

1

Contents

Introduction 2

1 The database 3

2 Commands in entries 6

3 Datasets 7

4 Renderings 10

5 Citations 15

6 The LUA view 20

7 The XML view 23

8 Standards 26

9 Cleaning up 27

10 Transition 28

11 MLBIBTEX 30

12 Extensions 31

13 Searching 32

14 Combining 34

15 Summary 35

16 Notes 39

2

Introduction

This manual describes how MkIV handles bibliographies. Support in ConTEXt started in

MkIIfor bibTEX, using a module written by Taco Hoekwater. Later his code was adapted

to MkIV, but because users demanded more, I decided that reimplementing made more

sense than patching. In particular, through the use of Lua, the bibTEX data files can be

easily directly parsed, thus liberating ConTEXt from the dependency on an external bibTEX

executable. The CritEd project (by Thomas Schmitz, Alan Braslau, Luigi Scarso and myself)

was a good reason to undertake this rewrite. As part that project users were invited to

come up with ideas about extensions. Not all of them are (yet) honored, but the rewrite

makes more functionality possible.

This manual is dedicated to Taco Hoekwater who in a previous century implemented the

first bibTEX module and saw it morf into a TEX--Lua hybrid in this century. The fact that

there was support for bibliographies made it possible for users to use ConTEXt in an aca­

demic environment, dominated by bibliographic databases encoded in the bibTEX format.

Hans Hagen

PRAGMA ADE

Hasselt NL

3

1 The database

The bibTEX format is rather popular in the TEX community and even with its shortcomings

it will stay around for a while. Many publication websites can export and many tools are

available to work with this database format. It is rather simple and looks a bit like Lua

tables. Unfortunately the content can be polluted with non-standardized TEX commands

which complicates pre- or postprocessing outside TEX. In that sense a bibTEX database is

often not coded neutrally. Some limitations, like the use of commands to encode accented

characters root in the ascii world and can be bypassed by using utf instead (as handled

somewhat in LATEX through extensions such as bibtex8).

The normal way to deal with a bibliography is to refer to entries using a unique tag or

key. When a list of entries is typeset, this reference can be used for linking purposes.

The typeset list can be processed and sorted using the bibtex program that converts the

database into something more TEX friendly (a .bbl file). I never used the program myself

(nor bibliographies) so I will not go into too much detail here, if only because all I say can

be wrong.

In ConTEXt we no longer use the bibtex program: we just use database files and deal with

the necessary manipulations directly in ConTEXt. One or more such databases can be used

and combined with additional entries defined within the document. We can have several

such datasets active at the same time.

A bibTEX file looks like this:

@Article{sometag,

 author = "An Author and Another One",

 title = "A hopefully meaningful title",

 journal = maps,

 volume = "25",

 number = "2",

 pages = "5--9",

 month = mar,

 year = "2013",

 ISSN = "1234-5678",

}

Normally a value is given between quotes (or curly brackets) but single words are also OK

(there is no real benefit in not using quotes, so we advise to always use them). There can

be many more fields and instead of strings one can use predefined shortcuts. The title for

example quite often contains TEX macros. Some fields, like pages have funny characters

such as the endash (typically as --) so we have a mixture of data and typesetting directives.

If you are covering non--english references, you often need characters that are not in the

ascii subset but ConTEXt is quite happy with utf. If your database file uses old-fashioned TEX

accent commands then these will be internally converted automatically to utf. Commands

(macros) are converted to an indirect call, which is quite robust.

The bibTEX files are loaded in memory as Lua table but can be converted to xml so that we

can access them in a more flexible way, but that is a subject for specialists.

4

In the old MkII setup we have two kinds of entries: the ones that come from the bibTEX

run and user supplied ones. We no longer rely on bibTEX output but we do still support the

user supplied definitions. These were in fact prepared in a way that suits the processing of

bibTEX generated entries. The next variant reflects the ConTEXt recoding of the old bibTEX

output.

\startpublication[k=Hagen:Second,t=article,a={Hans Hagen},y=2013,s=HH01]

 \artauthor[]{Hans}[H.]{}{Hagen}

 \arttitle{Who knows more?}

 \journal{MyJournal}

 \pubyear{2013}

 \month{8}

 \volume{1}

 \issue{3}

 \issn{1234-5678}

 \pages{123--126}

\stoppublication

The split \artauthor fields are collapsed into a single author field as we deal with the

splitting later when it gets parsed in Lua. The \artauthor syntax is only kept around for

backward compatibility with the previous use of bibTEX.

In the new setup we support these variants as well:

\startpublication[k=Hagen:Third,t=article]

 \author{Hans Hagen}

 \title{Who knows who?}

 ...

\stoppublication

and

\startpublication[tag=Hagen:Third,category=article]

 \author{Hans Hagen}

 \title{Who knows who?}

 ...

\stoppublication

and

\startpublication

 \tag{Hagen:Third}

 \category{article}

 \author{Hans Hagen}

 \title{Who knows who?}

 ...

\stoppublication

Because internally the entries are Lua tables, we also support loading of Lua based defin­

itions:

5

return {

 ["Hagen:First"] = {

 author = "Hans Hagen",

 category = "article",

 issn = "1234-5678",

 issue = "3",

 journal = "MyJournal",

 month = "8",

 pages = "123--126",

 tag = "Hagen:First",

 title = "Who knows nothing?",

 volume = "1",

 year = "2013",

 },

}

Files set up like this can be loaded too. The following xml input is rather close to this, and

is also accepted as input.

<?xml version="2.0" standalone="yes" ?>

<bibtex>

 <entry tag="Hagen:First" category="article">

 <field name="author">Hans Hagen</field>

 <field name="category">article</field>

 <field name="issn">1234-5678</field>

 <field name="issue">3</field>

 <field name="journal">MyJournal</field>

 <field name="month">8</field>

 <field name="pages">123--126</field>

 <field name="tag">Hagen:First</field>

 <field name="title">Who knows nothing?</field>

 <field name="volume">1</field>

 <field name="year">2013</field>

 </entry>

</bibtex>

Todo: Add some remarks about loading EndNote and RIS formats, but first we need to

complete the tag mapping (on Alan’s plate).

