FMALMW. AL MALWVAE VAL HMAeLWVE JALE HALLSSE VAR ALY Vi VMALLHYE VAL VAL VAL GFALYSE WA AALME NALRE HMEAELSEL VAR MVanlws

on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
oh and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on n and on and on and on and on
and on and on and on and on and nd o= ~ad a and
on and on and on and on and on a on and 1 arfon Pd on
and on and on and on and on and (4 4 ond oand
on and on and on and on and on and On ahd on aud on and on and d on
and on and on and on 1 and on and on and on and on and on and
on and on and on and o nd or ~d or =4 on a d on
and on and on and on a nand¢ ar fon{ ad -
on and on and on and o d @ 1 or and on dona don
and on and on and on a ON and ON ap°. O« 1 0nN aud ON and on and
on and on and on and on and on and on and 0. an® _a and on and on and on
and on and on and on and on and on and on and on and on and on and on and

- - - - - -4 - - ~ -

Content

Introduction

1 The first decade

2 Plug mode, an application of ffi
3 Variable fonts

4 Emoji again

5 Performance

6 Editing

7 Tricky fences

8 The state of PDF

9 From LUA 5.2 to 5.3

10 Executing TEX

11 Modern Latin

12 More (new) expansion trickery
13 Amputating code

14 Getting there, version 1.10

22

34

50

68

74

84

90

96

104

140

146

156

Introduction

With LUATEX version 1.0 being released it’s not time to move on to a next stage in the
development. The first four stages were discussed in ‘mk’, ‘hybrid’, ‘about” and “still’.
Much in there ended up as article in user group journals. some was just a wrap-up of
something I ran into or played with. Also, some of it could be seen as a kind of manual
for a specific aspect of LUATEX and/or CONTEXT.

In this document we continue this kind of reporting. Maybe it’s useful for others to
read about it but in the first place it serves me to wrap up experiences occasionally.

Some chapters were meant for publications in user groups journals so they are made
public afterwards. I like to thank Karl Berry for correcting many of my mistakes and
improving the content. Because Luigi Scarso and I spend quite some time on LUATEX
development, we also share many of the experiences described in this document. With-
out his patience with me this would not be possible.

Hans Hagen
Hasselt NL
2016 onward

http://www.luatex.org
http://www.pragma-ade.com

Introduction 4

5 Introduction

1 The first decade

When writing this it’s hard to believe that we're already a decade working on LUATEX
and about the same time on MKIV. The question is, did we achieve the objectives? The
answer can easily be “yes” because we didn’t start with objectives, just with some ex-
periments with a LUA extension interface. However, it quickly became clear that this
was the way to go. Already in an early stage we took a stand in what direction we had
to move.

How did we end up with LUA and not one of the other popular scripting languages?
The CONTEXT macro package always came with a runner. Not only did the runner
manage the (often) multiple runs, it also took care of sorting the index and other in-
ter-job activities. Additional helpers were written for installing fonts, managing (and
converting) images, job control, etc. First they were binaries (written in MODULA 2),
but successive implementations used PERL and RUBY. When I found out that the SCITE
editor I switched to had an extension mechanism using LUA, I immediately liked that
language. It’s clean, not bloated, relatively stable, evolves in an academic environment
and is not driven by commerce and/or short term success, and above all, the syntax
makes the code look good. So, it was the most natural candidate for extending TgX.

Already for along time, TEX is a stable program and whatever we do with it, we should
not break it. There has been frontend extensions, like e-TEX, and backend extensions,
like PDFIEX, and experiments like OMEGA and ALEPH and we could start from there.
So, basically we took PDFIEX, after all, that was what we used for the first experiments,
and merged some ALEPH directional code in it. A tremendous effort was undertaken
(thanks to funding by the Oriental TEX project) to convert the code base from PASCAL
to C.

It is hard to get an agreement over what needs to be added and it’s a real waste of time
to enter that route by endless discussions: every TEX user has different demands and
macro packages differ in philosophy . So, in the spirit of the extension language LUA
we stuck to concept of “If you want it better, write it in LUA”. As a consequence we
had to provide access to the internals with efficient and convenient methods, something
that happened stepwise. We did extend the engine with a few features that make live
easier but tried to limit ourselves. On the other hand, due to developments with fonts
and languages we generalized these concepts so that extending and controlling them
is easier. And, due to developments in math font technology we also added alternative
code paths to the math renderer.

All these matters have been presented and discussed at meetings, in user group journals
and in documents that are part of the CONTEXT suite. And during this decade the CON-
TEXT users have been patient testers of whatever we threw at them in the MKIV version
of this macro package.

It’s kind of interesting to note that in the TEX community it takes a while before version
1 of programs becomes available. Some programs never (seem to) reach that state.

The first decade 6

However, for us version 1.0 marks the moment that we consider the interfaces to be
stable. Of course we move on so a version 2.0 can divert and provide more or even
less interfaces, provide new functionality or drop obsolete features. The intermediate
versions (up to version one) were always quite useable in production. In 2005 the first
prototype of LUATEX was demonstrated at the TUG conference, and in 2007 at the TUG
conference we had a whole day on LUATEX. At that time CONTEXT MKIV evolved fast
and we already had decent OPENTYPE support as part of the oriental TEX project. It
was in those years that the major reorganization of the code base took place but in
successive years many subsystems were opened and cleaned up. There were some
occasions where an interface was changed for the better but adapting was not that hard.
It might have helped that much of CONTEXT MKIV is written in LUA. What also helped
is that most CONTEXT users quickly switched to MKIV, if only because MKII was frozen.
And, thanks to those users, we were able to root out bugs and bottlenecks. It was
interesting to see that the approach of mixing TgX, METAPOST and LUA catched on quite
well.

By the end of September 2016, at the 10th CoNTgXT meeting we released what we call
the first long term stable version of LUATEX. This version performs quite well but we
might still add a few things here and there and the code will be further cleaned up and
documented. In the meantime LUATEX is also used in other macro packages. It will
not replace PDFIEX (at least not soon) because that engine does the job for most of the
publications done in TgX: articles. As they are mostly in English and use traditional
fonts, there is no need to switch to the more flexible but somewhat slower LUATEX.
In a similar fashion XqTEX serves those who want the benefits of PDFTEX, hard-coded
font support and token juggling at the TgX level. We will support those engines with
MKII but as mentioned, we will not develop new code for. We strongly advice CON-
TEXT users to use LUATEX but there the advertisements stop. Personally I haven’t used
PDFTEX (which made TEX survive in the evolving world of electronic documents) for
a decade and I never really used XgIEX (which opened up the TgX world to modern
fonts). At least for the coming decade I hope that LUATEX can serve us well.

7 The first decade

2 Plug mode, an application of ffi

A while ago, at an NTG meeting, Kai Eigner and Ivo Geradts demonstrated how to use
the Harfbuzz (hb) library for processing OPENTYPE fonts. The main motivation for them
playing with that was that it provides a way to compare the LUA based font machinery
with other methods. They also assumed that it would give a better performance for
complex fonts and/or scripts.

One of the guiding principles of LUATEX development is that we don’t provide hard
coded solutions. For that reason we opened up the internals so that one can provide
solutions written in pure LUA, but, of course, one can cooperate with libraries via LUA
code as well. Hard coding solutions makes no sense as there are often several solutions
possible, depending on one’s need. Although development is closely related to CON-
TEXT, the development of the LUATEX engine is generic. We try to be macro package
agnostic. Already in an early stage we made sure that the CONTEXT font handler could
be used in other packages as well, but one can easily dream up light weight variants for
specific purposes. The standard TEX font handling was kept and is called base mode
in CONTEXT. The LUA variant is tagged node mode because it operates on the node list.
Later we will refer to these modes.

With the output of XgIEX for comparison, the first motive mentioned for looking into
support for such a library is not that strong. And when we want to test against the
standard, we can use MS-Word. A minimal CONTEXT MKIV installation one only has
the LUATEX engine. Maintaining several renderers simultaneously might give rise to
unwanted dependencies.

The second motive could be more valid for users because, for complex fonts, there is—
or at least was—a performance hit with the LUA variant. Some fonts use many lookup
steps or are inefficient even in using their own features. It must be said that till now I
haven’t heard CONTEXT users complain about speed. In fact, the font handling became
many times faster the last few years, and probably no one even noticed. Also, when
using alternatives to the built in methods, in the end, you will loose functionality and/
or interactions with other mechanisms that are built into the current font system. Any
possible gain in speed is lost, or even becomes negative, when a user wants to use
additional functionality that requires additional processing.!

Just kicking in some alternative machinery is not the whole story. We still need to deal
with the way TgX sees text, and that, in practice, is as a sequence of glyph nodes—mixed
with discretionaries for languages that hyphenate, glue, kern, boxes, math, and more.
It’s the discretionary part that makes it a bit complex. In contextual analysis as well as
positioning one needs to process up to three additional cases: the pre, post and replace

In general we try to stay away from libraries. For instance, graphics can be manipulated with external
programs, and caching the result is much more efficient than recreating it. Apart from SQL support,
where integration makes sense, I never felt the need for libraries. And even SQL can efficiently be dealt
with via intermediate files.

Plug mode, an application of ffi 8

texts—either or not linked backward and forward. And as applied features accumulate
one ends up winding and unwinding these snippets. In the process one also needs to
keep an eye on spaces as they can be involved in lookups. Also, when injecting or
removing glyphs one needs to deal with attributes associated with nodes. Of course
something hard codes in the engine might help a little, but then one ends up with the
situation where macro packages have different demands (and possible interactions)
and no solution is the right one. Using LUA as glue is a way to avoid that problem.
In fact, once we go along that route, it starts making sense to come up with a stripped
down LUATEX that might suit CONTEXT better, but it’s not a route we are eager to follow
right now.

Kai and Ivo are plain TEX users so they use a font definition and switching environment
that is quite different from CONTEXT. In an average CONTEXT run the time spent on font
processing is measurable but not the main bottleneck because other time consuming
things happen. Sometimes the load on the font subsystem can be higher because we
provide additional features normally not found in OPENTYPE. Add to that a more dy-
namic font model and it will be clear that comparing performance between situations
that use different macro packages is not that trivial (or relevant).

More reasons why we follow a LUA route are that we: support (run time generated) vir-
tual fonts, are able to kick in additional features, can let the font mechanism cooperate
with other functionality, and so on. In the upcoming years more trickery will be pro-
vided in the current mechanisms. Because we had to figure out a lot of these OPENTYPE
things a decade ago when standards were fuzzy quite some tracing and visualization is
available. Below we will see some timings, It's important to keep in mind that in CON-
TEXT the OPENTYPE font handler can do a bit more if requested to do so, which comes
with a bit of overhead when the handler is used in CONTEXT—something we can live
with.

