
19

20

21

22

23

24

ontarget
luametatex & context lmtx

1

2

Table of contents

1 Introduction 4

2 Eventually 1.0 6

3 A new unit: dk 12

4 Anchoring 14

5 A different approach to math spacing 20

6 The binary 52

7 To the point 54

8 Not all makes sense 66

3

Introduction 4

1 Introduction

This is the seventh wrapup of the LuaTEX and LuaMetaTEX development cycle. It is dedicated to all
those users who kept up with developments and are always willing to test the new features. Without
them a project like this would not be possible.

At the time this introduction is written the LuaMetaTEX code base is rather stable and quite a bit of the
MkIV code base has been adapted to new situation. But, as usual, there are always new possibilities to
explore, so I expect that this document will grow over time as did the others. I'm not going to repeat
all that has been done because that's what the previous episodes are about.

As the title suggest, we're still on target. When the LuaMetaTEX project started there actually was no
deadline formulated so in fact we're always on target. The core components TEX, MetaPost, and Lua
are all long termefforts sowe're in no hurry at all. However, this is the year that a fast pacewill become
a slow pace with respect to the LuaMetaTEX code base. There are still some things on the agenda but
in principle the goals are reached. One problem in today's code development is that useability and
quality seems to relate to the amount of changes in code. No update can mean old, unusable and un
interesting. It's probably why some sources get this silly yearly copyright year update. However, the
update cycle of good old TEX has an decade interval by nowwhile it is still a pretty useable program. It
would be nice to end up in such a long term cycle with LuaMetaTEX: bug fixes only.

AlthoughConTEXthasalwaysadaptedearly tonewdevelopments (color, graphics, pdf,MetaPost,𝜀-TEX,
pdfTEX, LuaTEX, utf, fonts) the effects on the ConTEXt code base are mostly hidden for users. There
have been some changes betweenMkII andMkIV, simply because there has been a shift from specific
eight bit encodings to utf and Type1 to OpenType fonts. Both had an impact on important subsystems:
input encodings, font definitions and features, language and script support. On other subsystems the
impact was hardly noticeable, like for instance backend related features (these have always been kind
of abstract). That doesn't mean that these haven't changed deep down, they definitely have. Some
mechanisms became better in MkIV, simply because less hackery was needed. My experience is that
whenusers see that it gets better or easier, they are alsowilling to adapt the few lines in their document
source that benefit from it. Of course the impact on theMetaPost integration inConTEXthada real large
impact, especially in terms of performance.

The upgrade to LMTX, the version of ConTEXt for LuaMetaTEX, is even less visible although already
somenewmechanisms showed up. This time a couple of engine specific features have been improved
and made more flexible. In fact, the whole code base of the engine has been overhauled. This hap
pened stepwise because we had to make sure all things kept working. As a first step code was made
independent of the compilation infrastructure and thedependencies, other thanavery fewsmall ones,
have been removed. The result is a rather lean and mean setup, even when we consider what has
been added at the primitive level and traditional subsystems. A benefit is that in the meantime the
LuaMetaTEXLMTXcombinationoutperformsLuaTEXwithMkIV, something thatwasnot ensuredwhen
the built-in pdf backend was removed and delegated to Lua. By binding development closely to Con
TEXt we also hope that the code base stays clean of arbitrary extensions.

Because in the end, TEX is also a programming language, there have been extensions that make pro
gramming easier. There is already a stable middle layer of auxiliary macros in ConTEXt that help the
user who likes to program but doesn't like real low level primitives and dirty tricks, but by extend
ing the primitive repertoire a bit users can now stay closer to the original TEX concepts. Adding more
and more layers of indirectness makes no sense if we can improve the bottom programming layer. It

5 Introduction

also makes coding a bit more natural (the TEX look), apart from offering performance benefits. This
is where you can see differences between the MkIV and LMTX code base which for that reason is now
nearly split completely. The MetaPost subsystem has been extended with proper scanners so that we
can enhance the interfaces in a natural way and as a result we also have an upgraded code base there.
Wealsomoved to Lua5.4 andwill keepupas long as compatibility is no issue. SomeLua code is likely to
remain common betweenMkIV and LMTX, for instance font handling and helpers but we'll see where
that ends.

The LuaMetaTEX engine provides control overmost internals and there are all kind of new interesting
features. Decades of ConTEXt development are behind that. Also, in the days that there were discus
sions about extending TEX, ConTEXt was not that much of influence and on the road to and from user
groupmeetings, Taco and I often discussed what we'd like to see added (and somewas actually imple
mented in eetex but that only lived on our machines. One can consider LuaTEX to be a follow up on
that, and LuaMetaTEX in turn follows up on that project, which we both liked doing a lot. In some way
LuaTEX lowered the boundary for implementing some of themore intrusive extensions in LuaMetaTEX
and the follow up onmplib. And once you start along that road small steps become large steps and one
can as well be try to be as complete as possible. We've come a long way but eventually arrived at the
destination. Personally I think we got there by not being in a hurry.

But even targets that are reached can eventually move,

Hans Hagen
Hasselt NL
August 2021++

Eventually 1.0 6

2 Eventually 1.0

2.1 Reflection

This is just a short reflection on how we came to version 1.0 of LuaMetaTEX. Much has already been
said in articles and history documents. There is nothing in here that is new but I just occasionally like
to wrap up the current state. At the time of writing, which happens to be the ConTEXt 2021 meeting,
we're somewhere between 0.9 and 1.0 and as usual it reflects a current state of mind.

2.2 Introduction

The development on LuaMetaTEX took a bit more time than I had in planned when I started with it. I
presume that it also relates to theway the TEXprogram is looked at: a finished program that converges
to a bugless state. But, with version 1.0 near by itmakes sense to reflect on the process. Before I go into
details I want to remark that when I wrote ConTEXt I looked at this program from themacro end. I had
no real reason to look into the code, and figuring out what happens in a black box is a challenge (and
kind of game) in itself. At the time I started using TEX I had done my share of complex and relatively
large scale programming in Pascal and Modula so it's not that I was afraid of languages. It was before
the Internet took off and not being in academia and connected one had to figure things out anyway.
I did have Don's 5 volume TEX series but stuck to the TEX book. Being on msdos I couldn't compile
the program anyway, definitely not without the source at hand. I did read the first chapters of the
MetaFont book, but apart frombeing intrigued by it, it was not before I ran intoMetaPost that knowing
that language took off. Of course I had browsed TEX the program but not in a systematic way.

I was involved with pdfTEX development but stayed at my end of the line: needs, applications, test
ing and suggestions. With LuaTEX that line got crossed, triggered by the Lua interfaces, but while I
focussed on the TEX end, Taco did the C, and we had pleasant and intense daily discussion on how to
move forward. I couldnot get awayany longerwith theabstractionbuthad todealwithnodesandsuch,
which was okay as we were hit the boundaries of convenience programming solutions in ConTEXt.

Whenwe started our LuaTEX journey the TEX follow-upmost widely used, pdfTEX, did have some𝜀-TEX
extensions but in retrospect only a few of thosewere of relevance to us, like the concept of\protected
macros1 and the larger set of registers. And the𝜀-TEX project, in spite of occasional discussions, never
becameacontinuouseffort. Thentsproject thatwas related to𝜀-TEXandhadasobjective anextensible
successor produced a Java implementation but that onewas never useful (as a starter, its performance
was such that it could not be used) and I didn't really look forward to spending time on Java anyway.
Taco and I played with an extended𝜀-TEX but lack of timemade that one end up in the archive.

There were some programmatic additions to pdfTEX but it's main attributes were protrusion, expan
sion and a pdf backend (Hàn Thế Thành's thesis subject). Features like position tracking were handy
but basically just a built-in variant of a concept we already had come up with at the dvi level (using a
postprocessing script that later became dvipos). There was Omega with a directional model but this
enginewas alwaysmore of an academic project, not a production system.2 It was X ETEX thatmoved the
TEXworld into the Unicode domain and opened the engine up to new font technologies. Although utf8

1 InConTEXtwe always had aprotectionmechanismand from the LuaTEX source I learned that themacro bases solutionwas basically
the same as the one used in the engine.

2 Aleph was more reliable but never took off, if only because pdfTEX had a backend.

7 Eventually 1.0

was already doable in earlier engines (which is why ConTEXt used it already for some internals), native
support was waymore convenient.

It was clear that if we wanted to move on we had to make more fundamental steps, but in such a way
that it still fit in with what people expect from TEX. While it started an a playground by embedding
the Lua interpreter, it quickly became clear that we could open up the internals in fundamental ways,
thereby also getting around the discussion about to what extent TEX could and should be extended:
that discussion could be and was postponed by the opening up. Because we already foresaw some of
possibilities it was decided to freeze ConTEXt for the older engines. It was around the first ConTEXt
meeting that the MkII and MkIV tags showed up, around the same time that LuaTEX became useable.
More than adecade later, whenLuaTEXbasically hadbecome frozen, at anothermeeting itwas decided
tomove onwith LuaMetaTEX: the LuaTEXprojectwasprettymuchaConTEXt projects and that followup
would be even more driven by ConTEXt users and usage. But how does it all feel 15 years later? I'll try
to summarize that below. It will also explain why I gotmore audacious in extending the LuaTEX engine
into what is now LuaMetaTEX. This also related to the fact that at some point I realized that progress
just demands taking decisions, and it happens that we can make these in the perspective of ConTEXt
without side effects for other TEX usage. It is also fun to experiment.

2.3 Extending necessary parts

ThepdfTEXprogram, having a backendbuilt in already supports the usage ofwideTrueType but it was
X ETEX that first provided using them directly in the frontend. But that happened within the concept of
traditional TEX, especially when it comes tomath. There are some extra primitives to deal with scripts
and languages but (and this is personally) I decided that these didn't really fit in the way ConTEXt looks
at things so MkII doesn't support anything beyond the fonts. The X ETEX program first was available
on Apple computers and font support was closely related to its technology as well as technologies that
relate to where the program originates. Later other operating systems became supported too.

Wedecided in LuaTEX to delegate ‘everything fonts’ to Lua, for a good reason: we didn't want to be plat
form dependent. And using libraries has the danger of periodical enforced fundamental changes be
cause in these times software politics and fashion have short cycles. The fact that X ETEX later changed
the font engine proved that this was a good decision. At some point LATEX decided to use a special ver
sion of LuaTEX that uses a font library as alternative, which is fine, but that also introduces a depen
dency (and frequent updating of the binary). The LuaTEX engine has a slim variant of the FontForge li
brary built in for reading various font formats and its backend can embed subsets of OpenType, Type1
and traditional bitmap fonts. At some point ConTEXt switched to its own Lua based font file interpreter
and experimented with a Lua based backend that later became exclusive for LuaMetaTEX. It became
clear that we could do with less code in the engine and thereby less dependencies.

In this perspective it is also good to notice that the LuaTEX engine has no real concept of Unicode: it
just expects utf8 and that's it. All internals provide enough granularity to support Unicode. The rest
has to come from the macro package, as we know that each one does it its own way. There are no
dependencies on Unicode libraries. You only have to look at what ends up on your system when you
install a program that just juggles bytes to notice that by including one library a whole lot gets drawn
in, most of which is not relevant to the program and we don't want that. It might start small but who
knowswhere one ends up. If we want users to be able to compile the program, we don't want to end up
in dependency hell.

The LuaTEX project was, apart from curiosity and potential usage in ConTEXt, initially also driven by
the Oriental TEX project that aimed at high quality bidirectional typesetting. There the focus was on

Eventually 1.0 8

fonts as well as processing paragraphs. That triggered all kinds of opening up of internals and once
ConTEXt started swapping (and adding) mechanisms using Lua more came to fruit. In the end it took
a decade to reach version 1.0 and we could have stopped there knowing that we're quite prepared for
the future.

Although thewholeTEXconcept didn't change, therewere some fundamental changes. From thedocu
mentation by Don Knuth it becomes clear that interpreting is closely interwoven with typesetting: the
so called main interpretation loop calls out to font processing, ligature building, hyphenation, kern
ing, breaking lines, processing pages, etc. In LuaTEX these steps became more independent simply
because the processing of fonts (via Lua) came down to feeding a linked list of nodes to a callback
function. That list should be hyphenated if needed (a now separated step) and if needed the tradi
tional font processing could be applied (ligature building and kerning). But, although one can say that
we already got away from the way TEX works internally, most documentation to the original program
still applied, simply because the fundamental approach was the same. We didn't feel too guilty about
it and I don't think anyone objected. By the way, the same is true for the math subsystem: we had to
adapt it to OpenType parameters and formula construction and although that was inspired by TEX it
definitely was different, even to the extend that themath fonts that evolved in the community are now
a strange hybrid of old and new.

2.4 Getting around the frozenmachinery

Sowhydid theLuaMetaTEXproject startedat all? TherehasbeenplentywrittenonhowLuaTEXevolved
and the same is true for LuaMetaTEX so I'm not going to repeat that here. It is enough to know that the
demand for a stable and frozen LuaTEXby other users thanConTEXt simply doesn't gowell with further
experiments and we still had plenty ideas. Because at some point Taco had no time I was already
responsible for quite some additions to the LuaTEX program so it was no big deal to switch to a an even
more extensive mix of working with “TEX the macro language” and “TEX the program”.

The first priorities were with some basic cleanup: remove unused font code, get rid of some ever
changing libraries and remove the backend related code. I could do that because I already had a Lua
driven backend in MkIV (which was removed later on) and font handling was already all done in Lua.
The idea was to go lean and mean, and indeed, even with all kind of extensions, the binary is much
smaller than its predecessor, which is nice because it is also a Lua engine. Simplifying the build so
that users can easily compile themselves was also of high priority because I considered the rather
large and complex setup as a time bomb. And I also had my doubts if we could prevent the LuaTEX
engine to evolve over time in a way that made it less useable for ConTEXt.

But, interestingly all this extending and pruning didn't feel like I was violating the concept of a long
term stable engine. In fact, original TEX has no backend either, just a simple binary serialization of
output (dvi). Andby removingsome font related frontendcodeweactually camecloser to theoriginal. I
suppose that these decisions slowlymademeaware of the fact that therewasno reason to not consider
more drastic extensions. After all, wasn't the𝜀-TEX project also about extending.3

Whenwe look at LuaMetaTEX 1.0 we still see the expectedmachinery there butmany subsystems have
been extended. Once I made the decision that it's now or never, each subsystem got evaluated against
my long termwish list and usage in ConTEXt. Now, let's be clear: I basically can do all I want in LuaTEX

3 Although non of the ideas that Taco and I discussed on our numerous trips to meetings all over the world ever made it into that
engine.

9 Eventually 1.0

but that doesn'tmean it's always a pretty solution. And tomake the ConTEXt code base better to under
stand forusers, even if it is already rather consistent and set up tobe readable, is oneofmyobjectives. I
spend a lot of time on readability: I cannot stand a bad looking source and over time the look and feel is
also determined by the way the ConTEXt interfaces and related syntax highlighting evolved, especially
the TEX, MetaPost, Lua mix. This is why LuaMetaTEX has some extensions to the macro language.

So, while somemight argue that “It can already be done.” I decided to ignore that argument when the
actual solutions came too close to “See how well I can do this using dirty tricks!”. If we can do better,
without harming the system, let's do it: Lua did it, C did it and evenDonKnuth switched fromPascal to
C. If we want we can put all the extensions under the “TEX is meant to be extended” umbrella, as long
as we call it different, which is what we do. But I admit that one has to (emotionally) cross a boundary
of feeling comfortable with fundamental additions to a program like TEX. But I've been around long
enough to not feel guilty about it.

So in the end that means that for instance marks were extended, inserts got more options, glyphs
and boxes havewaymore properties, (the result and handling of) paragraphs can be better controlled,
page breaking got hooks (andmight be extended), local boxes got redone, adjustmentswere extended,
the math machinery has been completely opened up, hyphenation became more powerful, the font
mechanism got more control and new scaling features, alignments got some extensions, we can do
more with boxes, etc. But often I still first had to convincemyself that it's okay to do so. After all, none
of this hadhappenedbefore and tomyknowledge alsohasnot been considered inways that resulted in
an implementation (but I might be wrong here). It helps that I can test out experiments in production
versions of LMTX and that users are quite willing to test.

2.5 Extending the macro language

In the previous section somemechanismswerementioned, but before TEX even ends up theremacros
andprimitives come intoplay. TheLuaTEXenginealreadyhas somehandyextras, likeways toprepend
and append tokens and a limited so called ‘local control’ mechanism (think of nested main loops).
There are some new look head and expansions related primitives and csname related tricks. There
are a fewmore conditionals too. Details can be found in manual and articles.

In LuaMetaTEX somemore got added and some of thesemechanismcould be improved and the reason
again is that I aim at readable code. Most programming languages for instance have conditionals with
some kind of continuation (like elseif) and so I added that to TEX too \orelse. Actually, there are
even more new conditionals than in LuaTEX. Yes, we don't really need these, especially because in
LuaMetaTEX we can now extend the primitive language via Lua, but I wanted to improve readability
deep down in ConTEXt. It also reduces the clutter when logging, although logging itself has been quite
a bit overhauled. There is less need for intermediate (often not that natural) intermediate layers when
we can do it properly in primitive TEX lingua.

More fundamental was extending the way TEX deals with macro arguments. Although the extensions
to parsing them are using specifiers that make them upward compatible I admit that even I have to
consult a list of possibilities every now and then but in the end they make things better (performance
wise with less code). As a side effect themacromachinery could be optimized a bit (expansion as well
as the save stacking).

There are a few more ways to store integers and dimensions (these fit in nicely), there are new into
grouping, someprimitives havemore keywords and therefore scanners have been extended, the𝜀-TEX
expression handlers have alternative variants.

Eventually 1.0 10

Although this is a sensitive aspect of TEX when it comes to compatibility, at some point I decided that
it made no sense to not expose more details about nodes, input, and nesting states. The grouping
and input related stacks had been optimized in the meantime so reporting in that area was already
not compatible. Improving logging is an ongoing effort and I don't really loose sleep over it not be
ing compatible, as long as it gets better. There is now also some tracing for marks, inserts, math and
alignments.

2.6 Refactoring the code base

This is again an emotionally laden decision: what to touch and keep. For sure we keep the original
comments but that doesn't make it literate. We started out with a C base that came from converted
Pascal web.