So the user has a rather wide choice of formatting style for bibliography database files.

You can load more data than you actually need. Only entries that are referred to explicitly

through the \cite and \nocite commands will be shown in lists. We will cover these

details later.

6

2 Commands in entries

One unfortunate aspect commonly found in bibTEX files is that they often contain TEX com­

mands. Even worse is that there is no standard on what these commands can be and what

they mean, at least not formally, as bibTEX is a program intended to be used with many

variants of TEX style: plain, LATEX, and others. This means that we need to define our use

of these typesetting commands. However, in most cases, they are just abbreviations or

font switches and these are often known. Therefore, ConTEXt will try to resolve them be­

fore reporting an issue. In the log file there is a list of commands that has been seen in

the loaded databases. For instance, loading tugboat.bib gives a long list of commands of

which we show a small set here:

publications > start used btx commands

publications > standard CONTEXT 1 known

publications > standard ConTeXt 4 known

publications > standard TeXLive 3 KNOWN

publications > standard eTeX 1 known

publications > standard hbox 6 known

publications > standard sltt 1 unknown

publications > stop used btxcommands

You can define unknown commands, or overload existing definitions in the following way:

\definebtxcommand\TUB {TUGboat}

\definebtxcommand\sltt{\tt}

\definebtxcommand\<#1>{\type{#1}}

Unknown commands do not stall processing, but their names are then typeset in a mono-

spaced font so they probably stand out for proofreading. You can access the commands

with \btxcommand{...}, as in:

commands like \btxcommand{MySpecialCommand} are handled in an indirect way

As this is an undefined command we get: “commands like MySpecialCommand are handled

in an indirect way”.

??

7

3 Datasets

Normally in a document you will use only one bibliographic database, whether or not dis­

tributed over multiple files. Nevertheless we support multiple databases as well which is

why we talk of datasets instead. A dataset is loaded with the \usebtxdataset command.

Although currently it is not necessary to define a (default) dataset you can best do this

because in the future we might provide more options. Here are some examples:

\definebtxdataset[standard]

\usebtxdataset[standard][tugboat.bib]

\usebtxdataset[standard][mtx-bibtex-output.xml]

\usebtxdataset[standard][test-001-btx-standard.lua]

These three suffixes are understood by the loader. Here the dataset has the name standard

and the three database files are merged, where later entries having the same tag overload

previous ones. Definitions in the document source (coded in TEX speak) are also added,

and they are saved for successive runs. This means that if you load and define entries,

they will be known at a next run beforehand, so that references to them are independent

of when loading and definitions take place.

\setupbtxdataset [...]
OPTIONAL

1
[.=.]
OPTIONAL

2

1 IDENTIFIER

2 ...

\definebtxdataset [...]
1

[.=.]
OPTIONAL

2

1 IDENTIFIER

2 inherits from \setupbtxdataset

\usebtxdataset [...]
1

[...]
2

1 IDENTIFIER

2 FILE

In this document we use some example databases, so let’s load one of them now:

\definebtxdataset[example]

\usebtxdataset[example][mkiv-publications.bib]

You can ask for an overview of entries in a dataset with:

\showbtxdatasetfields[example]

this gives:

8

tag category fields

demo-001 book author index title year

demo-002 book crossref index year

demo-003 book author comment index title year

demo-004 book author comment index title year

demo-005 book author doi index pages serial title url year

You can set the current active dataset with

\setbtxdataset[standard]

but most publication-related commands accept optional arguments that denote the dataset

and references to entries can be prefixed with a dataset identifier.. More about that later.

Sometimes you want to check a database. One way of doing that is the following:

\definebtxdataset[check]

\usebtxdataset[check][mkiv-publications-check.bib]

\showbtxdatasetcompleteness[check]

The database like like this:

@BOOK{test1,

 title = {Title 1},

 author = {Author 1}

 publisher = {Thomas and Alan},

 year = {2015},

 editor = {Thomas Schmitz and Alan Braslau},

 volume = {1},

}

@BOOK{test2,

 title = {Title 2},

 author = {Author 2}

 crossref = {test1},

 volume = {2},

}

@BOOK{test3,

 title = {Title 3},

 author = {Author 3}

}

The completeness check shows (with green field names) the required fields and when one

is missing this is indicated in red. In blue we show what gets inherited.

tag test1

author Author 1

9

editor Thomas Schmitz and Alan Braslau

title Title 1

publisher Thomas and Alan

year 2015

volume 1

tag test2 => test1

author Author 2

editor Thomas Schmitz and Alan Braslau

title Title 2

publisher Thomas and Alan

year 2015

volume 2

tag test3

author Author 3

title Title 3

publisher [missing]

year [missing]

10

4 Renderings

A list of publications can be rendered at any place in the document. A database can be

much larger than needed for a document. The same is true for the fields that make up

an entry. Here is the list of fields that are currently handled, but of course there can be

additional ones:

abstract, address, annotate, assignee, author, bibnumber, booktitle, chapter,

comment, country, day, dayfiled, doi, edition, editor, eprint, howpublished,

institution, isbn, issn, journal, key, keyword, keywords, language, lastchecked,

month, monthfiled, names, nationality, note, notes, number, organization, pages,

publisher, revision, school, series, size, title, type, url, volume, year, yearfiled

If you want to see what publications are in the database, the easiest way is to ask for a

complete list:

\definebtxrendering

 [example]

 [dataset=example,

 method=local,

 alternative=apa]

\placelistofpublications % \placebtxrendering

 [example]

 [criterium=all]

This gives:

1 Hagen, H. and Otten, T. (1996). Typesetting education documents.

2 Scarso, L. (2021). Designing high speed trains properly!.

3 author (year). title. pages p.

The rendering itself is somewhat complex to set up because we have not only many differ­

ent standards but also many fields that can be set up. This means that there are several

commands involved. Often there is a prescribed style to render bibliographic descriptions,

for example apa. A rendering is setup and defined with:

\setupbtxrendering [...]
OPTIONAL

1
[.=.]