Some time after Kai’s presentation he produced an article, and that was the moment
I looked into the code and tried to replicate his experiments. Because we're talking
libraries, one can understand that this is not entirely trivial, especially because I'm on
another platform than he is—Windows instead of OSX. The first thing that I did was
rewrite the code that glues the library to TgX in a way that is more suitable for CON-
TEXT. Mixing with existing modes (base or node mode) makes no sense and is asking
for unwanted interferences, so instead a new plug mode was introduced. A sort of
general text filtering mechanism was derived from the original code so that we can plug
in whatever we want. After all, stability is not the strongest point of today’s software
development, so when we depend on a library, we need to be prepared for other (library
based) solutions—for instance, if I understood correctly, XgIEX switched a few times.

After redoing the code the next step was to get the library running and I decided that the
ffi route made most sense.? Due to some expected functions not being supported, my

One can think of a intermediate layer but I'm pretty sure that I have different demands than others, but
f£1 sort of frees us from endless discussions.

9 Plug mode, an application of ffi

efforts in using the library failed. At that time I thought it was a matter of interfacing,
but I could get around it by piping into the command line tools that come with the
library, and that was good enough for testing. Of course it was dead slow, but the
main objective was comparison of rendering so it doesn’t matter that much. After that
I just quit and moved on to something else.

At some point Kai’s article came close to publishing, and I tried the old code again,
and, surprise, after some messing around, the library worked. On my system the one
shipped with Inkscape is used, which is okay as it frees me from bothering about in-
stallations. As already mentioned, we have no real reason in CONTEXT for using fonts
libraries, but the interesting part was that it permitted me to play with this so called
ffi. At that moment it was only available in LUAJITTEXBecause that creates a nasty
dependency, after a while, Luigi Scarso and I managed to get a similar library working
in stock LUATEX which is of course the reference. So, I decided to give it a second try,
and in the process I rewrote the interfacing code. After all, there is no reason not to be
nice for libraries and optimize the interface where possible.

Now, after a decade of writing LUA code, I dare to claim that I know a bit about how to
write relatively fast code. I was surprised to see that where Kai claimed that the library
was faster than the LUA code.l saw that it really depends on the font. Sometimes the
library approach is actually slower, which is not what one expects. But remember that
one argument for using a library is for complex fonts and scripts. So what is meant
with complex?

Most Latin fonts are not complex—Iligatures and kerns and maybe a little bit of contex-
tual analysis. Here the LUA variant is the clear winner. It runs upto ten times faster.
For more complex Latin fonts, like EBgaramond, that resolves ligatures in a different
way, the library catches up, but still the LUA handler is faster. Keep in mind that we
need to juggle discretionary nodes in any case. One difference between both methods is
that the LUA handler runs over all the lists (although it has to jump over fonts not being
processed then), while the library gets snippets. However, tests show that the over-
head involved in that is close to zero and can be neglected. Already long ago we saw
that when we compared MKIV LUATEX and MKII XHTEX, the LUA based font handler is
not that slow at all. This makes sense because the problem doesn’t change, and maybe
more importantly because LUA is a pretty fast language. If one or the other approach
is less that two times faster the gain will probably go unnoticed in real runs. In my ex-
perience a few bad choices in macro or style writing is more harmful than a bit slower
font machinery. Kick in some additional node processing and it might make compari-
son of a run even harder. By the way, one reason why font handling has been sped up
over the years is because our workflows sometimes have a high load, and, for instance,
processing a set of 5 documents remotely has to be fast. Also, in an edit workflow you
want the runtime to be a bit comfortable.

Contrary to Latin, a pure Arabic text (normally) has no discretionary nodes, and the
library profits most of this. Some day I have to pick up the thread with Idris about the
potential use of discretionary nodes in Arabic typesetting. Contrary to Arabic, Latin

Plug mode, an application of ffi 10

text has not many replacements and positioning, and, therefore, the LUA variant gets
the advantage. Some of the additional features that the LUA variant provides can, of
course, be provided for the library variant by adding some pre- and postprocessing
of the list, but then you quickly loose any gain a library provides. So, Arabic has less
complex node lists with no branches into discretinaries, but it definitely has more re-
placements, positioning and contextual lookups due to the many calls to helpers in the
LUA code. Here the library should win because it can (I assume) use more optimized
datastructures.

In Kai’s prototype there are some cheats for right-to-left rendering and special scripts
like Devanagari. As these tweaks mostly involve discretionary nodes; there is no real
need for them. When we don’t hyphenate no time is wasted anyway. I didn’t test De-
vanagari, but there is some preprocessing needed in the LUA variant (provided by Kai
and Ivo) that I might rewrite from scratch once I understand what happens there. But
still, I expect the library to perform somewhat better there but I didn’t test it. Eventu-
ally I might add support for some more scripts that demand special treatments, but so
far there has not been any request for it.

So what is the processing speed of non-Latin scripts? An experiment with Arabic using
the frequently used Arabtype font showed that the library performs faster, but when
we use a mixed Latin and Arabic document the differences become less significant. On
pure Latin documents the LUA variant will probably win. On pure Arabic the library
might be on top. On average there is little difference in processing speed between the
LUA and library engines when processing mixed documents. The main question is,
does one want to loose functionality provided by the LUA variant? Of course one can
depend on functionality provided by the library but not by the LUA variant. In the end
the user decides.

How did we measure? The baseline measurement is the so called none mode: nothing
is done there. It’s fast but still takes a bit of time as it is triggered by a general mode
identifying pass. That pass determines what font processing modes are needed for a
list. Base mode only makes sense for Latin and has some limitations. It’s fast and,
basically, its run time can be neglected. That’s why, for instance, PDFTEX is faster than
the other engines, but it doesn’t do UNICODE well. Node mode is the fancy name for the
LUA font handler. So, in order of increasing run time we have: none, base and node.
If we compare node mode with plug mode (in our case using the hb library), we can
subtract none mode. This gives a cleaner (more distinctive) comparison but not a real
honest one because the identifying pass always happens.

We also tested with and without hyphenation, but in practice that makes no sense.
Only verbatim is typeset that way, and normally we typeset that in none mode anyway.
On the other hand mixing fonts does happen. All the tests start with forced garbage
collection in order to get rid of that variance. We also pack into horizontal boxes so
that the par builder (with all kind of associated callbacks) doesn’t kick in, although the
node mode should compensate that.

11 Plug mode, an application of ffi

Keep in mind that the tests are somewhat dumb. There is no overhead in handling
structure, building pages, adding color or whatever. I never process raw text. As a
reference it’s no problem to let CONTEXT process hundreds of pages per second. In
practice a moderate complex document like the metafun manual does some 20 pages
per second. In other words, only a fraction of the time is spent on fonts. The timings
for LUATEX are as follows:

luatex latin

F—thon
modern t t— tnone t— tnode t/tnode m
context base 0.48 0.04 -0.75 0.39 0.05
context node 1.23 0.79 0.00 1.00 1.00
context none 0.44 0.00 -0.79 0.36 0.00
harfbuzz native 5.06 4.62 3.83 4.12 5.86
harfbuzz uniscribe 5.24 4.80 4.02 4.27 6.10
t_tnone
pagella t t—thone f—thode f/tnode Trode—Frone
context base 0.50 0.03 -0.77 0.39 0.04
context node 1.27 0.80 0.00 1.00 1.00
context none 047 0.00 -0.80 0.37 0.00
harfbuzz native 4.96 4.49 3.69 3.89 5.58
harfbuzz uniscribe 5.49 5.02 4.22 4.31 6.24
. t_tnone
dejavu t t—thone f—thode [/tnode T odo—tnone
context base 0.46 0.04 -1.21 0.28 0.03
context node 1.68 1.25 0.00 1.00 1.00
context none 0.43 0.00 -1.25 0.25 0.00
harfbuzz native 4.50 4.07 2.82 2.68 3.26
harfbuzz uniscribe 4.79 4.37 3.12 2.86 3.49
. t_tnone
Cambrla t t— tnone t— tnode t/tnode m
context base 0.44 0.02 -1.67 0.21 0.01
context node 2.11 1.69 0.00 1.00 1.00
context none 0.43 0.00 -1.69 0.20 0.00
harfbuzz native 4.59 4.16 247 217 247
harfbuzz uniscribe 5.03 4.60 291 2.38 2.73
ebgaramond t t—thone t—thode t/tnode ﬁ
context base 0.50 0.06 -1.86 0.21 0.03
context node 2.36 1.92 0.00 1.00 1.00
context none 0.43 0.00 -1.92 0.18 0.00
harfbuzz native 4.96 4.52 2.60 2.10 2.35
harfbuzz uniscribe 5.17 4.74 2.81 2.19 2.46

Plug mode, an application of ffi 12

lucidaot b ot—tyope f—t t/t —~fnone

node node Frode—none
context base 0.48 0.01 -0.45 0.52 0.02
context node 0.93 0.45 0.00 1.00 1.00
context none 0.47 0.00 -0.45 0.51 0.00
harfbuzz native 4.28 3.81 3.35 4.62 8.42
harfbuzz uniscribe 4.68 4.21 3.76 5.06 9.32

luatex arabic

t_tnone
arabtype t t—thone f—thode /tnode trode—tnone
context base 0.42 0.00 -14.75 0.03 0.00
context node 15.17 14.76 0.00 1.00 1.00
context none 041 0.00 -14.76 0.03 0.00
harfbuzz native 7.14 6.73 -8.02 047 0.46
harfbuzz uniscribe 7.68 7.27 -7.49 0.51 0.49
. t_tnone
husaym t t— tnone t— tnode t/tnode m
context base 0.45 -0.01 -25.63 0.02 -0.00
context node 26.08 25.62 0.00 1.00 1.00
context none 0.46 0.00 -25.62 0.02 0.00
harfbuzz native 10.50 10.04 -15.58 0.40 0.39
harfbuzz uniscribe 18.96 18.50 -7.12 0.73 0.72

luatex mixed

t_tnone
arabtype t t— tnone t— tnode t/tnode m
context base 0.68 -0.01 -7.18 0.09 -0.00
context node 7.85 7.17 0.00 1.00 1.00
context none 0.69 0.00 -7.17 0.09 0.00
harfbuzz native 5.82 5.13 -2.03 0.74 0.72
harfbuzz uniscribe 6.21 5.53 -1.64 0.79 0.77
husayni b t—thone I=fnode !lnode T
context base 0.72 0.05 -11.20 0.06 0.00
context node 11.92 11.25 0.00 1.00 1.00
context none 0.67 0.00 -11.25 0.06 0.00
harfbuzz native 6.93 6.25 -4.99 0.58 0.56
harfbuzz uniscribe 9.85 9.18 -2.07 0.83 0.82