The input machinery is a bit different due to the fact that Lua can (and often has to) kick in. In
LuaMetaTEX it's even more different because even more goes via Lua. We cannot even run the en
gine without a basic set of callbacks assigned: if you don't like that, use LuaTEX. Does this violate the
TEX concept? Not really, because system dependencies are explicitly mentioned as such in the source
code. We have to adapt to the way an operating system sees files anyway (eight bit, utf8, utf16).

We still have many global variables (a practical Knuth thing I guess) but now they are grouped into
structures so that we can more clearly see where they belong. This involved quite a but of shuffling
and editing but I got there. In LuaMetaTEX all constants (coded inmacros) became enumerations, and
all hard coded values too which was quite a bit of work too. Probably no one will notice or realize that,
but starting froman existing code base ismorework than starting fromscratch, which iswhat I always
did so far. When possible we use case statements. Most macros became (inline) functions. Complex
functions got better variable names. All functions are in name spaces. This was (and is) a stepwise
process that takes lots of time, especially because ConTEXt users expect a reasonable stable system
and changes like that are sensitive for errors.

Talking of errors, the error and reporting system has been overhauled, so for instance we have now a
dedicated string formatter. This all happened in several steps: normalization, consistency, abstrac
tion, formatters, etc. Keep inmind that we not only have the originalmessages but also new ones. And
we have TEX, Lua and MetaPost communicating with the user. Where in LuaTEX we have to conform
more to the traditional engine, because that is what othermacro packages rely on, In ConTEXt we have
more freedom, so we canmake it better andmore detailed. Of course it could all be controlled by con
figurations but at some point I decided to kick out variables doing that because it made no sense to
complicate the code base.

Memory management has been overhauled (more dynamic) as has dumping to the (more efficient)
format file. Withwhat ismentioned in the previous paragraphswe can safely say that in themeantime
back porting to LuaTEX (which I had in mind) makes no sense any longer. There is occasionally some
pressure to let LuaTEX do the same as other engines (new common features) and that doesn't always
fit into themodel. There is no need for LuaMetaTEX to follow up on that because often we already have
plenty of possibilities. There is of course still work todo, for instance I still have tomake some variable
names in functions more verbose but that is not fundamental. I also have to go over the documenta
tion in the code. I might make some interfaces more consistent anyway, so that also would demand
adaptations. And of course the documentation in general always lags behind.

So far I only mentioned dealing with TEX, but keep in mind that in LuaMetaTEX we also have an up
graded MetaPost: only a Lua backend (we can produce pdf from that other output), no font code, a

11 Eventually 1.0

couple of extensions, more callbacks, io via Lua. Scanners make extending the language possible and
injectors make for efficient piping back to MetaPost. Such extensions are also possible in TEX and the
LuaMetaTEX scanning interfaces have been improved and extended too. We have extra callbacks (but
some were dropped), more helpers (most noticeable in the node namespace), libraries that improve
dealing with binary files, a reworked token library (which in turn lead to a reorganization of command
codes in the TEX engine), a fewmore extensions if Lua file handling and string manipulations. We got
decimal math, complex math, new compression libraries, better (Lua) memory management, a few
optional library interfaces, etc. Fortunately that all didn't bloat the binary.

So, because in the meantime LuaMetaTEX is quite different from LuaTEX, we can consider the last one
to be a prototype for the real deal.

2.7 Simplifying the build

Thiswasoneof thefirst things I did. Itwas a curiousprocess of removingmore andmoreof the original
build (all kind of dependencies) which is not entirely trivial because of the way the LuaTEX build is set
up. I admit that I did try to stay within the regular source build concept but after a while I realized that
this made no sense so we (Mojca was involved in that) made the move to cmake. Shortly after that I
started using Visual Studio as editing environment (which saves time and is rather convenient) and
native compilation underMSWindows became possible without any specialmeasures (in fact, setting
up the build for arm processors was more work).

A side effect is that right from the start we could provide binaries for various platforms via the compile
farm on the ConTEXt garden maintained by Mojca, who also does daily TEX live builds there. On my
machine I use the Windows Linux Subsystem for cross compilation but we can also do native builds.
And, with my laptop being a robust 2013 old timer I force myself to make sure that LuaMetaTEX keeps
performing well.

2.8 Because it just makes sense

So, in the end LuaMetaTEX is likely the engine most different from the Knuthian original but from the
above one can conclude that this was a graduate process where I got more audacious over time. In the
end the only thing thatmatters (and I believe that Don Knuth agrees with this) that you like writing the
code, feel confident that the code is all right, explore the possibilities, try to improve the quality and
understanding and that successive rewrites can reduce obscurity. And in my opinion we didn't loose
the TEX look and feel and still can operatewell within the established boundaries of the TEX ecosystem.
The fact thatmost ConTEXt users in themeantime use LuaMetaTEX and the related LMTX variant is an
indication that they are okay with it, and that is what matters most.

A new unit: dk 12

3 A new unit: dk

At the ConTEXt 2021 meeting I mixed my TEX talks with showing some of the (upcoming) LuaMetaTEX
source code. One evening we had a extension party where a new unit was implemented, the dk. This
event was triggered by a remark Hraban [Ramm]made on the participants list in advance of themeet
ing, where he pointed to a Wikipedia article from which we quote:

“In issue33,Madpublishedapartial table of the “Potrzebie SystemofWeights andMeasures”, de
veloped by 19-year-old Donald E. Knuth, later a famed computer scientist. According to Knuth,
the basis of this new revolutionary system is the potrzebie, which equals the thickness of Mad
issue 26, or 2.2633484517438173216473mm [...].””

So, as the result of that session, the source code now has this comment:

“We support the Knuthian Potrzebie, cf. en.wikipedia.org/wiki/Potrzebie, as the dk unit.
It was added on 2021-09-22 exactly when we crossed the season during an evening session at
the 15th ConTEXt meeting in Bassenge (Boirs) Belgium. It took a few iterations to find the best
numerator and denominator, but Taco Hoekwater, Harald Koenig andMikael Sundqvist figured
it out in this interactive session. The error messages have been adapted accordingly and the
scanner in the Lua tex library also handles it. One dk is 6.43985pt. There is no need to make
MetaPost aware of this unit because there it is just a numeric multiplier in a macro package.””

When compared to the already present units the dk nicely fills a gap:

unit points scaled visual
sp 0.00002 1
pt 1.0 65536
bp 1.00374 65781
dd 1.07 70124
mm 2.84526 186467
dk 6.43985 422042
pc 12.0 786432
cc 12.8401 841489
cm 28.45274 1864679
in 72.26999 4736286

Deep down, the unit scanner uses a numerator and denominator in order tomap the given value onto
the internally used scaled points, so the relevant snippet of C is:

*num = 49838; // 152940;
*denom = 7739; // 23749;
return normal_unit_scanned;

The impact on performance of scanning an additional unit can be neglected because the scanning
code is a bit different from the code in LuaTEX and (probably the) other engines anyway.

Under consideration are a few extra units in the relative_unit_scanned category that we see in css:
vw (relative to the \hsize), vh (relative to the \vsize), maybe a percentage (but of what) and ch (width
of the current zero digit character). As usual with TEXies, once it's there it will be (ab)used.

13 A new unit: dk

Anchoring 14

4 Anchoring

4.1 Introduction

It is valid to question what functionality should be in the engine and what can best be implemented
using callbacks and postprocessing of lists (and boxes) relying for instance on attributes as signals. In
LuaTEX we are rather strict in this and assume that the secondmethod is used. In LuaMetaTEX we still
promote this but at the same time some (lightweight) functionality has been added to the engine that
helps implementing some features more efficiently. Reasons are that it can be handy to carry (funda
mental) properties around that are bound to nodes and that we can set them using primitives, espe
cially for glyphs and boxes. That way they become part of the formal functionality that one can argue
should be present in amodern engine. Examples for glyph nodes are scales, offsets and hyphenation,
detailed ligature andkerning control. For boxnodeswehave for instance offsets and orientation. Most
of these are always taken into account by coremechanisms like breaking paragraphs into lines, where
dimensions matter in which case it really makes sense for them to be part of the engine design.

Someproperties are just passed on to for instance a font handler or the backendbut still they belong to
the core functionality. An example of the later is a (new) simplemechanism for anchoring boxes. This
is not really a fundamental feature, because one can just move content around using a combination
of kerning and boxing, either or not with offsets. But because we already have features like offsets to
boxes it was not that much work to add anchoring as a more fundamental property. The frontend is
agnostic to this feature because dimensions are kind of virtual here: the backend however carries the
real burden. Because backends are written in Lua it might have a performance hit simply because at
least we need to check if this feature is used. Normally that can compensatedwhen this feature is used
because less work and shuffling around happens in the frontend. And when this feature is no longer
experimental (and stays) we can gain some back by using it in existing scenarios. It soundsworse than
it is because for orientations we already have to do some usage checking and we can share that check;
in most situations nothing needs to be done anyway.

4.2 The low level approach

When we anchor, a box can be a source and/or a target. Both are represented by a number and can be
assigned via a keyword. These numbers can be picked up by the backend. Here is an example:

\def\TestMe#1{%
\setbox \scratchbox \ruledvbox

source 123
orientation #1
\bgroup

\hsize7cm
\samplefile{zapf}
\hbox to 0pt

source 124 target 123
xoffset 20pt yoffset -30pt
{\darkred \bfc TEST1}%

\hbox to 0pt
source 125 target 124
xoffset 10pt yoffset -20pt

15 Anchoring

{\darkblue \bfc TEST2}%
\egroup

\box \scratchbox
}

This example also uses a few offsets. The ‘origin’ is at the left edge of the baseline. Now, we could have
passed the source and target as attribute and intercepting an attribute in the backend canwork pretty
well. However, the code that deals with the final result of the typesetting and thereby flushes it to for
instance a pdf file is, at least that is the setupweuse in ConTEXt, attribute agnostic. Mixing in attributes
at that stage, except for user nodes and whatsits that are effectively plugins, is counter intuitive and
all is already pretty complex so a clear separation of functionality makes a lot of sense. Of course the
ConTEXt approach is not the only one when it comes to generic engine functionality. Not that many
fundamental (conceptual) extensions showed up over the last few decades so no one will bother if in
LuaMetaTEX we have new stuff that is only used by ConTEXt. The example code shown here gives:

Coming back to the use of typefaces in
electronic publishing: many of the new
typographers receive theirknowledgeand
information about the rules of typogra
phy from books, from computer maga
zines or the instruction manuals which
they getwith the purchase of a PC or soft
ware. There isnot somuchbasic instruc
tion, as of now, as there was in the old
days, showing thedifferencesbetweengood
and bad typographic design. Many peo
pleare just fascinatedby theirPC's tricks,
and think that awidely--praisedprogram,
called up on the screen, will make every
thing automatic from now on.

TEST1
TEST2

Com
ing

back
to

the
use

of
typefaces

in
electronic

publishing:
m
any

ofthe
new

typographersreceive
theirknow

ledge
and

inform
ation

about
the

rules
of

typogra
phy

from
books,from

com
puter

m
aga

zines
or

the
instruction

m
anuals

w
hich

they
getw

ith
the

purchase
ofa

PC
orsoft

w
are.There

isnotso
m
uch

basicinstruc
tion,as

of
now

,as
there

w
as

in
the

old
days,show

ing
the

differencesbetw
een

good
and

bad
typographic

design.
M
any

peo
ple

are
justfascinated

by
theirPC'stricks,

and
think

thata
w
idely--praised

program
,

called
up

on
the

screen,w
illm

ake
every

thing
autom

atic
from

now
on.

TEST1
TEST2

Comingbacktotheuseoftypefacesin
electronicpublishing:manyofthenew
typographersreceivetheirknowledgeand
informationabouttherulesoftypogra
phyfrombooks,fromcomputermaga
zinesortheinstructionmanualswhich
theygetwiththepurchaseofaPCorsoft
ware.Thereisnotsomuchbasicinstruc
tion,asofnow,astherewasintheold
days,showingthedifferencesbetweengood
andbadtypographicdesign.Manypeo
plearejustfascinatedbytheirPC'stricks,
andthinkthatawidely--praisedprogram,
calleduponthescreen,willmakeevery
thingautomaticfromnowon.

TEST1
TEST2

Co
m
in
g
ba

ck
to

th
e
us

e
of

ty
pe

fa
ce

s
in

el
ec

tr
on

ic
pu

bl
is
hi
ng

:
m
an

y
of

th
e
ne

w
ty
po

gr
ap

he
rs

re
ce

iv
e
th

ei
rk

no
w
le
dg

e
an

d
in
fo
rm

at
io
n

ab
ou

t
th

e
ru

le
s
of

ty
po

gr
a

ph
y
fr
om

bo
ok

s,
fr
om

co
m
pu

te
r
m
ag

a
zi
ne

s
or

th
e
in
st
ru

ct
io
n
m
an

ua
ls

w
hi
ch

th
ey

ge
tw

ith
th

e
pu

rc
ha

se
of

a
PC

or
so

ft

w
ar

e.
Th

er
e
is
no

ts
o
m
uc

h
ba

si
ci

ns
tr
uc

tio

n,
as

of
no

w
,a

s
th

er
e
w
as

in
th

e
ol
d

da
ys

,s
ho

w
in
g
th

e
di
ff
er

en
ce

sb
et
w
ee

n
go

od
an

d
ba

d
ty
po

gr
ap

hi
c
de

si
gn

.
M
an

y
pe

o
pl
e
ar

e
ju
st

fa
sc

in
at
ed

by
th

ei
rP

C'
st

ri
ck

s,
an

d
th

in
k
th

at
a
w
id
el
y-
-p

ra
is
ed

pr
og

ra
m
,

ca
lle

d
up

on
th

e
sc

re
en

,w
ill

m
ak

e
ev

er
y

th
in
g
au

to
m
at
ic

fr
om

no
w

on
.

TE
ST

1
TE

ST
2

orientation
0

orientation 1 orientation
2

orientation 3

In order to avoid additional shifting around, which thenmight involve copying and injecting boxes as
well as repackaging, two additional keys are available and these deal with the way boxes get anchored.

\vbox
source 123
\bgroup

\offinterlineskip
\blackrule[width=4cm,height=2cm,depth=0cm,color=darkred]\par
\blackrule[width=4cm,height=0cm,depth=1cm,color=darkblue]\par
\setbox\scratchboxtwo\hbox

anchors "0004 "0001
% anchor "00040001
target 123
orientation 1
{\blackrule[width=2cm,height=1cm,depth=0cm,color=darkgreen]%
\hskip-2cm
\blackrule[width=2cm,height=0cm,depth=1cm,color=darkyellow]}%

%
\smash{\box\scratchboxtwo}%

Anchoring 16

\egroup

The anchor is just an number but with the plural keyword we can scan it as two because that is a bit
easier on usage. The two numbers four byte numbers control the source to target anchoring and there
is plenty room for future extensions because not all bits are used.

0x001 left origin
0x002 left height
0x003 left depth
0x004 right origin
0x005 right height
0x006 right depth
0x007 center origin
0x008 center height
0x009 center depth
0x00A halfway total
0x00B halfway height
0x00C halfway depth
0x00D halfway left
0x00E halfway right

The target and source are handled in a way that sort of naturally binds them which involves a little
juggling with dimensions in the backend. There is some additional control over this but usage is not
advertized here because it might change.

One can set these anchoring related properties with keywords but there are also primitive boxmanip
ulators: \boxanchor, \boxanchors, \boxsource and \boxtarget that take a box number and value.

There are some helpers at the Lua end but I haven't completely made up my mind about them. Nor
mally that evolves with usage.

4.3 A first higher level interface

Exploring this here inmore detailmakes no sense because it is still experimental and also rather Con
TEXt specific. As a teaser an interface that hooks into layers is shown:

\defineanchorboxoverlay[framed]

\def\DemoAnchor#1#2#3#4%
{\setanchorbox

[#1]%
[target={#3},source={#4}]%

17 Anchoring

\hbox{\backgroundline[#2]{\white\smallinfofont\setstrut\strut target=#3
source=#4}}}

\def\DemoAnchorX#1#2%
{\DemoAnchor{#1}{darkred} {#2}{left,top}%
\DemoAnchor{#1}{darkblue} {#2}{left,bottom}%
\DemoAnchor{#1}{darkgreen} {#2}{right,bottom}%
\DemoAnchor{#1}{darkyellow}{#2}{right,top}}%

\startsetups framed:demo
\DemoAnchorX{framed:background}{left,top}%
\DemoAnchorX{framed:background}{right,top}%
\DemoAnchorX{framed:background}{left,bottom}%
\DemoAnchorX{framed:background}{right,bottom}%
\DemoAnchorX{framed:foreground}{middle}%

\stopsetups

\midaligned\bgroup
\framed
[align=normal,
width=.7\textwidth,
backgroundcolor=gray,
background={color,framed:background,foreground,framed:foreground}]
\bgroup
\samplefile{zapf}\par
\directsetup{framed:demo}%
\samplefile{zapf}%

\egroup
\egroup

Those familiar with ConTEXtwill recognize the approach. This one basically is amore low level variant
of layers and a high level variant of the primitives. Performance wise (in terms of memory usage and
runtime) it sits in a sweet spot.

Anchoring 18

target=left,top source=left,toptarget=left,top source=left,bottomtarget=left,top source=right,bottomtarget=left,top source=right,toptarget=right,top source=left,toptarget=right,top source=left,bottomtarget=right,top source=right,bottomtarget=right,top source=right,toptarget=left,bottom source=left,toptarget=left,bottom source=left,bottomtarget=left,bottom source=right,bottomtarget=left,bottom source=right,toptarget=right,bottom source=left,toptarget=right,bottom source=left,bottomtarget=right,bottom source=right,bottomtarget=right,bottom source=right,top

Coming back to the use of typefaces in electronic publishing: many of
the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the
instruction manuals which they get with the purchase of a PC or soft
ware. There is not so much basic instruction, as of now, as there was
in the old days, showing the differences between good and bad typo
graphic design. Many people are just fascinated by their PC's tricks,
and think that a widely--praised program, called up on the screen, will
make everything automatic from now on.
Coming back to the use of typefaces in electronic publishing: many of
the new typographers receive their knowledge and information about
the rules of typography from books, from computer magazines or the
instruction manuals which they get with the purchase of a PC or soft
ware. There is not so much basic instruction, as of now, as there was
in the old days, showing the differences between good and bad typo
graphic design. Many people are just fascinated by their PC's tricks,
and think that a widely--praised program, called up on the screen, will
make everything automatic from now on.

target=middle source=left,toptarget=middle source=left,bottomtarget=middle source=right,bottomtarget=middle source=right,top

I played a bit with a mechanism that can store the embedded (to be anchored) content in a more in
dependent way and it actually works okay. However, I'm not entirely sure if that solution is the best so
for now it's commented. As usual it is also up to users to come up with demands.

