
luatools
mtxrun
context



luatools mtxrun context 1

Contents
1 Remark 1
2 Introduction 1
3 The location 1
4 The traditional finder 2
5 The current finder 3
6 Updating 5
7 The tools 6
8 Running CONTEXT 7
9 Prefixes 9
10 Stubs 10

1 Remark
This manual is work in progress. Feel free to submit additions or corrections. Before you start
reading, it is good to know that in order to get starting with ConTEXt, the easiest way to do
that is to download the standalone distribution from contextgarden.net. After that you only
need to make sure that luatex is in your path. The main command you use is then context
and normally it does all the magic it needs itself.

2 Introduction
Right from the start ConTEXt came with programs that managed the process of TEX-ing. Al-
though you can perfectly well run TEX directly, it is a fact that often multiple runs are needed
as well as that registers need to be sorted. Therefore managing a job makes sense.

First we had TEXexec and TEXutil, and both were written in Modula, and as this language was
not supported on all platforms the programs were rewritten in Perl. Following that a few more
tools were shipped with ConTEXt.

When we moved on to Ruby all the Perl scripts were rewritten and when ConTEXt MkIV
showed up, Lua replaced Ruby. As we use LuaTEX this means that currently the tools and the
main program share the same language. For MkII scripts like TEXexec will stay around but the
idea is that there will be Lua alternatives for them as well.

Because we shipped many scripts, and because the de facto standard TEX directory structure
expects scripts to be in certain locations we not only ship tools but also some more generic
scripts that locate and run these tools.

3 The location
Normally you don’t need to know so many details about where the scripts are located but here
they are:

<texroot>/scripts/context/perl



luatools mtxrun context 2

<texroot>/scripts/context/ruby
<texroot>/scripts/context/lua
<texroot>/scripts/context/stubs

This hierarchy was actually introduced because ConTEXt was shipped with a bunch of tools.
As mentioned, we nowadays focus on Lua but we keep a few of the older scripts around in the
Perl and Ruby paths.Now, if you’re only using ConTEXt MkIV, and this is highly recommended,
you can forget about all but the Lua scripts.

4 The traditional finder
When you run scripts multiple times, and in the case of ConTEXt they are even run inside
other scripts, you want to minimize the startup time. Unfortunately the traditional way to
locate a script, using kpsewhich, is not that fast, especially in a setup with many large trees
Also, because not all tasks can be done with the traditional scripts (take format generation) we
provided a runner that could deal with this: texmfstart. As this script was also used in more
complex workflows, it had several tasks:

• locate scripts in the distribution and run them using the right interpreter
• do this selectively, for instance identify the need for a run using checksums for potentially

changed files (handy for image conversion)
• pass information to child processes so that lookups are avoided
• choose a distribution among several installed versions (set the root of the TEX tree)
• change the working directory before running the script
• resolve paths and names on demand and launch programs with arguments where names are

expanded controlled by prefixes (handy for TEX-unware programs)
• locate and open documentation, mostly as part the help systems in editors, but also handy

for seeing what configuration file is used
• act as a kpsewhich server cq. client (only used in special cases, and using its own database)

Of course there were the usual more obscure and undocumented features as well. The idea was
to use this runner as follows:

texmfstart texexec <further arguments>
texmfstart --tree <rootoftree> texexec <further arguments>

These are just two ways of calling this program. As texmfstart can initialize the environment
as well, it is basically the only script that has to be present in the binary path. This is quite
comfortable as this avoids conflicts in names between the called scripts and other installed
programs.

Of course calls like above can be wrapped in a shell script or batch file without penalty as long
as texmfstart itself is not wrapped in a caller script that applies other inefficient lookups. If
you use the ConTEXt minimals you can be sure that the most efficient method is chosen, but
we’ve seen quite inefficient call chains elsewhere.

In the ConTEXt minimals this script has been replaced by the one we will discuss in the next
section: mtxrun but a stub is still provided.



luatools mtxrun context 3

5 The current finder
In MkIV we went a step further and completely abandoned the traditional lookup methods and
do everything in Lua. As we want a clear separation between functionality we have two main
controlling scripts: mtxrun and luatools. The last name may look somewhat confusing but the
name is just one on in a series.1

In MkIV the luatools program is nowadays seldom used. It’s just a drop in for kpsewhich plus
a bit more. In that respect it’s rather dumb in that it does not use the database, but clever at
the same time because it can make one based on the little information available when it runs.
It can also be used to generate format files either or not using Lua stubs but in practice this is
not needed at all.

