
luatools
mtxrun
context

luatools mtxrun context 1

Contents

1 Remark 1
2 Intro duction 1
3 The lo cation 2
4 The traditional finder 2
5 The current finder 3
6 Up dating 6
7 The to ols 7
8 Running CONTEX T 8
9 Prefixes 10
10 Stubs 11
11 A detaile d lo ok at mtxrun 12

1 Remark
This manual is work in progress. Feel free to submit additions or corrections. Be -
fore you star t re ading , it is go o d to know that in order to get star ting with Con-
TEXt , the e asiest way to do that is to downlo ad the standalone distribution from
contextgarden.net. After that you only nee d to make sure that luatex is in your
p ath . The main command you use is then context and normally it do es all the magic
it nee ds itself.

2 Introduction
Right from the star t ConTEXt came with programs that manage d the pro cess of
TEX-ing . Although you can p er fectly well r un TEX directly, it is a fact that often multi-
ple r uns are nee de d as well as that registers nee d to b e sor te d . Therefore managing
a job makes sense.

First we had TEXexec and TEXutil , and b oth were written in Mo dula, and as this lan-
guage was not supp or te d on all platforms the programs were rewritten in Perl . Fol-
lowing that a few more to ols were shipp e d with ConTEXt .

When we move d on to Ruby all the Perl scripts were rewritten and when ConTEXt MkIV
showe d up, Lua replace d Ruby. As we use LuaTEX this me ans that currently the to ols
and the main program share the same language. For MkII scripts like TEXexec will
stay around but the ide a is that there will b e Lua alternatives for them as well .

Because we shipp e d many scripts, and b ecause the de facto standard TEX director y
str ucture exp ects scripts to b e in cer tain lo cations we not only ship to ols but also
some more generic scripts that lo cate and r un these to ols.

luatools mtxrun context 2

3 The location
Normally you don’t nee d to know so many details ab out where the scripts are lo cate d
but here they are:

<texroot>/scripts/context/perl
<texroot>/scripts/context/ruby
<texroot>/scripts/context/lua
<texroot>/scripts/context/stubs

This hierarchy was actually intro duce d b ecause ConTEXt was shipp e d with a bunch of
to ols. As mentione d , we nowadays fo cus on Lua but we keep a few of the older scripts
around in the Perl and Ruby p aths.Now, if you’re only using ConTEXt MkIV, and this is
highly recommende d , you can forget ab out all but the Lua scripts.

4 The traditional finder
When you r un scripts multiple times, and in the case of ConTEXt they are even r un
inside other scripts, you want to minimize the star tup time. Unfor tunately the tra-
ditional way to lo cate a script , using kpsewhich, is not that fast , esp ecially in a
setup with many large trees Also, b ecause not all tasks can b e done with the tradi-
tional scripts (take format generation) we provide d a r unner that could de al with this:
texmfstart. As this script was also use d in more complex workflows, it had several
tasks:

• lo cate scripts in the distribution and r un them using the right interpreter
• do this selectively, for instance identify the nee d for a r un using checksums for

p otentially change d files (handy for image conversion)
• p ass information to child pro cesses so that lo okups are avoide d
• cho ose a distribution among several installe d versions (set the ro ot of the TEX tree)
• change the working director y b efore r unning the script
• resolve p aths and names on demand and launch programs with arguments where

names are exp ande d controlle d by prefixes (handy for TEX-unware programs)
• lo cate and op en do cumentation , mostly as p ar t the help systems in e ditors, but

also handy for seeing what configuration file is use d
• act as a kpsewhich ser ver cq. client (only use d in sp ecial cases, and using its own

datab ase)

Of course there were the usual more obscure and undo cumente d fe atures as well .
The ide a was to use this r unner as follows:

texmfstart texexec <further arguments>

luatools mtxrun context 3

texmfstart --tree <rootoftree> texexec <further arguments>

These are just two ways of calling this program . As texmfstart can initialize the
environment as well , it is b asically the only script that has to b e present in the binar y
p ath . This is quite comfor table as this avoids conflicts in names b etween the calle d
scripts and other installe d programs.

Of course calls like ab ove can b e wrapp e d in a shell script or b atch file without p enalty
as long as texmfstart itself is not wrapp e d in a caller script that applies other ineffi-
cient lo okups. If you use the ConTEXt minimals you can b e sure that the most efficient
metho d is chosen , but we’ ve seen quite inefficient call chains elsewhere.

In the ConTEXt minimals this script has b een replace d by the one we will discuss in
the next section: mtxrun but a stub is still provide d .

5 The current finder

In MkIV we went a step fur ther and completely ab andone d the traditional lo okup
metho ds and do ever ything in Lua. As we want a cle ar sep aration b etween function-
ality we have two main controlling scripts: mtxrun and luatools. The last name may
lo ok somewhat confusing but the name is just one on in a series.1

In MkIV the luatools program is nowadays seldom use d . It ’s just a drop in for
kpsewhich plus a bit more. In that resp ect it ’s rather dumb in that it do es not use
the datab ase, but clever at the same time b ecause it can make one b ase d on the little
information available when it r uns. It can also b e use d to generate format files either
or not using Lua stubs but in practice this is not nee de d at all .