The timings for LUAJITTEX are, of course, overall better. This is because the virtual ma-
chine is faster, but at the cost of some limitations. We seldom run into these limitations,
but fonts with large tables can’t be cached unless we rewrite some code and sacrifice
clean solutions. Instead, we perform a runtime conversion which is not that noticeable

13 Plug mode, an application of ffi

when it’s just a few fonts. The numbers below are not influenced by this as the test
stays away from these rare cases.

luajittex latin

t_tnone
modern t t— tnone t— tnode t/tnode m
context base 0.42 0.03 -0.36 0.54 0.09
context node 0.77 0.39 0.00 1.00 1.00
context none 0.38 0.00 -0.39 0.50 0.00
harfbuzz native 3.07 2.69 2.30 3.98 6.90
harfbuzz uniscribe 3.05 2.67 2.28 3.94 6.84
t_tnone
pagella t t—thone f—thode f/tnode T ode—tnone
context base 0.44 0.02 -0.37 0.54 0.05
context node 0.80 0.39 0.00 1.00 1.00
context none 0.42 0.00 -0.39 0.52 0.00
harfbuzz native 3.02 2.61 2.22 3.77 6.74
harfbuzz uniscribe 3.01 2.59 2.20 3.74 6.69
. t_tnone
dejavu t t—thone f—thode [/tnode Trode—Frone
context base 0.40 0.04 -0.59 0.41 0.06
context node 0.98 0.62 0.00 1.00 1.00
context none 0.36 0.00 -0.62 0.37 0.00
harfbuzz native 3.02 2.66 2.04 3.07 4.28
harfbuzz uniscribe 2.97 2.60 1.98 3.01 4.19
. t—tnon
cambrla t t— tnone t— tnode t/tnode m
context base 0.38 0.02 -0.79 0.33 0.02
context node 1.17 0.80 0.00 1.00 1.00
context none 0.37 0.00 -0.80 0.31 0.00
harfbuzz native 291 2.54 1.74 2.48 3.16
harfbuzz uniscribe 2.86 2.50 1.69 2.45 3.11
t—tnon
ebgaramond t t—thone f—thode /tnode tnode+;nceme
context base 0.43 0.05 -0.89 0.33 0.05
context node 1.32 0.94 0.00 1.00 1.00
context none 0.38 0.00 -0.94 0.29 0.00
harfbuzz native 3.00 2.62 1.68 2.27 2.78
harfbuzz uniscribe 2.98 2.60 1.66 2.25 2.77
. t—tnon
luc1da0t t t— tnone t— tnode t/tnode tmx:le+;nfme
context base 0.41 -0.01 -0.21 0.66 -0.04
context node 0.63 0.20 0.00 1.00 1.00

Plug mode, an application of ffi

14

context none 0.42 0.00 -0.20 0.67 0.00
harfbuzz native 2.61 2.18 1.98 4.16 10.71
harfbuzz uniscribe 2.59 217 1.97 4.14 10.65

luajittex arabic

t_tnone

arabtype t t—thone f—thode [/tnode T odo—tnone
context base 0.32 -0.00 -6.85 0.04 -0.00
context node 7.17 6.84 0.00 1.00 1.00
context none 0.32 0.00 -6.84 0.04 0.00
harfbuzz native 4.63 4.31 -2.54 0.65 0.63
harfbuzz uniscribe 4.67 4.35 -2.50 0.65 0.64

. t_tnone
husaym t t— tnone t— tnode t/tnode m
context base 0.35 -0.00 -11.90 0.03 -0.00
context node 12.25 11.90 0.00 1.00 1.00
context none 0.35 0.00 -11.90 0.03 0.00
harfbuzz native 15.28 14.93 3.03 1.25 1.25
harfbuzz uniscribe 15.25 14.90 3.00 1.25 1.25

luajittex mixed

t—tnon

arabtype t t— tnone t— tnode t/tnode tnode+;nzne
context base 0.57 -0.03 -3.47 0.14 -0.01
context node 4.04 3.44 0.00 1.00 1.00
context none 0.60 0.00 -3.44 0.15 0.00
harfbuzz native 3.69 3.09 -0.35 091 0.90
harfbuzz uniscribe 3.69 3.08 -0.35 0.91 0.90
. t—tnon

husaym t t— tnone t— tnode t/tnode tnode+;nzne
context base 0.62 0.04 -5.33 0.10 0.01
context node 5.94 5.37 0.00 1.00 1.00
context none 0.57 0.00 -5.37 0.10 0.00
harfbuzz native 7.19 6.62 1.25 1.21 1.23
harfbuzz uniscribe 7.11 6.53 1.17 1.20 1.22

A few side notes. Since a library is an abstraction, one has to live with what one gets.
In my case that was a crash in UTF-32 mode. I could get around it, but one advantage of
using LUA is that it’s hard to crash—if only because as a scripting language it manages
its memory well without user interference. My policy with libraries is just to wait till
things get fixed and not bother with the why and how of the internals.

Although CONTEXT will officially support the plug model, it will not be actively used
by me, or in documentation, so for support users are on their own. I didn’t test the

15 Plug mode, an application of ffi

plug mode in real documents. Most documents that I process are Latin (or a mix),
and redefining feature sets or adapting styles for testing makes no sense. So, can one
just switch engines without looking at the way a font is defined? The answer is—not
really, because (even without the user knowing about it) virtual fonts might be used,
additional features kicked in and other mechanisms can make assumptions about how
fonts are dealt with too.

The useability of plug mode probably depends on the workflow one has. We use CON-
TEXT in a few very specific workflows where, interestingly, we only use a small subset
of its functionality. Most of which is driven by users, and tweaking fonts is popular
and has resulted in all kind of mechanisms. So, for us it’s unlikely that we will use it.
If you process (in bursts) many documents in succession, each demanding a few runs,
you don’t want to sacrifice speed.

Of course timing can (and likely will) be different for plain TEX and IATEX usage. It
depends on how mechanisms are hooked into the callbacks, what extra work is done
or not done compared to CONTEXT. This means that my timings for CONTEXT for sure
will differ from those of other packages. Timings are a snapshot anyway. And as said,
font processing is just one of the many things that goes on. If you are not using CON-
TEXT you probably will use Kai’s version because it is adapted to his use case and well
tested.

A fundamental difference between the two approaches is that—whereas the LUA vari-
ant operates on node lists only, the plug variant generates strings that get passed to a
library where, in the CONTEXT variant of hb support, we use UTF-32 strings. Interest-
ing, a couple of years ago I considered using a similar method for LUA but eventually
decided against it, first of all for performance reasons, but mostly because one still has
to use some linked list model. I might pick up that idea as a variant, but because all
this TEX related development doesn’t really pay off and costs a lot of free time it will
probably never happen.

I finish with a few words on how to use the plug model. Because the library initializes
a default set of features,? all you need to do is load the plugin mechanism:

\usemodule [fonts-plugins]
Next you define features that use this extension:

\definefontfeature
[hb-native]
[mode=plug,
features=harfbuzz,
shaper=native]

3 Somehow passing features to the library fails for Arabic. So when you don’t get the desired result, just
try with the defaults.

Plug mode, an application of ffi 16

After this you can use this feature set when you define fonts. Here is a complete exam-

ple:

\usemodule [fonts-plugins]
\starttext

\definefontfeature
[hb-library]
[mode=plug,
features=harfbuzz,
shaper=native]

\definedfont [Serif*hb-library]
\input ward \par

\definefontfeature
[hb-binary]
[mode=plug,
features=harfbuzz,
method=binary,
shaper=uniscribe]

\definedfont [Serif*hb-binary]
\input ward \par

\stoptext

The second variant uses the hb-shape binary which is, of course, pretty slow, but does
the job and is okay for testing.

There are a few trackers available too:

\enabletrackers[fonts.plugins.hb.colors]
\enabletrackers[fonts.plugins.hb.details]

The first one colors replaced glyphs while the second gives lot of information about
what is going on. If you want to know what gets passed to the library you can use the
text plugin:

\definefontfeature[test] [mode=plug,features=text]
\start

\definedfont [Serif*test]

\input ward \par
\stop

17 Plug mode, an application of ffi

This produces something;:

008 : [+] for [+]-> U+00066 U+0006F U+00072
009 : [+] an- [-]-> U+00061 U+0006E U+0002D

otf plugin > text

otf plugin > text > start run 3
otf plugin > text > 001 : [-] The [+]-> U+00054 U+00068 U+00065
otf plugin > text > 002 : [+] Earth, [+]-> U+00045 U+00061 U+00072 ...
otf plugin > text > 003 : [+] as [+]-> U+00061 U+00073
otf plugin > text > 004 : [+] a [+]-> U+00061
otf plugin > text > 005 : [+] habi- [-]-> U+00068 U+00061 U+00062 ...
otf plugin > text > 006 : [-] tat [+]-> U+00074 U+00061 U+00074
otf plugin > text > 007 : [+] habitat [+]-> U+00068 U+00061 U+00062 ...
> >
> >

otf plugin > text

You can see how hyphenation of habi-tat results in two snippets and a whole word.
The font engine can decide to turn this word into a disc node with a pre, post and re-
place text. Of course the machinery will try to retain as many hyphenation points as
possible. Among the tricky parts of this are lookups across and inside discretionary
nodes resulting in (optional) replacements and kerning. You can imagine that there is
some trade off between performance and quality here. The results are normally accept-
able, especially because TgX is so clever in breaking paragraphs into lines.

Using this mechanism (there might be variants in the future) permits the user to cook
up special solutions. After all, thatis what LUATEX is about—the traditional core engine
with the ability to plug in your own code using LUA. This is just an example of it.

I'm not sure yet when the plugin mechanism will be in the CONTEXT distribution, but it
might happen once the f£1i library is supported in LUATEX. At the end of this document
the basics of the test setup are shown, just in case you wonder what the numbers apply
to.