For ConTEXt users, the main invocation of this tool is when the TEX tree is updated. For
instance, after adding a font to the tree or after updating ConTEXt, you need to run:

mtxrun --generate

After that all tools will know where to find stuff and how to behave well within the tree. This is
because they share the same code, mostly because they are started using mtxrun. For instance,
you process a file with:

mtxrun --script context <somefile>

Because this happens often, there’s also a shortcut:

context <somefile>

But this does use mtxrun as well. The help information of mtxrun is rather minimalistic and if
you have no clue what an option does, you probably never needed it anyway. Here we discuss
a few options. We already saw that we can explicitly ask for a script:

mtxrun --script context <somefile>

but

mtxrun context <somefile>

also works. However, by using --script you limit te lookup to the valid ConTEXt MkIV scripts.
In the TEX tree these have names prefixed by mtx- and a lookup look for a plural as well. So,
the next two lookups are equivalent:

mtxrun --script font
mtxrun --script fonts

Both will run mtx-fonts.lua. Actually, this is one of the scripts that you might need when
your font database is somehow outdated and not updated automatically:

1 We have ctxtools, exatools, mpstools, mtxtools, pdftools, rlxtools, runtools, textools, tmftools and
xmltools. Most if their funtionality is already reimplemented.



luatools mtxrun context 4

mtxrun --script fonts --reload --force

Normally mtxrun is all you need in order to run a script. However, there are a few more options:

mtxrun | ConTeXt TDS Runner Tool 1.31
mtxrun |
mtxrun | --script run an mtx script (lua prefered method) (--noquotes), no script gives list
mtxrun | --evaluate run code passed on the commandline (between quotes)
mtxrun | --execute run a script or program (texmfstart method) (--noquotes)
mtxrun | --resolve resolve prefixed arguments
mtxrun | --ctxlua run internally (using preloaded libs)
mtxrun | --internal run script using built in libraries (same as --ctxlua)
mtxrun | --locate locate given filename in database (default) or system (--first --all --detail)
mtxrun |
mtxrun | --autotree use texmf tree cf. env texmfstart_tree or texmfstarttree
mtxrun | --tree=pathtotree use given texmf tree (default file: setuptex.tmf)
mtxrun | --environment=name use given (tmf) environment file
mtxrun | --path=runpath go to given path before execution
mtxrun | --ifchanged=filename only execute when given file has changed (md checksum)
mtxrun | --iftouched=old,new only execute when given file has changed (time stamp)
mtxrun |
mtxrun | --makestubs create stubs for (context related) scripts
mtxrun | --removestubs remove stubs (context related) scripts
mtxrun | --stubpath=binpath paths where stubs wil be written
mtxrun | --windows create windows (mswin) stubs
mtxrun | --unix create unix (linux) stubs
mtxrun |
mtxrun | --verbose give a bit more info
mtxrun | --trackers=list enable given trackers
mtxrun | --progname=str format or backend
mtxrun | --systeminfo=str show current operating system, processor, etc
mtxrun |
mtxrun | --edit launch editor with found file
mtxrun | --launch launch files like manuals, assumes os support (--all)
mtxrun |
mtxrun | --timedrun run a script and time its run
mtxrun | --autogenerate regenerate databases if needed (handy when used to run context in an editor)
mtxrun |
mtxrun | --usekpse use kpse as fallback (when no mkiv and cache installed, often slower)
mtxrun | --forcekpse force using kpse (handy when no mkiv and cache installed but less functionality)
mtxrun |
mtxrun | --prefixes show supported prefixes
mtxrun |
mtxrun | --generate generate file database
mtxrun |
mtxrun | --variables show configuration variables
mtxrun | --configurations show configuration order
mtxrun |
mtxrun | --directives show (known) directives



luatools mtxrun context 5

mtxrun | --trackers show (known) trackers
mtxrun | --experiments show (known) experiments
mtxrun |
mtxrun | --expand-braces expand complex variable
mtxrun | --expand-path expand variable (resolve paths)
mtxrun | --expand-var expand variable (resolve references)
mtxrun | --show-path show path expansion of ...
mtxrun | --var-value report value of variable
mtxrun | --find-file report file location
mtxrun | --find-path report path of file
mtxrun |
mtxrun | --pattern=string filter variables
mtxrun |
mtxrun |
mtxrun | More information about ConTeXt and the tools that come with it can be found at:
mtxrun |
mtxrun | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtxrun | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtxrun | wiki : http://contextgarden.net

Don’t worry,you only need those obscure features when you integrate ConTEXt in for instance
a web service or when you run large projects where runs and paths take special care.