For ConTEXt users, the main invo cation of this to ol is when the TEX tree is up date d .
For instance, after adding a font to the tree or after up dating ConTEXt , you nee d to
r un:

mtxrun --generate

After that all to ols will know where to find stuff and how to b ehave well within the
tree. This is b ecause they share the same co de, mostly b ecause they are star te d using
mtxrun. For instance, you pro cess a file with:

mtxrun --script context <somefile>

1 We have ctxtools, exatools, mpstools, mtxtools, pdftools, rlxtools, runtools, textools, tmftools
and xmltools. Most if their funtionality is alre ady reimplemente d .

luatools mtxrun context 4

Because this happ ens often , there’s also a shor tcut:

context <somefile>

But this do es use mtxrun as well . The help information of mtxrun is rather minimalis-
tic and if you have no clue what an option do es, you prob ably never nee de d it any way.
Here we discuss a few options. We alre ady saw that we can explicitly ask for a script:

mtxrun --script context <somefile>

but

mtxrun context <somefile>

also works. However, by using --script you limit te lo okup to the valid ConTEXt MkIV
scripts. In the TEX tree these have names prefixe d by mtx- and a lo okup lo ok for a
plural as well . So, the next two lo okups are e quivalent:

mtxrun --script font
mtxrun --script fonts

Both will r un mtx-fonts.lua. Actually, this is one of the scripts that you might nee d
when your font datab ase is somehow outdate d and not up date d automatically:

mtxrun --script fonts --reload --force

Normally mtxrun is all you nee d in order to r un a script . However, there are a few
more options:

mtxrun | ConTeXt TDS Runner Tool 1.32
mtxrun |
mtxrun | --script run an mtx script (lua prefered method) (--noquotes), no script gives list
mtxrun | --evaluate run code passed on the commandline (between quotes)
mtxrun | --execute run a script or program (texmfstart method) (--noquotes)
mtxrun | --resolve resolve prefixed arguments
mtxrun | --ctxlua run internally (using preloaded libs)
mtxrun | --internal run script using built in libraries (same as --ctxlua)
mtxrun | --locate locate given filename in database (default) or system (--first --all
--detail)
mtxrun |
mtxrun | --tree=pathtotree use given texmf tree (default file: setuptex.tmf)
mtxrun | --path=runpath go to given path before execution
mtxrun | --ifchanged=filename only execute when given file has changed (md checksum)
mtxrun | --iftouched=old,new only execute when given file has changed (time stamp)
mtxrun |
mtxrun | --makestubs create stubs for (context related) scripts
mtxrun | --removestubs remove stubs (context related) scripts

luatools mtxrun context 5

mtxrun | --stubpath=binpath paths where stubs wil be written
mtxrun | --windows create windows (mswin) stubs
mtxrun | --unix create unix (linux) stubs
mtxrun |
mtxrun | --verbose give a bit more info
mtxrun | --trackers=list enable given trackers
mtxrun | --progname=str format or backend
mtxrun | --systeminfo=str show current operating system, processor, etc
mtxrun |
mtxrun | --edit launch editor with found file
mtxrun | --launch launch files like manuals, assumes os support (--all,--list)
mtxrun |
mtxrun | --timedrun run a script and time its run
mtxrun | --autogenerate regenerate databases if needed (handy when used to run context in an
editor)
mtxrun |
mtxrun | --usekpse use kpse as fallback (when no mkiv and cache installed, often slower)
mtxrun | --forcekpse force using kpse (handy when no mkiv and cache installed but less functionality)
mtxrun |
mtxrun | --prefixes show supported prefixes
mtxrun |
mtxrun | --generate generate file database
mtxrun |
mtxrun | --variables show configuration variables
mtxrun | --configurations show configuration order
mtxrun |
mtxrun | --directives show (known) directives
mtxrun | --trackers show (known) trackers
mtxrun | --experiments show (known) experiments
mtxrun |
mtxrun | --expand-braces expand complex variable
mtxrun | --resolve-path expand variable (completely resolve paths)
mtxrun | --expand-path expand variable (resolve paths)
mtxrun | --expand-var expand variable (resolve references)
mtxrun | --show-path show path expansion of ...
mtxrun | --var-value report value of variable
mtxrun | --find-file report file location
mtxrun | --find-path report path of file
mtxrun |
mtxrun | --pattern=string filter variables
mtxrun |
mtxrun |
mtxrun | More information about ConTeXt and the tools that come with it can be found at:
mtxrun |
mtxrun | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtxrun | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtxrun | wiki : http://contextgarden.net

luatools mtxrun context 6

Don’t worr y,you only nee d those obscure fe atures when you integrate ConTEXt in for
instance a web ser vice or when you r un large projects where r uns and p aths take
sp ecial care.

6 Updating
There are two ways to up date ConTEXt MkIV. When you manage your trees yourself or
when you use for instance TEXLive, you act as follows:

• downlo ad the file cont-tmf.zip from www.pragma-ade.com or elsewhere
• unzip this file in a subtree, for instance tex/texmf-local
• r un mtxrun --generate
• r un mtxrun --script font --reload
• r un mtxrun --script context --make

Or shor ter:

• r un mtxrun --generate
• r un mtxrun font --reload
• r un context --make

Normally these commands are not even nee de d , but they are a nice test if your tree is
still okay. To some extend context is clever enough to decide if the datab ases nee d
to b e regenerate d and/or a format nee ds to b e remade and/or if a new font datab ase
is nee de d .

Now, if you also want to r un MkII, you nee d to add:

• r un mktexlsr
• r un texexec --make

The question is, how to act when luatools and mtxrun have b een up date d them-
selves? In that case, after unzipping the archive, you nee d to do the following:

• r un luatools --selfupdate
• r un mtxrun --selfupdate

For quite a while we shipp e d so calle d ConTEXt minimals. These zip files containe d
only the resources and programs that made sense for r unning ConTEXt . Nowadays
the minimals are installe d and synchronize d via internet .2 You can just r un the in-

2 This project was triggere d by Mojca Miklavec who is also charge of this bit of the ConTEXt infrastr uc-
ture. More information can b e found at contextgarden.net.

luatools mtxrun context 7

staller again and no additional commands are nee de d . In the console you will see
several calls to mtxrun and luatools fly by.

