/* ---------------------------------------------------------------------------- Copyright (c) 2019-2023, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ /* ----------------------------------------------------------- The following functions are to reliably find the segment or block that encompasses any pointer p (or NULL if it is not in any of our segments). We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB) set to 1 if it contains the segment meta data. ----------------------------------------------------------- */ #include "mimalloc.h" #include "mimalloc/internal.h" #include "mimalloc/atomic.h" #if (MI_INTPTR_SIZE==8) #define MI_MAX_ADDRESS ((size_t)40 << 40) // 40TB (to include huge page areas) #else #define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb #endif #define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE) #define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8) #define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE) static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE + 1]; // 2KiB per TB with 64MiB segments static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) { mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE? if ((uintptr_t)segment >= MI_MAX_ADDRESS) { *bitidx = 0; return MI_SEGMENT_MAP_WSIZE; } else { const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_SIZE; *bitidx = segindex % MI_INTPTR_BITS; const size_t mapindex = segindex / MI_INTPTR_BITS; mi_assert_internal(mapindex < MI_SEGMENT_MAP_WSIZE); return mapindex; } } void _mi_segment_map_allocated_at(const mi_segment_t* segment) { size_t bitidx; size_t index = mi_segment_map_index_of(segment, &bitidx); mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); if (index==MI_SEGMENT_MAP_WSIZE) return; uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); uintptr_t newmask; do { newmask = (mask | ((uintptr_t)1 << bitidx)); } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); } void _mi_segment_map_freed_at(const mi_segment_t* segment) { size_t bitidx; size_t index = mi_segment_map_index_of(segment, &bitidx); mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); if (index == MI_SEGMENT_MAP_WSIZE) return; uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); uintptr_t newmask; do { newmask = (mask & ~((uintptr_t)1 << bitidx)); } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); } // Determine the segment belonging to a pointer or NULL if it is not in a valid segment. static mi_segment_t* _mi_segment_of(const void* p) { if (p == NULL) return NULL; mi_segment_t* segment = _mi_ptr_segment(p); mi_assert_internal(segment != NULL); size_t bitidx; size_t index = mi_segment_map_index_of(segment, &bitidx); // fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) { return segment; // yes, allocated by us } if (index==MI_SEGMENT_MAP_WSIZE) return NULL; // TODO: maintain max/min allocated range for efficiency for more efficient rejection of invalid pointers? // search downwards for the first segment in case it is an interior pointer // could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough // valid huge objects // note: we could maintain a lowest index to speed up the path for invalid pointers? size_t lobitidx; size_t loindex; uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1); if (lobits != 0) { loindex = index; lobitidx = mi_bsr(lobits); // lobits != 0 } else if (index == 0) { return NULL; } else { mi_assert_internal(index > 0); uintptr_t lomask = mask; loindex = index; do { loindex--; lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex]); } while (lomask != 0 && loindex > 0); if (lomask == 0) return NULL; lobitidx = mi_bsr(lomask); // lomask != 0 } mi_assert_internal(loindex < MI_SEGMENT_MAP_WSIZE); // take difference as the addresses could be larger than the MAX_ADDRESS space. size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE; segment = (mi_segment_t*)((uint8_t*)segment - diff); if (segment == NULL) return NULL; mi_assert_internal((void*)segment < p); bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(cookie_ok); if mi_unlikely(!cookie_ok) return NULL; if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment)); return segment; } // Is this a valid pointer in our heap? static bool mi_is_valid_pointer(const void* p) { return ((_mi_segment_of(p) != NULL) || (_mi_arena_contains(p))); } mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { return mi_is_valid_pointer(p); } /* // Return the full segment range belonging to a pointer static void* mi_segment_range_of(const void* p, size_t* size) { mi_segment_t* segment = _mi_segment_of(p); if (segment == NULL) { if (size != NULL) *size = 0; return NULL; } else { if (size != NULL) *size = segment->segment_size; return segment; } mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size); mi_reset_delayed(tld); mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld)); return page; } */