6 Updating
There are two ways to update ConTEXt MkIV. When you manage your trees yourself or when
you use for instance TEXLive, you act as follows:

• download the file cont-tmf.zip from www.pragma-ade.com or elsewhere
• unzip this file in a subtree, for instance tex/texmf-local
• run mtxrun --generate
• run mtxrun --script font --reload
• run mtxrun --script context --make

Or shorter:

• run mtxrun --generate
• run mtxrun font --reload
• run context --make

Normally these commands are not even needed, but they are a nice test if your tree is still okay.
To some extend context is clever enough to decide if the databases need to be regenerated
and/or a format needs to be remade and/or if a new font database is needed.

Now, if you also want to run MkII, you need to add:

• run mktexlsr
• run texexec --make



luatools mtxrun context 6

The question is, how to act when luatools and mtxrun have been updated themselves? In that
case, after unzipping the archive, you need to do the following:

• run luatools --selfupdate
• run mtxrun --selfupdate

For quite a while we shipped so called ConTEXt minimals. These zip files contained only the
resources and programs that made sense for running ConTEXt. Nowadays the minimals are
installed and synchronized via internet.2 You can just run the installer again and no additional
commands are needed. In the console you will see several calls to mtxrun and luatools fly
by.

7 The tools
We only mention the tools here. The most important ones are context and fonts. You can ask
for a list of installed scripts with:

mtxrun --script

On my machine this gives:

mtxrun | ConTeXt TDS Runner Tool 1.31
mtxrun |
mtxrun | no script name given, known scripts:
mtxrun |
mtxrun | babel 1.20 Babel Input To UTF Conversion
mtxrun | base 1.35 ConTeXt TDS Management Tool (aka luatools)
mtxrun | bibtex bibtex helpers
mtxrun | cache 0.10 ConTeXt & MetaTeX Cache Management
mtxrun | chars 0.10 MkII Character Table Generators
mtxrun | check 0.10 Basic ConTeXt Syntax Checking
mtxrun | colors 0.10 ConTeXt Color Management
mtxrun | convert 0.10 ConTeXT Graphic Conversion Helpers
mtxrun | distribution 0.10 ConTeXt Distribution Helpers
mtxrun | epub 1.10 ConTeXt EPUB Helpers
mtxrun | example 0.10 ConTeXt Example Helpers
mtxrun | fcd 1.00 Fast Directory Change
mtxrun | flac 0.10 ConTeXt Flac Helpers
mtxrun | fonts 0.21 ConTeXt Font Database Management
mtxrun | grep 0.10 Simple Grepper
mtxrun | idris 0.10 Special Hacks For Idris
mtxrun | interface 0.13 ConTeXt Interface Related Goodies
mtxrun | listen 1.00 ConTeXt Request Watchdog
mtxrun | metapost 0.10 MetaPost to PDF processor
mtxrun | metatex 0.10 MetaTeX Process Management
mtxrun | modules 1.00 ConTeXt Module Documentation Generators

2 This project was triggered by Mojca Miklavec who is also charge of this bit of the ConTEXt infrastructure. More
information can be found at contextgarden.net.



luatools mtxrun context 7

mtxrun | package 0.10 Distribution Related Goodies
mtxrun | patterns 0.20 ConTeXt Pattern File Management
mtxrun | pdf 0.10 ConTeXt PDF Helpers
mtxrun | plain 1.00 Plain TeX Runner
mtxrun | profile 1.00 ConTeXt MkIV LuaTeX Profiler
mtxrun | queue 1.00 Sequential runner
mtxrun | rsync 0.10 Rsync Helpers
mtxrun | scite 1.00 Scite Helper Script
mtxrun | server 0.10 Simple Webserver For Helpers
mtxrun | stubs 0.10 ConTeXt Stub Management
mtxrun | swiglib 1.00 ConTeXt Swiglib Updater
mtxrun | tds 0.10 TeX Directory Structure Tools
mtxrun | testsuite 1.00 Experiments with the testsuite
mtxrun | texworks 1.00 TeXworks Startup Script
mtxrun | timing 0.10 ConTeXt Timing Tools
mtxrun | tools 1.01 Some File Related Goodies
mtxrun | tracing 1.00 MkIV LuaTeX Profiler
mtxrun | unicode 1.02 Checker for char-def.lua
mtxrun | unzip 0.10 Simple Unzipper
mtxrun | update 1.02 ConTeXt Minimals Updater
mtxrun | update 1.02 ConTeXt Minimals Updater
mtxrun | watch 1.00 ConTeXt Request Watchdog
mtxrun | web 0.10 Some (Private) Webservice Goodies
mtxrun | youless 1.00 YouLess Fetcher