7 The tools
We only mention the to ols here. The most imp or tant ones are context and fonts.
You can ask for a list of installe d scripts with:

mtxrun --script

On my machine this gives:

mtxrun | ConTeXt TDS Runner Tool 1.32
mtxrun |
mtxrun | no script name given, known scripts:
mtxrun |
mtxrun | babel 1.20 Babel Input To UTF Conversion
mtxrun | base 1.35 ConTeXt TDS Management Tool (aka luatools)
mtxrun | bibtex bibtex helpers
mtxrun | cache 0.10 ConTeXt & MetaTeX Cache Management
mtxrun | chars 0.10 MkII Character Table Generators
mtxrun | check 0.10 Basic ConTeXt Syntax Checking
mtxrun | colors 0.10 ConTeXt Color Management
mtxrun | convert 0.10 ConTeXT Graphic Conversion Helpers
mtxrun | distribution 0.10 ConTeXt Distribution Helpers
mtxrun | dvi 0.10 ConTeXt DVI Helpers
mtxrun | epub 1.10 ConTeXt EPUB Helpers
mtxrun | evohome 1.00 Evohome Fetcher
mtxrun | example 0.10 ConTeXt Example Helpers
mtxrun | fcd 1.00 Fast Directory Change
mtxrun | flac 0.10 ConTeXt Flac Helpers
mtxrun | fonts 0.21 ConTeXt Font Database Management
mtxrun | grep 0.10 Simple Grepper
mtxrun | idris 0.10 Special Hacks For Idris
mtxrun | interface 0.13 ConTeXt Interface Related Goodies
mtxrun | listen 1.00 ConTeXt Request Watchdog
mtxrun | metapost 0.10 MetaPost to PDF processor
mtxrun | metatex 0.10 MetaTeX Process Management
mtxrun | modules 1.00 ConTeXt Module Documentation Generators
mtxrun | package 0.10 Distribution Related Goodies
mtxrun | patterns 0.20 ConTeXt Pattern File Management
mtxrun | pdf 0.10 ConTeXt PDF Helpers
mtxrun | plain 1.00 Plain TeX Runner
mtxrun | profile 1.00 ConTeXt MkIV LuaTeX Profiler
mtxrun | queue 1.00 Sequential runner
mtxrun | rsync 0.10 Rsync Helpers
mtxrun | scite 1.00 Scite Helper Script

luatools mtxrun context 8

mtxrun | server 0.10 Simple Webserver For Helpers
mtxrun | stubs 0.10 ConTeXt Stub Management
mtxrun | swiglib 1.00 ConTeXt Swiglib Updater
mtxrun | synctex 1.00 ConTeXt SyncTeX Checker
mtxrun | tds 0.10 TeX Directory Structure Tools
mtxrun | testsuite 1.00 Experiments with the testsuite
mtxrun | texworks 1.00 TeXworks Startup Script
mtxrun | timing 0.10 ConTeXt Timing Tools
mtxrun | tools 1.01 Some File Related Goodies
mtxrun | tracing 1.00 MkIV LuaTeX Profiler
mtxrun | unicode 1.02 Checker for char-def.lua
mtxrun | unzip 0.10 Simple Unzipper
mtxrun | update 1.03 ConTeXt Minimals Updater
mtxrun | update 1.02 ConTeXt Minimals Updater
mtxrun | watch 1.00 ConTeXt Request Watchdog
mtxrun | web 0.10 Some (Private) Webservice Goodies
mtxrun | youless 1.10 YouLess Fetcher

The most imp or tant scripts are mtx-fonts and mtx-context. By default fonts are
lo oke d up by filename (the file: prefix b efore font names in ConTEXt is default). But
you can also lo okup fonts by name (name:) or by sp ecification (spec:). If you want
to use these two metho ds, you nee d to generate a font datab ase as mentione d in the
previous section . You can also use the font to ol to get information ab out the fonts
installe d on your system .

8 Running CONTEXT

The context to ol is what you will use most as it manages your r un .

mtx-context | ConTeXt Process Management 1.02
mtx-context |
mtx-context | basic options:
mtx-context |
mtx-context | --run process (one or more) files (default action)
mtx-context | --make create context formats
mtx-context |
mtx-context | --ctx=name use ctx file (process management specification)
mtx-context | --noctx ignore ctx directives and flags
mtx-context | --interface use specified user interface (default: en)
mtx-context |
mtx-context | --autopdf close pdf file in viewer and start pdf viewer afterwards
mtx-context | --purge purge files either or not after a run (--pattern=...)
mtx-context | --purgeall purge all files either or not after a run (--pattern=...)
mtx-context |
mtx-context | --usemodule=list load the given module or style, normally part of the distribution
mtx-context | --environment=list load the given environment file first (document styles)