19 Anchoring

A different approach to math spacing 20

5 A different approach to math spacing

Introduction

The TEX engine is famous for its rendering of math and even after decades there is no real contender.
And so there also is no real pressure to see if we can do better. However, when Mikael Sundqvist ran
into a Swedish math rendering specification and we started discussing a possible support for that in
ConTEXt, it quickly became clear that theway TEXdoes spacing is a bit less flexible than onewishes for.
We already havemuch of what is needed in place but it also has to work well with how TEX sees things:

1. Math is made from a sequence of atoms: a quantity with a nucleus, superscript subscript.4 Atoms
are spaced by \thinmuskip, \medmuskip and \thickmuskip or nothing, and that is sort of hard
coded.

2. Atomsare organizedby class and there are seven (or eight, depending onhowyou look at it) of them
visible: binary symbols, relations, etc. The invisible ones, composites like fractions and fenced
material (we call themmolecules) are at somepointmappedonto the core set. Molecules like fences
have a different class left and right of the fencedmaterial.

3. In addition the engine itself has all kind of spacing related parameters and these kick in automati
cally and sometimes have side effects. The same is true for penalties.

The normal approach to spacing other than imposed by the engine is to use correction space, like \,
and I think that quite some TEX users think that this is how it is supposed to be. The standard way to
enter math relates to scientific publishing and there the standards are often chiseled in stone so why
shouldusers tweakanyway. However, inConTEXtwe tend to start from theusers andnot thepublishers
end so there we can decide to follow different routes. Users can always work around something they
don't like but we focus on reliable input giving predictable output. Also, when reading on, it is good
to realize that it is all about the user experience here: it should look nice (which then of course makes
one become aware of issues elsewhere) and we don't caremuch about specific demands of publishers
in the scientific field: the fact that they often re-key content doesn't gowell with users paying attention
themselves, let alone the fact that nowadays they can demand word processor formats.

The threementioned steps arefine for the average casebut sometimesmakeno sense. Itwasdefinitely
the best approach given time and resources but when LuaTEXwent OpenType a lot of parameterswere
added and at that time we therefore added spacing by class pair. That not only decoupled the relation
between the three (configurable) muskip parameters but also made it possible to use plenty of them.
Now it must be said that for consistency having these three skips works great but given the tweaking
expected from users consistency is not always what comes out.

This situation is very well comparable to the proclaimed qualities of the typesetting of text by TEX. Yes,
it can do a great job, and often does, but users can mess up quite well. I remember that when we did
tests with hz the outcomes were pretty unimpressive. When you give an audience a set of sample ren
derings, where each sample is slightly different and each user gets a randomized subset, the sudden
lack of being able to compare (and agree) with another TEXie makes for interesting conclusions. They
look for the opposites of what is claimed to be perfect. So, two lines with hyphens rate low, even if not
doing it would look worse. The same for a few short words in the last line of a paragraph. Excessive
spacing is also seen as bad. So, when askedwhy some paragraphs looked okay noticing (excessive and
troublesome) expansion was not seen as a problem; instead it were hyphens that got the attraction.

4 I suddenly realize why in the engine noads have a nucleus field: they are atoms . . . but what does that make super and subscripts.

21 A different approach to math spacing

The same is probably true formath: the inputwith lots of correction spaces or commandswhere char
acterswould do can be horrible but it's just theway it is supposed to be. The therefore expected output
can only be perfect, right, independent of how one actually messed up spacing. But personally I think
that it is often spacing messed up by users that make a TEX document recognizable. It compares to
word processor results that one can sometimes identify bymultiple consecutive spaces in the typeset
text instead of using a glue model like TEX. Reaching perfection is not always trivial, but fortunately
we can also find plenty of nice looking documents done with TEX.

The TEXbook has an excellent and intriguing chapter on the fine points ofmath and it definitely shows
whyDonKnuthwrote TEX as a tool for his books. He pays a lot of attention to detail and that is also why
it all works out so well. If you need to render from unseen sources (as happens in an xml workflow)
coming from several authors and have time nor money to check everything, you're off worse. And
I'm not even talking of input where invisible Unicode spacing characters are injected. It is the TEX
book(s) that has drawn me to this program and believe it or not, in the first project I was involved in
that demanded typeset (quantummechanics) math the ibm typewriter with changing bulbs ruled the
scenery. In fact, our involvementwas quickly cut off whenwe dared to show a chapter done in TEX that
looked better.

Apart from an occasional tweak, in ConTEXt we never really used this opened upmath atompair spac
ingmechanism available in LuaTEX extensively. So, when I was pondering how to proceed it strokeme
that it wouldmake sense to generalize thismechanism. It was already possible (via amodeparameter)
to bypass the second stepmentioned above, butwedefinitely neededmore than the visible classes that
the engine had. In ConTEXt we already had more classes but those were meant for assigning charac
ters and commands to specific math constructs (think of fences, fractions and radicals) so in the end
they were not really classes. Considering this option wasmade easier by the fact that Mikael would do
the testing and help configuring the defaults, which all will result in a newmath user manual.

There are extensions introduced in LuaTEX and later LuaMetaTEX that are not discussed here. In this
expose we concentrate on the features that were explored, extended and introduced while we worked
on updating math support in LMTX.

An example

Before we go into details, let's give an example of unnoticed spacing effects. We use three simple for
mulas all using fractions:

\ruledhbox{$\frac{x^2}{a+1}$}

and:

\ruledhbox{$x + \frac{x^2}{a+1} = 10$}

as well as:

\ruledhbox{$\frac{1}{2}\frac{1}{2}x$}

𝑥2

𝑎+1
𝑥 + 𝑥2

𝑎+1
= 10 1

2
1
2
𝑥

A different approach to math spacing 22

If you look closely you see that the fraction has a little space at the left and right. Where does that come
from? Because we normally don't put a tight frame around a fraction, we are not really aware of it.
The spacing between what are called ordinary, operator, binary, relation and other classes of atoms is
explained in the TEXbook (or “TEX by Topic” if you want a summary) and basically we have a class by
class matrix that is built into TEX. The engine looks at successive items and spacing depends on their
(perceived) class. Because the number of classes is limited, and because the spacing pairs are hard
coded, the engine cheats a little. Depending onwhat came before or comes next the class of an atom is
adapted to suit the spacing matrix. One can say that a “reading mathematician” is built in. And most
of the decisions are okay. If needed one can alwayswrap something in e.g.\mathrel but of course that
also can interfere with grouping. All this is true for TEX, pdfTEX, X ETEX and LuaTEX, but a bit different
in LuaMetaTEX as we will see.

The little spacing on both edges of the fraction is a side effect of the way they are built internally: frac
tions are actually a generalized form of “stuff put on top of other stuff” and they can have left and/or
right delimiters: this is driven by primitives that have names like \atop and \atopwithdelims. The
way the components are placed is (especially in the case of OpenType) driven by lots of parameters
and I will leave that out of the discussion.

When there are no delimiters, a so called \nulldelimiterspace will be injected. That parameter is
set to 1.2 points and I have to admit that in ConTEXt I never considered letting that one adapt to the
body font size, which means that, as we default to a 12 point body font, the value there should have
been 1.44 points: mea culpa. When we set this parameter to zero point, we get this:

𝑥2

𝑎+1
𝑥 + 𝑥2

𝑎+1
= 10 1

2
1
2
𝑥

As intermezzoandmomentof contemplation I showsomeexamplesof fractionsmixed into text. When
we have the delimiter space set we get this:

test 1
1
test 1

2
test 1

3
test 1

4
test 1

5
test 1

6
test 1

7
test 1

8
test 1

9
test 1

10
test 1

11
test 1

12
test 1

13
test 1

14
test 1

15

test 1
16

test 1
17

test 1
18

test 1
19

test 1
20

test 1
21

test 1
22

test 1
23

test 1
24

test 1
25

test 1
26

test 1
27

test 1
28

test
1
29

test 1
30

test 1
31

test 1
32

test 1
33

test 1
34

test 1
35

test 1
36

test 1
37

test 1
38

test 1
39

test 1
40

test 1
41

test 1
42

test 1
43

test 1
44

test 1
45

test 1
46

test 1
47

test 1
48

test 1
49

test 1
50

test 1
51

test 1
52

test 1
53

test 1
54

test 1
55

test
1
56

test 1
57

test 1
58

test 1
59

test 1
60

test 1
61

test 1
62

test 1
63

test 1
64

test 1
65

test 1
66

test 1
67

test 1
68

test 1
69

test 1
70

test 1
71

test 1
72

test 1
73

test 1
74

test 1
75

test 1
76

test 1
77

test 1
78

test 1
79

test 1
80

test 1
81

test 1
82

test
1
83

test 1
84

test 1
85

test 1
86

test 1
87

test 1
88

test 1
89

test 1
90

test 1
91

test 1
92

test 1
93

test 1
94

test 1
95

test 1
96

test 1
97

test 1
98

test 1
99

test 1
100

While with zero it looks like this, quite a different outcome:

23 A different approach to math spacing

test 1
1
test 1

2
test 1

3
test 1

4
test 1

5
test 1

6
test 1

7
test 1

8
test 1

9
test 1

10
test 1

11
test 1

12
test 1

13
test 1

14
test 1

15
test 1

16

test 1
17

test 1
18

test 1
19

test 1
20

test 1
21

test 1
22

test 1
23

test 1
24

test 1
25

test 1
26

test 1
27

test 1
28

test 1
29

test 1
30

test
1
31

test 1
32

test 1
33

test 1
34

test 1
35

test 1
36

test 1
37

test 1
38

test 1
39

test 1
40

test 1
41

test 1
42

test 1
43

test 1
44

test 1
45

test 1
46

test 1
47

test 1
48

test 1
49

test 1
50

test 1
51

test 1
52

test 1
53

test 1
54

test 1
55

test 1
56

test 1
57

test 1
58

test 1
59

test
1
60

test 1
61

test 1
62

test 1
63

test 1
64

test 1
65

test 1
66

test 1
67

test 1
68

test 1
69

test 1
70

test 1
71

test 1
72

test 1
73

test 1
74

test 1
75

test 1
76

test 1
77

test 1
78

test 1
79

test 1
80

test 1
81

test 1
82

test 1
83

test 1
84

test 1
85

test 1
86

test 1
87

test 1
88

test
1
89

test 1
90

test 1
91

test 1
92

test 1
93

test 1
94

test 1
95

test 1
96

test 1
97

test 1
98

test 1
99

test 1
100

A little tracing shows it more clearly:

test 1H__

1H__
__VH__H__ test 1H__

2H__
__VH__H__ test 1H__

3H__
__VH__H__ test 1H__

4H__
__VH__H__ test 1H__

5H__
__VH__H__ test 1H__

6H__
__VH__H__ test 1H__

7H__
__VH__H__ test 1H__

8H__
__VH__H__ test 1H__

9H__
__VH__H__ test 1H__

10H__
__VH__H__ test 1H__

11H__
__VH__H__ test 1H__

12H__
__VH__H__ test 1H__

13H__
__VH__H__ test 1H__

14H__
__VH__H__ test 1H__

15H__
__VH__H__

test 1H__

16H__
__VH__H__ test 1H__

17H__
__VH__H__ test 1H__

18H__
__VH__H__ test 1H__

19H__
__VH__H__ test 1H__

20H__
__VH__H__ test 1H__

21H__
__VH__H__ test 1H__

22H__
__VH__H__ test 1H__

23H__
__VH__H__ test 1H__

24H__
__VH__H__ test 1H__

25H__
__VH__H__ test 1H__

26H__
__VH__H__ test 1H__

27H__
__VH__H__ test 1H__

28H__
__VH__H__ test

1H__

29H__
__VH__H__ test 1H__

30H__
__VH__H__ test 1H__

31H__
__VH__H__ test 1H__

32H__
__VH__H__ test 1H__

33H__
__VH__H__ test 1H__

34H__
__VH__H__ test 1H__

35H__
__VH__H__ test 1H__

36H__
__VH__H__ test 1H__

37H__
__VH__H__ test 1H__

38H__
__VH__H__ test 1H__

39H__
__VH__H__ test 1H__

40H__
__VH__H__ test 1H__

41H__
__VH__H__ test 1H__

42H__
__VH__H__

test 1H__

43H__
__VH__H__ test 1H__

44H__
__VH__H__ test 1H__

45H__
__VH__H__ test 1H__

46H__
__VH__H__ test 1H__

47H__
__VH__H__ test 1H__

48H__
__VH__H__ test 1H__

49H__
__VH__H__ test 1H__

50H__
__VH__H__ test 1H__

51H__
__VH__H__ test 1H__

52H__
__VH__H__ test 1H__

53H__
__VH__H__ test 1H__

54H__
__VH__H__ test 1H__

55H__
__VH__H__ test

1H__

56H__
__VH__H__ test 1H__

57H__
__VH__H__ test 1H__

58H__
__VH__H__ test 1H__

59H__
__VH__H__ test 1H__

60H__
__VH__H__ test 1H__

61H__
__VH__H__ test 1H__

62H__
__VH__H__ test 1H__

63H__
__VH__H__ test 1H__

64H__
__VH__H__ test 1H__

65H__
__VH__H__ test 1H__

66H__
__VH__H__ test 1H__

67H__
__VH__H__ test 1H__

68H__
__VH__H__ test 1H__

69H__
__VH__H__

test 1H__

70H__
__VH__H__ test 1H__

71H__
__VH__H__ test 1H__

72H__
__VH__H__ test 1H__

73H__
__VH__H__ test 1H__

74H__
__VH__H__ test 1H__

75H__
__VH__H__ test 1H__

76H__
__VH__H__ test 1H__

77H__
__VH__H__ test 1H__

78H__
__VH__H__ test 1H__

79H__
__VH__H__ test 1H__

80H__
__VH__H__ test 1H__

81H__
__VH__H__ test 1H__

82H__
__VH__H__ test

1H__

83H__
__VH__H__ test 1H__

84H__
__VH__H__ test 1H__

85H__
__VH__H__ test 1H__

86H__
__VH__H__ test 1H__

87H__
__VH__H__ test 1H__

88H__
__VH__H__ test 1H__

89H__
__VH__H__ test 1H__

90H__
__VH__H__ test 1H__

91H__
__VH__H__ test 1H__

92H__
__VH__H__ test 1H__

93H__
__VH__H__ test 1H__

94H__
__VH__H__ test 1H__

95H__
__VH__H__ test 1H__

96H__
__VH__H__

test 1H__

97H__
__VH__H__ test 1H__

98H__
__VH__H__ test 1H__

99H__
__VH__H__ test 1H__

100H__
__VH__H__

You can zoom in and see where it interferes with margin alignment.

test 1H__

1H__
__VH__H__ test 1H__

2H__
__VH__H__ test 1H__

3H__
__VH__H__ test 1H__

4H__
__VH__H__ test 1H__

5H__
__VH__H__ test 1H__

6H__
__VH__H__ test 1H__

7H__
__VH__H__ test 1H__

8H__
__VH__H__ test 1H__

9H__
__VH__H__ test 1H__

10H__
__VH__H__ test 1H__

11H__
__VH__H__ test 1H__

12H__
__VH__H__ test 1H__

13H__
__VH__H__ test 1H__

14H__
__VH__H__ test 1H__

15H__
__VH__H__ test 1H__

16H__
__VH__H__

test 1H__

17H__
__VH__H__ test 1H__

18H__
__VH__H__ test 1H__

19H__
__VH__H__ test 1H__

20H__
__VH__H__ test 1H__

21H__
__VH__H__ test 1H__

22H__
__VH__H__ test 1H__

23H__
__VH__H__ test 1H__

24H__
__VH__H__ test 1H__

25H__
__VH__H__ test 1H__

26H__
__VH__H__ test 1H__

27H__
__VH__H__ test 1H__

28H__
__VH__H__ test 1H__

29H__
__VH__H__ test 1H__

30H__
__VH__H__ test

1H__

31H__
__VH__H__ test 1H__

32H__
__VH__H__ test 1H__

33H__
__VH__H__ test 1H__

34H__
__VH__H__ test 1H__

35H__
__VH__H__ test 1H__

36H__
__VH__H__ test 1H__

37H__
__VH__H__ test 1H__

38H__
__VH__H__ test 1H__

39H__
__VH__H__ test 1H__

40H__
__VH__H__ test 1H__

41H__
__VH__H__ test 1H__

42H__
__VH__H__ test 1H__

43H__
__VH__H__ test 1H__

44H__
__VH__H__ test 1H__

45H__
__VH__H__

test 1H__

46H__
__VH__H__ test 1H__

47H__
__VH__H__ test 1H__

48H__
__VH__H__ test 1H__

49H__
__VH__H__ test 1H__

50H__
__VH__H__ test 1H__

51H__
__VH__H__ test 1H__

52H__
__VH__H__ test 1H__

53H__
__VH__H__ test 1H__

54H__
__VH__H__ test 1H__

55H__
__VH__H__ test 1H__

56H__
__VH__H__ test 1H__

57H__
__VH__H__ test 1H__

58H__
__VH__H__ test 1H__

59H__
__VH__H__ test

1H__

60H__
__VH__H__ test 1H__

61H__
__VH__H__ test 1H__

62H__
__VH__H__ test 1H__

63H__
__VH__H__ test 1H__

64H__
__VH__H__ test 1H__

65H__
__VH__H__ test 1H__

66H__
__VH__H__ test 1H__

67H__
__VH__H__ test 1H__

68H__
__VH__H__ test 1H__

69H__
__VH__H__ test 1H__

70H__
__VH__H__ test 1H__

71H__
__VH__H__ test 1H__

72H__
__VH__H__ test 1H__

73H__
__VH__H__ test 1H__

74H__
__VH__H__

test 1H__

75H__
__VH__H__ test 1H__

76H__
__VH__H__ test 1H__

77H__
__VH__H__ test 1H__

78H__
__VH__H__ test 1H__

79H__
__VH__H__ test 1H__

80H__
__VH__H__ test 1H__

81H__
__VH__H__ test 1H__

82H__
__VH__H__ test 1H__

83H__
__VH__H__ test 1H__

84H__
__VH__H__ test 1H__

85H__
__VH__H__ test 1H__

86H__
__VH__H__ test 1H__

87H__
__VH__H__ test 1H__

88H__
__VH__H__ test

1H__

89H__
__VH__H__ test 1H__

90H__
__VH__H__ test 1H__

91H__
__VH__H__ test 1H__

92H__
__VH__H__ test 1H__

93H__
__VH__H__ test 1H__

94H__
__VH__H__ test 1H__

95H__
__VH__H__ test 1H__

96H__
__VH__H__ test 1H__

97H__
__VH__H__ test 1H__

98H__
__VH__H__ test 1H__

99H__
__VH__H__ test 1H__

100H__
__VH__H__

So, if you evermeet auserwhoclaimsperfection and superiority of typesetting, checkout her/hiswork
whichmight have inline fractions done the spacy way. It mightmake other visually typesetting claims
less trustworthy. And yes, one can wonder if margin kerning could help here but as this content is
wrapped in boxes it is unlikely to work out well (and not worth the effort).

