/* ---------------------------------------------------------------------------- Copyright (c) 2018-2023, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ // This file is included in `src/prim/prim.c` #include "mimalloc.h" #include "mimalloc/internal.h" #include "mimalloc/atomic.h" #include "mimalloc/prim.h" #include // fputs, stderr //--------------------------------------------- // Dynamically bind Windows API points for portability //--------------------------------------------- // We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016. // So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility) // NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB) // We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's. typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E { MiMemExtendedParameterInvalidType = 0, MiMemExtendedParameterAddressRequirements, MiMemExtendedParameterNumaNode, MiMemExtendedParameterPartitionHandle, MiMemExtendedParameterUserPhysicalHandle, MiMemExtendedParameterAttributeFlags, MiMemExtendedParameterMax } MI_MEM_EXTENDED_PARAMETER_TYPE; typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S { struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type; union { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg; } MI_MEM_EXTENDED_PARAMETER; typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S { PVOID LowestStartingAddress; PVOID HighestEndingAddress; SIZE_T Alignment; } MI_MEM_ADDRESS_REQUIREMENTS; #define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE 0x00000010 #include typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG); typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG); static PVirtualAlloc2 pVirtualAlloc2 = NULL; static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL; // Similarly, GetNumaProcesorNodeEx is only supported since Windows 7 typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER; typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber); typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber); typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask); typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber); static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL; static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL; static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL; static PGetNumaProcessorNode pGetNumaProcessorNode = NULL; //--------------------------------------------- // Enable large page support dynamically (if possible) //--------------------------------------------- static bool win_enable_large_os_pages(size_t* large_page_size) { static bool large_initialized = false; if (large_initialized) return (_mi_os_large_page_size() > 0); large_initialized = true; // Try to see if large OS pages are supported // To use large pages on Windows, we first need access permission // Set "Lock pages in memory" permission in the group policy editor // unsigned long err = 0; HANDLE token = NULL; BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token); if (ok) { TOKEN_PRIVILEGES tp; ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid); if (ok) { tp.PrivilegeCount = 1; tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0); if (ok) { err = GetLastError(); ok = (err == ERROR_SUCCESS); if (ok && large_page_size != NULL) { *large_page_size = GetLargePageMinimum(); } } } CloseHandle(token); } if (!ok) { if (err == 0) err = GetLastError(); _mi_warning_message("cannot enable large OS page support, error %lu\n", err); } return (ok!=0); } //--------------------------------------------- // Initialize //--------------------------------------------- void _mi_prim_mem_init( mi_os_mem_config_t* config ) { config->has_overcommit = false; config->must_free_whole = true; // get the page size SYSTEM_INFO si; GetSystemInfo(&si); if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; } if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; } // get the VirtualAlloc2 function HINSTANCE hDll; hDll = LoadLibrary(TEXT("kernelbase.dll")); if (hDll != NULL) { // use VirtualAlloc2FromApp if possible as it is available to Windows store apps pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp"); if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2"); FreeLibrary(hDll); } // NtAllocateVirtualMemoryEx is used for huge page allocation hDll = LoadLibrary(TEXT("ntdll.dll")); if (hDll != NULL) { pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx"); FreeLibrary(hDll); } // Try to use Win7+ numa API hDll = LoadLibrary(TEXT("kernel32.dll")); if (hDll != NULL) { pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx"); pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx"); pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx"); pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode"); FreeLibrary(hDll); } if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) { win_enable_large_os_pages(&config->large_page_size); } } //--------------------------------------------- // Free //--------------------------------------------- int _mi_prim_free(void* addr, size_t size ) { MI_UNUSED(size); DWORD errcode = 0; bool err = (VirtualFree(addr, 0, MEM_RELEASE) == 0); if (err) { errcode = GetLastError(); } if (errcode == ERROR_INVALID_ADDRESS) { // In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside // the memory region returned by VirtualAlloc; in that case we need to free using // the start of the region. MEMORY_BASIC_INFORMATION info = { 0 }; VirtualQuery(addr, &info, sizeof(info)); if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) { errcode = 0; err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0); if (err) { errcode = GetLastError(); } } } return (int)errcode; } //--------------------------------------------- // VirtualAlloc //--------------------------------------------- static void* win_virtual_alloc_prim(void* addr, size_t size, size_t try_alignment, DWORD flags) { #if (MI_INTPTR_SIZE >= 8) // on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations if (addr == NULL) { void* hint = _mi_os_get_aligned_hint(try_alignment,size); if (hint != NULL) { void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE); if (p != NULL) return p; _mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags); // fall through on error } } #endif // on modern Windows try use VirtualAlloc2 for aligned allocation if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) { MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 }; reqs.Alignment = try_alignment; MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} }; param.Type.Type = MiMemExtendedParameterAddressRequirements; param.Arg.Pointer = &reqs; void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, ¶m, 1); if (p != NULL) return p; _mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags); // fall through on error } // last resort return VirtualAlloc(addr, size, flags, PAGE_READWRITE); } static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) { mi_assert_internal(!(large_only && !allow_large)); static _Atomic(size_t) large_page_try_ok; // = 0; void* p = NULL; // Try to allocate large OS pages (2MiB) if allowed or required. if ((large_only || _mi_os_use_large_page(size, try_alignment)) && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) { size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); if (!large_only && try_ok > 0) { // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive. // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times. mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); } else { // large OS pages must always reserve and commit. *is_large = true; p = win_virtual_alloc_prim(addr, size, try_alignment, flags | MEM_LARGE_PAGES); if (large_only) return p; // fall back to non-large page allocation on error (`p == NULL`). if (p == NULL) { mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations } } } // Fall back to regular page allocation if (p == NULL) { *is_large = ((flags&MEM_LARGE_PAGES) != 0); p = win_virtual_alloc_prim(addr, size, try_alignment, flags); } //if (p == NULL) { _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large); } return p; } int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, void** addr) { mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); mi_assert_internal(commit || !allow_large); mi_assert_internal(try_alignment > 0); int flags = MEM_RESERVE; if (commit) { flags |= MEM_COMMIT; } *addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large); return (*addr != NULL ? 0 : (int)GetLastError()); } //--------------------------------------------- // Commit/Reset/Protect //--------------------------------------------- #ifdef _MSC_VER #pragma warning(disable:6250) // suppress warning calling VirtualFree without MEM_RELEASE (for decommit) #endif int _mi_prim_commit(void* addr, size_t size, bool commit) { if (commit) { void* p = VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE); return (p == addr ? 0 : (int)GetLastError()); } else { BOOL ok = VirtualFree(addr, size, MEM_DECOMMIT); return (ok ? 0 : (int)GetLastError()); } } int _mi_prim_reset(void* addr, size_t size) { void* p = VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE); mi_assert_internal(p == addr); #if 1 if (p == addr && addr != NULL) { VirtualUnlock(addr,size); // VirtualUnlock after MEM_RESET removes the memory from the working set } #endif return (p == addr ? 0 : (int)GetLastError()); } int _mi_prim_protect(void* addr, size_t size, bool protect) { DWORD oldprotect = 0; BOOL ok = VirtualProtect(addr, size, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect); return (ok ? 