luatools mtxrun context 9

mtx-context | --mode=list enable given the modes (conditional processing in styles)
mtx-context | --path=list also consult the given paths when files are looked for
mtx-context | --arguments=list set variables that can be consulted during a run (key/value pairs)
mtx-context | --randomseed=number set the randomseed
mtx-context | --result=name rename the resulting output to the given name
mtx-context | --trackers=list set tracker variables (show list with --showtrackers)
mtx-context | --directives=list set directive variables (show list with --showdirectives)
mtx-context | --silent=list disable logcatgories (show list with --showlogcategories)
mtx-context | --strip strip Lua code (only meant for production where no errors are expected)
mtx-context | --errors=list show errors at the end of a run, quit when in list (also when ----silent)
mtx-context | --noconsole disable logging to the console (logfile only)
mtx-context | --purgeresult purge result file before run
mtx-context |
mtx-context | --forcexml force xml stub
mtx-context | --forcecld force cld (context lua document) stub
mtx-context | --forcelua force lua stub (like texlua)
mtx-context | --forcemp force mp stub
mtx-context |
mtx-context | --arrange run extra imposition pass, given that the style sets up imposition
mtx-context | --noarrange ignore imposition specifications in the style
mtx-context |
mtx-context | --jit use luajittex with jit turned off (only use the faster virtual machine)
mtx-context | --jiton use luajittex with jit turned on (in most cases not faster, even slower)
mtx-context |
mtx-context | --once only run once (no multipass data file is produced)
mtx-context | --runs process at most this many times
mtx-context | --forcedruns process this many times (permits for optimization trial runs)
mtx-context |
mtx-context | --batchmode run without stopping and do not show messages on the console
mtx-context | --nonstopmode run without stopping
mtx-context | --nosynctex never initializes synctex (for production runs)
mtx-context | --synctex run with synctex enabled (better use \setupsynctex[state=start]
mtx-context | --nodates omit runtime dates in pdf file (optional value: a number (this 1970 offset
time) or string "YYYY-MM-DD HH:MM")
mtx-context | --nocompression forcefully turns off compression in the backend
mtx-context | --trailerid alternative trailer id (or constant one)
mtx-context |
mtx-context | --generate generate file database etc. (as luatools does)
mtx-context | --paranoid do not descend to .. and ../..
mtx-context | --version report installed context version
mtx-context |
mtx-context | --global assume given file present elsewhere
mtx-context | --nofile use dummy file as jobname
mtx-context |
mtx-context |
mtx-context | More information about ConTeXt and the tools that come with it can be found at:
mtx-context |
mtx-context | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context

luatools mtxrun context 10

mtx-context | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtx-context | wiki : http://contextgarden.net

There are few exer t options to o:

mtx-context | ConTeXt Process Management 1.02
mtx-context |
mtx-context | expert options:
mtx-context |
mtx-context | --touch update context version number (also provide --expert, optionally provide
--basepath)
mtx-context | --nostatistics omit runtime statistics at the end of the run
mtx-context | --update update context from website (not to be confused with contextgarden)
mtx-context | --profile profile job (use: mtxrun --script profile --analyze)
mtx-context | --timing generate timing and statistics overview
mtx-context | --keeptuc keep previous tuc files (jobname-tuc-[run].tmp)
mtx-context | --keeplog keep previous log files (jobname-log-[run].tmp)
mtx-context | --lmtx force lmtx mode (when available)
mtx-context |
mtx-context | --extra=name process extra (mtx-context-... in distribution)
mtx-context | --extras show extras
mtx-context |
mtx-context | special options:
mtx-context |
mtx-context | --pdftex process file with texexec using pdftex
mtx-context | --xetex process file with texexec using xetex
mtx-context | --mkii process file with texexec
mtx-context |
mtx-context | --pipe do not check for file and enter scroll mode (--dummyfile=whatever.tmp)
mtx-context |
mtx-context | --sandbox process file in a limited environment
mtx-context |
mtx-context |
mtx-context | More information about ConTeXt and the tools that come with it can be found at:
mtx-context |
mtx-context | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtx-context | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtx-context | wiki : http://contextgarden.net

You might as well forget ab out these unless you are one of the ConTEXt develop ers.

9 Prefixes

A handy fe ature of mtxrun (and as most fe atures an inheritance of texmfstart) is
that it will resolve prefixe d arguments. This can b e of help when you r un programs
that are unaware of the TEX tree but never theless nee d to lo cate files in it .

luatools mtxrun context 11

mtxrun | ConTeXt TDS Runner Tool 1.32
mtxrun |
mtxrun |
mtxrun | auto: env: environment: file: filename: full: home: jobpath: kpse: loc: locate: machine: nodename:
path: pathname: rel: relative: release: selfautodir: selfautoloc: selfautoparent: sysname: toppath: version:

An example is:

mtxrun --execute xsltproc file:whatever.xsl file:whatever.xml

The call to xsltproc will get two arguments, b eing the complete p ath to the files
(given that it can b e resolve d). This p ermits you to organize the files in a similar was
as TEX files.

10 Stubs

As the to ols are written in the Lua language we nee d a Lua interpreter and or course
we use LuaTEX itself. On Unix we can copy luatools and mtxrun to files in the binar y
p ath with the same name but without suffix . Star ting them in another way is a waste
of time, esp ecially when kpsewhich is use d to find then , something which is useless
in MkIV any way. Just use these scripts directly as they are self containe d .

For context and other scripts that we want convenient access to, stubs are nee de d ,
like:

#!/bin/sh
mtxrun --script context "$@"

This is also quite efficient as the context script mtx-context is lo ade d in mtxrun
and uses the same datab ase.

On Windows you can copy the scripts as-is and asso ciate the suffix with LuaTEX (or
more precisely: texlua) but then all Lua script will b e r un that way which is not what
you might want .

In TEXLive stubs for star ting scripts were intro duce d by Fabrice Popine au . Such a
stub would star t for instance texmfstart, that is: it lo cate d the script (Perl or Ruby)
in the TEX tree and launche d it with the right interpreter. Later we shipp e d pseudo
binaries of texmfstart: a Ruby interpreter plus scripts wrapp e d into a self containe d
binar y.