In order to get a better picture of the spacing, twomore renderings are shown. This time we show the
bounding boxes of the characters too (youmight need to zoom in to see it):

A different approach to math spacing 24

𝑥2

𝑎+1
𝑥 + 𝑥2

𝑎+1
= 10 1

2
1
2
𝑥

Again we also show the zero case

𝑥2

𝑎+1
𝑥 + 𝑥2

𝑎+1
= 10 1

2
1
2
𝑥

This makes clear why there actually is this extra space around a fraction: regular operators have side
bearings and thereby have some added space. And when we put a fraction in front of a symbol we
need that little extra space. Of course a proper class pair spacing value could do the job but there is
no fraction class. The engine cheats by changing the class depending on what follows or came before
and this is why on the average it looks okay. However, these examples demonstrate that there are
some assumptions with regard to for instance fonts and this is one of the reasons why themore or less
official expected OpenType behavior as dictated by the Cambria font doesn't always work out well for
fonts that evolved from the ones used in the TEX community. Also imagine how this interferes with the
fact that traditional TEX fonts and the machinery do magic with cheating about width combined with
italic correction (all plausible and quite clever but somewhat tricky with respect to OpenType).

Because herewe discuss theway LuaMetaTEX andConTEXt deal with this, the following examples show
a probably unexpected outcome. Again first the non-zero case:

𝑥2
right

𝑎
ordbin
+

bindig
1
𝑥

ordbin
+

binfra

𝑥2
right

𝑎
ordbin
+

bindig
1 frarel
=

reldig
10 1

2 frafra

1
2 fraord
𝑥

And here the zero case:

𝑥2
right

𝑎
ordbin
+

bindig
1
𝑥

ordbin
+

binfra

𝑥2
right

𝑎
ordbin
+

bindig
1frarel
=

reldig
10 1

2frafra

1
2fraord
𝑥

I will not go into details about the way fractions are supported in the engine because some extensions
are already around for quite awhile. Themain observationhere is that in LuaMetaTEXwehave alterna
tive primitives that assume forward scanning, as if the numerator and denominator are arguments.

25 A different approach to math spacing

The engine also supports skewed (vulgar) fractions natively where numerator and denominator are
raised and lowered relative to the (often) slash. Many aspects of the rendering can be tuned in the so
called font goodie files, which is also the place where we define the additional font parameters.

Atom spacing

If you are familiar with traditional TEX you know that there is some built in ordbin spacing. But there
is no such pair for a fraction and a relation, simply because there is no fraction class. However, in
LuaMetaTEX there is one, and we'd better set it up if we zero the margins of a fraction.

It is worth noticing that fractions are sort of special anyway. The official syntax is n \over m and
numerator and denominator can be sub formulas. This is the one case where the parser sort of has
to look back, which is tricky because the machinery is a forward looking one. Therefore, in order to
get the expected styling (or avoid unexpected side effects) one will normally wrap all in braces as in:
{ {n} \over{m} } which of course kind defeats the simple syntax which probably is supported for
1\over2kindofusage, soanext challenge is tomake1/2comeout right. All thismeans that inpractice
we have wrappers like \fracwhich accidentally in LuaMetaTEX can be defined using forward looking
primitives with plenty extra properties driven by keywords. It also means that fractions as expected
by the engine due to wrapping actually can be a different kind of atom, which can have puzzling side
effects with respect to spacing (because the remapping happens unseen).

Interesting is that adapting LuaMetaTEX to amore extensivemodel was quite doable, also because the
codebasehad alreadybeenmademore configurable. Of course it involvedquite a bit of tedious editing
and throwing out already nice and clean code that had taken some effort, but that's the way it is. Of
course more classes also means that some storage properties had to be adapted within the available
space but by sacrificing families that was possible. With 64 potential classes we now are back to 64
families compared to 7 classes and 256 families in LuaTEX and 7 classes and 16 families in traditional
TEX.

Also interesting is that the new implementation is actually somewhat simpler and therefore the binary
is a tad smaller too. But does all that mean that there were no pitfalls? Sure there were! It is worth
noticing that doing all this reminded me of the early days of LuaTEX development, where Taco and
I exchanged binaries and TEX code in a more or less constant way using Skype. For LuaMetaTEX we
used good old mail for files and Mojca's build farm for binaries and Mikael and I spent many months
exchanging information and testing out alternatives on a daily basis: it is in my opinion the only way
to do this and it's fun too. It has been a lot of work but once we got going there was nothing that could
stop us. A side effect was that there were no updates during this period, which was something users
noticed.

In the spacingmatrix there is inner and internally there's also some care to be taken of vcenter. The
inner class is actually shared with the variable class which is not so much a real class but more a
signal to the engine that when an alphabetic or numeric character is included it has to come from a
specific family: upright family zero ormath italic family one in traditional speak. But, what if we don't
have that setup? Well, thenonehas tomakesure that this special classnumber isnot associated (which
is no big deal). It does mean that when we extend the repertoire of classes we cannot use slot seven.
Always keep in mind that classes (and thereby signals) get assigned to characters (some defaults by
the engine, others by the macro package). It is why in ConTEXt we use abstract class numbers, just in
case the engine gets adapted.

A different approach to math spacing 26

We also cannot use slot eight because that one is a signal too: for a possible active math character, a
feature somewhat complicated by the fact that it should not interfere with passing around such active
characters in arguments. In math mode where we have lots of macros passing around content, this
special class works around these side effects. We don't need this feature in ConTEXt because contrary
to other macro packages we don't handle primes, pseudo superscripts potentially followed by other
super and subscripts by making the ' an active character and thereby a macro in math mode. This
trickery again closely relates to preferable input, font properties, and limitations ofmemory and such
at the time TEX showed up (much has to fit into 8, 16 or 32 bits, so there is notmuch room for e.g. more
than 8 classes). Since we started with MkIV the way math is dealt with is a bit different than normally
done in TEX anyway.

Atom rules

Wecannowcontrol the spacing between every atombut unfortunately that is not good enough. There
fore, wearrive at yet another featurebuilt into the engine: turning classes into other classesdepending
on neighbors. And this is precisely why we have certain classes. Let's quote “TEX by Topic”: The cases
* (in the atom spacing matrix) cannot occur, because a bin object is converted to ord if it is the first in the list,
preceded by bin, op, open, punct, rel, or followed by close, punct, or rel; also, a rel is converted to ord
when it is followed by close or punct.

We can of course keep these hard coded heuristics but can as well make that bit of code configurable,
which we did. Below is demonstrated how one can set up the defaults at the TEX end. We use symbolic
names for the classes.

\setmathatomrule \mathbegincode \mathbinarycode % old
\allmathstyles \mathordinarycode \mathordinarycode % new

\setmathatomrule \mathbinarycode \mathbinarycode
\allmathstyles \mathbinarycode \mathordinarycode

\setmathatomrule \mathoperatorcode \mathbinarycode
\allmathstyles \mathoperatorcode \mathordinarycode

\setmathatomrule \mathopencode \mathbinarycode
\allmathstyles \mathopencode \mathordinarycode

\setmathatomrule \mathpunctuationcode \mathbinarycode
\allmathstyles \mathpunctuationcode \mathordinarycode

\setmathatomrule \mathrelationcode \mathbinarycode
\allmathstyles \mathrelationcode \mathordinarycode

\setmathatomrule \mathbinarycode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathbinarycode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

\setmathatomrule \mathbinarycode \mathrelationcode
\allmathstyles \mathordinarycode \mathrelationcode

\setmathatomrule \mathrelationcode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathrelationcode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

27 A different approach to math spacing

Watch the special classwith\mathbegincode. This is actually class 62 so youdon't needmuch fantasy
to imagine that class 63 is \mathendcode, but that one is not yet used. In a similar fashion we can
initialize the spacing itself:5

\setmathspacing \mathordcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathordcode \mathbincode \allsplitstyles \medmuskip
\setmathspacing \mathordcode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathordcode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathopcode \mathordcode \allmathstyles \thinmuskip
\setmathspacing \mathopcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathopcode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathopcode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathbincode \mathordcode \allsplitstyles \medmuskip
\setmathspacing \mathbincode \mathopcode \allsplitstyles \medmuskip
\setmathspacing \mathbincode \mathopencode \allsplitstyles \medmuskip
\setmathspacing \mathbincode \mathinnercode \allsplitstyles \medmuskip

\setmathspacing \mathrelcode \mathordcode \allsplitstyles \thickmuskip
\setmathspacing \mathrelcode \mathopcode \allsplitstyles \thickmuskip
\setmathspacing \mathrelcode \mathopencode \allsplitstyles \thickmuskip
\setmathspacing \mathrelcode \mathinnercode \allsplitstyles \thickmuskip

\setmathspacing \mathclosecode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathclosecode \mathbincode \allsplitstyles \medmuskip
\setmathspacing \mathclosecode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathclosecode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathpunctcode \mathordcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathopcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathrelcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathopencode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathclosecode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathpunctcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathinnercode \mathordcode \allsplitstyles \thinmuskip
\setmathspacing \mathinnercode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathinnercode \mathbincode \allsplitstyles \medmuskip
\setmathspacing \mathinnercode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathinnercode \mathopencode \allsplitstyles \thinmuskip
\setmathspacing \mathinnercode \mathpunctcode \allsplitstyles \thinmuskip
\setmathspacing \mathinnercode \mathinnercode \allsplitstyles \thinmuskip

And because we have a fewmore atom classes this also needs to happen:

\letmathspacing \mathactivecode \mathordinarycode

5 Constant, engine specific, numbers like these are available in tables at the Lua end sowe can change themand users can check that.

A different approach to math spacing 28

\letmathspacing \mathvariablecode \mathordinarycode
\letmathspacing \mathovercode \mathordinarycode
\letmathspacing \mathundercode \mathordinarycode
\letmathspacing \mathfractioncode \mathordinarycode
\letmathspacing \mathradicalcode \mathordinarycode
\letmathspacing \mathmiddlecode \mathopencode
\letmathspacing \mathaccentcode \mathordinarycode

\letmathatomrule \mathactivecode \mathordinarycode
\letmathatomrule \mathvariablecode \mathordinarycode
\letmathatomrule \mathovercode \mathordinarycode
\letmathatomrule \mathundercode \mathordinarycode
\letmathatomrule \mathfractioncode \mathordinarycode
\letmathatomrule \mathradicalcode \mathordinarycode
\letmathatomrule \mathmiddlecode \mathopencode
\letmathatomrule \mathaccentcode \mathordinarycode

With \resetmathspacing we get an all-zero state but that might become more refined in the future.
What is not clear from the above is that there is also an inheritance mechanism. The three special
muskip registers are actually shortcuts so that changing the register value is reflected in the spac
ing. When a regular muskip value is (verbose or as register) that value is sort of frozen. However, the
\inherited prefix will turn references to registers and constants into a delayed value: as with the
predefinedwe now have amore dynamic behavior whichmeans that we can for instance use reserved
muskip registers aswe can use the predefined. A bonus is that one can also use regular glue or dimen
sions, just in case one wants the same spacing in all styles (a muskip adapts to the size).

When you look at all of the above you might wonder how users are supposed to deal with math spac
ing. The answer is that often they can just assume that TEXdoes the right thing. If something somehow
doesn't feel right, looking at solutions by others will probably lead a new user to just copy a trick, like
injecting a \thinmuskip. But it can be that atoms depend on the already applied (or not) spacing,
which in turn depends on values in the atom spacingmatrix that probably only a few users have seen.
So, in the end it all boils down to trust in the engine and one's eyesight combined with hopefully some
consistency in adding space directives and oftenwith TEX it is consistency thatmakes documents look
right. In ConTEXt we have many more classes even if only a few characters fit in, like differential, ex
ponential and imaginary.

Fractions again

Wenow return to the fractionmolecule. With themechanisms at our disposal we can change the fixed
margins to more adaptive ones:

\inherited\setmathspacing \mathbinarycode \mathfractioncode
\allmathstyles \thickermuskip

\inherited\setmathspacing \mathfractioncode \mathbinarycode
\allmathstyles \thickermuskip

\nulldelimiterspace\zeropoint
$x + \frac{1}{x+2} + x$

29 A different approach to math spacing

Here \thickermuskip is defined as 7mu plus 5muwhere the stretch is the same as a \thickmuskip
and the width 2mumore. We start out with three variants, where the last two have \nulldelimiter
space set to 0pt and the first one uses the 1.2pt.

𝑥 + 1
𝑥+2

+ 𝑥

𝑥 + 1
𝑥+2

+ 𝑥

𝑥 + 1
𝑥+2

+ 𝑥
Whenwe now apply the new settings to the last one, and overlay themwe get the following output: the
first and last case are rather similar which is why this effort was started in the first place.

𝑥 + 1
𝑥+2

+ 𝑥𝑥 + 1
𝑥+2

+ 𝑥𝑥 + 1
𝑥+2

+ 𝑥
Of course these changes are not upward compatible but as they are tiny they are not that likely to
change the number of lines in a paragraph. In display mode changes in horizontal dimensions also
have little effect.

Penalties

An inline formula can be broken across lines, and for sure there are places where you don't want to
breakorprefer tobreak. InTEX linebreaks canbe influencedbyusingpenalties. At theouter level of an
inline math formula, we can have a specific penalty before and after a binary and/or relation. The de
faults are such that there are no penalties set, butmostmacro packages set the so called\relpenalty
and \binoppenalty (the op in this name does not relate to the operator class) so a value between zero
and 1000. In LuaTEXwe also have \pre variants of these, so we have four penalties that can be set, but
that is not enough in our new approach.

A different approach to math spacing 30

These penalties are class bound and don't relate to styles, like atom spacing does. That means that
while atom spacing involves 64 × 64 × 8 potential values, an amount that we can manage by using
the discussed inheritance. The inheritance takes less values because which store 4 style values per
class in one number. For penalties we only need to keep 64 × 2 in mind, plus a range of inheritance
numbers. Therefore it was decided to also generalize penalties so that each class can have them. The
magic commands are shown with some useless examples:

\letmathparent \mathdigitcode
\mathbincode % pre penalty
\mathbincode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

By default the penalties are on their own, like:

\letmathparent \mathdigitcode
\mathdigitcode % pre penalty
\mathdigitcode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

The options and reserved parent mapping are not (yet) discussed here. Unless values are assigned
they are ignored.

\setmathprepenalty \mathordcode 100
\setmathpostpenalty \mathordcode 600
\setmathprepenalty \mathbincode 200
\setmathpostpenalty \mathbincode 700
\setmathprepenalty \mathrelcode 300
\setmathpostpenalty \mathrelcode 800

As with spacing, when there is no known value, the parent will be consulted. An unset penalty has a
value of 10000.

After discussing the implications of inline math crossing lines, Mikael and I decided there can be two
solutions. Both can of course be implemented in Lua, but on the other hand, they make good exten
sions, also because it sort of standardized it. The first advanced control feature tweaks penalties:

\mathforwardpenalties 2 200 100
\mathbackwardpenalties 2 100 50

This will add 200 and 100 to the first twomath related penalties, and 100 and 50 to the last two (watch
out: the 100will be assigned to the last one found, the 50 to the one before it). Aswith all things penalty
and line break related, you need to have some awareness of how non-linear the badness calculation is
as well of the fact that the tolerance and stretch related parameters play a role here.

The second tweak is setting \maththreshold to some value. When set to for instance 40pt, formulas
that take less space than this will be wrapped in a \hbox and thereby will never break across a page.6

6 A future versionmight inject severe penalties instead, time will learn.

31 A different approach to math spacing

Actually that second tweakhas a variant sowehave three tweaks! Say thatwehave this sample formula
wrapped in some bogus text and repeat that snippet a lot of times:

x xx xxx xxxx $1 + x$ x xx xxx xxxx

Now look at the example on the next page. You will notice that the red and blue text have different line
breaks. This is because we have given the threshold some stretch and shrink. The red text has a zero
threshold so it doesn't do anymagic at all, while the second has this setup:

\setupmathematics[threshold=medium]

That setting set the threshold to 4em plus 0.75em minus 0.50em and when the formula size exceeds
the four quads the line break codewill use the real formulawidth butwith the given stretch and shrink.
Eventually the calculated size will be used to repackage the formula. In the future we will also provide
a way to define slack more relative to the size and/or number of atoms.

Another way to influence line breaks is to use the two inline math related penalties that have been
added at Mikael's suggestion:

\setupalign[verytolerant]
{\dorecurse{25}{test $\darkred #1^{#1} + x_{#1}^{#1}$ test }\blank}
{\preinlinepenalty 500 \postinlinepenalty -500
\dorecurse{25}{test $\darkgreen #1^{#1} + x_{#1}^{#1}$ test }\blank}
{\postinlinepenalty 500 \preinlinepenalty -500
\dorecurse{25}{test $\darkblue #1^{#1} + x_{#1}^{#1}$ test }\blank}

To get an example that shows the effect takes a bit of trial and error because TEX does a very good job
in line breaking. This is why we've set the tolerance and also use negative penalties.