Just to put things in perspective, the current (February 2017) METAFUN manual has
424 pages. It takes LUATEX 18.3 seconds and LUAJITTEX 14.4 seconds on my Dell 7600
laptop with 3840QM mobile i7 processor. Of this 6.1 (4.5) seconds is used for processing
2170 METAPOST graphics. Loading the 15 fonts used takes 0.25 (0.3) seconds, which
includes also loading the outline of some. Font handling is part of the, so called, hlist
processing and takes around 1 (0.5) second, and attribute backend processing takes 0.7
(0.3) seconds. One problem in these timings is that font processing often goes too fast
for timing, especially when we have lots of small snippets. For example, short runs like
titles and such take no time atall, and verbatim needs no font processing. The difference
in runtime between LUATEX and LUAJITTEX is significant so we can safely assume that
we spend some more time on fonts than reported. Even if we add a few seconds, in this
rather complete document, the time spent on fonts is still not that impressive. A five
fold increase in processing (we use mostly Pagella and Dejavu) is a significant addition
to the total run time, especially if you need a few runs to get cross referencing etc. right.

The test files are the familiar ones present in the distribution. The tufte example is
a good torture test for discretionary processing. We preload the files so that we don’t
have the overhead of \input.

Plug mode, an application of ffi 18

\edef\tufte{\cldloadfile{tufte.tex}}
\edef\khatt{\cldloadfile{khatt-ar.tex}}

We use six buffers for the tests. The Latin test uses three fonts and also has a paragraph
with mixed font usage. Loading the fonts happens once before the test, and the local
(re)definition takes no time. Also, we compensate for general overhead by subtracting
the none timings.

\startbuffer[latin-definitions]
\definefont [TestA] [Serif*test]
\definefont [TestB] [SerifItalic*test]
\definefont [TestC] [SerifBold*test]
\stopbuffer

\startbuffer[latin-text]

\TestA \tufte \par

\TestB \tufte \par

\TestC \tufte \par

\dorecurse {10} {%
\TestA Fluffy Test Font A
\TestB Fluffy Test Font B
\TestC Fluffy Test Font C

Hpar

\stopbuffer

The Arabic tests are a bit simpler. Of course we do need to make sure that we go from
right to left.

\startbuffer[arabic-definitions]
\definedfont [Arabic*test at 14pt]
\setupinterlinespace[line=18pt]
\setupalign[r21]

\stopbuffer

\startbuffer[arabic-text]
\dorecurse {10} {

\khatt\space
\khatt\space
\khatt\blank
}
\stopbuffer

The mixed case use a Latin and an Arabic font and also processes a mixed script para-

graph.

\startbuffer[mixed-definitions]
\definefont [TestL] [Serif*test]

19 Plug mode, an application of ffi

\definefont [TestA] [Arabic*test at 14pt]
\setupinterlinespace[line=18pt]
\setupalign[r21]

\stopbuffer

\startbuffer [mixed-text]

\dorecurse {2} {
{\TestA\khatt\space\khatt\space\khatt}
{\TestL\lefttoright\tufte}

\blank
\dorecurse{10}{%
{\TestA }
{\TestL\lefttoright A snippet text that makes no sense.}
+
}
\stopbuffer

The related font features are defined as follows:

\definefontfeature
[test—-none]
[mode=none]l

\definefontfeature
[test-basel
[mode=base,
liga=yes,
kern=yes]

\definefontfeature

[test-node]

[mode=node,
script=auto,
autoscript=position,
autolanguage=position,
ccmp=yes,liga=yes,clig=yes,
kern=yes,mark=yes,mkmk=yes,
curs=yes]

\definefontfeature
[test-text]
[mode=plug,

features=text]

\definefontfeature
[test-native]

Plug mode, an application of ffi 20

[mode=plug,
features=harfbuzz,
shaper=native]

\definefontfeature
[arabic-nodel
[arabic]

\definefontfeature

[arabic-native]

[mode=plug,
features=harfbuzz,
script=arab,language=dflt,
shaper=native]

The timings are collected in LUA tables and typeset afterwards, so there is no interfer-
ence there either.

The timings are as usual a snapshot and just indications. The relative times can differ over time
depending on how binaries are compiled, libraries are improved and LUA code evolves. In node
mode we can have experimental trickery that is not yet optimized. Also, especially with complex
fonts like Husayni, not all shapers give the same result, although node mode and Uniscribe
should be the same in most cases. A future (public) version of Husayni will play more safe and
use less complex sequences of features.

21 Plug mode, an application of ffi

3 Variable fonts

Introduction

History shows the tendency to recycle ideas. Often quite some effort is made by histo-
rians to figure out what really happened, not just long ago, when nothing was written
down and we have to do with stories or pictures at most, but also in recent times. De-
scriptions can be conflicting, puzzling, incomplete, partially lost, biased, . . .

Just as language was invented (or evolved) several times, so were scripts. The same
might be true for rendering scripts on a medium. Semaphores came and went within
decades and how many people know now that they existed and that encryption was
involved? Are the old printing presses truly the old ones, or are older examples simply
gone? One of the nice aspects of the internet is that one can now more easily discover
similar solutions for the same problem, but with a different (and independent) origin.

So, how about this “new big thing” in font technology: variable fonts. In this case, his-
tory shows that it’s not that new. For most TEX users the names METAFONT and META-
PosT will ring bells. They have a very well documented history so there is not much left
to speculation. There are articles, books, pictures, examples, sources, and more around
for decades. So, the ability to change the appearance of a glyph in a font depending
on some parameters is not new. What probably is new is that creating variable fonts
is done in the natural environment where fonts are designed: an interactive program.
The METAFONT toolkit demands quite some insight in programming shapes in such
a way that one can change look and feel depending on parameters. There are not that
many meta fonts made and one reason is that making them requires a certain mind-
and skill set. On the other hand, faster computers, interactive programs, evolving web
technologies, where real-time rendering and therefore more or less real-time tweaking
of fonts is a realistic option, all play a role in acceptance.

But do interactive font design programs make this easier? You still need to be able
to translate ideas into usable beautiful fonts. Taking the common shapes of glyphs,
defining extremes and letting a program calculate some interpolations will not always
bring good results. It’s like morphing a picture of your baby’s face into yours of old
age (or that of your grandparent): not all intermediate results will look great. It's good
to notice that variable fonts are a revival of existing techniques and ideas used in, for
instance, multiple master fonts. The details might matter even more as they can now
be exaggerated when some transformation is applied.

There is currently (March 2017) not much information about these fonts so what I say
next may be partially wrong or at least different from what is intended. The perspective
will be one from a TEX user and coder. Whatever you think of them, these fonts will
be out there and for sure there will be nice examples circulating soon. And so, when I
ran into a few experimental fonts, with POSTSCRIPT and TRUETYPE outlines, I decided to
have alook at what is inside. After all, becauseit’s visual, it’s also fun to play with. Let’s

Variable fonts 22

stress that at the moment of this writing I only have a few simple fonts available, fonts
that are designed for testing and not usage. Some recommended tables were missing
and no complex OPENTYPE features are used in these fonts.

The specification

I'm not that good at reading specifications, first of all because I quickly fall asleep with
such documents, but most of all because I prefer reading other stuff (I do have lots of
books waiting to be read). I'm also someone who has to play with something in order
to understand it: trial and error is my modus operandi. Eventually it's my intended
usage that drives the interface and that is when everything comes together.

Exploring this technology comes down to: locate a font, get the OPENTYPE 1.8 specifi-
cation from the MICROSOFT website, and try to figure out what is in the font. When I
had a rough idea the next step was to get to the shapes and see if I could manipulate
them. Of course it helped that in CONTEXT we already can load fonts and play with
shapes (using METAPOST). I didn’t have to install and learn other programs. Once I
could render them, in this case by creating a virtual font with inline PDF literals, a next
step was to apply variation. Then came the first experiments with a possible user inter-
face. Seeing more variation then drove the exploration of additional properties needed
for typesetting, like features.

The main extension to the data packaged in a font file concerns the (to be discussed) axis
along which variable fonts operate and deltas to be applied to coordinates. The gdef
table has been extended and contains information that is used in gpos features. There
are new hvar, vvar and mvar tables that influence the horizontal, vertical and general
font dimensions. The gvar table is used for TRUETYPE variants, while the cf£2 table
replaces the cff table for OPENTYPE POSTSCRIPT outlines. The avar and stat tables
contain some meta-information about the axes of variations.

It must be said that because this is new technology the information in the standard
is not always easy to understand. The fact that we have two rendering techniques,
POSTSCRIPT cff and TRUETYPE ttf, also means that we have different information and
perspectives. But this situation is not much different from OPENTYPE standards a few
years ago: it takes time but in the end I will get there. And, after all, users also complain
about the lack of documentation for CONTEXT, so who am I to complain? In fact, it
will be those CONTEXT users who will provide feedback and make the implementation
better in the end.

Loading

Before we discuss some details, it will be useful to summarize what the font loader does
when a user requests a font at a certain size and with specific features enabled. When a
font is used the first time, its binary format is converted into a form that makes it suit-
able for use within CONTEXT and therefore LUATEX. This conversion involves collecting

23 Variable fonts

properties of the font as a whole (official names, general dimensions like x-height and
em-width, etc.), of glyphs (dimensions, UNICODE properties, optional math properties),
and all kinds of information that relates to (contextual) replacements of glyphs (small
caps, oldstyle, scripts like Arabic) and positioning (kerning, anchoring marks, etc.). In
the CONTEXT font loader this conversion is done in LUA.

The resultis stored in a condensed format in a cache and the next time the font is needed
it loads in an instant. In the cached version the dimensions are untouched, so a font at
different sizes has just one copy in the cache. Often a font is needed at several sizes and
for each size we create a copy with scaled glyph dimensions. The feature-related di-
mensions (kerning, anchoring, etc.) are shared and scaled when needed. This happens
when sequences of characters in the node list get converted into sequences of glyphs.
We could do the same with glyph dimensions but one reason for having a scaled copy
is that this copy can also contain virtual glyphs and these have to be scaled beforehand.
In practice there are several layers of caching in order to keep the memory footprint
within reasonable bounds.*

When the font is actually used, interaction between characters is resolved using the
feature-related information. When for instance two characters need to be kerned, a
lookup results in the injection of a kern, scaled from general dimensions to the current
size of the font.

When the outlines of glyphs are needed in METAFUN the font is also converted from
its binary form to something in LUA, but this time we filter the shapes. For a cff this
comes down to interpreting the charstrings and reducing the complexity to moveto,
lineto and curveto operators. In the process subroutines are inlined. The result is
something that METAPOST is happy with but that also can be turned into a piece of a
PDF.

We now come to what a variable font actually is: a basic design which is transformed
along one or more axes. A simple example is wider shapes:

We can also go taller and retain the width:
I

In retrospect one can wonder if that makes sense; just look at how much memory a browser uses when
it has been open for some time. In the beginning of LUATEX users wondered about caching fonts, but
again, just look at what amounts browsers cache: it gets pretty close to the average amount of writes that
a SsD can handle per day within its guarantee.