2

1 IDENTIFIER

2 alternative = TEXT = apa

dataset = TEXT = standard

setups = TEXT = btx:rendering:apa

method = local global none force = global

sorttype = short reference dataset default

criterium = TEXT

refcommand = TEXT = authoryears

numbering = yes cite = yes

width = DIMENSION auto = auto

distance = DIMENSION = 1.5\emwidth

continue = yes no

11

\definebtxrendering [...]
1

[...]
OPTIONAL

2
[.=.]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 inherits from \setupbtxrendering

And a list of such descriptions is generated with:

\placebtxrendering

A dataset can have all kind of entries:

Each has its own rendering variant. To keep things simple we have their settings separated.

However, these settings are shared for all rendering alternatives. In practice this is seldom

a problem in a publication as only one rendering alternative will be active. If this be not

sufficient, you can always group local settings in a setup and hook that into the specific

rendering.

\setupbtxlistvariant [...]
OPTIONAL

1
[.=.]

2

1 IDENTIFIER

2 separator = TEXT

namesep = TEXT = ,

lastnamesep = TEXT = and

finalnamesep = TEXT = and

firstnamesep = TEXT =

juniorsep = TEXT =

vonsep = TEXT =

surnamesep = TEXT = ,

surnamejuniorsep = TEXT

juniorjuniorsep = TEXT

surnamefirstnamesep = TEXT = ,

surnameinitialsep = TEXT = ,

etallimit = TEXT = 5

etaldisplay = TEXT = 5

etaltext = TEXT = et al.

monthconversion = number month month:mnem = number

authorconversion = normal inverted normalshort invertedshort = normal

\definebtxlistvariant [...]
*

* IDENTIFIER

Examples of list variants are:

setupbtxlistvariant : artauthor

no specific settings

12

setupbtxlistvariant : author

no specific settings

setupbtxlistvariant : editor

no specific settings

The exact rendering of list entries is determined by the alternative key and defaults to

apa which uses definitions from publ-imp-apa.mkiv. If you look at that file you will see

that each category has its own setup. You may also notice that additional tests are needed

to make sure that empty fields don’t trigger separators and such.

There are a couple of accessors and helpers to get the job done. When you want to fetch a

field from the current entry you use \btxfield. In most cases you want to make sure this

field has a value, for instance because you don’t want fences or punctuation that belongs

to a field.

\btxdoif {title} {

 \bold{\btxfield{title}},

}

There are three test macros:

\btxdoifelse{fieldname}{action when found}{action when not found}

\btxdoif {fieldname}{action when found}

\btxdoifnot {fieldname} {action when not found}

An extra conditional is available for testing interactivity:

\btxdoifelseinteraction{action when true}{action when false}

In addition there is also a conditional \btxinteractive which is more efficient, although

in practice efficiency is not so important here.

There are three commands to flush data:

\btxfield fetch a explicit field (e.g. year)

\btxdetail fetch a derived field (e.g. short)

\btxflush fetch a derived or explicit field

Normally you can use \btxfield or \btxflush as derived fields just like analyzed author

fields are flushed in a special way.

You can improve readability by using setups, for instance:

\btxdoifelse {author} {

 \btxsetup{btx:apa:author:yes}

} {

 \btxsetup{btx:apa:author:nop}

}

13

Keep in mind that normally you don’t need to mess with definitions like this because stan­

dard rendering styles are provided. These styles use a few helpers that inject symbols but

also take care of leading and trailing spaces:

\btxspace before after

\btxperiod before. after

\btxcomma before, after

\btxlparent before (after

\btxrparent before) after

\btxlbracket before [after

\btxrbracket before] after

So, the previous example setup can be rewritten as:

\btxdoif {title} {

 \bold{\btxfield{title}}

 \btxcomma

}

There is a special command for rendering a (combination) of authors:

\btxflushauthor{author}

\btxflushauthor{editor}

\btxflushauthor[inverted]{editor}

Instead of the last one you can also use:

\btxflushauthorinverted{editor}

You can use a (configurable) default or pass directives: Valid directives are

conversion rendering

inverted the Frog jr, Kermit

invertedshort the Frog jr, K

normal Kermit, the Frog, jr

normalshort K, the Frog, jr

The list itself is not a list in the sense of a regular ConTEXt structure related list. We do use

the list mechanism to keep track of used entries but that is mostly because we can then

reuse filtering mechanisms. The actual rendering of a reference and entry runs on top of

so called constructions (other examples of constructions are descriptions, enumerations

and notes).

14

\setupbtxlist [.=.]
*

* alternative = TEXT = left

style = TEXT

color = TEXT

headstyle = TEXT

headcolor = TEXT

width = DIMENSION = 4\emwidth

distance = DIMENSION = \emwidth

hang = NUMBER

align =

headalign =

margin = cd:yes cd:no = no

before = COMMAND = \blank

inbetween = COMMAND = \blank

after = COMMAND = \blank

display = cd:yes cd:no = yes

command = COMMAND

You need to be aware what command is used to achieve the desired result. For instance,

in order to put parentheses around a number reference you say:

\setupbtxlistvariant

 [num]

 [left=(,

 right=)]

If you want automated width calculations, the following does the trick:

\setupbtxrendering

 [standard]

 [width=auto]

but if you want to control it yourself you say something:

\setupbtxrendering

 [width=none]

\setupbtxlist

 [standard]

 [width=3cm,

 distance=\emwidth,

 color=red,

 headcolor=blue,

 headalign=flushright]

In most cases the defaults will work out fine.

15

5 Citations

Citations are references to bibliographic entries that normally show up in lists someplace

in the document: at the end of a chapter, in an appendix, at the end of an article, etc. We

discussed the rendering of these lists in the previous chapter. A citation is normally pretty

short as its main purpose is to refer uniquely to a more detailed description. But, there are

several ways to refer, which is why the citation subsystem is configurable and extensible.