In addition to the\mathsurround (kern) and\mathsurroundskip (glue) parameters this is a property
of the nodes that mark the beginning and end of an inline math formula.

test 11+ 𝑥11 test test 22+ 𝑥22 test test 33+ 𝑥33 test test 44+ 𝑥44 test test 55+ 𝑥55 test test 66+ 𝑥66 test test
77 + 𝑥77 test test 88 + 𝑥88 test test 99 + 𝑥99 test test 1010 + 𝑥1010 test test 1111 + 𝑥1111 test test 1212 + 𝑥1212
test test 1313 + 𝑥1313 test test 1414 + 𝑥1414 test test 1515 + 𝑥1515 test test 1616 + 𝑥1616 test test 1717 + 𝑥1717
test test 1818 + 𝑥1818 test test 1919 + 𝑥1919 test test 2020 + 𝑥2020 test test 2121 + 𝑥2121 test test 2222 + 𝑥2222
test test 2323 + 𝑥2323 test test 2424 + 𝑥2424 test test 2525 + 𝑥2525 test

test 11+ 𝑥11 test test 22+ 𝑥22 test test 33+ 𝑥33 test test 44+ 𝑥44 test test 55+ 𝑥55 test test 66+ 𝑥66 test test
77 + 𝑥77 test test 88 + 𝑥88 test test 99 + 𝑥99 test test 1010 + 𝑥1010 test test 1111 + 𝑥1111 test test 1212 + 𝑥1212
test test 1313 + 𝑥1313 test test 1414 + 𝑥1414 test test 1515 + 𝑥1515 test test 1616 + 𝑥1616 test test 1717 + 𝑥1717
test test 1818 + 𝑥1818 test test 1919 + 𝑥1919 test test 2020 + 𝑥2020 test test 2121 + 𝑥2121 test test 2222 + 𝑥2222
test test 2323 + 𝑥2323 test test 2424 + 𝑥2424 test test 2525 + 𝑥2525 test

test 11+ 𝑥11 test test 22+ 𝑥22 test test 33+ 𝑥33 test test 44+ 𝑥44 test test 55+ 𝑥55 test test 66+ 𝑥66 test test
77+𝑥77 test test 88+𝑥88 test test 99+𝑥99 test test 1010+𝑥1010 test test 1111+𝑥1111 test test 1212+𝑥1212 test
test 1313 + 𝑥1313 test test 1414 + 𝑥1414 test test 1515 + 𝑥1515 test test 1616 + 𝑥1616 test test 1717 + 𝑥1717 test
test 1818 + 𝑥1818 test test 1919 + 𝑥1919 test test 2020 + 𝑥2020 test test 2121 + 𝑥2121 test test 2222 + 𝑥2222 test
test 2323 + 𝑥2323 test test 2424 + 𝑥2424 test test 2525 + 𝑥2525 test

A different approach to math spacing 32

x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx
xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx
xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx
x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1+ 𝑥 x xx xxx xxxx x xx xxx xxxx 1+ 𝑥 x xx xxx xxxx x xx xxx xxxx 1+ 𝑥 x xx xxx xxxx x xx xxx xxxx 1+ 𝑥 x
xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx

x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1+ 𝑥 x xx xxx xxxx x xx xxx xxxx 1+ 𝑥 x xx xxx xxxx x xx xxx xxxx 1+ 𝑥 x xx xxx xxxx x xx xxx xxxx 1+ 𝑥 x
xx xxx xxxx x xx xxx xxxx 1+𝑥 x xx xxx xxxx x xx xxx xxxx 1+𝑥 x xx xxx xxxx x xx xxx xxxx 1+𝑥 x xx xxx xxxx x xx xxx xxxx 1+𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx

Flattening

The traditional engine has some code for flatteningmath constructs that in the end are just one char
acter. So in the end, \tilde{u} and \tilde {uu} become different objects even if both are in fact
accents. In fact, when an accent is constructed there is a special code path for single characters so
that script placement adapts to the shape of that character.

However because of interaction with primes, which themselves are sort of superscripts and due to
the somewhat weird way fonts provide them when it comes to positioning and sizes, in ConTEXt we
already are fooling around a bit with these characters. For understandable reasons of memory usage,
complexity and eightbitness primes are not a native TEX thing but more something that is handled at
the macro level (although not in MkIV and LMTX).

In the end it was script placements on (widely) accented math characters that made us introduce
a dedicated \Umathprime primitive that adds a prime to a math atom. It permits an uninterupted
treatment of scripts while in the final assembly of the molecule the prime, superscript, subscript and
maybe evenprescripts that prime gets squeezed in. Because the concept of primes ismissing inOpen
Type math an additional font parameter PrimeTopRaisePercent has been introduced as well as an
\Umathprimeraise primitive. In retrospect I should have done that earlier but one tends to stick to
the original as much as possible. However, at some point Mikael and I reached a state where we de
cided that proper (clean) engine extensions make way more sense than struggling with border cases
and explaining users why things are so complicated.

The input $ X \Uprimescript{'} ^2 _3 $ gives this:

𝑋2H__

3H____V

′
H__ 𝑋2H__

3H____V

′
H__ 𝑋2H__

3H____V

′
H__ 𝑋2H__

3H____V

′
H__

Latin Modern Cambria Pagella Dejavu

With \tracingmath = 1 this nicely traces as:

> \inlinemath=
\noad[ord][...]
.\nucleus
..\mathchar[ord] family "0, character "58
.\superscript
..\mathchar[dig] family "0, character "32

33 A different approach to math spacing

.\subscript

..\mathchar[dig] family "0, character "32

.\primescript

..\mathchar[ord] family "0, character "27

Of course this feature canalsobeused for otherprime like ornaments andwhoknowshow itwill evolve
over time.

Youcan influence thepositioningwith\Umathprimesupshiftwhichadds somekernbetweenaprime
and superscript. The \Umathextraprimeshiftmoves a prime up. The \Umathprimeraise is a font
parameter that defaults to 25whichmeans a raise of 25%of the height. These are all (still) experimen
tal parameters.

Fences

Fences can be good for headaches. Because the math that I (or actually my colleague) deal with is
mostly school math encoded in presentation MathML (sort or predictable) or some form of sequential
ascii based input (often rathermessy and therefore unpredictable due to ambiguity) fences are a pain.
A TEXie can make sure that left and right fences are matched. A TEXie also knows when something is
an inline parenthesis or when a more high level structure is needed, for instance when parentheses
have to scale with what they wrap. In that case the \left and \rightmechanism is used. In arbitrary
inputmissing oneof those is fatal. Therefore, handling of fences inConTEXt is one of themore complex
submechanisms: we not only need to scale when needed, but also catch asymmetrical usage.

A side effect of the encapsulating fencing construct is that it wraps the content in a so called inner (as
in \mathinner) whichmeans that we get a box, and it is a well known property of boxes that they don't
break across lines. With respect to fences, a way out is to not really fence content, but do something
like this:

\left(\strut\right. x + 1 \left.\strut\right)

and hope for the best. Both pairs are coupled in the sense that their sizes will match and the strut is
what determines the size. So, as long as there is a proper match of struts all is well, but it is definitely
a decent hack. The drawback is in the size of the strut: if a formula needs a higher one, larger struts
have to be used. This is why in plain TEX we have these commands:

\def\bigl {\mathopen \big } \def\bigm {\mathrel\big } \def\bigr {\mathclose\big }
\def\Bigl {\mathopen \Big } \def\Bigm {\mathrel\Big } \def\Bigr {\mathclose\Big }
\def\biggl{\mathopen \bigg} \def\biggm{\mathrel\bigg} \def\biggr{\mathclose\bigg}
\def\Biggl{\mathopen \Bigg} \def\Biggm{\mathrel\Bigg} \def\Biggr{\mathclose\Bigg}

\def\big #1{{\hbox{$\left#1\vbox to 8.5pt{}\right.\nomathspacing$}}}
\def\Big #1{{\hbox{$\left#1\vbox to 11.5pt{}\right.\nomathspacing$}}}
\def\bigg#1{{\hbox{$\left#1\vbox to 14.5pt{}\right.\nomathspacing$}}}
\def\Bigg#1{{\hbox{$\left#1\vbox to 17.5pt{}\right.\nomathspacing$}}}

\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt} % renamed

The middle is kind of interesting because it has relation properties, while the \middle introduced in
𝜀-TEX got open properties, but we leave that aside.

In ConTEXt we have plenty of alternatives, including these commands, but they are defined differently.
For instance they adapt to the font size. The hard coded point sizes in the plain TEX code relates to the

A different approach to math spacing 34

font and steps available in there (either by next larger or by extensible). The values thereby need to be
adapted to the chosen body font as well as the body font size. In MkIV and even better in LMTXwe can
actually consult the font and get more specific sizes.

But, this section is not about how to get these fixed sizes. Actually, the need to choose explicitly is not
what we want, especially because TEX can size delimiters so well. So, take this code snippet:

$ x = \left(\dorecurse{40}{\frac{x}{x+#1} +} x \right) $

Whenwe typeset this inline, as in𝑥 = (𝑥
𝑥+1

+ 𝑥
𝑥+2

+ 𝑥
𝑥+3

+ 𝑥
𝑥+4

+ 𝑥
𝑥+5

+ 𝑥
𝑥+6

+ 𝑥
𝑥+7

+ 𝑥
𝑥+8

+ 𝑥
𝑥+9

+ 𝑥
𝑥+10

+ 𝑥
𝑥+11

+
𝑥

𝑥+12
+ 𝑥
𝑥+13

+ 𝑥
𝑥+14

+ 𝑥
𝑥+15

+ 𝑥
𝑥+16

+ 𝑥
𝑥+17

+ 𝑥
𝑥+18

+ 𝑥
𝑥+19

+ 𝑥
𝑥+20

+ 𝑥
𝑥+21

+ 𝑥
𝑥+22

+ 𝑥
𝑥+23

+ 𝑥
𝑥+24

+ 𝑥
𝑥+25

+ 𝑥
𝑥+26

+
𝑥

𝑥+27
+ 𝑥
𝑥+28

+ 𝑥
𝑥+29

+ 𝑥
𝑥+30

+ 𝑥
𝑥+31

+ 𝑥
𝑥+32

+ 𝑥
𝑥+33

+ 𝑥
𝑥+34

+ 𝑥
𝑥+35

+ 𝑥
𝑥+36

+ 𝑥
𝑥+37

+ 𝑥
𝑥+38

+ 𝑥
𝑥+39

+ 𝑥
𝑥+40

+𝑥),

we get nicely scaled fences but in a way that permits line breaks. The reason is that the engine has
been extended with a fenced class so that we can recognize later on, when TEX comes to injecting
spaces and penalties, that we need to unpack the construct. It is another beneficial side effect of the
generalization.

The Plain TEX code can be used to illustrate some of what we discussed before about fractions. In the
next code we use excessive delimiter spacing:

\def\Bigg#1{% watch the wrapping in a box
{%
\hbox {%

$\normalleft#1\vbox to 17.5pt{}\normalright.\nomathspacing$%
}%

}%
}

\nulldelimiterspace0pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

This renders as follows. We explicitly set \nulldelimiterspace to values because in ConTEXt it is
now zero by default.

(H__

__VH__H__ 1 + 𝑥
)H__

__VH__H__

(H__

__VH__H__

1H__

𝑥H__
__VH__H__

)H__

__VH__H__

(H__

__VH__H__ 1 + 𝑥
)H__

__VH__H__

(H__

__VH__H__

1H__

𝑥H__
__VH__H__

)H__

__VH__H__

(H__

__VH__H__ 1 + 𝑥
)H__

__VH__H__

(H__

__VH__H__

1H__

𝑥H__
__VH__H__

)H__

__VH__H__

0pt with
reset at end

10pt with
reset at end

10pt without
reset at end

35 A different approach to math spacing

Radicals

In traditional TEX a radicalwith degree is defined asmacro. Thatmacro does somemeasurements and
typesets the result in four sizes for a choice. The macro typesets the degree in a box that contains the
degree as formula. There is a less guesswork going on than with respect to how the radical symbol is
shaped but as we're talking plain TEX here it works out okay because the default font is well known.

Radicals are a nice example of a two dimensional ‘extender’ but only the vertical dimension uses the
extension mechanism, which itself operates either horizontally or vertically, although in principle it
could go both ways. The horizontal extension is a rule and the fact that the shape is below the baseline
(as are other large symbols) will make the rule connect well: the radical shape sticks out a little, so
one can think of the height reflecting the rule height.7 In OpenType fonts there is a parameter and in
LuaTEXweuse the default rule thickness for traditional fonts, which is correct for LatinModern. There
are more places in the fonts where the design relates to this thickness, for instance fraction rules are
supposed tomatch theminus, but this is abit erratic if youcompare fonts. This is oneof thecorrections
we apply in the goodie files.

In OpenType the specification of the radical also includes spacing properties of the degree and that is
why we have a primitive in LuaTEX that also handles the degree. It is what we used in ConTEXt MkIV.
But . . . we actually end up with a situation that compares to the already discussed fraction: there is
space added before a radical when there is a degree. However, because we now have a radical atom
class, we can avoid using that one and use the new pairwise spacing. Some fuzzy spacing logic in the
engine could therefore be removed and we assume that \Umathradicaldegreebefore is zero. For
the record: the \Umathradicaldegreeafter sort of tells howmuch space there is above the low part
of the root, which means that we can compensate for multi-digit degrees.

Zeroing a parameter is something that relates to a font which means that it has to happen for each
math font which in turn canmean a family-style combination. In order to avoid that complication (or
better: to avoid tracing clutter) we have a way to disable a parameter:

\ruledhbox{$x + \sqrt[123]{b}^1_2$}
\ruledhbox{$x + \sqrt[12] {b}^1_2$}
\ruledhbox{$x + \sqrt[1] {b}^1_2$}
\ruledhbox{$x + \sqrt {b}^1_2$}

𝑥 + 123
√
𝑏
1
2 𝑥 +

12
√
𝑏
1
2 𝑥 +

1
√
𝑏
1
2 𝑥 +

√
𝑏
1
2

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123
√
𝑏
1
2 𝑥 +

12
√
𝑏
1
2 𝑥 +

1
√
𝑏
1
2 𝑥 +

√
𝑏
1
2

\setmathignore\Umathradicaldegreebefore 1

Latin Modern

One problemwith these spacing parameters is that they are inconsistent across fonts. The LatinMod
ern has a rather large space before the degree, while Cambria and Pagella have little. That means that

7 When you zoom in you will notice that this is not always optimal because of the way the slope touched the rule.

A different approach to math spacing 36

when you prototype a mechanism the chosen solution can look great but not so much when at some
point you use another font.

𝑥 + 123√𝑏
1
2 𝑥 +

12√𝑏
1
2 𝑥 +

1√𝑏
1
2 𝑥 + √𝑏

1
2

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123√𝑏
1
2 𝑥 +

12√𝑏
1
2 𝑥 +

1√𝑏
1
2 𝑥 + √𝑏

1
2

\setmathignore\Umathradicaldegreebefore 1

Cambria

More fences

One of the reasons why the MkII and MkIV fence related mechanism is somewhat complex is that we
want a clean solution for filtering fences like parenthesis by size, something that in the traditional
happens via a fake fence pair that encapsulates a strut of a certain size. In LMTX we use the same
approach but havemade the sequencemore configurable. In practice that means that the values 1 up
to 4 are just that but for some fonts we use the sequence 1 3 5 7. There was no need to adapt the
engine as it already worked quite well.

Integrals

The Latin Modern fonts have only one size of big operators and one reason can be that there is no
need for more. Another reason can be that there was just no space in the font. However, an OpenType
font has plenty slots available and the reference font Cambria has integral signs in sizes as well as
extensibles.

In LuaTEX we already have generic vertical extensibles but that only works well with specified sizes.
And, cheating with delimiters has the side effect that we get the wrong spacing. In LuaMetaTEX how
everwe haveways to adapt the size towhat came orwhat comes. In fact, it is amechanism that is avail
able for any atom thatwe support. However, it doesn't playwell with script and thiswhole\limits and
\nolimits is a bit clumsy soMikael and I decided that different route had to be followed. For adaptive
large operators we provide this interface:

$ x + \integral [color=darkred,top={t},bottom={b}] {\frac{1}{x}} = 10 $

$ x + \startintegral [color=darkblue,top={t},bottom={b}]
\frac{1}{x}

\stopintegral = 10 $

$ x + \startintegral [color=darkgreen,top={t},bottom={b},method=vertical]
\frac{1}{x}

\stopintegral= 10 $

This text is not about the user interface so we won't discuss how to define additional large operators
using one-liners.

37 A different approach to math spacing

𝑥 +∫
𝑡

𝑏

1
𝑥
= 10 𝑥 +∫

𝑡

𝑏

1
𝑥
= 10 𝑥 +

𝑡

∫
𝑏

1
𝑥
= 10

The low level LuaMetaTEX implementation handles this input:

\Uoperator \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator limits \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator nolimits \Udelimiter "0 \fam "222B {top} {bottom} {...}

plus the usual keywords that fenced accept, because after all, this is just a special case of fencing.

Currently these special left operators are implemented as a special case of fences because that mech
anism does the scaling. It means that we need a (bogus) right fence, or need to brace the content
(basically create an atom). When no right fence is found one is added automatically. Because there is
no real fencing, right fences are removedwhen processing takes place. When you specify aclass that
one will be used for the left and right spacing, otherwise we have open/close spacing.

Going details

When the next feature was explored Mikael tagged it as mathmicro typography and the reason is that
you need not only to set up the engine for it but also need to be aware of this kind of spacing. Because
we wanted to get rid of this script spacing that the font imposes we configured ConTEXt with:

\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone

This basically nils all these tiny spaces. But the latest configuration has this instead:

% \setmathignore \Umathspacebeforescript\zerocount % default
% \setmathignore \Umathspaceafterscript \zerocount % default

\mathslackmode \plusone

\setmathoptions\mathopcode \plusthree
\setmathoptions\mathbinarycode \plusthree
\setmathoptions\mathrelationcode\plusthree
\setmathoptions\mathopencode \plusthree
\setmathoptions\mathclosecode \plusthree
\setmathoptions\mathpunctcode \plusthree

This tells the engine to convert these spaces into what we call slack: disposable kerns at the edges.
But it also converts these kerns into a glue component when possible. As with all these extensions it
complicates themachinery but userswill never see that. Now, the last six lines do themagic thatmade
us return to honoring the spaces: we can tell the engine to ignore this slack when there are specific
classes at the edges. These options are a bitset and 1 means “no slack left” and 2 means “no slack
right” so 3 sets both.

A different approach to math spacing 38

\def\TestSlack#1%
{\vbox\bgroup

\mathslackmode\zerocount
\hbox\bgroup

\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\red
\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

𝑓 2 >𝑓 2 > > 𝑓2> 𝑓2 𝑓 2 > 𝑓2𝑓 2 > 𝑓2
Because this overall removal of slack is not granular enough a while later we introduced a way to set
this per class, as is demonstrated in the following example.