Variable fonts 24

Here we have a linear scaling but glyphs are not normally done that way. There are font
collections out there with lots of intermediate variants (say from light to heavy) and it’s
more profitable to sell each variant independently. However, there is often some logic
behind it, probably supported by programs that designers use, so why not build that
logic into the font and have one file that represents many intermediate forms. In fact,
once we have multiple axes, even when the designer has clear ideas of the intended
usage, nothing will prevent users from tinkering with the axis properties in ways that
will fulfil their demands but hurt the designers eyes. We will not discuss that dilemma
here.

When a variable font follows the route described above, we face a problem. When you
load a TRUETYPE font it will just work. The glyphs are packaged in the same format as
static fonts. However, a variable font has axes and on each axis a value can be set. Each
axis has a minimum, maximum and default. It can be that the default instance also
assumes some transformations are applied. The standard recommends adding tables
to describe these things but the fonts that I played with each lacked such tables. So
that leaves some guesswork. But still, just loading a TRUETYPE font gives some sort of
outcome, although the dimensions (widths) might be weird due to lack of a (default)
axis being applied.

An OPENTYPE font with POSTSCRIPT outlines is different: the internal cff format has
been upgraded to cff£2 which on the one hand is less complicated but on the other
hand has a few new operators — which results in programs that have not been adapted
complaining or simply quitting on them.

One could argue that a font is just a resource and that one only has to pass it along but
that’s not what works well in practice. Take LUATEX. We can of course load the font
and apply axis vales so that we can process the document as we normally do. But at
some point we have to create a PDF. We can simply embed the TRUETYPE files but no
axis values are applied. This is because, even if we add the relevant information, there
is no way in current PDF formats to deal with it. For that, we should be able to pass all
relevant axis-related information as well as specify what values to use along these axes.
And for TRUETYPE fonts this information is not part of the shape description so then we
in fact need to filter and pass more. An OPENTYPE POSTSCRIPT font is much cleaner
because there we have the information needed to transform the shape mostly in the
glyph description. There we only need to carry some extra information on how to apply
these so-called blend values. The region/axis model used there only demands passing
a relatively simple table (stripped down to what we need). But, as said above, c££2 is
not backward-compatible so a viewer will (currently) simply not show anything.

Recalling how we load fonts, how does that translate with variable changes? If we
have two characters with glyphs that get transformed and that have a kern between
them, the kern may or may not transform. So, when we choose values on an axis, then
not only glyph properties change but also relations. We no longer can share positional
information and scale afterwards because each instance can have different values to
start with. We could carry all that information around and apply it at runtime but

25 Variable fonts

because we're typesetting documents with a static design it’s more convenient to just
apply it once and create an instance. We can use the same caching as mentioned before
but each chosen instance (provided by the font or made up by user specifications) is
kept in the cache. As a consequence, using a variable font has no overhead, apart from
initial caching.

So, having dealt with that, how do we proceed? Processing a font is not different from
what we already had. However, I would not be surprised if users are not always satis-
tied with, for instance, kerning, because in such fonts a lot of care has to be given to this
by the designer. Of course I can imagine that programs used to create fonts deal with
this, but even then, there is a visual aspect to it too. The good news is that in CONTEXT
we can manipulate features so in theory one can create a so-called font goodie file for a
specific instance.

Shapes

For OPENTYPE POSTSCRIPT shapes we always have to do a dummy rendering in order
to get the right bounding box information. For TRUETYPE this information is already
present but not when we use a variable instance, so I had to do a bit of coding for that.
Here we face a problem. For TgX we need the width, height and depth of a glyph.
Consider the following case:

The shape has a bounding box that fits the shape. However, its left corner is not at
the origin. So, when we calculate a tight bounding box, we cannot use it for actually
positioning the glyph. We do use it (for horizontal scripts) to get the height and depth
but for the width we depend on an explicit value. In OPENTYPE POSTSCRIPT we have
the width available and how the shape is positioned relative to the origin doesn’t much
matter. In a TRUETYPE shape a bounding box is part of the specification, as is the width,
but for a variable font one has to use so-called phantom points to recalculate the width
and the test fonts I had were not suitable for investigating this.

At any rate, once I could generate documents with typeset text using variable fonts it
became time to start thinking about a user interface. A variable font can have prede-
fined instances but of course a user also wants to mess with axis values. Take one of
the test fonts: Adobe Variable Font Prototype. It has several instances:

extralight [t looks like this! weight=0.0 contrast=0.0

light It looks like this! ~ weight=150.0 contrast=0.0
regular It looks like this! weight=394.0 contrast=0.0
semibold It looks like this! weight=600.0 contrast=0.0
bold It looks like this! weight=824.0 contrast=0.0

Variable fonts 26

black high contrast It looks like this! weight=1000.0 contrast=100.0
black medium contrast It looks like this! weight=1000.0 contrast=50.0
black It looks like this! weight=1000.0 contrast=0.0

Such an instance is accessed with:

\definefont
[MyLightFont]
[name:adobevariablefontprototypelight*default]

The Avenir Next variable demo font (currently) provides:

regular It looks like this! weight=400.0 width=100.0
medium It looks like this! weight=500.0 width=100.0
bold It looks like this! weight=700.0 width=100.0
heavy It looks like this! weight=900.0 width=100.0
condensed It looks like this! weight=400.0 width=75.0
medium condensed It looks like this! weight=500.0 width=75.0
bold condensed It looks like this! weight=700.0 width=75.0
heavy condensed Itlooks like this! weight=900.0 width=75.0

Before we continue I will show a few examples of variable shapes. Here we use some
METAFUN magic. Just take these definitions for granted.

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypeextralight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypelight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypebold] foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

27 Variable fonts

\startMPcode
draw outlinetext.b
("\definefontfeature[whatever] [axis={weight:350}]%
\definedfont [name:adobevariablefontprototype*whatever]foo@bar")

(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

The results are shown in figure 3.1. What we see here is that as long as we fill the
shape everything will look as expected but using an outline only won’t. The crucial
(control) points are moved to different locations and as a result they can end up inside
the shape. Giving up outlines is the price we evidently need to pay. Of course this is
not unique for variable fonts although in practice static fonts behave better. To some
extent we’re back to where we were with METAFONT and (for instance) Computer
Modern: because these originate in bitmaps (and probably use similar design logic) we
also can have overlap and bits and pieces pasted together and no one will notice that.
The first outline variants of Computer Modern also had such artifacts while in the static
Latin Modern successors, outlines were cleaned up.

The fact that we need to preprocess an instance but only know how to do that when we
have gotten the information about axis values from the font means that the font handler
has to be adapted to keep caching correct. Another definition is:

\definefontfeature
[lightdefault]
[default]
[axis={weight:230,contrast:50}]

\definefont
[MyLightFont]
[name:adobevariablefontprototypexlightdefault]

Here the complication is that where normally features are dealt with after loading, the
axis feature is part of the preparation (and caching). If you want the virtual font solution
you can do this:

\definefontfeature
[inlinelightdefault]
[default]
[axis={weight:230,contrast:50},
variableshapes=yes]

\definefont

[MyLightFont]
[name:adobevariablefontprototype*inlinelightdefault]

Variable fonts 28

on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and

a

on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and

d

on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and

b

on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and

C

Figure 3.1 Four variants

29 Variable fonts

When playing with these fonts it was hard to see if loading was done right. For instance
not all values make sense. It is beyond the scope of this article, but axes like weight,
width, contrast and italic values get applied differently to so-called regions (subspaces).
So say that we have an x coordinate with value 50. This value can be adapted in, for
instance, four subspaces (regions), so we actually get:

X :x+51 X X1 +52XXZ+S3XX3+S4XX4

The (here) four scale factors s,, are determined by the axis value. Each axis has some
rules about how to map the values 230 for weight and 50 for contrast to such a factor.
And each region has its own translation from axis values to these factors. The deltas
X1, ..., X4 are provided by the font. For a POSTSCRIPT-based font we find sequences like:

1 <setvstore>
120 [10 -30 40 -60] 1 <blend> ... <operator>
100 120 [10 -30 40 -60] [30 -10 -30 20] 2 <blend> .. <operator>

A store refers to a region specification. From there the factors are calculated using the
chosen values on the axis. The deltas are part of the glyphs specification. Officially
there can be multiple region specifications, but how likely it is that they will be used in
real fonts is an open question.

For TRUETYPE fonts the deltas are not in the glyph specification but in a dedicated gvar
table.

apply x deltas [10 -30 40 -60] to x 120
apply y deltas [30 -10 -30 20] to y 100

Here the deltas come from tables outside the glyph specification and their application
is triggered by a combination of axis values and regions.

The following two examples use Avenir Next Variable and demonstrate that kerning
is adapted to the variant.

\definefontfeature
[default:shaped]
[default]
[axis={width:10}]

\definefont
[SomeFont]
[file:avenirnextvariablexdefault:shaped]

Coming back to the use of typefaces in electronic publishing: many of the new ty-
pographers receive their knowledge and information about the rules of typography
from books, from computer magazines or the instruction manuals which they get with
the puerase of a PC or software. There is not so much basic instruction, as of now,

Variable fonts 30

as there was in the old days, showing the differences between good and bad typo-
graphic design. Many people are just fascinated by their PC's tricks, and think that
a widely=praised program, called up on the screen, will make everything automatic
from now on. Hermann Zapf

\definefontfeature
[default:shaped]
[default]
[axis={width:100}]

\definefont
[SomeFont]
[file:avenirnextvariablexdefault:shaped]

Coming back to the use of typefaces in electronic publishing: many of the new ty-
pographers receive their knowledge and information about the rules of typography
from books, from computer magazines or the instruction manuals which they get with
the pur}&%ase of a PC or software. There is not so much basic instruction, as of now,
as there was in the old days, showing the diffefences between good and bad typo-
graphic design. Many people are just fascinated by their PC's tricks, and think that
a widely—praised program, called up on the screen, will make everything automatic

from now on. Hermann Zapf

Embedding

Once we're done typesetting and a PDF file has to be created there are three possible
routes:

e Wecan embed the shapes as PDF images (inline literal) using virtual font technology.
We cannot use so-called xforms here because we want to support color selectively
in text.

o We can wait till the PDF format supports such fonts, which might happen but even
then we might be stuck for years with viewers getting there. Also documents need
to get printed, and when printer support might arrive is another unknown.

e We can embed a regular font with shapes that match the chosen values on the axis.
This solution is way more efficient than the first.

Once I could interpret the right information in the font, the first route was the way to
go. A side effect of having a converter for both outline types meant that it was trivial
to create a virtual font at runtime. This option will stay in CONTEXT as pseudo-feature
variableshapes.