Just look at the following commands:

\cite[author][example::demo-003]

\cite[authoryear][example::demo-003]

\cite[authoryears][example::demo-003]

\cite[author][example::demo-003,demo-004]

\cite[authoryear][example::demo-003,demo-004]

\cite[authoryears][example::demo-003,demo-004]

\cite[author][example::demo-004,demo-003]

\cite[authoryear][example::demo-004,demo-003]

\cite[authoryears][example::demo-004,demo-003]

(Hans Hagen and Ton Otten)

(Hans Hagen and Ton Otten, (1996))

(Hans Hagen and Ton Otten, 1996)

(Hans Hagen and Ton Otten and Luigi Scarso)

(Hans Hagen and Ton Otten, (1996) and Luigi Scarso, (2021))

(Hans Hagen and Ton Otten, 1996 and Luigi Scarso, 2021)

(Luigi Scarso and Hans Hagen and Ton Otten)

(Luigi Scarso, (2021) and Hans Hagen and Ton Otten, (1996))

(Luigi Scarso, 2021 and Hans Hagen and Ton Otten, 1996)

The first argument is optional.

\cite [...]
OPTIONAL

1
[...]

2

1 IDENTIFIER

2 IDENTIFIER

You can tune the way a citation shows up:

\setupbtxcitevariant[author] [sorttype=author,color=darkyellow]

\setupbtxcitevariant[authoryear] [sorttype=author,color=darkyellow]

\setupbtxcitevariant[authoryears][sorttype=author,color=darkyellow]

\cite[author][example::demo-004,demo-003]

\cite[authoryear][example::demo-004,demo-003]

\cite[authoryears][example::demo-004,demo-003]

Here we sort the authors and color the citation:

(Luigi Scarso and Hans Hagen and Ton Otten)

16

(Luigi Scarso, (2021) and Hans Hagen and Ton Otten, (1996))

(Luigi Scarso, 2021 and Hans Hagen and Ton Otten, 1996)

For reasons of backward compatibility the \cite command is a bit picky about spaces

between the two arguments, of which the first is optional. This is a consequence of allowing

its use with the key specified between curly brackets as is the traditional practice. (We do

encourage users to adopt the more coherent ConTEXt syntax by using square brackets for

keywords and reserving curly brackets to regroup text to be typeset.)

The \citation command is synonymous but is more flexible with respect to spacing of its

arguments:

\citation[author] [example::demo-004,demo-003]

\citation[authoryear] [example::demo-004,demo-003]

\citation[authoryears][example::demo-004,demo-003]

There is a whole bunch of cite options and more can be easily defined.

key rendering

author (author)

authornum (author [3])

authoryear (author, (year))

authoryears (author, year)

doi [doi]

key [demo-005]

none

num [3]

page pages

serial [5]

short [<demo-005>]

type [book]

url [url]

year (year)

Because we are dealing with database input and because we generally need to manipulate

entries, much of the work is delegated to Lua. This makes it easier to maintain and extend

the code. Of course TEX still does the rendering. The typographic details are controlled by

parameters but not all are used in all variants. As with most ConTEXt commands, it starts

out with a general setup command:

url

17

\setupbtxcitevariant [...]
OPTIONAL

1
[.=.]

2

1 IDENTIFIER

2 alternative = TEXT = num

setups = TEXT = btx:cite:num

interaction = TEXT = start

andtext = TEXT = and

otherstext = TEXT = et al.

compress = TEXT = no

putsep = TEXT

lastputsep = TEXT

inbetween = TEXT =

right = TEXT

middle = TEXT

left = TEXT

On top of that we can define instances that inherit either from a given parent or from the

topmost setup.

\definebtxcitevariant [...]
1

[...]
OPTIONAL

2
[.=.]
OPTIONAL

3

1 IDENTIFIER

2 IDENTIFIER

3 inherits from \setupbtxvariant

But, specific variants can have them overloaded:

setupbtxcitevariant : author

right)

middle ,

left (

setupbtxcitevariant : authornum

right)

middle ,

left (

setupbtxcitevariant : authoryear

compress yes

inbetween ,

right)

middle ,

left (

setupbtxcitevariant : authoryears

compress yes

inbetween ,

18

right)

middle ,

left (

setupbtxcitevariant : doi

right]

middle ,

left [

setupbtxcitevariant : key

right]

middle ,

left [

setupbtxcitevariant : none

no specific settings

setupbtxcitevariant : num

compress yes

right]

middle ,

left [

setupbtxcitevariant : page

middle ,

setupbtxcitevariant : serial

right]

middle ,

left [

setupbtxcitevariant : short

right]

middle ,

left [

setupbtxcitevariant : type

right]

middle ,

left [

19

setupbtxcitevariant : url

right]

middle ,

left [

setupbtxcitevariant : year

right)

middle ,

left (

A citation variant is defined in several steps and if you really want to know the dirty details,

you should look into the publ-imp-*.mkiv files. Here we stick to the concept.

\startsetups btx:cite:author

 \btxcitevariant{author}

\stopsetups

You can overload such setups if needed, but that only makes sense when you cannot config­

ure the rendering with parameters. The \btxcitevariant command is one of the build in

accessors and it calls out to Lua where more complex manipulation takes place if needed.

If no manipulation is known, the field with the same name (if found) will be flushed. A com­

mand like \btxcitevariant assumes that a dataset and specific tag has been set. This is

normally done in the wrapper macros, like \cite. For special purposes you can use these

commands

\setbtxdataset[example]

\setbtxentry[hh2013]

But don’t expect too much support for such low level rendering control.

Unless you use criterium=all only publications that are cited will end up in the lists. You

can force a citation into a list using \usecitation, for example:

\usecitation[example::demo-004,demo-003]

This command has two synonyms: \nocite and \nocitation so you can choose whatever

fits you best.

\nocite [...]
*

* IDENTIFIER

20

6 The LUA view

Because we manage data at the Lua end it is tempting to access it there for other purposes.

This is fine as long as you keep in mind that aspects of the implementation may change

over time, although this is unlikely once the modules become stable.

