_data *)mp->math)->md_one_k, &la, &xa, &xa) < 0); mp_number_clone(ret, &xa); mp_free_number(mp, &r); mp_free_number(mp, &abs_x); mp_free_number(mp, &la); mp_free_number(mp, &xa); mp_free_number(mp, &u); } @ The following subroutine is used only in |norm_rand| and tests if $ab$ is greater than, equal to, or less than~$cd$. The result is $+1$, 0, or~$-1$ in the three respective cases. @c int mp_double_ab_vs_cd (mp_number *a_orig, mp_number *b_orig, mp_number *c_orig, mp_number *d_orig) { double ab = a_orig->data.dval * b_orig->data.dval; double cd = c_orig->data.dval * d_orig->data.dval; if (ab > cd) { return 1; } else if (ab < cd) { return -1; } else { return 0; } }