/* ---------------------------------------------------------------------------- Copyright (c) 2020, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ /* ---------------------------------------------------------------------------- Implements a cache of segments to avoid expensive OS calls and to reuse the commit_mask to optimize the commit/decommit calls. The full memory map of all segments is also implemented here. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc-internal.h" #include "mimalloc-atomic.h" #include "bitmap.h" // atomic bitmap //#define MI_CACHE_DISABLE 1 // define to completely disable the segment cache #define MI_CACHE_FIELDS (16) #define MI_CACHE_MAX (MI_BITMAP_FIELD_BITS*MI_CACHE_FIELDS) // 1024 on 64-bit #define BITS_SET() MI_ATOMIC_VAR_INIT(UINTPTR_MAX) #define MI_CACHE_BITS_SET MI_INIT16(BITS_SET) // note: update if MI_CACHE_FIELDS changes typedef struct mi_cache_slot_s { void* p; size_t memid; bool is_pinned; mi_commit_mask_t commit_mask; mi_commit_mask_t decommit_mask; _Atomic(mi_msecs_t) expire; } mi_cache_slot_t; static mi_decl_cache_align mi_cache_slot_t cache[MI_CACHE_MAX]; // = 0 static mi_decl_cache_align mi_bitmap_field_t cache_available[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET }; // zero bit = available! static mi_decl_cache_align mi_bitmap_field_t cache_available_large[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET }; static mi_decl_cache_align mi_bitmap_field_t cache_inuse[MI_CACHE_FIELDS]; // zero bit = free static bool mi_cdecl mi_segment_cache_is_suitable(mi_bitmap_index_t bitidx, void* arg) { mi_arena_id_t req_arena_id = *((mi_arena_id_t*)arg); mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)]; return _mi_arena_memid_is_suitable(slot->memid, req_arena_id); } mi_decl_noinline static void* mi_segment_cache_pop_ex( bool all_suitable, size_t size, mi_commit_mask_t* commit_mask, mi_commit_mask_t* decommit_mask, bool* large, bool* is_pinned, bool* is_zero, mi_arena_id_t _req_arena_id, size_t* memid, mi_os_tld_t* tld) { #ifdef MI_CACHE_DISABLE return NULL; #else // only segment blocks if (size != MI_SEGMENT_SIZE) return NULL; // numa node determines start field const int numa_node = _mi_os_numa_node(tld); size_t start_field = 0; if (numa_node > 0) { start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node; if (start_field >= MI_CACHE_FIELDS) start_field = 0; } // find an available slot mi_bitmap_index_t bitidx = 0; bool claimed = false; mi_arena_id_t req_arena_id = _req_arena_id; mi_bitmap_pred_fun_t pred_fun = (all_suitable ? NULL : &mi_segment_cache_is_suitable); // cannot pass NULL as the arena may be exclusive itself; todo: do not put exclusive arenas in the cache? if (*large) { // large allowed? claimed = _mi_bitmap_try_find_from_claim_pred(cache_available_large, MI_CACHE_FIELDS, start_field, 1, pred_fun, &req_arena_id, &bitidx); if (claimed) *large = true; } if (!claimed) { claimed = _mi_bitmap_try_find_from_claim_pred (cache_available, MI_CACHE_FIELDS, start_field, 1, pred_fun, &req_arena_id, &bitidx); if (claimed) *large = false; } if (!claimed) return NULL; // found a slot mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)]; void* p = slot->p; *memid = slot->memid; *is_pinned = slot->is_pinned; *is_zero = false; *commit_mask = slot->commit_mask; *decommit_mask = slot->decommit_mask; slot->p = NULL; mi_atomic_storei64_release(&slot->expire,(mi_msecs_t)0); // mark the slot as free again mi_assert_internal(_mi_bitmap_is_claimed(cache_inuse, MI_CACHE_FIELDS, 1, bitidx)); _mi_bitmap_unclaim(cache_inuse, MI_CACHE_FIELDS, 1, bitidx); return p; #endif } mi_decl_noinline void* _mi_segment_cache_pop(size_t size, mi_commit_mask_t* commit_mask, mi_commit_mask_t* decommit_mask, bool* large, bool* is_pinned, bool* is_zero, mi_arena_id_t _req_arena_id, size_t* memid, mi_os_tld_t* tld) { return mi_segment_cache_pop_ex(false, size, commit_mask, decommit_mask, large, is_pinned, is_zero, _req_arena_id, memid, tld); } static mi_decl_noinline void mi_commit_mask_decommit(mi_commit_mask_t* cmask, void* p, size_t total, mi_stats_t* stats) { if (mi_commit_mask_is_empty(cmask)) { // nothing } else if (mi_commit_mask_is_full(cmask)) { _mi_os_decommit(p, total, stats); } else { // todo: one call to decommit the whole at once? mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0); size_t part = total/MI_COMMIT_MASK_BITS; size_t idx; size_t count; mi_commit_mask_foreach(cmask, idx, count) { void* start = (uint8_t*)p + (idx*part); size_t size = count*part; _mi_os_decommit(start, size, stats); } mi_commit_mask_foreach_end() } mi_commit_mask_create_empty(cmask); } #define MI_MAX_PURGE_PER_PUSH (4) static mi_decl_noinline void mi_segment_cache_purge(bool visit_all, bool force, mi_os_tld_t* tld) { MI_UNUSED(tld); if (!mi_option_is_enabled(mi_option_allow_decommit)) return; mi_msecs_t now = _mi_clock_now(); size_t purged = 0; const size_t max_visits = (visit_all ? MI_CACHE_MAX /* visit all */ : MI_CACHE_FIELDS /* probe at most N (=16) slots */); size_t idx = (visit_all ? 