For MkIV we don’t nee d such metho ds and star te d with simple b atch files, similar to
the Unix star tup scripts. However, these have the disadvantage that they cannot b e

luatools mtxrun context 12

use d in other b atch files without using the start command . In TEXLive this is taken
care of by a small binar y written bij T.M. Trzeciak so on TEXLive 2009 we saw a call
chain from exe to cmd to lua which is somewhat messy.

This is why we now use an adapte d and stripp e d down version of that program that is
tune d for mtxrun, luatools and context. So, we move d from the original cmd b ase d
appro ach to an exe one.

mtxrun.dll
mtxrun.exe

You can copy mtxrun.exe to for instance context.exe and it will still use mtxrun
for lo cating the right script . It also takes care of mapping texmfstart to mtxrun. So
we’ ve remove d the interme diate cmd step, can not r un the script as any program , and
most of all , we’re as efficient as can b e. Of course this program is only me aningful for
the ConTEXt appro ach to to ols.

It may all sound more complex than it is but once it works users will not notice those
details. Als, in practice not that much has change d in r unning the to ols b etween MkII
and MkIV as we’ ve seen no re ason to change the metho ds.

11 A detailed look at mtxrun

This section is derive d from Taco Ho ekwaters presentation and ar ticle for the 2018
ConTEXt meeting . You might want to re ad this is you want to b enefit from even the
most obscure fe atures. There is a bit of rep etition with the previous sections but so
b e it .

11.1 Common flags

Much of the co de inside MkIV can alter its b ehaviour b ase d on either ‘trackers’ (which
add debugging information to the terminal and log output) or ‘directives’ or ‘exp eri-
ments’ (for getting co de to p er form some alternate b ehaviour). Since this also affects
the Lua co de within mtxrun itself, it makes sense to list these options first .

Getting information on trackers, directives and exp eriments. Trackers enable more
extensive status messages on the console or in ConTEXt additional visual clues. Di-
rectives change b ehaviour that are not p ar t of the official inter face and have no cor-
resp onding commands. Exp eriments are like directives but not official (yet).

luatools mtxrun context 13

--trackers
show (known) trackers

--directives
show (known) directives

--experiments
show (known) exp eriments

Enabling directives, trackers and exp eriments:

--trackers=list
enable given trackers

--directives=list
enable given directives

--experiments=list
enable given exp eriments

The next tree (hidden) options are conver te d into ‘directives’ entries, that are then
enable d . These are just syntactic sugar for the relevant directive.

--silent[=...]
sets logs.blocked={\%s}

--errors[=...]
sets logs.errors={\%s}

--noconsole
sets logs.target=file

As you can see here, various directives (and even some trackers) have optional argu-
ments, which can make sp ecifying such directives on the command line a bit of a chal-
lenge. Explaining the details of all the directives is outside of the scop e of this ar ticle,
but you can lo ok them up in the ConTEXt source by se arching for directives.reg-
ister and trackers.register.

In verb ose mo de, mtxrun itself gives more messages, and it also resolvers.locat-
ing, which is a tracker itself:

luatools mtxrun context 14

--verbose
give a bit more info

The --timedlog (hidden) option star ts the mtxrun output with a timestamp line:

--timedlog
prep end output with a timestamp

11.2 Setup for finding files and configurations

The next blo ck of options de als with the setup of mtxrun itself. You do not nee d to
de al with these options unless you are messing with the ConTEXt distribution yourself
inste ad of relying on a prep ackage d solution , or you nee d to use kp athse a for some
re ason (typically in a MkII environment). In p ar ticular, --progname and --tree are
often nee de d as well when using the kpse options.

--configurations
show configuration order, alias --show-configurations

--resolve
resolve prefixe d arguments, see --prefixes, b elow

and:

--usekpse
use kpse as fallb ack (when no MkIV and cache installe d , often slower)

--forcekpse
force using kpse (handy when no MkIV and cache installe d but less functionality)

--progname=str
format or b ackend

--tree=pathtotree
use given texmf tree (default file: setuptex.tmf)

11.3 Options for finding files and reporting configura-
tions

Once the configuration setup is done, it makes sense to have a bunch or options to
use and/or quer y the configuration .

luatools mtxrun context 15

--locate
lo cate given filename in datab ase (default) or system (uses the sub--options
--first, --all and --detail)

--autogenerate
regenerate datab ases if nee de d (handy when use d to r un context in an e ditor)

--generate
generate file datab ase

--prefixes
show supp or te d prefixes for file se arches

--variables
show configuration variables (uses the sub--option --pattern, and an alias is
--show-variables)

--expansions
show configuration variable exp ansion (uses the sub--options --pattern, alias
--show-expansions)

--expand-braces
exp and complex variable

--resolve-path
exp and variable (completely resolve p aths)

--expand-path
exp and variable (resolve p aths)

--expand-var
exp and variable (resolves references inside variables, alias
--expand-variable)

--show-path
show p ath exp ansion of ... (alias --path-value)

--var-value
rep or t value of variable (alias --show-value)

luatools mtxrun context 16

--find-file
rep or t file lo cation; it uses the sub--options --all, --pattern, and --format

--find-path
rep or t p ath of file

Hidden option:

--format-path
rep or t format p ath

11.4 Running code

Here we come to the core functionality of mtxrun: r unning scripts. First there are few
options that trigger how the r unning takes place:

--path=runpath
go to given p ath b efore execution

--ifchanged=filename
only execute when given file has change d (this lo ads and saves an md5
checksum from filename.md5)

--iftouched=old,new
only execute when given file has change d (time stamp)

--timedrun
r un a script or program and time its r un (external)

Sp ecifying b oth --iftouched and --ifchanged me ans b oth are teste d , and when
either one is false, nothing will happ en . These options have to come b efore one of the
next options:

--script
r un an mtx script (where Lua is the preferre d metho d); it has the sub--options
--nofiledatabase, --autogenerate, --load, and --save. The latter two are
currently no-ops

luatools mtxrun context 17

--execute
r un a script or program externally (texmfstart metho d); it has sub--option
--noquotes

--internal
r un a script using built-in libraries (alias is --ctxlua)

--direct
r un an external program; it has the sub--option --noquotes

Since scripts p otentially have their own options, any options intende d for mtxrun it-
self have to come before the option that sp ecifies the script to r un , and options for the
script itself have to come after the option that gives the script name. This is esp ecially
tr ue when using --script, so it is imp or tant to check the order of your options.

Of the four ab ove options, --script is the most imp or tant one, since that is the one
that finds and executes the Lua mtxrun scripts provide d by the distribution . With
--nofiledatabase, it will not attempt to resolve any file names (which me ans you
nee d either a lo cal script or a full p ath name). On the opp osite side, when you also
provide --autogenerate, it will not only attempt to resolve the file name, it will also
regenerate the datab ase if it cannot find the script on the first tr y. In a future version of
ConTEXt , the --load and --save will allow you to save/restore the current command
line in a file for reuse.

The shell return value of mtxrun indicates whether the script was found . When you
sp ecify something like --script base, mtxrun actually se arches for mtx-base.lua,
mtx-bases.lua, mtx-t-base.lua, mtx-t-bases.lua, and base.lua, in that or-
der. The distribution--supplie d scripts normally use mtx-<name>.lua as template.
The template names with mtx-t- prefix is reser ve d for third--p ar ty scripts, and
<name>.lua is just a last- ditch effor t if nothing else works. Scripts are lo oke d for
in the lo cal p ath , and in whatever directories the configuration variable LUAINPUTS
p oints to.

The --execute options exists mostly for the non--Lua MkII scripts that still exist in
the distribution . It will tr y to find a matching interpreter for non--Lua scripts, and it is
aware of a numb er of distribution--supplie d scripts so that if you sp ecify --execute
texexec, it knows that what you re ally want to execute is ruby texexec.rb. Supp or t
is present for Ruby (.rb, Lua (.lua), python (.py) and Perl (.pl) scripts (teste d in that
order). File resolving uses TEXMFSCRIPTS from the configuration . The shell return
value of mtxrun indicates whether the script was found and execute d .

The --internal option uses the file se arch metho d of --execute, but then assumes
this is a Lua script and executes it internally like --script. This is useful if you have
a Lua script in an o dd lo cation .

luatools mtxrun context 18

The last of the four options, --direct, directly executes an external program . You
nee d to give the full p ath for binaries not in the current shell PATH, b ecause no se arch-
ing is done at all . The shell return value of mtxrun in this case is a b o ole an b ase d on
the return value of os.exec().

It is also p ossible to execute b are Lua co de directly:

--evaluate
r un co de p asse d on the command-line (b etween quotes)

11.5 Options for maintenance of mtxrun itself

None of these are adver tise d . Normally develop ers should b e the only ones nee ding
them , but if you made a change to one of the distribute d libraries (mayb e b ecause of
a b eta bug), you may nee d to r un --selfmerge and --selfupdate.

--selfclean
remove emb e dde d libraries

--selfmerge
up date emb e dde d libraries in mtxrun.lua

--selfupdate
copy mtxlua.lua to the executable director y, rename d mtxrun

11.6 Creating stubs

Stubs are little shor tcuts that live in some binaries director y. For example, the content
of the Unix--style context shell command is:

#!/bin/sh
mtxrun --script context "$@"

Ap ar t from the context command itself (which is provide d by the distribution), use of
stubs is discourage d . Still , the mtxrun options are there b ecause sometimes existing
workflows dep end on executable to ol names like ctxtools.

luatools mtxrun context 19

--makestubs
cre ate stubs for (context relate d) scripts

--removestubs
remove stubs (context relate d) scripts

--stubpath=binpath
p aths where stubs will b e written

--windows
cre ate windows (mswin) stubs (alias --mswin)

--unix
cre ate unix (linux) stubs (alias --linux)

11.7 Remaining options

The remaining options are hard to group into a sub categor y. These are the adver tise d
options:

--systeminfo
show current op erating system , pro cessor, et cetera

--edit
launch e ditor with found file; the e ditor is taken from the environment variable
MTXRUN_EDITOR, or TEXMFSTART_EDITOR, or EDITOR, or as a last resor t: gvim

--launch
launch files like manuals, assumes os supp or t (uses the sub--options --all,
--pattern and --list)

While these are sor t of hidden options:

--ansi
colorize output to terminal using ansi escap es

--associate
launch files like manuals, assumes os supp or t . this function do es not do any file
se arching , so you have to use either a lo cal file or a full p ath name

luatools mtxrun context 20

--exporthelp
output the mtxrun xml help blob (useful for cre ating man and html help p ages)

--fmt
shor tcut for --script base --fmt

--gethelp
attempt to lo ok up remote context command help (uses the sub--options
--command and --url)

--help
print the mtxrun help screen

--locale
force setup of lo cale; unless you are cer tain you nee d this option , stay away from
it , b ecause it can inter fere massively with ConTEXt ’s Lua co de

--make
(re)cre ate format files (aliases are --ini and --compile)

--platform
(alias is --show-platform)

--run
shor tcut for --script base --run

--version
print mtxrun version

11.8 Known scripts

When you r un mtxrun --scripts, it will output a list of ‘known’ scripts. The defini-
tion of ‘known’ is imp or tant here: the list comprises the scripts that are present in the
same director y as mtx-context.lua that do not have an extra hyphen in the name
(like mtx-t-...scripts would have). In a normal installation , this me ans it ‘knows’ al-
most all the scripts that are distribute d with ConTEXt . Note: it skips over any files from
the distribution that do have an extra hyphen , like the mtx-server supp or t scripts.