0 : (int)GetLastError()); } //--------------------------------------------- // Huge page allocation //--------------------------------------------- static void* _mi_prim_alloc_huge_os_pagesx(void* hint_addr, size_t size, int numa_node) { const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE; win_enable_large_os_pages(NULL); MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} }; // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages static bool mi_huge_pages_available = true; if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) { params[0].Type.Type = MiMemExtendedParameterAttributeFlags; params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE; ULONG param_count = 1; if (numa_node >= 0) { param_count++; params[1].Type.Type = MiMemExtendedParameterNumaNode; params[1].Arg.ULong = (unsigned)numa_node; } SIZE_T psize = size; void* base = hint_addr; NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count); if (err == 0 && base != NULL) { return base; } else { // fall back to regular large pages mi_huge_pages_available = false; // don't try further huge pages _mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err); } } // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation if (pVirtualAlloc2 != NULL && numa_node >= 0) { params[0].Type.Type = MiMemExtendedParameterNumaNode; params[0].Arg.ULong = (unsigned)numa_node; return (*pVirtualAlloc2)(GetCurrentProcess(), hint_addr, size, flags, PAGE_READWRITE, params, 1); } // otherwise use regular virtual alloc on older windows return VirtualAlloc(hint_addr, size, flags, PAGE_READWRITE); } int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, void** addr) { *addr = _mi_prim_alloc_huge_os_pagesx(hint_addr,size,numa_node); return (*addr != NULL ? 0 : (int)GetLastError()); } //--------------------------------------------- // Numa nodes //--------------------------------------------- size_t _mi_prim_numa_node(void) { USHORT numa_node = 0; if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) { // Extended API is supported MI_PROCESSOR_NUMBER pnum; (*pGetCurrentProcessorNumberEx)(&pnum); USHORT nnode = 0; BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode); if (ok) { numa_node = nnode; } } else if (pGetNumaProcessorNode != NULL) { // Vista or earlier, use older API that is limited to 64 processors. Issue #277 DWORD pnum = GetCurrentProcessorNumber(); UCHAR nnode = 0; BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode); if (ok) { numa_node = nnode; } } return numa_node; } size_t _mi_prim_numa_node_count(void) { ULONG numa_max = 0; GetNumaHighestNodeNumber(&numa_max); // find the highest node number that has actual processors assigned to it. Issue #282 while(numa_max > 0) { if (pGetNumaNodeProcessorMaskEx != NULL) { // Extended API is supported GROUP_AFFINITY affinity; if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) { if (affinity.Mask != 0) break; // found the maximum non-empty node } } else { // Vista or earlier, use older API that is limited to 64 processors. ULONGLONG mask; if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) { if (mask != 0) break; // found the maximum non-empty node }; } // max node was invalid or had no processor assigned, try again numa_max--; } return ((size_t)numa_max + 1); } //---------------------------------------------------------------- // Clock //---------------------------------------------------------------- static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) { static LARGE_INTEGER mfreq; // = 0 if (mfreq.QuadPart == 0LL) { LARGE_INTEGER f; QueryPerformanceFrequency(&f); mfreq.QuadPart = f.QuadPart/1000LL; if (mfreq.QuadPart == 0) mfreq.QuadPart = 1; } return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart); } mi_msecs_t _mi_prim_clock_now(void) { LARGE_INTEGER t; QueryPerformanceCounter(&t); return mi_to_msecs(t); } //---------------------------------------------------------------- // Process Info //---------------------------------------------------------------- #include #include static mi_msecs_t filetime_msecs(const FILETIME* ftime) { ULARGE_INTEGER i; i.LowPart = ftime->dwLowDateTime; i.HighPart = ftime->dwHighDateTime; mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds return msecs; } typedef BOOL (WINAPI *PGetProcessMemoryInfo)(HANDLE, PPROCESS_MEMORY_COUNTERS, DWORD); static PGetProcessMemoryInfo pGetProcessMemoryInfo = NULL; void _mi_prim_process_info(mi_process_info_t* pinfo) { FILETIME ct; FILETIME ut; FILETIME st; FILETIME et; GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut); pinfo->utime = filetime_msecs(&ut); pinfo->stime = filetime_msecs(&st); // load psapi on demand if (pGetProcessMemoryInfo == NULL) { HINSTANCE hDll = LoadLibrary(TEXT("psapi.dll")); if (hDll != NULL) { pGetProcessMemoryInfo = (PGetProcessMemoryInfo)(void (*)(void))GetProcAddress(hDll, "GetProcessMemoryInfo"); } } // get process info PROCESS_MEMORY_COUNTERS info; memset(&info, 0, sizeof(info)); if (pGetProcessMemoryInfo != NULL) { pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info)); } pinfo->current_rss = (size_t)info.WorkingSetSize; pinfo->peak_rss = (size_t)info.PeakWorkingSetSize; pinfo->current_commit = (size_t)info.PagefileUsage; pinfo->peak_commit = (size_t)info.PeakPagefileUsage; pinfo->page_faults = (size_t)info.PageFaultCount; } //---------------------------------------------------------------- // Output //---------------------------------------------------------------- void _mi_prim_out_stderr( const char* msg ) { // on windows with redirection, the C runtime cannot handle locale dependent output // after the main thread closes so we use direct console output. if (!