When trying to support variable fonts I tried to limit the impact on the backend code.
Also, processing features and such was not touched. The inclusion of the right shapes

31 Variable fonts

is done via a callback that requests the blob to be injected in the cff or glyf table.
When implementing this I actually found out that the LUATEX backend also does some
juggling of charstrings, to serve the purpose of inlining subroutines. In retrospect I
could have learned a few tricks faster by looking at that code but I never realized that
it was there. Looking at the code again, it strikes me that the whole inclusion could be
done with LUA code and some day I will give that a try.

Conclusion

When I first heard about variable fonts I was confident that when they showed up they
could be supported. Of course a specimen was needed to prove this. A first implemen-
tation demonstrates that indeed it’s no big deal to let CONTEXT with LUATEX handle
such fonts. Of course we need to fill in some gaps which can be done once we have
complete fonts. And then of course users will demand more control. In the meantime
the helper script that deals with identifying fonts by name has been extended and the
relevant code has been added to the distribution. At some point the CONTEXT Garden
will provide the LUATEX binary that has the callback.

I end with a warning. On the one hand this technology looks promising but on the other
hand one can easily get lost. Probably most such fonts operate over a well-defined do-
main of values but even then one should be aware of complex interactions with features
like positioning or replacements. Not all combinations can be tested. It’s probably best
to stick to fonts that have all the relevant tables and don’t depend on properties of a
specific rendering technology.

Although support is now present in the core of CONTEXT the official release will happen
at the CONTEXT meeting in 2017. By then I hope to have tested more fonts. Maybe the
interface has also been extended by then because after all, TgX is about control.

Variable fonts 32

33 Variable fonts

4 Emoji again

Because at the CONTEXT 2016 meeting color fonts® were on the agenda, some time was
spent on emoji (these colorful small picture glyphs). When possible I bring kids to the
BachoTgX conference so for the 2017 BachoTUG I decided to do something with emoji
that, after all, are mostly used by those younger than I am. So, I had to take a look at
the current state. Here are some observations.

The UNICODE standard defines a whole lot of emoji and if mankind manages to survive
for a while one can assume that a lot more will be added. After all, icons as well as
variants keep evolving. There are several ways to organize these symbols in groups
but I will not give grouping a try. Just visit emojipedia.org and you get served well.
For this story I only mention that:

e There are quite some shapes and nearly all of them are in color. The yellow ones,
smilies and such, are quite prominently present but there are many more.

e A special subset is fulled by persons: man, woman, girl, boy and recently a baby.

e The grown ups can be combined in loving couples (either or not kissing) and then
can form families, but only upto 2 young kids or gender neutral babies.

e All persons can be flagged with one of five skin tones so that not all persons (or
heads) look bright yellow.

o Interesting is that girls and boys are still fond of magenta (pinkish) and cyan (blueish)
cloths and ornaments. Also haircuts are rather specific to the gender.

For rendering color emojis we have a few color related OPENTYPE font properties avail-
able: bitmaps, SVG and stacked glyphs. Now, if you think of the combinations that can
be made with skin tones, you realize that fonts can become pretty large if each com-
bination results in a glyph. In the first half of 2017 MICROSOFT released an update for
its emoji font and the company took the challenge to provide not only mixed skin tone
couples, but also supported skin tones for the kids, including a baby.

This recent addition already adds over 25.000 additional glyphs® so imagine what will
happen in the future. But, instead of making a picture for each variant, a different so-
lution has been chosen. For coloring this seguiemj font uses the (very flexible) stacking
technology: a color shape is an overlay of colored symbols. The colors are organized
in pallets and it’s no big deal to add additional pallets if needed. Instead of adding
pre-composed shapes (as is needed with bitmaps and SVG) snippets are used to build

For that occasion the cowfont, a practical joke concerning Dutch ‘koeieletters’, were turned into a color
font and presented at the meeting.

That is the amount I counted when I added all combinations runtime but the emojipedia mentions twice
that amount. Currently in CONTEXT we resolve such combinations when requested.

Emoji again 34

alternative glyphs and these can be combined into new shapes by substitution and po-
sitioning (for that kerns, mark anchoring and distance compensation is used).

So, a family can be constructed of composed shapes (man, woman, etc) that each are
composed of snippets (skull, hair, mouth, eyes). So, effectively a family of four is a
bunch of maybe 25 small glyphs overlayed and colored. In figure 4.1 we see how a
shape is constructed out of separate glyphs. Figure 4.2 shows how they can be over-
layed with colors (we use a dedicated color set).

o
A
5
@
@

When a font supports it, a sequence of emoji can be turned into a more compact repre-
sentation. In figure 4.3 we see how skin tones are applied in such combinations. Fig-
ure 4.4 shows the small snippets.

& - -

‘ w
| ~

Figure 4.1 Emoji snippets.

Figure 4.2 Emoji snippets overlayed.

When we have to choose a font we need to take the following criteria into account:

e What is the quality of the shapes? For sure, outlines are best if you want to scale
too.

How efficient is a shape constructed. In that respect a bitmap or SVG image is just
one entity.

How well can (semi) arbitrary combinations of emoji be provided. Here the glyph
approach wins.

35 Emoji again

e ™
® - - .
t S S — “
o 0 | ﬁ

| ~

Figure 4.4 Emoji glyphs.

Emoji again 36

family man dark skin family man light skin
tone woman girl baby tone woman light skin
tone girl dark skin tone

family woman girl boy family man light skin tone woman
dark skin tone girl medium skin
tone boy medium skin tone

Figure 4.3 Emoji families and such with skin tones.

37 Emoji again

e Are all skin colors for all human relates shapes supported? Actually it opens the
possibility for racist fonts.

e Are all reasonable combinations of persons supported? It looks like (depending on
time and version) kissing men or women can be missing, maybe because of social
political reasons.

e Are black and white shapes provided alongside color shapes.

Maybe an SVG or bitmap image can have a lot of detail compared to a stacked glyph
but, when we’re just using pictographic representations, the later is the best choice.

When I was playing a bit with the skin tone variants and other combinations that should
result in some composed shape, I used the UNICODE test files but I got the impression
that there are some errors in the test suite, for instance with respect to modifiers. Maybe
the fonts are just doing the wrong thing or maybe some implement these sequences a
bit inconsistent. This will probably improve over time but the question is if we should
intercept issues. I'm not in favour of this because it adds more and more fuzzy code
that not only wastes cycles (energy) but is also a conceptual horror. So, when testing,
imperfection has to be accepted for now. This is no big deal as until now no one ever
asked for emoji support in CONTEXT.

When no combined shape is provided, the original sequence shows up. A side effect
can be that zero-width-joiners and modifiers become visible. This depends on the fonts.
Users probably don’t care that much about it. Now how do we suppose that users enter
these emoji (sequences) in a document source? One can imagine a pop up in the editor
but TgXies are often using commands for special cases.

We already showed some combined shapes. The reader might appreciate the outcome

but getting there from the input takes a bit of work. For instance a two person man

light skin tone woman medium skin tone girl medium-1light skin tone baby medium-
light skin tone involves this:

font 92: seguiemj.ttf @ 12.0pt

features [basic: ccmp=yes, dist=yes, mark=yes, mkmk=yes,
script=dflt, tlig=yes, trep=yes] [extra: analyze=yes,
autolanguage=position, autoscript=position, checkmarks=yes,
colr=yes, curs=yes, devanagari=yes, dummies=yes,
extensions=yes, extrafeatures=yes, extraprivates=yes,
kern=yes, liga=yes, mathkerns=yes, mathrules=yes,
mode=node, spacekern=yes, visualspace=yes]

& D) [+TLT] U+1F468: U+1F3FB: {3
U+200D: I U+1F469: U+1F3FD: {8 U+200D: | U+1F467:§®
U+1F3FC: £3 U+200D: T U+1F476:) U+1F3FC: {3

step 1

Emoji again 38

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F468 upto U+1F3FB by ligature U+FO01Cb
case 2

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F469 upto U+1F3FD by ligature U+F01D2
case 2

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F467 upto U+1F3FC by ligature U+FO1BC
case 2

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F476 upto U+1F3FC by ligature U+FO20E
case 2

step 2 QIARO® [+TLT] U+F01C5:€ U+200D: | U+FO1D2: (B
U+200D: [U+FO1BC:§&) U+200D: | U+FO20E:

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_2', replacing single U+FO01C5 by U+F147F

step 3 ARG [+TLT] U+F147F:8 U+200D: | U+FO1D2: (@) U+200D: |
U+FO1BC:§&) U+200D: | U+FO20E:)

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_3', index 1, replacing character U+200D upto
U+F01D2 by ligature U+F14A7 case 4

step 4 SARO [+TLT] U+F147F:§ U+F14A7:8 U+200D: | U+FO1BC: &)
U+200D: | U+FO20E:)

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_5', index 1, replacing character U+200D upto
U+FO1BC by ligature U+F1474 case 4

step 5 [+TLT] U+F147F:8 U+F14A7:f U+F1474: g U+200D: |
U+F020E:

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_6', index 1, replacing character U+200D upto
U+FO20E by ligature U+F14C2 case 4

step 6 [+TLT] U+F147F:8 U+F14A7:@ U+F1474: g U+F14C2: g

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_7', replacing single U+F1474 by U+F1467

step 7 [+TLT] U+F147F:8 U+F14A7:[U+F1467: g U+F14C2: g

39 Emoji again

step 8

step 9

step 10

step 11

step 12

step 13

feature 'dist', type 'gpos_single', lookup 'p_s_0',
shifting single U+F147F by single xy (1.5pt,Opt) and
wh (Opt,Opt)

[+TLT] U+F147F:8 U+F14A7:@ U+F1467: g U+F14C2: g

feature 'dist', type 'gpos_single', lookup 'p_s_1',
shifting single U+F14A7 by single xy (Opt,Opt) and wh
(1.5pt,0pt)

[+TLT] U+F147F:8 U+F14A7:B [kern] U+F1467:p@
U+F14C2: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_2', shifting single U+F147F by single (Opt,Opt)
and correction (1.5pt,0pt)

[+TLT] [kern] U+F147F:8 U+F14A7:8 [kern] U+F1467:p@
U+F14C2: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_3', shifting single U+F14A7 by single
(5.71289pt,0pt) and correction (Opt,Opt)

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_3', shifting single U+F14A7 by single (Opt,Opt)
and correction (9.92578pt,Opt)

[+TLT] [kern] U+F147F:8 [kern] U+F14A7:@ [kern]
U+F1467: g U+F14C2: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_5', shifting single U+F147F by single (Opt,Opt)
and correction (-5.71289pt,Opt)