\def\TestSlack#1%
{\vbox\bgroup

\mathslackmode\plusone
\hbox\bgroup\red
\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\green
\setmathoptions\mathrelationcode \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\blue
\setmathoptions\mathrelationcode \plusthree
#1

\egroup
\egroup}

39 A different approach to math spacing

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

𝑓 2 >𝑓 2 >𝑓 2 > > 𝑓2> 𝑓2> 𝑓2 𝑓 2 > 𝑓2𝑓 2 > 𝑓2𝑓 2 > 𝑓2
Of course we need to experiment a lot with real documents and it might take a while before all this is
stable (in the engine and in ConTEXt). And as we don't need to conform to the decades old golden TEX
math standards we have some degrees of freedom in this: for Mikael andme it is pretty much a visual
thing where we look closely at large samples. Of course in practice details get lost when we print at 10
point but that doesn't mean we can't provide the best experience.8

As we mention class specific options, we also need to mention the special case where we have for in
stance simple formulas like single atoms (for instance digits) are preceded by a sign (binary). These
special spacing cases are handled by a lookahead flag that can be set \setmathoptions <class>, like
the slack flags. More options might become available in due time. When set the lookahead will check
for the automatically injected end class atom and use that for spacing when found. The mentioned
lookahead is one of the hard coded heuristics in the traditional engine but here we need to explicitly
configure it.

Ghosts

As plain TEX hasmacros like \vphantom you also find them inmacro packages that came later. These
create a boxes that have their content removed after the dimensions are set. They take space and are
invisible but there's also nothing there.

A variant in the upgradedmathmachinery are ghosts: these are visible in the sense that they show up
but ignored when it comes to spacing. Here is an example. The option bit set here tells the engine that
we ghost at the right, so we have ghosts around the relation (it controls where the spacing ends up).

$
x
\mathatom class \mathghostcode {!!}
>
\mathatom class \mathghostcode options "00000020 {!!}
1
\quad
x
\mathatom class \mathghostcode {\hbox{\smallinfofont ord}}
>
\mathatom class \mathghostcode options "00000020 {\hbox{\smallinfofont dig}}

8 Whenever I look at (my) old (math) school books I realize that Don Knuth had very good reasons to come up with TEX and, it being
hard to beat, TEX still sets the standard!

A different approach to math spacing 40

1
$

You never know when this comes in handy but it fits in the new, more granular approach to spacing.
The code above shows that it's just a class, this time with number 17.

𝑥!!
ordrel
>

reldig
!!1 𝑥 ord

ordrel
>

reldig
dig1

Struts

In order to get consistent spacing the ConTEXt macro package makes extensive use of struts in text
mode as well asmathmode. The normal way to implement that is either an empty box or a zero width
rule, both with a specifically set height and depth. In ConTEXt MkII and MkIV (and for a long time in
LMTX too) they were rules so that we could visualize them: they get some width and kerns around
them to compensate for that.

In order to not let them interfere with spacing we could wrap them into a ghost atom but it is kind of
ugly. Anyway, before we had these ghost atoms an alternative to struts was already implemented: a
special kind of rule. The reason is that I wanted a cleaner andmore predictable way to adapt struts to
themath style uses and sometimes predicting that is fragile. What we want is a delayed assignment of
dimensions.

We have two solutions. The first one uses two math parameters that themselves adapt to the style, as
do other parameters: \Umathruleheight and \Umathruledepth. The other solution relates a font (or
family) and character with the strut rule which is then used asmeasure for the height and depth. Just
for the record: this also works in text mode, which is why a recent LMTX also does use that for struts
now. The optional visualization is just part of the regular visualization mechanism in ConTEXt which
already had provisions for struts. A side effect of this is that the rule primitives now accept threemore
keywords: font, fam and char, in addition to the already present traditional ones width, height and
depth, the (backend) margin ones left (or top) and right (or bottom) options, as well as xoffset
and yoffset). The command that creates a rule with subtype strut is simply \srule. Because struts
are rather macro package specific I leave it to this.

One positive side effect is that we could simplify the ConTEXt fraction mechanism a bit. Over time
control over the (font driven) gaps was introduced but that is not really needed because we zero the
gaps anyway. There was also a tolerance mechanism which again was not used. However, for skewed
fractions we do use the new tolerance mechanism as well as gap control.

Atoms

Now that we have generic atoms (\mathatom) another, sometimes confusing aspect of the math pars
ing can be solved. Take this:

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ \MyBin _ \MyBin $

The parser just doesn't like that which means that one has to use

41 A different approach to math spacing

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ {\MyBin} _ {\MyBin} $

or:

\def\MyBin{{\mathbin{\tt mybin}}}
$ x ^ \MyBin _ \MyBin $

But the later has side effects: it creates a list that can influence spacing. It is for that reason that we
do accept atoms where they were not accepted before. Of course that itself can have side effects but
at least we don't get an error message. It fits well into the additional (user) classes model. And, given
that in ConTEXt the \frac command is actually wrapped as \mathfrac the next will work too:

$ x^\frac{1}{2} + x^{\frac{1}{2}} $

but in practice you should probably use the braced version here for clarity.

The vcenter primitive

Traditionally this primitive is bound tomath but it had already been adapted to alsowork in textmode.
As part of the upgrade ofmathwe can now also pass all the options that normal boxed take andwe can
also cheat with the axis. Here is an example:

\def\TEST{\hbox\bgroup
\darkred \vrule width 2pt height 4pt
\darkgreen \vrule width 10pt depth 2pt

\egroup}
$

x - \mathatom \mathvcentercode {!!!} -
+ \ruledvcenter {\TEST}
+ \ruledvcenter {\TEST}
+ \ruledvcenter axis 1 {\TEST}
+ \ruledvcenter xoffset 2pt yoffset 2pt {\TEST}
+ \ruledvcenter xoffset -2pt yoffset -2pt {\TEST}
+ x

$

There was already a vcenter class available before we did this:

𝑥
ordbin
−

binvce
!!!

vcebin
−

binord
+

vcebin
+

binvce vcebin
+

binvce vcebin
+

binvce vcebin
+

binvce vcebin
+

binord
𝑥

Text

Sometimes you want text in math, for instance sin or cos but text in math is not really text:

$ \setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu fin(x) $

The result demonstrates that what looks like a word actually becomes three math atoms:

A different approach to math spacing 42

𝑓
ordord
𝑖

ordord
𝑛(𝑥)

Okay, so how about then wrapping it into a text box:

$
\setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu
fin(x) \quad \hbox{fin}(x)

$

Here we get:

𝑓
ordord
𝑖

ordord
𝑛(𝑥) fin(𝑥)

We even get a ligature which might be an indication that we're not using a math font which indeed is
the case: the box is typeset in the regular text font.

\def\Test#1%
{\setmathspacing\mathordinarycode\mathordinarycode\textstyle 5mu
$\showglyphs
#1% style
{\tf fin} \quad
\hbox{fin} \quad
\mathatom class \mathordinarycode textfont {fin}
\mathatom class \mathordinarycode textfont {\tf fin}
\mathatom class \mathordinarycode textfont {\hbox{fin}}
\mathatom class \mathordinarycode mathfont {\hbox{fin}}
$}

When we feed this macro with the \textstyle, \scriptstyle and \scriptscriptstylewe get:

f i n fin 𝑓 𝑖 𝑛 f i n fin fin
text

f in fin 𝑓 𝑖𝑛f infinfin
script

fin fin 𝑓 𝑖𝑛finfinfin
scriptscript

43 A different approach to math spacing

Here you see anewatomoption action: textfontwhichdoes asmuchas setting the font to the current
family font and the size to the one used in the style. For the record: you only get ligatures when they
are configured and provided by the font (and as math is a script itself it is unlikely to work).9

Tracing

I won't discuss the tracing features in ConTEXt here but for sure the visualizer helps a lot in figuring
out all this. In LuaMetaTEXwe carry a bitmore informationwith the resulting nodes so we can provide
more details, for instance about the applied spacing and penalties. Some is shown in the examples. A
more recent tracing feature is this:

\tracingmath 1
\tracingonline 1
$

\mathord (
\mathord {(}
\mathord \Udelimiter"4 0 `(
\Udelimiter"4 0 `(

$

That gives us on the console (the dots represent detailed attribute info that we omit here):

7:3: > \inlinemath=
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathlist
7:3: ...\noad[open][...]
7:3:\nucleus
7:3:\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[open][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28

A tracing level of 2 will spit out some information about applied spacing and penalties between atoms
(whenset) and level 3will show themath list before thefirst andsecondpass (amixofnodesandnoads)
we well as the result (nodes) plus return some details about rules, spacing and penalties applied.

Is there more?

The engine already provides the option to circumvent the side effect of a change in a parameter acting
sort of global: the last value given is also the one that a secondpass startswith. The\frozenprefixwill

9 The existing mechanisms in ConTEXt already dealt with this but it is nevertheless nice to have it as a clean engine feature.

A different approach to math spacing 44

turn settings into local ones but that's another (already old) topic. There aremany such improvements
andoptionsnotmentionedherebut you canfind themmentionedandexplained in older development
stories. A lot has been around for a while but not been applied in ConTEXt yet.

When TEX was written one important property (likely related to memory consumption) is that node
lists have only forward pointers. That means that the state of preceding material has to be kept track
of: there is no going (or looking) back. In LuaTEX we have double linked lists so in principle we can
try to bemore clever but so far I decided not to touch themathmachinery in that way. But who knows
what comes next.

Those italics

Right from the start of LuaTEX it became clear that the fact that TEX assumes the actual width of glyphs
to be incremented by the italic correction that then selectively is removed has been an issue. It made
for successive attempts to improve spacing in ConTEXt by providing pseudo features. But, when we
moved fromassembledUnicodemath fonts to ‘real’ ones that becamemessy: what trick to applywhen
and even worse where? In the end there are only a very few shapes that actually are affected in the
sense that when we don't deal with them it looks bad. It also happens that one of those shapes is the
italic ‘f’, a letter that is used frequently in math. It might even be safe to say that the simple fact that
themath italic f has this excessively wrongwidth and thereby pretty large italic correction is the cause
of many problems.

In the LMTX approach Mikael and I settled on patching shapes in the so called font goodie files, aka
lfg files and only a handful of entries needed a treatment. This makes a good case for removing the
traditional font code path from LuaMetaTEX.

modern: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐 𝒇𝟏

𝟐 𝒈𝟏𝟐 𝒉𝟏
𝟐

𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏
𝟐 𝒏𝟏

𝟐 𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐 𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏
𝟐 𝒗𝟏𝟐 𝒘𝟏

𝟐 𝒙𝟏
𝟐 𝒚𝟏𝟐 𝒛𝟏𝟐

cambria: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔12 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐

𝒌𝟏𝟐 𝒍
𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

pagella: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓 12 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐

𝒎𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

termes: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓 12 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗12 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝12 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐

𝒐𝟏𝟐 𝒑
𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

bonum: 𝑎12 𝑏12 𝑐12 𝑑12 𝑒12 𝑓 12 𝑔12 ℎ12 𝑖12 𝑗12 𝑘12 𝑙12 𝑚1
2 𝑛12 𝑜12 𝑝12 𝑞12 𝑟12 𝑠12 𝑡12 𝑢12 𝑣12 𝑤1

2 𝑥12 𝑦12 𝑧12 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐
𝒇 𝟏𝟐 𝒈𝟏𝟐 𝒉𝟏𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏

𝟐 𝒏𝟏𝟐 𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐 𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏𝟐 𝒗𝟏𝟐 𝒘𝟏
𝟐 𝒙𝟏𝟐 𝒚𝟏𝟐 𝒛𝟏𝟐

One of the other very sloped symbol is the integral, althoughmost fonts have themmore upright than
tex has. Of course there are many variants of these integrals in a math font. Here we also have some
font parameters that we can tune, which is what we do.

Accents

Accents are common in languages other than English and it's English that TEXwasmade for. Although
the seven bit variant became eight bit handling accents never was sophisticated and one of the main
reasons is of course that one could use pre-built composed characters. The OpenType format brought

45 A different approach to math spacing

proper anchoring (akamarks) to font formats andwhen LuaTEX deals with text those kick in. In Open
Type math however, anchoring is kind of limited to the top position only. Because the TEX Gyre fonts
are based on traditional TEX fonts, their accents have not become better suited.

$ \hat{x} \enspace \widehat{x} \enspace \widehat{xx} \enspace \widehat{xxx}
\enspace \hat{f} \enspace \widehat{f} $

When looking at examples you need to be aware of the fact hat fonts can have been adapted in the
goodie files.10 So, for instance bounding boxes and such can differ from the original. Anyway, the pre
vious code in Cambria looks as follows.

�̂� �𝑥 �𝑥𝑥 �𝑥𝑥𝑥 𝑓 �𝑓
With Latin Modern we get:

𝑥 ̂𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑓 ̂𝑓
And Dejavu comes out as:

�̂� 𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑓 𝑓
As you can see there are somedifferences. In for instance LatinModern the shape of the hat and small
est wide hat are different and the first wide one has zero dimensions combinedwith a negative anchor.
Whenanaccented character is followedby a superscript or prime the italic correction of thebase kicks
in but that cannot be enough to not let this small wide hat overflow into the script. We could compen
sate for it but then we need to know the dimensions. Of course we can consult the bounding box but it
makes no sense to let heuristics enter the machinery here while we're in the process generalization.
One option is to have two extra parameters that can be used when the width of the accent comes close
to the width of the base (we then assume that zero accent width means that it has base width) we add
an additional kern. In the end we settled for a (semi automatic) correction option in the goodie files.

There are actually three categories of extensible accents to consider: those that resemble the ones
used in text (like tildes and hats), those wrapping something (like braces and bracket but also arrows)
and rules (that in traditional TEX indeed are rules). In ConTEXt we have different interfaces for each
of these in order to have a more extensive control. The text related ones are the simplest and closest
to what the engine supports out of the box but even there we use tweaked glyphs to get better spacing
because (of course) fonts have different and inconsistent spacing in the boundingbox above and below

10 Extreme examples can be found for Lucida Bright where we not only have to fix the extensible parts of horizontal braces but also
have to provide horizontal brackets.

A different approach to math spacing 46

the real shape. This is again some tweak that we moved from being automatic to being under goodie file
control. But this is all too ConTEXt specific to discuss here in more detail.

Decision time

After lots of tests Mikael and I came to the conclusion that we're facing the following situation. When
typesetting math most single characters are italic and we already knew from the start of the LuaTEX
project that the italics shapes are problematicwhen it comes to typesettingmath. But it looks like even
some upright characters can have italic correction: in TexGyreBonum for instance the bold upright
f has italic correction, probably because it then can (somehow) kern with a following i. It anyhow
assumes no italic correction to be applied between these characters.

In the end themixedmath fontmodelmodel gotmore andmore stressed so onedecisionwas to simply
assume fonts to be used that are either Cambria like OpenType, or mostly traditional in metrics, or a
hybrid of both. It then made more sense to change the engine control options that we have into ones
that simply enable certain code paths, independent of the fact if a font is OpenType or not. It then
become a bit “crap in, crap out”, but because we already tweak fonts in the goodie files it's quite okay.
Some fonts have badmetrics anyway ormiss characters and it makes no sense to support abandoned
fonts either. Also, when a traditional font is assembled one can set up the engine with different flags
andwe can deal with it as wewish. In the end it is all up to themacro package to configure things right,
which is what we tried to do for months when rooting out all the artifacts that fonts bring.11

That said, the reason why some (fuzzy) mixed model works out okay (also in LuaTEX) is that proper
OpenType fonts use staircase kerns instead of italic correction. They also have no ligatures and kerns.
We also suspect that not that much attention is paid to the rendering. It's a bit like these “How many
f's do you count in this sentence?” tests where people tend to overlook of, if and similar short words.
Mathematicians loves f's but probably also overlook the occasionally weird spacing and kerning.

A side effect is that mixing OpenType and traditional fonts is also no longer assumed which in turn
made a few (newly introduced) state variables obsolete. Once everything is stable (including exten
sions discussed before) some further cleanup can happen. Another side effect is that one needs to tell
the engine what to apply and where, like this:

\mathfontcontrol\numexpr \zerocount
+\overrulemathcontrolcode
+\underrulemathcontrolcode
+\fractionrulemathcontrolcode
+\radicalrulemathcontrolcode
+\accentskewhalfmathcontrolcode
+\accentskewapplymathcontrolcode

% + checkligatureandkernmathcontrolcode
+\applyverticalitalickernmathcontrolcode
+\applyordinaryitalickernmathcontrolcode
+\staircasekernmathcontrolcode

% +\applycharitalickernmathcontrolcode
% +\reboxcharitalickernmathcontrolcode
+\applyboxeditalickernmathcontrolcode

11 In previous versions one could configure this per font but that has been dropped.

47 A different approach to math spacing

+\applytextitalickernmathcontrolcode
+\checktextitalickernmathcontrolcode

% +\checkspaceitalickernmathcontrolcode
+\applyscriptitalickernmathcontrolcode
+\italicshapekernmathcontrolcode

\relax

There might be more control options (also for tracing purposes) and some of the symbolic (ConTEXt)
names might change for the better. As usual it will take some years before all is stable but because
most users use the latest greatest version it will be tested well.

After this was decided and effective I also decided to drop the mapping from traditional font para
meters to the OpenType derives engine ones: we now assume that the latter ones are set. After all,
we already did that in ConTEXt for the virtual assemblies that we started out with in the beginning of
LuaTEX and MkIV.

Dirty tricks

Once you start playingwith edge cases you also start wondering if some otherwise complex things can
be done easier. The next macro brings together a couple of features discussed in previous sections. It
also uses two state variables: \lastleftclass and \lastrightclass that hold themost recent edge
classes.