0 : _mi_random_shuffle((uintptr_t)now) % MI_CACHE_MAX /* random start */ ); for (size_t visited = 0; visited < max_visits; visited++,idx++) { // visit N slots if (idx >= MI_CACHE_MAX) idx = 0; // wrap mi_cache_slot_t* slot = &cache[idx]; mi_msecs_t expire = mi_atomic_loadi64_relaxed(&slot->expire); if (expire != 0 && (force || now >= expire)) { // racy read // seems expired, first claim it from available purged++; mi_bitmap_index_t bitidx = mi_bitmap_index_create_from_bit(idx); if (_mi_bitmap_claim(cache_available, MI_CACHE_FIELDS, 1, bitidx, NULL)) { // was available, we claimed it expire = mi_atomic_loadi64_acquire(&slot->expire); if (expire != 0 && (force || now >= expire)) { // safe read // still expired, decommit it mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0); mi_assert_internal(!mi_commit_mask_is_empty(&slot->commit_mask) && _mi_bitmap_is_claimed(cache_available_large, MI_CACHE_FIELDS, 1, bitidx)); _mi_abandoned_await_readers(); // wait until safe to decommit // decommit committed parts // TODO: instead of decommit, we could also free to the OS? mi_commit_mask_decommit(&slot->commit_mask, slot->p, MI_SEGMENT_SIZE, tld->stats); mi_commit_mask_create_empty(&slot->decommit_mask); } _mi_bitmap_unclaim(cache_available, MI_CACHE_FIELDS, 1, bitidx); // make it available again for a pop } if (!visit_all && purged > MI_MAX_PURGE_PER_PUSH) break; // bound to no more than N purge tries per push } } } void _mi_segment_cache_collect(bool force, mi_os_tld_t* tld) { if (force) { // called on `mi_collect(true)` but not on thread termination _mi_segment_cache_free_all(tld); } else { mi_segment_cache_purge(true /* visit all */, false /* don't force unexpired */, tld); } } void _mi_segment_cache_free_all(mi_os_tld_t* tld) { mi_commit_mask_t commit_mask; mi_commit_mask_t decommit_mask; bool is_pinned; bool is_zero; size_t memid; const size_t size = MI_SEGMENT_SIZE; // iterate twice: first large pages, then regular memory for (int i = 0; i < 2; i++) { void* p; do { // keep popping and freeing the memory bool large = (i == 0); p = mi_segment_cache_pop_ex(true /* all */, size, &commit_mask, &decommit_mask, &large, &is_pinned, &is_zero, _mi_arena_id_none(), &memid, tld); if (p != NULL) { size_t csize = _mi_commit_mask_committed_size(&commit_mask, size); if (csize > 0 && !is_pinned) _mi_stat_decrease(&_mi_stats_main.committed, csize); _mi_arena_free(p, size, MI_SEGMENT_ALIGN, 0, memid, is_pinned /* pretend not committed to not double count decommits */, tld->stats); } } while (p != NULL); } } mi_decl_noinline bool _mi_segment_cache_push(void* start, size_t size, size_t memid, const mi_commit_mask_t* commit_mask, const mi_commit_mask_t* decommit_mask, bool is_large, bool is_pinned, mi_os_tld_t* tld) { #ifdef MI_CACHE_DISABLE return false; #else // only for normal segment blocks if (size != MI_SEGMENT_SIZE || ((uintptr_t)start % MI_SEGMENT_ALIGN) != 0) return false; // numa node determines start field int numa_node = _mi_os_numa_node(NULL); size_t start_field = 0; if (numa_node > 0) { start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node; if (start_field >= MI_CACHE_FIELDS) start_field = 0; } // purge expired entries mi_segment_cache_purge(false /* limit purges to a constant N */, false /* don't force unexpired */, tld); // find an available slot mi_bitmap_index_t bitidx; bool claimed = _mi_bitmap_try_find_from_claim(cache_inuse, MI_CACHE_FIELDS, start_field, 1, &bitidx); if (!claimed) return false; mi_assert_internal(_mi_bitmap_is_claimed(cache_available, MI_CACHE_FIELDS, 1, bitidx)); mi_assert_internal(_mi_bitmap_is_claimed(cache_available_large, MI_CACHE_FIELDS, 1, bitidx)); #if MI_DEBUG>1 if (is_pinned || is_large) { mi_assert_internal(mi_commit_mask_is_full(commit_mask)); } #endif // set the slot mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)]; slot->p = start; slot->memid = memid; slot->is_pinned = is_pinned; mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0); slot->commit_mask = *commit_mask; slot->decommit_mask = *decommit_mask; if (!mi_commit_mask_is_empty(commit_mask) && !is_large && !is_pinned && mi_option_is_enabled(mi_option_allow_decommit)) { long delay = mi_option_get(mi_option_segment_decommit_delay); if (delay == 0) { _mi_abandoned_await_readers(); // wait until safe to decommit mi_commit_mask_decommit(&slot->commit_mask, start, MI_SEGMENT_SIZE, tld->stats); mi_commit_mask_create_empty(&slot->decommit_mask); } else { mi_atomic_storei64_release(&slot->expire, _mi_clock_now() + delay); } } // make