_mi_preloading()) { // _cputs(msg); // _cputs cannot be used at is aborts if it fails to lock the console static HANDLE hcon = INVALID_HANDLE_VALUE; static bool hconIsConsole; if (hcon == INVALID_HANDLE_VALUE) { CONSOLE_SCREEN_BUFFER_INFO sbi; hcon = GetStdHandle(STD_ERROR_HANDLE); hconIsConsole = ((hcon != INVALID_HANDLE_VALUE) && GetConsoleScreenBufferInfo(hcon, &sbi)); } const size_t len = _mi_strlen(msg); if (len > 0 && len < UINT32_MAX) { DWORD written = 0; if (hconIsConsole) { WriteConsoleA(hcon, msg, (DWORD)len, &written, NULL); } else if (hcon != INVALID_HANDLE_VALUE) { // use direct write if stderr was redirected WriteFile(hcon, msg, (DWORD)len, &written, NULL); } else { // finally fall back to fputs after all fputs(msg, stderr); } } } } //---------------------------------------------------------------- // Environment //---------------------------------------------------------------- // On Windows use GetEnvironmentVariable instead of getenv to work // reliably even when this is invoked before the C runtime is initialized. // i.e. when `_mi_preloading() == true`. // Note: on windows, environment names are not case sensitive. bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { result[0] = 0; size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size); return (len > 0 && len < result_size); } //---------------------------------------------------------------- // Random //---------------------------------------------------------------- #if defined(MI_USE_RTLGENRANDOM) // || defined(__cplusplus) // We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using // dynamic overriding, we observed it can raise an exception when compiled with C++, and // sometimes deadlocks when also running under the VS debugger. // In contrast, issue #623 implies that on Windows Server 2019 we need to use BCryptGenRandom. // To be continued.. #pragma comment (lib,"advapi32.lib") #define RtlGenRandom SystemFunction036 mi_decl_externc BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength); bool _mi_prim_random_buf(void* buf, size_t buf_len) { return (RtlGenRandom(buf, (ULONG)buf_len) != 0); } #else #ifndef BCRYPT_USE_SYSTEM_PREFERRED_RNG #define BCRYPT_USE_SYSTEM_PREFERRED_RNG 0x00000002 #endif typedef LONG (NTAPI *PBCryptGenRandom)(HANDLE, PUCHAR, ULONG, ULONG); static PBCryptGenRandom pBCryptGenRandom = NULL; bool _mi_prim_random_buf(void* buf, size_t buf_len) { if (pBCryptGenRandom == NULL) { HINSTANCE hDll = LoadLibrary(TEXT("bcrypt.dll")); if (hDll != NULL) { pBCryptGenRandom = (PBCryptGenRandom)(void (*)(void))GetProcAddress(hDll, "BCryptGenRandom"); } if (pBCryptGenRandom == NULL) return false; } return (pBCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0); } #endif // MI_USE_RTLGENRANDOM //---------------------------------------------------------------- // Thread init/done //---------------------------------------------------------------- #if !defined(MI_SHARED_LIB) // use thread local storage keys to detect thread ending #include #if (_WIN32_WINNT < 0x600) // before Windows Vista WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback ); WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex ); WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData ); WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex); #endif static DWORD mi_fls_key = (DWORD)(-1); static void NTAPI mi_fls_done(PVOID value) { mi_heap_t* heap = (mi_heap_t*)value; if (heap != NULL) { _mi_thread_done(heap); FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672 } } void _mi_prim_thread_init_auto_done(void) { mi_fls_key = FlsAlloc(&mi_fls_done); } void _mi_prim_thread_done_auto_done(void) { // call thread-done on all threads (except the main thread) to prevent // dangling callback pointer if statically linked with a DLL; Issue #208 FlsFree(mi_fls_key); } void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { mi_assert_internal(mi_fls_key != (DWORD)(-1)); FlsSetValue(mi_fls_key, heap); } #else // Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event. void _mi_prim_thread_init_auto_done(void) { } void _mi_prim_thread_done_auto_done(void) { } void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { MI_UNUSED(heap); } #endif