\tolerant\permanent\protected\def\NiceHack[#1]#:#2% special argument parsing
{\begingroup
\setmathatomrule
\mathbegincode\mathbincode % context constants
\allmathstyles
\mathbegincode\mathbincode

\normalexpanded
{\setbox\scratchbox\hpack

ymove \Umathaxis\Ustyle\mathstyle % an additional box property
\bgroup
\framed % a context macro
[location=middle,#1]
{$\Ustyle\mathstyle#2$}%

\egroup}%
\mathatom
class 32 % an unused class
\ifnum\lastleftclass <\zerocount\else leftclass \lastleftclass\fi
\ifnum\lastrightclass<\zerocount\else rightclass \lastrightclass\fi
\bgroup
\box\scratchbox

\egroup
\endgroup}

\def\MyTest#1%
{$ x #1 x $\quad
$ x \NiceHack[offset=0pt]{#1} x $\quad

A different approach to math spacing 48

$\displaystyle x #1 x $\quad
$\displaystyle x \NiceHack[offset=0pt]{#1} x $}

\scale[scale=2000]{\MyTest{>}} \blank
\scale[scale=2000]{\MyTest{+}} \blank
\scale[scale=2000]{\MyTest{!}} \blank
\scale[scale=2000]{\MyTest{+\frac{1}{2}+}}\blank
\scale[scale=2000]{\MyTest{\frac{1}{2}}} \blank

Of course this is not code you immediately come upwith after reading this text, also because you need
to know a bit of ConTEXt.

𝑥
ordrel
>

relord
𝑥 𝑥>

relord
𝑥 𝑥

ordrel
>

relord
𝑥 𝑥>

relord
𝑥

𝑥
ordbin
+

binord
𝑥 𝑥+𝑥 𝑥

ordbin
+

binord
𝑥 𝑥+𝑥

𝑥!
facord
𝑥 𝑥 !

facord
𝑥 𝑥!

facord
𝑥 𝑥 !

facord
𝑥

𝑥
ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥+

binfra

1
2fraord
+𝑥 𝑥

ordbin
+

binfra

1

2frabin
+

binord
𝑥 𝑥+

binfra

1
2fraord
+𝑥

𝑥
ordfra

1
2fraord
𝑥 𝑥1

2 fraord
𝑥 𝑥

ordfra

1

2fraord
𝑥 𝑥1

2 fraord
𝑥

There are a few control options, like \noatomruling that can be used to prevent rules being applied to
the next atom. We can use these in order to achievemore advanced alignment results, but discussing
math alignments would demandmanymore pages thanmake sense here.

Tuned kerning

The ConTEXt distribution has dedicated code for typesetting units that dates back to the mid nineties
of the previous century but was (code wise) upgraded from MkII to MkIV which made it end up in the
physics name space. There is notmuch reason to redo that code but whenwe talk new spacing classes
it might make sense at some point to see if we can use less code for spacing by using a ‘unit’ class.
When Mikael pointed out that, for instance in Pagella:

𝑚3/ 𝑠2
doesn't spacewell the obvious answer is: use the unitsmechanismbecause this kind of renderingwas
why it was made in the first place. However, the question is of course, can we do better anyway. The
chosen solution uses a combination of class options and tweaked shape kerning:

49 A different approach to math spacing

𝑚3/ 𝑠2
An example of a class setup in ConTEXt is:

\setmathoptions\mathdivisioncode\numexpr
\nopreslackclassoptioncode +\nopostslackclassoptioncode
+\lefttopkernclassoptioncode +\righttopkernclassoptioncode
+\leftbottomkernclassoptioncode +\rightbottomkernclassoptioncode

\relax

and, although we don't go into the details of tweaking here, this is the kind if code you will find in the
goodie file:

{
tweak = "kerns",
list = {

[0x2F] = {
topleft = -0.3,
bottomright = 0.2,

}
}

}

where the numbers are a percentage of the width. This specification translates in a math staircase
kerning recipe.

More font tweaks

Once you start looking into the details of these fonts you are likely to noticemore issues. For instance,
in thenice looking Lucidamath fonts the relations have inconsistentwidths and even shapes. This can
partially be corrected by using a stylistic alternate but even that forced us to come up with a mecha
nism to selectively replace ‘bad’ shapes because there is not that much granularity in the alternates.
And once we looked at these alternates we noticed that the definition of of script versus calligraphic is
also somewhat fuzzy and font dependent. That made for yet another tweak where we can swap alpha
bets and let themathmachinery choose the expected shape. In Unicode this is handled by variant se
lectors which is rather cumbersome. Because these two styles are usedmixed in the same document,
a proper additional alphabet would havemademore sense. As we already support variant selectors it
wasnobig deal to combine thatmechanismwith a variant selector features over a range of calligraphic
or script characters, which indeed is what mathematicians use (Mikael can be very convincing). With
this kind of tweaks the engine doesn't really play a role: we always could and did deal with it. It's just
that upgrading the engine made us look again at this.

Normalization

Once we had all these spacing related features upgraded it was time to move to other aspects math
typesetting. Most of that is not handled in the engine but at themacro level. Examples of this aremak
ing sure that math spacing obeys the rules across alignment cells, breaking long formulas into lines
with various alignment schemes. The first is accommodated by using the primitives that set the states

A different approach to math spacing 50

at the beginning and end of a formula so that is definitely something that the engine facilitates. The
secondwasalreadypossible inMkIVbut is somewhatmore transparentnowbyusing taggedboundary
nodes.

But for this summarywe stick to discussing themore low level features andwheremost ofwhatwedis
cussed here concerns horizontal spacing we also have some vertical magic like the mentioned scaled
fences and operators but they sort of behave as expected given the traditional TEX approach. We have
somemore:

\definemathradical[esqrt][sqrt][height=\maxdimen,depth=\maxdimen]
\definemathradical[ssqrt][sqrt][height=3ex,depth=2ex]

\def\TestSqrt#1%
{test $ #1{x} + #1{\sin(x)} $ test\quad
test $ #1{x} + #1{\sin(x)} + #1{\frac{1}{x}} $ test\quad
test $ #1{x} + #1{x^2} $ test\quad
test $ \left(#1{x} + #1{x^2} \right) $ test\par}

\TestSqrt \sqrt \blank
\TestSqrt \esqrt \blank
\TestSqrt \ssqrt \blank

test √𝑥 + √sin(𝑥) test test √𝑥 + √sin(𝑥) + √1

𝑥
test test √𝑥 + √𝑥2 test test (√𝑥 + √𝑥2) test

test √𝑥 + √sin(𝑥) test test√𝑥 +√sin(𝑥) + √1

𝑥
test test √𝑥 + √𝑥2 test test (√𝑥 + √𝑥2) test

test√𝑥 +√sin(𝑥) test test√𝑥 +√sin(𝑥) + √1

𝑥
test test√𝑥 +√𝑥2 test test

(

√𝑥 +√𝑥2
)

test

In the above example you see that square roots can be made to adapt themselves to other such roots.
For this we had to add an additional pass. Originally there are just two passes: a first typesetting pass
where the maximum height and depth are collected so that in the second pass the fences can be gen
erated and injected. That second pass also handles the spacing and penalties. In LuaMetaTEX we now
have (1) radical body typesetting, (2) radical typesetting, (3) atom typesetting with height and depth
analysis, (4) fence typesetting, and finally (5) inject spacing, penalties, remove slack, etc.

In the examples above we set the height and depth and these are passed by keywords to the radical
primitive (most atoms andmath structures accept keywords that control rendering). Here the special
values \maxdimen signal that we have to make radicals of equal height and depth.

In MkII we had ways to snap formulas so that we got consistent line spacing. For a while I wondered if
the engine couldhelpwith that but in the endno specific engine features areneeded, but is is definitely
an area that I keep an eye on because consistent spacing is important. After all one has to draw aline
somewhere and we always have the Lua callback mechanism available.

Final words

Onecanargue that all thesenew features canmakeadocument lookbetter. But youonlyhave to look at
what DonKnuth produces himself to see that one always could do a good jobwith TEX, althoughmaybe

51 A different approach to math spacing

at the cost of some extra spacing directives. It is the fact that OpenType showed up as well as many
more math fonts, all with their own (sometimes surprising) special effects, that made us adapt the
engine. Of course there are also new possibilities that permit better and more robust macro support.
The TEXbook has a chapter on “the fine points of mathematics typesetting” for a reason.

There has never been an excuse to produce bad looking documents. It is all about care. For sure there
is a category of users who are forced to use TEX, so they are excused. There are also those who have no
eye for typography and rely on the macro package, so there we can to some extent blame the authors
of those packages. And there are of course the sloppy users, those who don't enter a revision loop at
all. They could as well use any system that in some way can handle math. One can also wonder in
what way massive remote editing as well as collaborative working on documents make things better.
It probably becomes less personal. At meetings and platforms TEX users like to bash the alternatives
but in the end they are part of the same landscape and when it comes to math they dominate. Maybe
there is less to bragg about then we like: just do your thing and try to do it as good as possible. Rely on
your eyes and pay attention to the details, which is possible because the engine provided the means.
The previous text shows a few things to pay attention to.

Once all the basics that have to dowith proper dimensions, spacing, penalties and logic are dealt with,
we will move on to the more high level constructs. So, expect more.

The binary 52

6 The binary

This is a very short chapter. Because LuaMetaTEX is also a script runner, I want to keep it lean and
mean. So, when the size exceeded 3MB after we'd extended the math engine, I decided to (finally) let
all the MetaPost number interfaces pass pointers which brought down the binary 100K and below the
3MBmark again.

I then became curious about howmuch of the binary actually is taken by MetaPost, and a bit of calcu
lation indicated that we went from 20.1% down to 18.3%. Here is the state per May 13, 2022:

component pct bytes comment

liblua 11.8 349158 lua core, tex interfaces
libluaoptional 2.4 70263 framework, several small interfaces, cerf
libluarest 1.9 55911 general helper libraries
libluasocket 2.4 71640 helper that interfaces to the os libraries
libmimalloc 4.1 121186 memory management partial
libminiz 1.2 34962 minimalistic core
libmp 18.3 540615 mp graphic core, number libraries, lua interfacing
libpplib 7.4 220386 pdf reading core, encryption helpers
libtex 50.5 1495970 extended tex core

luametatex 2960091 2022-05-13

It is clear that the TEX core is good for half of the code (50.5%) with the accumulated Lua stuff (18.5%)
and MetaPost being a good second (18.3%) and third and the pdf interpreting library a decent fourth
(7.4%) place.

53 The binary

To the point 54

7 To the point

In the2022ntgMaps53 there is a visual very attractive article about generative graphicswithMetaPost
by Fabrice Larribe. These graphics actually use very little MetaPost code that use randomized paths
and points and the magic is in getting the parameters right. This means that one has to process them
a lot to figure out what looks best. Here is an example of such a graphic definition. I will show more
variants so a rendering happens later on.

\startMPdefinitions
vardef agitate_a(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := for i=1 upto nbpoints:

point (i/nbpoints) along R
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

I will not explain the working of this because there is the article. Instead, I will focus on something
that came up when the Maps was prepared: performance. Not only are these graphics large (which is
no real problem) but they also take a while to render (which is something that does matter when one
wants to find the best a parameters). For the first few variants we keep the same names of variables as
in the article.

In figure 7.1 we show the (kind of) graphic that we are dealing with. Such an agitator is used in a loop
so that we agitatemultiple circles, where we go from large to small with for instance 4868, 4539, 4221,
3892, 3564, 3245, 2917, 2599, 2270, 1941, 1623, 1294, 966, 647 and 319 points. The article uses a
definition like below for the graphic where you can see the agitator being applied to each of the circles.

path P ; numeric NbCircles, S, nzero, fn, tzero, ft ;

randomseed := 10 ;
defaultscale := .05 ;

NbCircles := 15 ; S := 10 ; nzero := 10 ; fn := 1.3 ; tzero := 5 ; ft := 0.8 ;

for c = NbCircles downto 1 :
P := fullcircle scaled (c*6.5) scaled 3 ;
P := agitate_a(P, S, nzero, fn, tzero, ft) ;
eofill P

withcolor transparent(1,4/NbCircles,col) ;

55 To the point

Figure7.1 Fabrice's agitatedcircles,with reducedprop
erties to keep this file small (see source).

draw P
withpen pencircle scaled 0.1
transparent(1,4/NbCircles,.90[black,col]) ;

endfor ;

The first we noticed is that the graphics processes faster when double mode is used: we gain 40–50%
and the reason for this is thatmodern processors are very good at handling doubles while MetaPost in
scaled mode has to do a lot of juggling with pseudo fractions. In the timings shown later we leave that
improvementout. Also, becauseof this observationConTEXtLMTXnowdefaults itsMetaPost instances
to method double.

When I stared at the agitator code I noticed that thealongmacrowas used. Thatmacro returns a point
at given percentage along a path. In order to do that the macro calculates the length of the path and
then locates that point. The primitive operations involved are arclength, arctime of and point of
and each these takes some time to complete. A first improvement is to inline the along and hoist the
length calculation outside the loop.

\startMPdefinitions
vardef agitate_b(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(point (arctime (i * rlength) of R) of R)
randomized noiselevel

To the point 56

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

There is not thatmuch thatwe can improve here but becauseMikael Sundqvist and I had just extended
MetaPost with some intersection improvements, it made sense to see what we could do in the engine.
In the next variant the arcpoint combines arctime of and point of. The reason this ismuch faster
is thatwearealreadyon the right spotwhenwegot the time, andwesaveasequentialpoint of lookup,
something that takes more time when paths are longer.

\startMPdefinitions
vardef agitate_c(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(arcpoint (i * rlength) of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

At that stage wewondered if we could come upwith a primitive like intersectiontimelist for these
points; here a list refers to a path in which we collect the points. Now, as with the intersection prim
itives, MetaPost loops over the segments of a path and works within such a segment. That is why the
following variant has an explicit start at point zero: we can now use offsets (discrete points).

\startMPdefinitions
vardef agitate_d(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(arcpoint (0, i * rlength) of R)
randomized noiselevel

57 To the point

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

During an evening zooming Mikael and I figured out, by closely looking at the source, how the arc
functions work and how we could indeed come up with a list primitive. The main issue was to use the
right information. Mikael sat down to make a pure MetaPost variant and I hacked the engine. Mikael
came up with a first variant similar to the following, where we use a new primitive subarclength.

\startMPdefinitions
vardef arcpoints_a(expr thepath, cnt) =

save len, seg, tot, tim, stp, acc ;
numeric len ; len := length thepath ;
numeric seg ; seg := 0 ;
numeric tot ; tot := 0 ;
numeric tim ; tim := 0 ;
%
numeric acc[] ; acc[0] := 0 ;
for i = 1 upto len:

acc[i] := acc[i-1] + subarclength (i-1,i) of thepath ;
endfor;
%
numeric stp ; stp := acc[len] / cnt;
%
point 0 of thepath
for tot = stp step stp until acc[len] :

hide(
forever :

exitif ((tim < tot) and (tot < acc[seg+1])) ;
seg := seg + 1 ;
tim := acc[seg] ;

endfor ;
)
-- (arcpoint (seg,tot-tim) of thepath)

endfor if cycle thepath : -- cycle fi
enddef ;

\stopMPdefinitions

Getting points of a path is somewhat complicated by the fact that the length of a closed path is different
from that of an open path even if they have the same number of so-called knots. Internally a path is
always a closed loop. That way, when MetaPost runs over a path, it can easily access the first point
when it's at the end, something that is handy when that point has to be taken into account. Therefore,
the end condition of a loop over a path is the arrival at the beginning. In the next graphic we show a bit
how these first (zero) and last points are located. One reason why the previous macros start at point
one and not at zero is that arclength can overflow due to the randomly growing path otherwise.

To the point 58

point length of p

point length of q
point 0 of p
point 0 of q

p is open (dark)
q is closed (light)

The difference between starting at zero or one for a cycle is show below, we getmore andmore points!

0
1

23

0
1

23

456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103

In the next variants we will not loop over points but step to the arclength. Watch the new
subarclength primitive that starts at an offset. This is much faster than taking a subpath of. We
canmove the accumulator loop into the main loop:

\startMPdefinitions
vardef arcpoints_b(expr thepath, cnt) =

save len, aln, seg, tot, tim, stp, acc ;
numeric len ; len := length thepath ;
numeric aln ; aln := arclength thepath ;
numeric seg ; seg := 0 ;
numeric tot ; tot := 0 ;
numeric tim ; tim := 0 ;
numeric stp ; stp := aln / cnt;
numeric acc ; acc := subarclength (0,1) of thepath ;
%
point 0 of thepath
for tot = stp step stp until aln :

hide(
forever :

exitif tot < acc ;
seg := seg + 1 ;
tim := acc ;
acc := acc + subarclength (seg,seg+1) of thepath ;

endfor ;
)
-- (arcpoint (seg,tot-tim) of thepath)

endfor if cycle thepath : -- cycle fi
enddef ;

\stopMPdefinitions

If you don't like the hide the next variant also works okay:

\startMPdefinitions
vardef mfun_arc_point(text tot)(text thepath) =

59 To the point

forever :
exitif tot < acc ;
seg := seg + 1 ;
tim := acc ;
acc := acc + subarclength (seg,seg+1) of thepath ;

endfor ;
(arcpoint (seg,tot-tim) of thepath)

enddef ;

vardef arcpoints_c(expr thepath, cnt) =
save len, aln, seg, tot, tim, stp, acc ;
numeric len ; len := length thepath ;
numeric aln ; aln := arclength thepath ;
numeric seg ; seg := 0 ;
numeric tot ; tot := 0 ;
numeric tim ; tim := 0 ;
numeric stp ; stp := aln / cnt;
numeric acc ; acc := subarclength (0,1) of thepath ;
%
point 0 of thepath
for tot = stp step stp until aln :

-- mfun_arc_point(tot)(thepath)
endfor if cycle thepath : -- cycle fi

enddef ;
\stopMPdefinitions

This got applied in three test agitators

\startMPdefinitions
vardef agitate_e_a(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpoints_a(R, nbpoints) ; % original Mikael
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;

vardef agitate_e_b(expr thepath, S, n, fn, t, ft) =
save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;

To the point 60

R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpoints_b(R, nbpoints) ; % merged Mikael
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;

vardef agitate_e_c(expr thepath, S, n, fn, t, ft) =
save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpoints_c(R, nbpoints) ; % split Mikael
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

The new engine primitive shortens these agitators:

\startMPdefinitions
vardef agitate_e_d(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpointlist nbpoints of R;
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;

61 To the point

R
enddef ;

\stopMPdefinitions

So arewedone? Didwe get rid of all bottlenecks? The answer is no! We still loop over the list in order to
randomize the points. For each pointwe start at the beginning of the list. Let's first rewrite the agitator
a little:

\startMPdefinitions
vardef agitate_f_a(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentpath := arcpointlist currentpoints of currentpath ;
currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;
if currentnoise <> 0 :

currentpath :=
for i = 0 upto length currentpath:

(point i of currentpath) randomized currentnoise ..
endfor

cycle ;
fi

endfor ;
currentpath

enddef ;
\stopMPdefinitions

One of the LuaMetaFun extensions is a fast path iterator. In the next variant the inpath macro sets
up an iterator (regular loop) with the length as final value. In the process the given path gets passed
to Lua where we can access it as array. The pointof macro (again a Lua call) injects a pair. You will
be surprised that even with passing the path to Lua and calling out to Lua to inject the pair this is way
faster than the built-in point of.