The entries are collected in datasets and each set has a unique name. In this document

we have the set named example. A dataset table has several fields, and probably the one

of most interest is the luadata field. Each entry in this table describes a publication:

t={

 ["author"]="Hans Hagen",

 ["category"]="book",

 ["index"]=1,

 ["tag"]="demo-001",

 ["title"]="\\btxcmd{BIBTEX}, the \\btxcmd{CONTEXT}\\ way",

 ["year"]="2013",

}

This is publications.datasets.example.luadata["demo-001"]. There can be a compan­

ion entry in the parallel details table.

t={

 ["author"]={

 {

 ["firstnames"]={ "Hans" },

 ["initials"]={ "H" },

 ["original"]="Hans Hagen",

 ["surnames"]={ "Hagen" },

 ["vons"]={},

 },

 },

 ["short"]="Hag13",

}

These details are accessed as publications.datasets.example.details["demo-001"]

and by using a separate table we can overload fields in the original entry without losing

the original.

You can loop over the entries using regular Lua code combined with MkIV helpers:

local dataset = publications.datasets.example

context.starttabulate { "|l|l|l|" }

for tag, entry in table.sortedhash(dataset.luadata) do

 local detail = dataset.details[tag] or { }

 context.NC() context.type(tag)

 context.NC() context(detail.short)

 context.NC() context(entry.title)

21

 context.NC() context.NR()

end

context.stoptabulate()

This results in:

demo-001 Hag13 bibTEX, the ConTEXt way

demo-002 Hag14 bibTEX, the ConTEXt way

demo-003 HO96 Typesetting education documents

demo-004 Sca21 Designing high speed trains properly!

demo-005 aut00 title

You can manipulate a dataset after loading. Of course this assumes that you know what

kind of content you have and what you need for rendering. As example we load a small

dataset.

\definebtxdataset[drumming]

\usebtxdataset[drumming][mkiv-publications.lua]

Because we’re going to do some Lua, we could also have loaded the dataset with:

publications.load("drumming","mkiv-publications.lua","lua")

The dataset has three entries:

return {

 ["GH0001"] = {

 category = "book",

 title = "Rhythmic Illusions",

 subtitle = "for drums",

 author = "Gavin Harrison",

 publisher = "Warner",

 isbn = "1576236870",

 year = "1996",

 comment = "plus cd",

 },

 ["GH0002"] = { -- no reference in brittisch library

 category = "book",

 title = "Rhythmic Perspectives",

 subtitle = "a multidimensional study of rhythmic composition",

 author = "Gavin Harrison",

 publisher = "Alfred Publishing Co., Inc",

 year = "1999",

 comment = "plus cd",

 },

 ["GH0003"] = {

22

 category = "book",

 title = "Rhythmic Designs",

 subtitle = "a study of practical creativity",

 author = "Gavin Harrison and Terry Branham",

 publisher = "Hudson",

 year = "2010",

 comment = "plus dvd",

 },

}

As you can see, we can have a subtitle. We will combine the title and subtitle into one:

\startluacode

for tag, entry in next, publications.datasets.drumming.luadata do

 if entry.subtitle then

 if entry.title then

 entry.title = entry.title .. ", " .. entry.subtitle

 else

 entry.title = entry.subtitle

 end

 entry.subtitle = nil

 logs.report("btx","combining title and subtitle of entry tagged %a",tag)

 end

end

\stopluacode

We can now typeset the entries with:

\definebtxrendering[drumming][dataset=drumming,method=dataset]

\placebtxrendering[drumming]

Because we just want to show the entries, and have no citations that force them to be

shown, we have to the method to dataset.1

1 Harrison, G. (1996). Rhythmic Illusions, for drums. Warner.

2 Harrison, G. (1999). Rhythmic Perspectives, a multidimensional study of rhythmic com­

position. Alfred Publishing Co., Inc.

3 Harrison, G. and Branham, T. (2010). Rhythmic Designs, a study of practical creativity.

Hudson.

1 Gavin Harrison is in my opinion one of the most creative, diverse and interesting drummers of our time. It’s also

fascinating to watch him play and a welcome distraction from writing code and manuals.

23

7 The XML view

The luadata table can be converted into an xml representation. This is a follow up on

earlier experiments with an xml-only approach. I decided in the end to stick to a Lua

approach and provide some simple xml support in addition.

Once a dataset is accessible as xml tree, you can use the regular \xml... commands. We

start with loading a dataset, in this case from just one file.

\usebtxdataset[tugboat][tugboat.bib]

The dataset has to be converted to xml:

\convertbtxdatasettoxml[tugboat]

The tree is now accessible by its root reference btx:tugboat. If we want simple field

access we can use a few setups:

\startxmlsetups btx:initialize

 \xmlsetsetup{#1}{bibtex|entry|field}{btx:*}

 \xmlmain{#1}

\stopxmlsetups

\startxmlsetups btx:field

 \xmlflushcontext{#1}

\stopxmlsetups

\xmlsetup{btx:tugboat}{btx:initialize}

The two setups are predefined in the core already, but you might want to change them.

They are applied in for instance:

\starttabulate[|||]

 \NC \type {tag} \NC \xmlfirst {btx:tugboat}

 {/bibtex/entry[string.find(@tag,'Hagen')]/attribute('tag')}

 \NC \NR

 \NC \type {title} \NC \xmlfirst {btx:tugboat}

 {/bibtex/entry[string.find(@tag,'Hagen')]/field[@name='title']}

 \NC \NR

\stoptabulate

tag

title

\startxmlsetups btx:demo

 \xmlcommand

 {#1}

 {/bibtex/entry[string.find(@tag,'Hagen')][1]}{btx:table}

\stopxmlsetups

\startxmlsetups btx:table

24

\starttabulate[|||]

 \NC \type {tag} \NC \xmlatt{#1}{tag} \NC \NR

 \NC \type {title} \NC \xmlfirst{#1}{/field[@name='title']} \NC \NR

\stoptabulate

\stopxmlsetups

\xmlsetup{btx:tugboat}{btx:demo}

Here is another example:

\startxmlsetups btx:row

 \NC \xmlatt{#1}{tag}

 \NC \xmlfirst{#1}{/field[@name='title']}

 \NC \NR

\stopxmlsetups

\startxmlsetups btx:demo

 \xmlfilter {#1} {

 /bibtex

 /entry[@category='article']

 /field[@name='author' and (find(text(),'Knuth') or find(text(),'DEK'))]

 /../command(btx:row)

 }

\stopxmlsetups

\starttabulate[|||]

 \xmlsetup{btx:tugboat}{btx:demo}

\stoptabulate

A more extensive example is the following. Of course this assumes that you know what

xml support mechanisms and macros are available.