it available _mi_bitmap_unclaim((is_large ? cache_available_large : cache_available), MI_CACHE_FIELDS, 1, bitidx); return true; #endif } /* ----------------------------------------------------------- The following functions are to reliably find the segment or block that encompasses any pointer p (or NULL if it is not in any of our segments). We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB) set to 1 if it contains the segment meta data. ----------------------------------------------------------- */ #if (MI_INTPTR_SIZE==8) #define MI_MAX_ADDRESS ((size_t)20 << 40) // 20TB #else #define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb #endif #define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE) #define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8) #define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE) static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE + 1]; // 2KiB per TB with 64MiB segments static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) { mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE? if ((uintptr_t)segment >= MI_MAX_ADDRESS) { *bitidx = 0; return MI_SEGMENT_MAP_WSIZE; } else { const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_SIZE; *bitidx = segindex % MI_INTPTR_BITS; const size_t mapindex = segindex / MI_INTPTR_BITS; mi_assert_internal(mapindex < MI_SEGMENT_MAP_WSIZE); return mapindex; } } void _mi_segment_map_allocated_at(const mi_segment_t* segment) { size_t bitidx; size_t index = mi_segment_map_index_of(segment, &bitidx); mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); if (index==MI_SEGMENT_MAP_WSIZE) return; uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); uintptr_t newmask; do { newmask = (mask | ((uintptr_t)1 << bitidx)); } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); } void _mi_segment_map_freed_at(const mi_segment_t* segment) { size_t bitidx; size_t index = mi_segment_map_index_of(segment, &bitidx); mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); if (index == MI_SEGMENT_MAP_WSIZE) return; uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); uintptr_t newmask; do { newmask = (mask & ~((uintptr_t)1 << bitidx)); } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); } // Determine the segment belonging to a pointer or NULL if it is not in a valid segment. static mi_segment_t* _mi_segment_of(const void* p) { if (p == NULL) return NULL; mi_segment_t* segment = _mi_ptr_segment(p); mi_assert_internal(segment != NULL); size_t bitidx; size_t index = mi_segment_map_index_of(segment, &bitidx); // fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) { return segment; // yes, allocated by us } if (index==MI_SEGMENT_MAP_WSIZE) return NULL; // TODO: maintain max/min allocated range for efficiency for more efficient rejection of invalid pointers? // search downwards for the first segment in case it is an interior pointer // could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough // valid huge objects // note: we could maintain a lowest index to speed up the path for invalid pointers? size_t lobitidx; size_t loindex; uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1); if (lobits != 0) { loindex = index; lobitidx = mi_bsr(lobits); // lobits != 0 } else if (index == 0) { return NULL; } else { mi_assert_internal(index > 0); uintptr_t lomask = mask; loindex = index; do { loindex--; lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex]); } while (lomask != 0 && loindex > 0); if (lomask == 0) return NULL; lobitidx = mi_bsr(lomask); // lomask != 0 } mi_assert_internal(loindex < MI_SEGMENT_MAP_WSIZE); // take difference as the addresses could be larger than the MAX_ADDRESS space. size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE; segment = (mi_segment_t*)((uint8_t*)segment - diff); if (segment == NULL) return NULL; mi_assert_internal((void*)segment < p); bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(cookie_ok); if mi_unlikely(!cookie_ok) return NULL; if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment)); return segment; } // Is this a valid pointer in our heap? static bool mi_is_valid_pointer(const void* p) { return (_mi_segment_of(p) != NULL); } mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { return mi_is_valid_pointer(p); } /* // Return the full segment range belonging to a pointer static void* mi_segment_range_of(const void* p, size_t* size) { mi_segment_t* segment = _mi_segment_of(p); if (segment == NULL) { if (size != NULL) *size = 0; return NULL; } else { if (size != NULL) *size = segment->segment_size; return segment; } mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size); mi_reset_delayed(tld); mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld)); return page; } */