[+TLT] [kern] U+F147F:8 [kern] [kern] U+F14A7:§
[kern] U+F1467: g U+F14C2: g

feature 'mark', type 'gpos_mark2base', lookup 'p_s_27',
bound 1, anchoring mark U+F1467 to basechar U+F14A7
=> (7.59375pt,Opt)

[+TLT] [kern] U+F147F:8 [kern] [kern] U+F14A7:§
[kern] U+F1467: g U+F14C2: g

feature 'mark', type 'gpos_mark2base', lookup 'p_s_28',
bound 2, anchoring mark U+F14C2 to basechar U+F14A7
=> (0.01172pt,Opt)

Emoji again 40

result g% [+TLT] [kern] U+F147F:§ I[kern] [kern] U+F14A7:§
[kern] U+F1467: g U+F14C2: g

A black and white example is the following family woman girl:
font 95: seguiemj.ttf @ 12.0pt

features [basic: ccmp=yes, dist=yes, mark=yes, mkmk=yes,
script=dflt, tlig=yes, trep=yes] [extra: analyze=yes,
autolanguage=position, autoscript=position, checkmarks=yes,
curs=yes, devanagari=yes, dummies=yes, extensions=yes,
extrafeatures=yes, extraprivates=yes, kern=yes,
liga=yes, mathkerns=yes, mathrules=yes, mode=node,
spacekern=yes, visualspace=yes]

step 1 A [+TLT] U+1F469: U+200D: TU+1F467:

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_4', replacing single U+1F469 by U+F149D

step 2 [+TLT] U+F149D:f U+200D: | U+1F467:{®

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_5', index 1, replacing character U+200D upto
U+1F467 by ligature U+F146B case 4

step 3 [+TLT] U+F149D:f] U+F146B: p

feature 'dist', type 'gpos_single', lookup 'p_s_1',
shifting single U+F149D by single xy (Opt,Opt) and wh
(1.5pt,0pt)

step 4 [+TLT] U+F149D:f [kern] U+F146B: p

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_4', shifting single U+F149D by single
(1.5pt,0pt) and correction (Opt,Opt)

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_4', shifting single U+F149D by single (Opt,Opt)
and correction (5.71289pt,0pt)

step 5 [+TLT] [kern] U+F149D:f [kern] U+F146B: p

feature 'mark', type 'gpos_mark2base', lookup 'p_s_28',
bound 1, anchoring mark U+F146B to basechar U+F149D
=> (0.01172pt,0pt)

result fr [+TLT] [kern] U+F149D:f [kern] U+F146B: p

41 Emoji again

I will not show all emoji, just the subset that contains the word woman in the description.
As you can see the persons in the sequences are separated by a zero-width-joiner. There
are some curious ones, for instance a woman wearing turban which in terms of UNI-
CODE input is a female combine with a turban wearing man becomes a beardless woman
wearing a turban. Woman vampires and zombies are not supported so these are male
properties.

blondhaired woman

DDDDDE 8
BPRBRAADO
BPA Q

QAQ
QA

elelejelelele
Q

X X —X —X —X ——X ——X —X —X —X ——X —X
—x —x

448DDDDDBIE

FDDDRD*E=DDRDEDRDEDDEDDOOOOODDA
®

44DDDDDPRPERAADDDDD Q€<
VIPBEBAADA A ggﬁg@@@

BRDDOSEAN=RFDDDD*EOSDDDDDDDDDDDDOOOOODDA
Dopa a

couple
couple
family
family
family
family
family
family
family
family
family
family
family
family
family
family
family
kiss w
kiss w

with heart woman man
with heart woman woman

man
man
man
man

woman boy
woman boy boy
woman girl

woman girl boy

man woman girl girl

woman
woman
woman
woman
woman
woman
woman
woman
woman

boy

boy boy

girl

girl boy

girl girl
woman boy
woman boy boy
woman girl
woman girl boy

woman woman girl girl
oman man
oman woman

man and woman holding hands

old wo

man

pregnant woman

woman
TQ) QD woman artist
TZ? L? woman astronaut
| woman bald
1@ @ woman biking
l woman boot
%) @ woman bouncing ball
A9 @ woman bowing
«K® @ woman cartwheeling
Ee @ woman climbing
ﬂB woman clothes
@T@ @ woman construction worker
@TQ Q woman cook
A woman curly haired
& woman dancing
RT@ @ woman detective

Emoji again

42

woman elf

woman facepalming
woman factory worker
woman fairy

woman farmer

woman firefighter
woman flat shoe

woman frowning

woman genie

woman gesturing no
woman gesturing ok
woman getting haircut
woman getting massage
woman golfing

woman guard

woman hat

woman health worker
woman in lotus position
woman in steamy room
woman judge

woman juggling

woman lifting weights
woman mage

woman mechanic

woman mountain biking
woman office worker
woman pilot

woman playing handball
woman playing water polo
woman police officer
woman pouting

woman raising hand
woman red haired
woman rowing boat
woman running

woman sandal

woman scientist

woman shrugging

woman singer

woman student

woman superhero

woman supervillain
woman surfing

woman swimming

woman teacher

DeoRp=®

[
EOOI F0)

X /X —X ——X —X —X ——X

®@H@®®®®g'®\@®
LONN0) @®®@@g'@\@®®%@®@ 20 %O 0 g qp) O <O W@

DRE*DDBHDY »FDBERRADDBDHELHD®
VPP
A SRS

B © ©
g%%®®@@ﬁ@@W&DE©“&%DD%B&@%D»®D@bﬂEQQme DDOHDPE

43 Emoji again

=B
©® g
®@®®m

50)

5@ &

OB
EPROZRRD

()

woman
woman
woman
woman
woman
woman
woman
woman

technologist
tipping hand
vampire
walking
wearing turban
white haired
with headscarf
zombie

So what if you don’t like these colors? Because we’re dealing with TEX you can assume
that if there is some way around the fixed color sets, then it will be provided. So, when
you use CONTEXT, here is away to overload them:

\definecolor[emoji-red]

[r=.4]

\definecolor[emoji-green] [g=.4]

\definecolor [emoji-blue]

[b=.4]

\definecolor[emoji-yellow] [r=.4,g=.4]

\definecolor[emoji-gray]

\definefontcolorpalette
[emoji-s]
[black,emoji-gray]

\definefontcolorpalette
[emoji-r]
[emoji-red,emoji-gray]

\definefontcolorpalette
[emoji-g]
[emoji-green,emoji-gray]

\definefontcolorpalette
[emoji-b]
[emoji-blue,emoji-gray]

\definefontcolorpalette
[emoji-y]

[emoji-yellow,emoji-gray]

[s=1,t=.5,a=1]

\definefontfeature[seguiemj-s] [ccmp=yes,dist=yes,colr=emoji-s]
\definefontfeature[seguiemj-r] [ccmp=yes,dist=yes,colr=emoji-r]
\definefontfeature[seguiemj-g] [ccmp=yes,dist=yes,colr=emoji-g]
\definefontfeature[seguiemj-b] [ccmp=yes,dist=yes,colr=emoji-b]
\definefontfeature[seguiemj-y] [ccmp=yes,dist=yes,colr=emoji-y]

\definefont [MyEmojiS] [seguiemj*seguiemj-s]

Emoji again 44

\definefont [MyEmojiR] [seguiemj*seguiemj-r]
\definefont [MyEmojiG] [seguiemj*seguiemj-g]
\definefont [MyEmojiB] [seguiemj*seguiemj-b]
\definefont [MyEmojiY] [seguiemj*seguiemj-y]

In figure 4.5 we see how this is applied. You can provide as many colors as needed but
when you don’t provide enough the last one is used. This way we get the overlayed
transparent colors in the examples. By using transparency we don’t obscure shapes.

The emojipedia mentions “Asked about the design, MICROSOFT told emojipedia that
one of the reasons for the thick stroke was to allow each emoji to be easily read on
any background color.” The first glyph in the stack seems to do the trick, so just make
sure that it doesn’t become white. And, before I read that remark, while preparing a
presentation with a colored background, I had already noticed that using a background
was no problem. This font definitely sets the standard.

How do we know what colors are used? The next table shows the first color palette of
seguiemj. There are quite some colors so defining your own definitely involved some
studying.

1 > H B EBE DB - & -+ HE B ®
BEN e ‘15 (16 A E1 EX EBEX BN B es (2
25 Bl A 28 |29 30 BN B2 =3 34 35 IEX
Ed E B B 4 (2 84 « s B EE e
El B3 G 52 53 54 55 I HE BE4d B Bl X
el fe2] 'e3 62 o EH A E1 KB K BN B2
NEN '7¢ s EO KA KA K EX BN B fEs (a4
s IEl Ed B El El El E2 83 (920 (o5 EA
| o7 [l o8 il 9o [100 I 101 I 102 [T IS TCY AR TU-RA 106 [107 I 108
el B BB BE BE a5 B Bd BE BEl BS
121 1220 [CX UV AR DI 126 I 127 [12 [120 [130 [131 [132
(133 [134 ISEUR 136 I 137 [138 [130 [140 N 141 [140 [143 [944
145 153 155 |3
157 | 158 | 159 [160 [161 [162 [163 [164 T3 166 [l 167 Il 168

169 170 171 172 173 174 175

Normally special symbols are accessed in CONTEXT with the symbol command where
symbols are organized in symbol sets. This is a rather old mechanism and dates from
the time that fonts were limited in coverage and symbols were collected in special fonts.
The emoji are accessed by their own command: \emoji. The font used has the font
synonym emo ji so you need to set that one first:

\definefontsynonym[emoji] [seguiemj*seguiemj-cl]
Here is an example:

\emoji{woman light skin tonel}\quad

45 Emoji again

d44444
BRI BRERBRIR
SISIOIOIOIE
DODDDO

Figure 4.5 Overloading colors by plugging in a sequence of alternate colors.

Emoji again 46

\emoji{woman scientist}\quad
{\bfd bigger \emoji{man health workerl}}

ortypeset:@ £ bigger 8

The emoji symbol scales with the normal running font. When you ask for a family with
skin toned members the lookup can result in another match (or no match) because one
never knows to what extend a font supports it.

\expandedemoji the sequence constructed from the given string

\resolvedemoji a protected sequence constructed from the given string
\checkedemoji antypesetsequence with unresolved modifiers and joiners removed
\emoji a typeset resolved sequence using the emoji font synonym
\robustemoji a typeset checked sequence using the emo ji font synonym

In case you wonder how some of the details above were typeset, there is a module
fonts-emoji that provides some helpers for introspection.