\startxmlsetups btx:getkeys

 \xmladdsortentry{btx}{#1}{\xmlfilter{#1}{/field[@name='author']/text()}}

 \xmladdsortentry{btx}{#1}{\xmlfilter{#1}{/field[@name='year']/text()}}

 \xmladdsortentry{btx}{#1}{\xmlatt{#1}{tag}}

\stopxmlsetups

\startxmlsetups btx:sorter

 \xmlresetsorter{btx}

 % \xmlfilter{#1}{entry/command(btx:getkeys)}

 \xmlfilter{#1}{

 /bibtex

 /entry[@category='article']

 /field[@name='author' and find(text(),'Knuth')]

 /../command(btx:getkeys)}

 \xmlsortentries{btx}

 \starttabulate[||||]

 \xmlflushsorter{btx}{btx:entry:flush}

 \stoptabulate

25

\stopxmlsetups

\startxmlsetups btx:entry:flush

 \NC \xmlfilter{#1}{/field[@name='year']/context()}

 \NC \xmlatt{#1}{tag}

 \NC \xmlfilter{#1}{/field[@name='author']/context()}

 \NC \NR

\stopxmlsetups

\xmlsetup{btx:tugboat}{btx:sorter}

The original data is stored in a Lua table, hashed by tag. Starting with Lua 5.2 each run

of Lua gets a different ordering of such a hash. In older versions, when you looped over

a hash, the order was undefined, but the same as long as you used the same binary. This

had the advantage that successive runs, something we often have in document processing

gave consistent results. In today’s Lua we need to do much more sorting of hashes before

we loop, especially when we save multi--pass data. It is for this reason that the xml tree is

sorted by hash key by default. That way lookups (especially the first of a set) give consistent

outcomes.

26

8 Standards

The rendering of bibliographic entries is often standardized and prescribed by the pub­

lisher. If you submit an article to a journal, normally it will be reformatted (or even re-

keyed) and the rendering will happen at the publishers end. In that case it may not matter

how entries were rendered when writing the publication, because the publisher will do it

his or her way. This means that most users probably will stick to the standard apa rules

and for them we provide some configuration. Because we use setups it is easy to overload

specifics. If you really want to tweak, best look in the files that deal with it.

Many standards exist and support for other renderings may be added to the core. Inter­

ested users are invited to develop and to test alternate standard renderings according to

their needs.

Todo: maybe a list of categories and fields.

27

9 Cleaning up

Although the bibTEX format is reasonably well defined, in practice there are many ways to

organize the data. For instance, one can use predefined string constants that get used (ei­

ther or not combined with other strings) later on. A string can be enclosed in curly braces

or double quotes. The strings can contain TEX commands but these are not standardized.

The databases often have somewhat complex ways to deal with special characters and the

use of braces in their definition is also not normalized.

The most complex to deal with are the fields that contain names of people. At some point

it might be needed to split a combination of names into individual ones that then get split

into title, first name, optional inbetweens, surname(s) and additional: Prof. Dr. Alfred

B. C. von Kwik Kwak Jr. II and P. Q. Olet is just one example of this. The conven­

tion seems to be not to use commas but and to separate names (often each name will be

specified as lastname, firstname).

We don’t see it as challenge nor as a duty to support all kinds of messy definitions. Of

course we try to be somewhat tolerant, but you will be sure to get better results if you use

nicely setup, consistent databases.

Todo: maybe some examples of bad.

28

10 Transition

In the original bibliography support module usage was as follows (example taken from the

contextgarden wiki):

% engine=pdftex

\usemodule[bib]

\usemodule[bibltx]

\setupbibtex

 [database=xampl]

\setuppublications

 [numbering=yes]

\starttext

 As \cite [article-full] already indicated, bibtex is a \LATEX||centric

 program.

 \completepublications

\stoptext

For MkIV the modules were partly rewritten and ended up in the core so the two com­

mands were no longer needed. The overhead associated with the automatic loading of the

bibliography macros can be neglected these days, so standardized modules such as bib

are all being moved to the core and do not need to be explicitly loaded.

The first \setupbibtex command in this example is needed to bootstrap the process: it tells

what database has to be processed by bibTEX between runs. The second \setuppublications

command is optional. Each citation (tagged with \cite) ends up in the list of publications.

In the new approach we no longer use bibTEXso we don’t need to setup bibTEX. Instead

we define dataset(s). We also no longer set up publications with one command, but have

split that up in rendering-, list-, and cite-variants. The basic \cite command remains. The

above example becomes:

\definebtxdataset

 [document]

\usebtxdataset

 [document]

 [mybibfile.bib]

\definebtxrendering

 [document]

\setupbtxrendering

 [document]

29

 [numbering=yes]

\starttext

 As \cite [article-full] already indicated, bibtex is a \LATEX||centric

 program.

 \completebtxrendering[document]

\stoptext

So, we have a few more commands to set up things. If you intend to use just a single

dataset and rendering, the above preamble can be simplified to:

\usebtxdataset

 [mybibfile.bib]

\setupbtxrendering

 [numbering=yes]

But keep in mind that compared to the old MkII derived method we have moved some of

the options to the rendering, list and cite setup variants.

Another difference is now the use of lists. When you define a rendering, you also define

a list. However, all entries are collected in a common list tagged btx. Although you will

normally configure a rendering you can still set some properties of lists, but in that case

you need to prefix the list identifier. In the case of the above example this is btx:document.

30

11 MLBIBTEX

Todo: how to plug in MLbibTEX for sorting and other advanced operations.