\startMPdefinitions
vardef agitate_f_b(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;
currentpath := arcpointlist currentpoints of currentpath ;
if currentnoise <> 0 :

To the point 62

currentpath :=
for i inpath currentpath :

(pointof i) randomized currentnoise ..
endfor

cycle ;
fi

endfor ;
currentpath

enddef ;
\stopMPdefinitions

It was tempting to see if a more native solution pays of. One problem there is that a path is not really
suitable for that as we currently don't have a data type that represents a point. Okay, actually we sort
of have because we can use the transform record that has six points but that is something I will look
into later (it just got added to the todo list).

The i within pth iterator is no conceptual beauty but does the job. Just keep in mind that it is just
means for this kindof applications: runover apathpoint bypoint. Theihas the current pointnumber.
Because we run over a path following the links we only run forward.

\startMPdefinitions
vardef agitate_f_c(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;
currentpath := arcpointlist currentpoints of currentpath ;
if currentnoise <> 0 :

currentpath :=
for i within currentpath :

pathpoint
randomized currentnoise
..

endfor
cycle ;

fi
endfor ;
currentpath

enddef ;
\stopMPdefinitions

Anyprimitive solutionmore complex than this, like first creating a fast access data structure, of having
a double linked list, or using some iterator larger than a simple numeric is very likely to have no gain
over the super fast Lua variant.

63 To the point

We show the average runtime for three runs. Here we don't render the paths, which takes about one
second, including conversion to pdf. Of course measurements like this can change a bit over time. To
these times you need to add about a second for the draw and fill operations as well as conversion to a
pdf stream with transparencies. The improvement in runtime makes it possible to use agitators like
this at runtime especially because normally one will not use such (combinations of) large paths.

agitate_a 776.26 agitate_e_a 291.99 agitate_f_a 10.82
agitate_b 276.43 agitate_e_b 76.06 agitate_f_b 2.55
agitate_c 259.89 agitate_e_c 77.27 agitate_f_c 2.17
agitate_d 260.41 agitate_e_d 18.67

The final version of the agitator is slightly different because it depends if we start at zero or one but
gives similar results and adapt the noise before or after the loop.

\startMPdefinitions
vardef agitator(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentpath := arcpointlist currentpoints of currentpath ;
if currentnoise <> 0 :

currentpath :=
for i within currentpath :

pathpoint
randomized currentnoise
..

endfor
cycle ;

fi
currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;

endfor ;
currentpath

enddef ;
\stopMPdefinitions

We use a similar example as in the mentioned article but coded a bit differently:

\startMPcode
path pth ;
nofcircles := 15 ; iterations := 10 ;
points := 10 ; pointfactor := 1.3 ;
noise := 5 ; noisefactor := 0.8 ;

nofcircles := 5 ; iterations := 10 ;
points := 5 ; pointfactor := 1.3 ;

% for c = nofcircles downto 1 :

To the point 64

% pth := fullcircle scaled (c * 6.5) scaled 3 ;
% points := floor(arclength(pth) * 0.5) ;
% pth := agitator(pth, iterations, points, pointfactor, noise, noisefactor)
;

% eofill pth
% withcolor darkred
% withtransparency(1,4/nofcircles) ;
% draw pth
% withpen pencircle scaled 0.1
% withtransparency(1,4/nofcircles) ;
% endfor ;

% currentpicture := currentpicture xsized TextWidth ;

for c = nofcircles downto 1 :
pth := fullcircle scaled (c * 6.5) scaled 3 ;
points := floor(arclength(pth) * 0.5) ;
pth := agitator(pth, iterations, points, pointfactor, noise, noisefactor)
;

draw pth
withpen pencircle scaled 1
withcolor (c/nofcircles)[darkgreen,darkred] ;

endfor ;

currentpicture := currentpicture xsized .5TextWidth ;
\stopMPcode

ForMikael andme,whoboth likeMetaPost, itwasanicedistraction fromworkingmonthsonextending
math in LuaMetaTEX, but it also opens up the possibilities to domore with rendering (math) functions
and graphics, so in the end we get paid back anyway.

65 To the point

Not all makes sense 66

8 Not all makes sense

The development of ConTEXt is to a large extend driven by users with a wide variety of background
and usage. I can safely say that much time spent on ConTEXt qualifies as hobby (or maybe even more
by curiosity). Of course I do use it myself but personally I never make advanced documents. I'm not
a writer, nor an artist, nor a typesetter. I do like challenges so that's why we get mechanisms that can
do tricky things and some stay sort of hidden because the practical usage is limited, although you will
be surprised to see what users find in the source and use anyway. My colleague uses ConTEXt for large
scale, mostly complex and demanding xml documents where one source is rendered in different ways
with different parts used. Many features in ConTEXt relate to workflows.

I like to visualize things so that's part of the development cycle. I never start fromsome ‘typographical’
point of view, if only because in my experience much design is arbitrary and personal. The output
should look okay on the average, and on reasonable simple documents there should be no need for
manual intervention. I am quite willing to accept an occasional less optimal looking page and don't
loose sleep over it. A next time, when a sentence gets added, it might be better and the problem can
be moved further down the pages. Also, given what one runs into nowadays the average job that TEX
does is pretty good (but users can of course mess up). It is boundary conditions that determine in
what direction a style or solution goes. The more abstract one argues about typesetting and possible
solutions, the less interested I often become simply because there are no perfect solutions for every
case. There are always those last few % points that need manual intervention or some trickery and
most users get that. It is also what makes using TEX fun.

As mentioned, the TEX engine does a pretty good job on average but that didn't prevent me from ex
tending it: the mix of TEX, MetaPost and Lua is even more fun. But what is the development agenda
there? Again, it is very much driven by what users want me to solve, but there's also the curiosity ele
ment. A recent example of extending is the math sub system. It was already made more configurable
and some features where added but now it is really flexible. This was doable because the heuristics in
the engine are clear. It was could be done because I had a dedicated partner in this journey.12 Other
parts aremore difficult but have nevertheless been extended, tomention a few: alignments, par build
ing and page building. However the last two use some heuristics that are hard to make more flexible.
For instance the badness calculation combined with the loop that tries to find breakpoints is already
quite good and the somewhat special values involved in the calculations have been optimized stepwise
by Don Knuth during the development of TEX.

Does that mean that one cannot add some options to influence that tuning? For sure one can. The
source has this comment:

“When looking for optimal line breaks, TEX creates a ‘break node’ for each break that is feasible,
in the sense that there is a way to end a line at the given place without requiring any line to
stretchmore than a given tolerance. A break node is characterized by three things: the position
of the break (which is a pointer to a glue_node, math_node, penalty_node, or disc_node); the
ordinal number of the line that will follow this breakpoint; and the fitness classification of the
line that has just ended, i.e., tight_fit, decent_fit, loose_fit, or very_loose_fit.””

The book TEX by Topic (by Eijkhout) gives a good explanation of the way lines are broken so there is no
need to go into detail here. The code involved is not that trivial anyway. The criteria for deciding what
is bad are as follows:

12 In another chapter I summarize what Mikael Sundqvist and I did in this context.

67 Not all makes sense

verdict effect badness

very loose stretch >= 100
loose stretch >= 13
decent <= 12
tight shrink >= 13

When the difference between two lines is more than one, they are considered to be visually incom
patible. Then, if the badness of any line exceeds pretolerance a second pass is triggered, When
pretolerance is negative the first pass is skipped. When the badness of any line exceeds tolerance
a third pass is triggered and emergencystretch is used to make things fit.

Where in traditional TEX a lot of parsing, hyphenation, font handling and par building is combined, in
LuaMetaTEX we always work with completely hyphenated and font readied lists. In traditional TEX the
first pass works on the original non-hyphenated lists.

In the source there is anoldnote that oneday Iwill playwith aplugged inbadness calculationbut it also
says that there might be a performance impact as well as all kind of unforeseen side effects because
TEXmakes sure that the heuristics lead to values that don't result in overflow and such.

Another note concernsmore fitness values. Doing that will increase the runtime a little but on amod
ernmachine that is not really an issue. Shortly after I upgradedmy laptop to a somewhat newer one I
decided to playwith this and therefore anyperformancehitwould gounnoticed anyway. The following
snippet from the source shows the idea:

typedef enum fitness_value {
very_loose_fit, /*tex lines stretching more than their stretchability */
loose_fit, /*tex lines stretching 0.5 to 1.0 of their stretchability */
semi_loose_fit,
decent_fit, /*tex for all other lines */
semi_tight_fit,
tight_fit, /*tex lines shrinking 0.5 to 1.0 of their shrinkability */
n_of_finess_values

} fitness_value;

This means that when we loop over very_loose_fit upto tight_fit we have two more classes to
take into account: the semi ones. Playing with that and associating themwithmagic numbers quickly
learned that we enter the area of ‘random improvements’. You can render variants and because some
will lookbetter andothersworseonecanargue for anycase. Andasusual, onceauser (unawareofwhat
we are doing) looks at it, things like successive hyphens, wider spaces, rivers and such are seen as the
main difference. Of course spacing is the direct result of this kind of messing, but because the effects
are actually mostly noticeable on non-justified texts it then is the end-of-line spacing that influences
the verdict.13

In the end this kind of extensions make little sense. One can of course play science and introduce
all kind of imaginary cases where it might work but that is why I started this summary by explaining

13 When hz showed up in pdfTEX we did experiments with random samples of its usage and TEXies at user group meetings and the
results were such that one could only draw the conclusion that on the average a user has no clue if something is good or bad for
what reason. The strong emphasis in the TEX community on hyphenation makes that an eye-catching criterium. So having two in
a successive lines even when there is really no better solution is what draws the attention and users then tend to think that what a
survey is about is “The quality of hyphenation related to breaking paragraphs into lines.”

Not all makes sense 68

what drives developments: users and constraints. Playing science for the sake of it is pseudo science.
And, as withmuch science related to typesetting (probably with the exception of Don's work)most has
therefore little practical value.

So, do we keep this feature or not? We actually do, if only to be able to demonstrate the fuzziness of
this. We have an undocumentedmagic parameter:

\linebreakcriterium"0C0C0C63

Actually the value is zero but when one of the four byte pairs is zero it will default to "0C (12) or "63
(99). The values concern semitight, decent, semiloose, and loose. After some trial and error I got
to the examples on the next two pages. You need to zoom in to see the differences (the black one is the
original). In setting used are:

\hsize \setupalign
1 12em normal, stretch, tolerant
2 18em flushleft

Asmentioned, one can look at specific expectedproperties anddrawconclusionsbutwhenTEXcannot
find a good solution using its default, it is unlikely that alternative settings help you out, unless you do
that on a per-paragraph basis.

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
, h

ar
m

o
ni

ze
,

sy
nt

he
siz

e,
fo

cu
s,

or

ga
ni

ze
,

co
nd

en
se

,
re

du
ce

,
bo

il
do

w
n,

ch
oo

se
,

ca
te

go

riz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
,

lo
ok

in
to

,
id

ea
liz

e,
iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

ov
er

,
so

rt
,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

,
sm

oo
th

,
ch

un
k,

av
er

ag
e,

ap
pr

ox
i

m
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite
m

iz

e,
re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br
ow

se
,

gl
an

ce
in

to
, l

ea
f t

hr
ou

gh
, s

ki
m

, r
e

fin
e,

en
um

er
at

e,
gl

ea
n,

sy
n

op
siz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s.

\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
, h

ar
m

o
ni

ze
,

sy
nt

he
siz

e,
fo

cu
s,

or

ga
ni

ze
,

co
nd

en
se

,
re

du
ce

,
bo

il
do

w
n,

ch
oo

se
,

ca
te

go

riz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
,

lo
ok

in
to

,
id

ea
liz

e,
iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

ov
er

,
so

rt
,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

,
sm

oo
th

,
ch

un
k,

av
er

ag
e,

ap
pr

ox
i

m
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite
m

iz

e,
re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br
ow

se
,

gl
an

ce
in

to
, l

ea
f t

hr
ou

gh
, s

ki
m

, r
e

fin
e,

en
um

er
at

e,
gl

ea
n,

sy
n

op
siz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s.

\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-
th

ic
k

w
or

ld
s

be
ca

us
e

of
ou

r
m

ar
ve

lo
us

an
d

ev
er

yd
ay

ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
ct

ur
e,

hi
gh

lig
ht

,
gr

ou
p,

pa
ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
ch

oo
se

,
ca

te
go

riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

,
lo

ok
in

to
,

id
ea

liz
e,

iso
la

te
,

di
sc

rim
i

na
te

,
di

st
in

gu
ish

,
sc

re
en

,
pi

ge
on

ho
le

,
pi

ck
ov

er
,

so
rt

,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
,

sm
oo

th
,

ch
un

k,
av

er
ag

e,
ap

pr
ox

i
m

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

,
su

m
m

ar
iz

e,
ite

m

iz
e,

re
vi

ew
,

di
p

in
to

,
fli

p
th

ro
ug

h,
br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
en

um
er

at
e,

gl
ea

n,
sy

n
op

siz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
yd

ay
ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
sy

nt
he

siz
e,

fo
cu

s,
or

ga
ni

ze
, c

on

de
ns

e,
re

du
ce

, b
oi

l d
ow

n,
ch

oo
se

, c
at

eg

or
iz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

, l
oo

k
in

to
, i

de
al

iz
e,

iso
la

te
, d

isc
rim

in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho
le

,
pi

ck
ov

er
, s

or
t,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
, a

ve
r

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
yd

ay
ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
sy

nt
he

siz
e,

fo
cu

s,
or

ga
ni

ze
, c

on

de
ns

e,
re

du
ce

, b
oi

l d
ow

n,
ch

oo
se

, c
at

eg

or
iz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

, l
oo

k
in

to
, i

de
al

iz
e,

iso
la

te
, d

isc
rim

in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho
le

,
pi

ck
ov

er
, s

or
t,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
, a

ve
r

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
ve

r
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim
i

na
te

, d
ist

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho
le

,
pi

ck
ov

er
, s

or
t,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
, a

ve
r

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
,

ca
te

go
riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st

ra
ct

, s
ca

n,
lo

ok
in

to
, i

de
al

iz
e,

iso
la

te
,

di
sc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho

le
, p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
,

av
er

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
yd

ay
ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
sy

nt
he

siz
e,

fo
cu

s,
or

ga
ni

ze
, c

on

de
ns

e,
re

du
ce

, b
oi

l d
ow

n,
ch

oo
se

, c
at

eg

or
iz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

, l
oo

k
in

to
, i

de
al

iz
e,

iso
la

te
, d

isc
rim

in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho
le

,
pi

ck
ov

er
, s

or
t,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
, a

ve
r

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
yd

ay
ca

pa
ci

ty
to

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
sy

nt
he

siz
e,

fo
cu

s,
or

ga
ni

ze
, c

on

de
ns

e,
re

du
ce

, b
oi

l d
ow

n,
ch

oo
se

, c
at

eg

or
iz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st
ra

ct
,

sc
an

, l
oo

k
in

to
, i

de
al

iz
e,

iso
la

te
, d

isc
rim

in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho
le

,
pi

ck
ov

er
, s

or
t,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
, a

ve
r

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
ve

r
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim
i

na
te

, d
ist

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho
le

,
pi

ck
ov

er
, s

or
t,

in
te

gr
at

e,
bl

en
d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
, a

ve
r

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
, c

at

eg
or

iz
e,

ca
ta

lo
g,

cl
as

sif
y,

lis
t,

ab
st

ra
ct

,
sc

an
, l

oo
k

in
to

, i
de

al
iz

e,
iso

la
te

, d
isc

rim

in
at

e,
di

st
in

gu
ish

, s
cr

ee
n,

pi
ge

on
ho

le
,

pi
ck

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp
ec

t,
fil

te
r,

lu
m

p,
sk

ip
, s

m
oo

th
, c

hu
nk

, a
v

er
ag

e,
ap

pr
ox

im
at

e,
cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
, s

um
m

ar
iz

e,
ite

m
iz

e,
re

vi
ew

, d
ip

in
to

, fl
ip

th
ro

ug
h,

br
ow

se
, g

la
nc

e
in

to
,

le
af

th
ro

ug
h,

sk
im

, r
efi

ne
, e

nu
m

er
at

e,
gl

ea
n,

sy
no

ps
iz

e,
w

in
no

w
th

e
w

he
at

fr
om

th
e

ch
aff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
th

e
go

at
s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

in
fo

rm
at

io
n-

-t
hi

ck
w

or
ld

s
be

ca
us

e
of

ou
r

m
ar

ve
lo

us
an

d
ev

er
y

da
y

ca
pa

ci
ty

to
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,
hi

gh
lig

ht
, g

ro
up

, p
ai

r,
m

er
ge

,
ha

rm
on

iz
e,

sy
nt

he
siz

e,
fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
, r

ed
uc

e,
bo

il
do

w
n,

ch
oo

se
,

ca
te

go
riz

e,
ca

ta
lo

g,
cl

as
sif

y,
lis

t,
ab

st

ra
ct

, s
ca

n,
lo

ok
in

to
, i

de
al

iz
e,

iso
la

te
,

di
sc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
pi

ge
on

ho

le
, p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

bl
en

d,
in

sp

ec
t,

fil
te

r,
lu

m
p,

sk
ip

, s
m

oo
th

, c
hu

nk
,

av
er

ag
e,

ap
pr

ox
im

at
e,

cl
us

te
r,

ag
gr

eg
at

e,
ou

tli
ne

, s
um

m
ar

iz
e,

ite
m

iz
e,

re
vi

ew
, d

ip
in

to
, fl

ip
th

ro
ug

h,
br

ow
se

, g
la

nc
e

in
to

,
le

af
th

ro
ug

h,
sk

im
, r

efi
ne

, e
nu

m
er

at
e,

gl
ea

n,
sy

no
ps

iz
e,

w
in

no
w

th
e

w
he

at
fr

om
th

e
ch

aff
an

d
se

pa
ra

te
th

e
sh

ee
p

fr
om

th
e

go
at

s. \
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

71 Not all makes sense