The most important scripts are mtx-fonts and mtx-context. By default fonts are looked up by
filename (the file: prefix before font names in ConTEXt is default). But you can also lookup
fonts by name (name:) or by specification (spec:). If you want to use these two methods, you
need to generate a font database as mentioned in the previous section. You can also use the
font tool to get information about the fonts installed on your system.

8 Running CONTEXT
The context tool is what you will use most as it manages your run.

mtx-context | ConTeXt Process Management 0.61
mtx-context |
mtx-context | basic options:
mtx-context |
mtx-context | --run process (one or more) files (default action)
mtx-context | --make create context formats
mtx-context |
mtx-context | --ctx=name use ctx file (process management specification)
mtx-context | --interface use specified user interface (default: en)
mtx-context |
mtx-context | --autopdf close pdf file in viewer and start pdf viewer afterwards
mtx-context | --purge purge files either or not after a run (--pattern=...)
mtx-context | --purgeall purge all files either or not after a run (--pattern=...)



luatools mtxrun context 8

mtx-context |
mtx-context | --usemodule=list load the given module or style, normally part of the distribution
mtx-context | --environment=list load the given environment file first (document styles)
mtx-context | --mode=list enable given the modes (conditional processing in styles)
mtx-context | --path=list also consult the given paths when files are looked for
mtx-context | --arguments=list set variables that can be consulted during a run (key/value pairs)
mtx-context | --randomseed=number set the randomseed
mtx-context | --result=name rename the resulting output to the given name
mtx-context | --trackers=list set tracker variables (show list with --showtrackers)
mtx-context | --directives=list set directive variables (show list with --showdirectives)
mtx-context | --silent=list disable logcatgories (show list with --showlogcategories)
mtx-context | --noconsole disable logging to the console (logfile only)
mtx-context | --purgeresult purge result file before run
mtx-context |
mtx-context | --forcexml force xml stub
mtx-context | --forcecld force cld (context lua document) stub
mtx-context | --forcelua force lua stub (like texlua)
mtx-context | --forcemp force mp stub
mtx-context |
mtx-context | --arrange run extra imposition pass, given that the style sets up imposition
mtx-context | --noarrange ignore imposition specifications in the style
mtx-context |
mtx-context | --jit use luajittex with jit turned off (only use the faster virtual machine)
mtx-context | --jiton use luajittex with jit turned on (in most cases not faster, even slower)
mtx-context |
mtx-context | --once only run once (no multipass data file is produced)
mtx-context | --runs process at most this many times
mtx-context | --forcedruns process this many times (permits for optimization trial runs)
mtx-context |
mtx-context | --batchmode run without stopping and do not show messages on the console
mtx-context | --nonstopmode run without stopping
mtx-context | --synctex run with synctex enabled (optional value: zipped, unzipped, 1, -1)
mtx-context |
mtx-context | --generate generate file database etc. (as luatools does)
mtx-context | --paranoid do not descend to .. and ../..
mtx-context | --version report installed context version
mtx-context |
mtx-context | --global assume given file present elsewhere
mtx-context | --nofile use dummy file as jobname
mtx-context |
mtx-context |
mtx-context | More information about ConTeXt and the tools that come with it can be found at:
mtx-context |
mtx-context | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtx-context | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtx-context | wiki : http://contextgarden.net