31

12 Extensions

As TEX and Lua are both open and accessible in ConTEXt it is possible to extend the func­

tionality of the bibliography related code. For instance, you can add extra loaders.

function publications.loaders.myformat(dataset,filename)

 local t = { }

 -- Load data from 'filename' and convert it to a Lua table 't' with

 -- the key as hash entry and fields conforming the luadata table

 -- format.

 loaders.lua(dataset,t)

end

This then permits loading a database (into a dataset) with the command:

\usebtxdataset[standard][myfile.myformat]

The myformat suffix is recognized automatically. If you want to use another suffix, you can

do this:

\usebtxdataset[standard][myformat::myfile.txt]

32

13 Searching

Finding the right key in a database can be a pain. On the other hand, asking for a wildcard

also makes no sense. Nevertheless we provide a mechanism for matching a query. For this

we load a small bibliographic database:

\usebtxdataset[graph][mkiv-publications-graph.bib]

We could switch to this base using:

\setbtxdataset[graph]

but instead we will use a prefix. For instance, if we have this in our source:

searching give a few hits, so we get: \cite [graph :: match (author:cleveland and

year:1993)].

We will get: “searching give a few hits, so we get: [1 and 2].”. Of course this assumes that

we also typeset a list of referred to references, so let’s do that:

\definebtxrendering[graph][dataset=graph]

\placebtxrendering[graph][criterium=chapter]

We get:

1 Cleveland, W. S. (1993). Visualizing Data. Summit, New Jersey, Hobart Press.

2 Cleveland, W. S. (1993). A Model for Studying Display Methods of StatisticalGraphics

(with discussion). Journal of Computational and Statistical Graphics, 2, 323–343.

3 Cleveland, W. S. (1985, revised 1994). The Elements of Graphing Data. Summit, New

Jersey, Hobart Press.

Let’s look in more detail at the \cite command. In order to distinguish efficiently between

a normal reference and a more clever one, we use the match keyword:

The handler is rather tolerant for spaces:

Which is handy if you have long queries that wrap around in the source code. Of course

the dataset:: prefix is optional in which case the current dataset is taken.

A query eventually becomes a Lua expression so you can use helpers to achieve your goal.

As a convenience there are some shortcuts to access fields. The following examples demon­

strate this:

match(author:hagen)

match(author:hagen and author:hoekwater and year:1990-2010)

match(author:"Bogusław Jackowski")

match(author:"Bogusław Jackowski" and (tonumber(field:year) or 0) > 2000)

33

You can use quotes when spaces are involved. Of course you can use other characters that

the basic alphabet. Ranges (of numbers) are recognized. String lookups are partial and

case insensitive.2

Wildcards: \cite [graph::match(author:cleve)].

We get three entries: “Wildcards: [1–3].”.

2 At the time of this writing, may 2014, this mechanism is still somewhat experimental.

34

14 Combining

It is possible to refer to two sources in one go. In that case the list will have one entry for

two bibliographic entries.

Let's save numbers and refer to Bentley and Tufte with one: \cite [graph ::

Bentley1990 + Tufte1983]!

Indeed we get one number only: “Let’s save numbers and refer to Bentley and Tufte with

one: [4]!”.

We produce the (local) list with:

\setupbtxrendering[graph][continue=yes,separator={; }]

\placebtxrendering[graph][criterium=chapter]

which shows the two entries pasted together:

4 Bentley, J. L. and Kernighan, B. W. (1990). In, Grap—A language for Typesetting Graphs,

pages 109–146 Tenth edition Murray Hill, New Jersey, AT&T Bell Laboratories.; Tufte,

E. R. (1983). In, Visual Display of Quantitative Information Box 430, Cheshire, Con­

necticut 06410, Graphics Press.

As demonstration we also specified the separator although that one is already set up by

default.

You can combine citations with additional text before and/or after it. This can be done per

citation. This feature is of course not that useful, as one can put text before and after a

citation anyway.

foo bar \citation [before=<<,after=>>] [graph::Cleveland1993] foo bar

Gives:

foo bar << [1] >> foo bar

35

15 Summary

There are a lot of combinations possible and not all of them make sense. Nevertheless we

show most of them here. (There will be more.)

alternative=author / compress=no

Cleveland : (William S. Cleveland, William S. Cleveland and William S. Cleveland)

Tufte : (Edward R. Tufte)

Bentley : (Jon L. Bentley and Brian W. Kernighan)

All : (Edward R. Tufte, William S. Cleveland, Jon L. Bentley and Brian W. Kernighan, William

S. Cleveland and William S. Cleveland)

alternative=authoryear / compress=no

Cleveland : (William S. Cleveland, (1993), William S. Cleveland, (1985, revised 1994) and

William S. Cleveland, (1993))

Tufte : (Edward R. Tufte, (1983))

Bentley : (Jon L. Bentley and Brian W. Kernighan, (1990))

All : (Edward R. Tufte, (1983), William S. Cleveland, (1993), Jon L. Bentley and Brian W.

Kernighan, (1990), William S. Cleveland, (1985, revised 1994) and William S. Cleveland,

(1993))

alternative=authoryear / compress=yes

Cleveland : (William S. Cleveland, (1985, revised 1994, 1993a and 1993b))

Tufte : (Edward R. Tufte, (1983))

Bentley : (Jon L. Bentley and Brian W. Kernighan, (1990))

All : (Edward R. Tufte, (1983), William S. Cleveland, (1985, revised 1994, 1993a and

1993b) and Jon L. Bentley and Brian W. Kernighan, (1990))

alternative=authoryears / compress=no

Cleveland : (William S. Cleveland, 1993, William S. Cleveland, 1985, revised 1994 and

William S. Cleveland, 1993)

Tufte : (Edward R. Tufte, 1983)

Bentley : (Jon L. Bentley and Brian W. Kernighan, 1990)

All : (Edward R. Tufte, 1983, William S. Cleveland, 1993, Jon L. Bentley and Brian W.