Since this section is ab out mtxrun, I’ll just present the list of the scripts that are
‘known’ in the current ConTEXt b eta as output by mtxrun itself, and not get into detail
ab out all of the script functionality (they all have --help options if you want to find
out more). Where we still felt the nee d to explain something , there is an extra bit of
text in italics.

luatools mtxrun context 21

babel
Bab el Input To UTF Conversion

base
ConTeXt TDS Management To ol (aka luato ols)

bibtex
bibtex help ers (obsolete)

cache
ConTeXt & MetaTeX Cache Management

chars
MkII Character Table Generators

check
Basic ConTeXt Syntax Checking

Occasionally useful on big projects, but be warned that it does not actually run any TEX
engine, so it is not 100% reliable.

colors
ConTeXt Color Management

This displays icc color tables by name

convert
ConTeX T Graphic Conversion Help ers

A wrapper around ghostscript and imagemagick that offers some extra (batch processing)
functionality.

dvi
ConTeXt DVI Help ers

epub
ConTeXt EPUB Help ers

The EPUB manual (epub-mkiv.pdf) explains how to use this script.

luatools mtxrun context 22

evohome
Evohome Fetcher

Evohome is a domotica system that controls your central heating

fcd
Fast Director y Change

flac
ConTeXt Flac Help ers

Extracts information from .flac audio files into an xml index.

fonts
ConTeXt Font Datab ase Management

grep
Simple Grepp er

interface
ConTeXt Inter face Relate d Go o dies

metapost
MetaPost to PDF pro cessor

metatex
MetaTeX Pro cess Management (obsolete)

modules
ConTeXt Mo dule Do cumentation Generators

package
Distribution Relate d Go o dies

This script is used to create the generic ConTEXt code used in LuaLATEX c.s.

patterns
ConTeXt Pattern File Management

Hyphenation patterns, that is . . .

luatools mtxrun context 23

pdf
ConTeXt PDF Help ers

plain
Plain TeX Runner

profile
ConTeXt MkIV LuaTeX Profiler

rsync
Rsync Help ers

scite
Scite Help er Script

server
Simple Webser ver For Help ers

There are some subscripts associated with this.

synctex
ConTeXt SyncTeX Checker

texworks
TeXworks Star tup Script

timing
ConTeXt Timing To ols

tools
Some File Relate d Go o dies

unicode
Checker for char-def.lua

unzip
Simple Unzipp er

update
ConTeXt Minimals Up dater

luatools mtxrun context 24

watch
ConTeXt Re quest Watchdog

youless
YouLess Fetcher

YouLess is a domotica system that tracks your home energy use.

11.9 Writing your own

A well-written script has some re quire d internal str ucture. It should star t with a mo d-
ule definition blo ck . This gives some information ab out the mo dule, but more imp or-
tantly, it prevents double-lo ading .

Here is an example:

if not modules then modules = { } end

modules ['mtx-envtest'] = {
version = 0.100,
comment = "companion to mtxrun.lua",
author = "Taco Hoekwater",
copyright = "Taco Hoekwater",
license = "bsd"

}

Next up is a variable containing the help information . The help information is actually
a bit of xml store d in Lua string . In the full example listing at the end of this ar ticle,
you can see what the internal str ucture is supp ose d to b e like.

local helpinfo = [[
<?xml version="1.0"?>
<application>

....
</application>
]]

And this help information is then use d to cre ate an instance of an application table.

local application = logs.application {
name = "envtest",
banner = "Mtxrun environment demo",

luatools mtxrun context 25

helpinfo = helpinfo,
}

After this call , the application table contains (amongst some other things) three
functions that are ver y useful:

identify()
Prints out a b anner identifying the current script to the user.

report(str)
For printing information to the terminal with the script name as prefix .

export()
Prints the helpinfo to the terminal , so it can e asily b e use d for do cumentation
purp oses.

Next up, it is go o d to define your scripts’ functionality in functions in a private table.
This prevents namesp ace p ollution , and lo oks like this:

scripts = scripts or { }
scripts.envtest = scripts.envtest or { }

function scripts.envtest.runtest()
application.report("script name is " .. environment.ownname)

end

An finally, identify the current script , followe d by handling the provide d options (usu-
ally with an if--else statement).

if environment.argument("exporthelp") then
application.export()

elseif environment.argument('test') then
scripts.envtest.runtest()

else
application.help()

end

11.10 Script environment
mtxrun includes lots of the internal Lua help er libraries from ConTEXt . We actually
maintains a version of the script without all those libraries include d , and b efore ever y
(b eta) ConTEXt rele ase, an amalgamate d version of mtxrun is adde d to the distribu-
tion . In the merging pro cess, most all comments are stripp e d from the emb e dde d

luatools mtxrun context 26

libraries, so if you want to know details, it is b etter to lo ok in the original Lua source
file.