There are few exert options too:



luatools mtxrun context 9

mtx-context | ConTeXt Process Management 0.61
mtx-context |
mtx-context | expert options:
mtx-context |
mtx-context | --touch update context version number (also provide --expert, optionally provide --basepath)
mtx-context | --nostatistics omit runtime statistics at the end of the run
mtx-context | --update update context from website (not to be confused with contextgarden)
mtx-context | --profile profile job (use: mtxrun --script profile --analyze)
mtx-context | --timing generate timing and statistics overview
mtx-context | --keeptuc keep previous tuc files (jobname-tuc-[run].tmp)
mtx-context | --keeplog keep previous log files (jobname-log-[run].tmp)
mtx-context |
mtx-context | --extra=name process extra (mtx-context-... in distribution)
mtx-context | --extras show extras
mtx-context |
mtx-context | special options:
mtx-context |
mtx-context | --pdftex process file with texexec using pdftex
mtx-context | --xetex process file with texexec using xetex
mtx-context | --mkii process file with texexec
mtx-context |
mtx-context | --pipe do not check for file and enter scroll mode (--dummyfile=whatever.tmp)
mtx-context |
mtx-context | --sandbox process file in a limited environment
mtx-context |
mtx-context |
mtx-context | More information about ConTeXt and the tools that come with it can be found at:
mtx-context |
mtx-context | maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
mtx-context | webpage : http://www.pragma-ade.nl / http://tex.aanhet.net
mtx-context | wiki : http://contextgarden.net

You might as well forget about these unless you are one of the ConTEXt developers.

9 Prefixes
A handy feature of mtxrun (and as most features an inheritance of texmfstart) is that it will
resolve prefixed arguments. This can be of help when you run programs that are unaware of the
TEX tree but nevertheless need to locate files in it.

mtxrun | ConTeXt TDS Runner Tool 1.31
mtxrun |
mtxrun |
mtxrun | auto: env: environment: file: filename: full: home: jobfile: jobpath: kpse: loc: locate: machine: nodename:
path: pathname: rel: relative: release: selfautodir: selfautoloc: selfautoparent: sysname: toppath: version:

An example is:

mtxrun --execute xsltproc file:whatever.xsl file:whatever.xml



luatools mtxrun context 10

The call to xsltproc will get two arguments, being the complete path to the files (given that it
can be resolved). This permits you to organize the files in a similar was as TEX files.

10 Stubs
As the tools are written in the Lua language we need a Lua interpreter and or course we use
LuaTEX itself. On Unix we can copy luatools and mtxrun to files in the binary path with the
same name but without suffix. Starting them in another way is a waste of time, especially when
kpsewhich is used to find then, something which is useless in MkIV anyway. Just use these
scripts directly as they are self contained.

For context and other scripts that we want convenient access to, stubs are needed, like:

#!/bin/sh
mtxrun --script context "$@"

This is also quite efficient as the context script mtx-context is loaded in mtxrun and uses
the same database.

On Windows you can copy the scripts as-is and associate the suffix with LuaTEX (or more
precisely: texlua) but then all Lua script will be run that way which is not what you might
want.

In TEXLive stubs for starting scripts were introduced by Fabrice Popineau. Such a stub would
start for instance texmfstart, that is: it located the script (Perl or Ruby) in the TEX tree and
launched it with the right interpreter. Later we shipped pseudo binaries of texmfstart: a Ruby
interpreter plus scripts wrapped into a self contained binary.

For MkIV we don’t need such methods and started with simple batch files, similar to the Unix
startup scripts. However, these have the disadvantage that they cannot be used in other batch
files without using the start command. In TEXLive this is taken care of by a small binary
written bij T.M. Trzeciak so on TEXLive 2009 we saw a call chain from exe to cmd to lua which
is somewhat messy.

This is why we now use an adapted and stripped down version of that program that is tuned
for mtxrun, luatools and context. So, we moved from the original cmd based approach to an
exe one.

mtxrun.dll
mtxrun.exe

You can copy mtxrun.exe to for instance context.exe and it will still use mtxrun for locating
the right script. It also takes care of mapping texmfstart to mtxrun. So we’ve removed the
intermediate cmd step, can not run the script as any program, and most of all, we’re as efficient
as can be.

Of course this program is only meaningful for the ConTEXt approach to tools.



luatools mtxrun context 11

It may all sound more complex than it is but once it works users will not notice those details.
Als, in practice not that much has changed in running the tools between MkII and MkIV as
we’ve seen no reason to change the methods.

Colofon
author Hans Hagen, PRAGMA ADE, Hasselt NL
version May 15, 2015
website www.pragma-ade.nl – www.contextgarden.net
copyright c b a n