Kernighan, 1990, William S. Cleveland, 1985, revised 1994 and William S. Cleveland, 1993)

alternative=authoryears / compress=yes

Cleveland : (William S. Cleveland, 1985, revised 1994, 1993a and 1993b)

Tufte : (Edward R. Tufte, 1983)

Bentley : (Jon L. Bentley and Brian W. Kernighan, 1990)

All : (Edward R. Tufte, 1983, William S. Cleveland, 1985, revised 1994, 1993a and 1993b

and Jon L. Bentley and Brian W. Kernighan, 1990)

36

alternative=authornum / compress=no

Cleveland : (William S. Cleveland [1], William S. Cleveland [3] and William S. Cleveland

[2])

Tufte : (Edward R. Tufte [5])

Bentley : (Jon L. Bentley and Brian W. Kernighan [4])

All : (Edward R. Tufte [5], William S. Cleveland [1], Jon L. Bentley and Brian W. Kernighan

[4], William S. Cleveland [3] and William S. Cleveland [2])

alternative=authornum / compress=yes

Cleveland : (William S. Cleveland [1–3])

Tufte : (Edward R. Tufte [5])

Bentley : (Jon L. Bentley and Brian W. Kernighan [4])

All : (Edward R. Tufte [5], William S. Cleveland [1–3] and Jon L. Bentley and Brian W.

Kernighan [4])

alternative=year / compress=no

Cleveland : (1993, 1985, revised 1994 and 1993)

Tufte : (1983)

Bentley : (1990)

All : (1983, 1993, 1990, 1985, revised 1994 and 1993)

alternative=year / compress=yes

Cleveland : (1985, revised 1994, 1993 and 1993)

Tufte : (1983)

Bentley : (1990)

All : (1983, 1985, revised 1994, 1990, 1993 and 1993)

alternative=short / compress=no

Cleveland : [<Cleveland1993>, <Cleveland1985> and <Cleveland1993a>]

Tufte : [<Tufte1983>]

Bentley : [<Bentley1990>]

All : [<Tufte1983>, <Cleveland1993>, <Bentley1990>, <Cleveland1985> and <Cleve­

land1993a>]

alternative=serial / compress=no

Cleveland : [3, 2 and 4]

Tufte : [5]

Bentley : [1]

All : [5, 3, 1, 2 and 4]

alternative=serial / compress=yes

Cleveland : [2–4]

37

Tufte : [5]

Bentley : [1]

All : [1–5]

alternative=tag / compress=no

Cleveland : [Cleveland1993, Cleveland1985 and Cleveland1993a]

Tufte : [Tufte1983]

Bentley : [Bentley1990]

All : [Tufte1983, Cleveland1993, Bentley1990, Cleveland1985 and Cleveland1993a]

alternative=key / compress=no

Cleveland : [Cleveland1993, Cleveland1985 and Cleveland1993a]

Tufte : [Tufte1983]

Bentley : [Bentley1990]

All : [Tufte1983, Cleveland1993, Bentley1990, Cleveland1985 and Cleveland1993a]

alternative=doi / compress=no

Cleveland : [<Cleveland1993>, <Cleveland1985> and 10.1080/10618600.1993.10474616]

Tufte : [<Tufte1983>]

Bentley : [<Bentley1990>]

All : [<Tufte1983>, <Cleveland1993>, <Bentley1990>, <Cleveland1985> and

10.1080/10618600.1993.10474616]

alternative=url / compress=no

Cleveland : [<Cleveland1993><Cleveland1985>http://www.tandfonline.com/doi/abs/10

.1080/10618600.1993.10474616]

Tufte : [<Tufte1983>]

Bentley : [<Bentley1990>]

All : [<Tufte1983><Cleveland1993><Bentley1990><Cleveland1985>http://www

.tandfonline.com/doi/abs/10.1080/10618600.1993.10474616]

alternative=type / compress=no

Cleveland : [book, book and article]

Tufte : [book]

Bentley : [incollection]

All : [book, book, incollection, book and article]

alternative=category / compress=no

Cleveland : [book, book and article]

Tufte : [book]

Bentley : [incollection]

<Cleveland1993>
<Cleveland1985>
http://www.tandfonline.com/doi/abs/10.1080/10618600.1993.10474616
http://www.tandfonline.com/doi/abs/10.1080/10618600.1993.10474616
<Tufte1983>
<Bentley1990>
<Tufte1983>
<Cleveland1993>
<Bentley1990>
<Cleveland1985>
http://www.tandfonline.com/doi/abs/10.1080/10618600.1993.10474616
http://www.tandfonline.com/doi/abs/10.1080/10618600.1993.10474616

38

All : [book, book, incollection, book and article]

alternative=page / compress=no

Cleveland : <Cleveland1993>, <Cleveland1985> and 323–343

Tufte : <Tufte1983>

Bentley : 109–146

All : <Tufte1983>, <Cleveland1993>, 109–146, <Cleveland1985> and 323–343

alternative=num / compress=no

Cleveland : [1, 3 and 2]

Tufte : [5]

Bentley : [4]

All : [5, 1, 4, 3 and 2]

alternative=num / compress=yes

Cleveland : [1–3]

Tufte : [5]

Bentley : [4]

All : [1–5]

We produce a local list with:

\setupbtxrendering[graph][continue=yes]

\placebtxrendering[graph][criterium=chapter]

and get a list with (new) entries:

5 Tufte, E. R. (1983). Visual Display of Quantitative Information. Box 430, Cheshire,

Connecticut 06410, Graphics Press.

39

16 Notes

The move from external bibTEX processing to internal processing has the advantage that

we stay within the same run. In the traditional approach we had roughly the following

steps:

• the first run information is collected and written to file

• after that run the bibTEX program converts that file to another one

• successive runs use that data for references and producing lists

In the MkIV approach the bibliographic database is loaded in memory each run and pro­

cessing also happens each run. On paper this looks less efficient but as Lua is quite fast,

in practice performance is much better.

Probably most demanding is the treatment of authors as we have to analyze names, split

multiple authors and reassemble firstnames, vons, surnames and juniors. When we sort

by author sorting vectors have to be made which also has a penalty. However, in prac­

tice the user will not notice a performance degradation. We did some tests with a list of

500.000 authors, sorted them and typeset them as list (producing some 5400 dense pages

in a small font and with small margins). This is typical one of these cases where using

LuajitTEX saves quite time. On my machine it took just over 100 seconds to get this done.

Unfortunately not all operating systems performed equally well: 32 bit versions worked

fine, but 64 bit linux either crashed (stalled) the machine or ran out of memory rather fast,

while MacOSX and Windows performed fine. In practice you will never run into this, unless

you produce massive amounts of bibliographic entries. LuaJIT has some benefits but also

some drawbacks.