Inside mtxrun, the full list of emb e dde d libraries can b e querie d via the array
own.libs:

l-lua.lua l-macro.lua l-sandb ox .lua l-p ackage.lua l-lp eg .lua l-function .lua l-
string .lua l-table.lua l-io.lua l-numb er.lua l-set .lua l- os.lua l-file.lua l- gzip.lua l-
md5.lua l-url .lua l- dir.lua l-b o ole an .lua l-unico de.lua l-math .lua util-str.lua util-
tab.lua util-fil .lua util-sac.lua util-sto.lua util-prs.lua util-fmt .lua trac-set .lua trac-
log .lua trac-inf.lua trac-pro.lua util-lua.lua util- deb.lua util-tpl .lua util-sbx .lua util-
mrg .lua util- env.lua luat- env.lua lxml-tab.lua lxml-lpt .lua lxml-mis.lua lxml-aux .lua
lxml-xml .lua trac-xml .lua data-ini .lua data- exp.lua data- env.lua data-tmp.lua data-
met .lua data-res.lua data-pre.lua data-inp.lua data- out .lua data-fil .lua data- con .lua
data-use.lua data-zip.lua data-tre.lua data-sch .lua data-lua.lua data-aux .lua data-
tmf.lua data -lst .lua util-lib.lua luat-sta.lua luat-fmt .lua

In fact , the Lua table own contains some other useful stuff like the script ’s actual disk
name and lo cation (own.name and own.path) and some internal variables like a list
of all the lo cations it se arches for its emb e dde d libraries (own.list), which is use d by
the --selfmerge option and also allows the non--amalgamate d version to r un (since
other wise --selfmerge could not b e b o otstrapp e d).

mtxrun offers a programming environment that makes it e asy to write Lua a scripts.
The most imp or tant element of that environment is a Lua table that is conveniently
calle d environment (util-env do es the actual work of setting that up).

The bulk of environment consists of functions and variables that de al with the com-
mand--line given by the user as mtxrun do es quite a bit of work on the given com-
mand--line. The go al is to safely tuck all the given options into the arguments and
files tables. This work is done by two functions calle d initializearguments()
and splitarguments(). These functions are p ar t of the environment table, but you
should not nee d them as they have b een calle d alre ady once control is p asse d on to
your script .

arguments
These are the pro cesse d options to the current script . The keys are option
names (without the le ading dashes) and the value is either true or a string with
one level of shell quotes remove d .

luatools mtxrun context 27

files
This array holds all the non--option arguments to the current script . Typically,
those are supp ose d to b e files, but they could b e any text , re ally.

getargument(name,partial)
Queries the arguments table using a function . Its main re ason for existence is
the partial argument , which allows scripts to accept shor tene d command--line
options (alias: argument()).

setargument(name,value)
Sets a value in the arguments table. This can b e useful in complicate d scripts
with default options.

In case you nee d access to the full command--line, there are some p ossibilities:

arguments_after
These are the unquote d but other wise unpro cesse d arguments to your script as
an array.

arguments_before
These are the unquote d but other wise unpro cesse d arguments to mtxrun b efore
your scripts’ name (so the last entr y is usually --script).

rawarguments
This is the whole unpro cesse d command--line as an array.

originalarguments
Like rawarguments, but with some top--level quotes remove d .

reconstructcommandline(arg,noquote)
Tries to reconstr uct a command--line from its arguments. It uses
originalarguments if no arg is given . Take care: due to the vagaries of shell
command--line pro cessing , this may or may not work when quoting is involve d .

environment also stores various bits of information you may find useful:

validengines
This table contains keys for luatex and luajittex. This is only relevant when
mtxrun itself is calle d via LuaTEX ’s luaonly option .

luatools mtxrun context 28

basicengines
This table maps executable names to validengines entries.

default_texmfcnf
This is the texmfcnf value from kpathsea, pro cesse d for use with MkIV in the
unlikely event this is nee de d .

homedir
The user ’s home director y.

ownbin
The name of the binar y use d to call mtxrun.

ownmain
The mapp e d version of ownbin.

ownname
Full name of this instance of mtxrun.

ownpath
The p ath this instance of mtxrun resides in .

texmfos
Op erating system ro ot director y p ath .

texos
Op erating system ro ot director y name.

texroot
ConTEXt ro ot director y p ath .

As well as some functions:

texfile(filename)
Lo cates a TEX file.

luafile(filename)
Lo cates a Lua file.

loadluafile(filename,version)
Lo cates, compiles and lo ads a Lua file, p ossibly in compresse d .luc format . In
the compresse d case, it uses the version to make sure the compresse d form is
up--to--date.

luatools mtxrun context 29

luafilechunk(filename,silent,macros)
Lo cates and compiles a Lua file, returning its contents as data.

make_format(name,arguments)
Cre ates a format file and stores in in the ConTEXt cache, use d by mtxrun --make.

relativepath(path,root)
Returns a mo difie d version of root b ase d on the relative p ath in path.

run_format(name,data,more)
Run a TEX format file.

11.11 Shell return values

As explaine d e arlier, the shell return value of mtxrun normally indicates whether
the script was found . If you are r unning a ConTEXt rele ase newer than Septemb er
2018 and want to mo dify the shell return value from within your script , you can use
os.exitcode. Whatever value you assign to that variable will b e the shell return value
of your script .

Colofon

author Hans Hagen , PR AGMA ADE, Hasselt NL
Taco Ho ekwater, extra mtxrun section

version Januar y 1, 2019
website w w w.pragma-ade.nl – w w w.contextgarden .net
copyright c b a n