\ShowEmoji show all the emoji in the current font
\ShowEmojiSnippets show the snippets of a given emoji
\ShowEmojiSnippetsOverlay show the overlayed snippets of a given emoji
\ShowEmo jiGlyphs show the snippets of a typeset emoji
\ShowEmojiPalettes show the color pallets in the current font

Examples of usage are:

\ShowEmojiSnippets[family man woman girl boy]
\ShowEmojiGlyphs [family man woman baby girl]
\ShowEmoji ["man]

\ShowEmoji

\ShowEmojiPalettes

\ShowEmojiPalettes[1]

A good source of information about emoji is the mentioned emo jipedia.org website.
There you find not only details about all these symbols but also has some history. It
compares updates in fonts too. It mentions for instance that in the creative update of
Windows 10, some persons grew beards in the seguiemj font and others lost an eye.
Now, if you look at the snippets shown before, you can wonder if that eye is really
gone. Maybe the color is wrong or the order of stacking is not right. I decided not to
waste time looking into that.

Another quote: “Support for color emoji presentation on MS WINDOWS is limited. Many
applications on MS WINDOWS display emojis with a black and white text presentation
instead of their color version.” Well, we can do better with TgX, but as usual not that
many people really cares about that. But it’s fun anyway.

47 Emoji again

We end with a warning. When you use ‘ligatures’ like this, you really need to check
the outcome. For instance, when MICROSOFT updated the font end 2017, same gen-
der couples got different hair style for the individuals so that one can still distinguish
them. However, kissing couples and couples in love (indicated by a heart) seem to be
removed. Who knows how and when politics creep into fonts: is public mixed couple
kissing permitted, do we support families with any mix of gender, is associating pink
with girls okay or not, how do we distinguish male and female anyway? In figure 4.6
we see the same combination twice, the early 2017 rendering versus the late 2017 ren-

dering. Can you notice the differences?

O@@& @i‘@x

family woman woman girl boy family woman woman boy boy

T
g Ve

family man dark skin tone woman girl baby
&Y]]

family man light skin tone woman family man girl boy
light skin tone girl dark skin tone

&

=

family man man girl boy family man light skin tone woman dark skin tone
girl medium skin tone boy medium skin tone

no longer supported no longer supported

couple with heart man light skin kiss man medium-light skin
tone man medium-dark skin tone tone man dark skin tone

Figure 4.6 Incompatible updates.

Emoji again 48

49 Emoji again

5 Performance

5.1 Introduction

This chapter is about performance. Although it concerns LUATEX this text is only meant
for CONTEXT users. This is not because they ever complain about performance, on the
contrary, I never received a complain from them. No, it’s because it gives them some
ammunition against the occasionally occurring nagging about the speed of LUATEX
(somewhere on the web or at some meeting). My experience is that in most such cases
those complaining have no clue what they're talking about, so effectively we could just
ignore them, but let’s, for the sake of our users, waste some words on the issue.

5.2 What performance

So what exactly does performance refer to? If you use CONTEXT there are probably only
two things that matter:

e How long does one run take.
e How many runs do I need.

Processing speed is reported at the end of a run in terms of seconds spent on the run,
but also in pages per second. The runtime is made up out of three components:

e start-up time
® processing pages
e finishing the document

The startup time is rather constant. Let’s take my 2013 Dell Precision with i7-3840QM
as reference. A simple

\starttext
\stoptext

document reports 0.4 seconds but as we wrap the run in an mtxrun management run
we have an additional 0.3 overhead (auxiliary file handling, PDF viewer management,
etc). This includes loading the Latin Modern font. With LUAIITTEX these times are
below 0.3 and 0.2 seconds. It might look like much overhead but in an edit-preview
runs it feels snappy. One can try this:

\stoptext

which bring down the time to about 0.2 seconds for both engines but as it doesn’t do
anything useful that is is no practice.

Finishing a document is not that demanding because most gets flushed as we go. The
more (large) fonts we use, the longer it takes to finish a document but on the average

Performance 50

that time is not worth noticing. The main runtime contribution comes from processing

the pages.

Okay, this is not always true. For instance, if we process a 400 page book from 2500
small XML files with multiple graphics per page, there is a little overhead in loading
the files and constructing the XML tree as well as in inserting the graphics but in such
cases one expects a few seconds more runtime. The METAFUN manual has some 450
pages with over 2500 runtime generated METAPOST graphics. It has color, uses quite
some fonts, has lots of font switches (verbatim too) but still one run takes only 18 sec-
onds in stock LUATEX and less that 15 seconds with LUAJITTEX. Keep these numbers
in mind if a non-CONTEXT users barks against the performance tree that his few page
mediocre document takes 10 seconds to compile: the content, styling, quality of macros
and whatever one can come up with all plays a role. Personally I find any rate between
10 and 30 pages per second acceptable, and if I get the lower rate then I normally know
pretty well that the job is demanding in all kind of aspects.

Over time the CONTEXT-LUATEX combination, in spite of the fact that more functional-
ity has been added, has not become slower. In fact, some subsystems have been sped
up. For instance font handling is very sensitive for adding functionality. However, each
version so far performed a bit better. Whenever some neat new trickery was added, at
the same time improvements were made thanks to more insight in the matter. In prac-
tice we're not talking of changes in speed by large factors but more by small percent-
ages. I'm pretty sure that most CONTEXT users never noticed. Recently a 15-30% speed
up (in font handling) was realized (for more complex fonts) but only when you use
such complex fonts and pages full of text you will see a positive impact on the whole
run.

There is one important factor I didn’t mention yet: the efficiency of the console. You
can best check that by making a format (context --make en). When that is done by
piping the messages to a file, it takes 3.2 seconds on my laptop and about the same
when done from the editor (SCITE), maybe because the LUATEX run and the log pane
run on a different thread. When I use the standard console it takes 3.8 seconds in Win-
dows 10 Creative update (in older versions it took 4.3 and slightly less when using a
console wrapper). The powershell takes 3.2 seconds which is the same as piping to a
file. Interesting is that in Bash on Windows it takes 2.8 seconds and 2.6 seconds when
piped to a file. Normal runs are somewhat slower, but it looks like the 64 bit Linux bi-
nary is somewhat faster than the 64 bit mingw version.” Anyway, it demonstrates that
when someone yells a number you need to ask what the conditions where.

At a CONTEXT meeting there has been a presentation about possible speed-up of a run
for instance by using a separate syntax checker to prevent a useless run. However, the
use case concerned a document that took a minute on the machine used, while the same
document took a few seconds on mine. At the same meeting we also did a comparison

Long ago we found that LUATEX is very sensitive to for instance the CPU cache so maybe there are some
differences due to optimization flags and/or the fact that bash runs in one thread and all file 10 in the
main windows instance. Who knows.

51 Performance

of speed for a IATEX run using PDFIEX and the same document migrated to CONTEXT
MKIV using LUATEX (Harald Konigs XML torture and compatibility test). Contrary to
what one might expect, the CONTEXT run was significantly faster; the resulting docu-
ment was a few gigabytes in size.

5.3 Bottlenecks

I will discuss a few potential bottlenecks next. A complex integrated system like CON-
TEXT has lots of components and some can be quite demanding. However, when some-
thing is not used, ithas no (or hardly any) impact on performance. Even when we spend
alot of time in LUA that is not the reason for a slow-down. Sometimes using LUA results
in a speedup, sometimes it doesn’t matter. Complex mechanisms like natural tables for
instance will not suddenly become less complex. So, let’s focus on the “aspects” that
come up in those complaints: fonts and LUA. Because I only use CONTEXT and occa-
sionally test with the plain TEX version that we provide, I will not explore the potential
impact of using truckloads of packages, styles and such, which I'm sure of plays a role,
but one neglected in the discussion.

Fonts

According to the principles of LUATEX we process (OPENTYPE) fonts using LUA. That
way we have complete control over any aspect of font handling, and can, as to be ex-
pected in TEX systems, provide users what they need, now and in the future. In fact, if
we didn’t had that freedom in CONTEXT I'd probably already quit using TEX a decade
ago and found myself some other (programming) niche.

After a font is loaded, part of the data gets passed to the TEX engine so that it can do
its work. For instance, in order to be able to typeset a paragraph, TEX needs to know
the dimensions of glyphs. Once a font has been loaded (that is, the binary blob) the
next time it’s fetched from a cache. Initial loading (and preparation) takes some time,
depending on the complexity or size of the font. Loading from cache is close to instan-
taneous. After loading the dimensions are passed to TEX but all data remains accessible
for any desired usage. The OPENTYPE feature processor for instance uses that data and
CONTEXT for sure needs that data (fast accessible) for different purposes too.

When a font is used in so called base mode, we let TEX do the ligaturing and kern-
ing. This is possible with simple fonts and features. If you have a critical workflow
you might enable base mode, which can be done per font instance. Processing in node
mode takes some time but how much depends on the font and script. Normally there
is no difference between CONTEXT and generic usage. In CONTEXT we also have dy-
namic features, and the impact on performance depends on usage. In addition to base
and node we also have plug mode but that is only used for testing and therefore not
advertised.

Every \hbox and every paragraph goes through the font handler. Because we support
mixed modes, some analysis takes place, and because we do more in CONTEXT, the

Performance 52

generic analyzer is more light weight, which again can mean that a generic run is not
slower than a similar CONTEXT one.

Interesting is that added functionality for variable and/or color fonts had no impact on
performance. Runtime added user features can have some impact but when defined
well it can be neglected. I bet that when you add additional node list handling yourself,
its impact on performance is larger. But in the end what counts is that the job gets done
and the more you demand the higher the price you pay.

LuA

The second possible bottleneck when using LUATEX can be in using LUA code. How-
ever, using that as argument for slow runs is laughable. For instance CONTEXT MKIV
can easily spend half its time in LUA and that is not making it any slower than MKII
using PDFTEX doing equally complex things. For instance the embedded METAPOST li-
brary makes MKIV way faster than MKII, and the built-in XML processing capabilities
in MKIV can easily beat MKII XML handling, apart from the fact that it can do more,
like filtering by path and expression. In fact, files that take, say, half a minute in MKIV,
could as well have taken 15 minutes or more in MKII (and imagine multiple runs then).

So, for CONTEXT using LUA to achieve its objectives is mandate. The combination of
TEX, METAPOST and LUA is pretty powerful! Each of these components is really fast. If
TEX is your bottleneck, review your macros! When LUA seems to be the bad, go over
your code and make it better. Much of the LUA code I see flying around doesn’t look
that efficient, which is okay because the interpreter is really fast, but don’t blame LUA
beforehand, blame your coding (style) first. When METAPOST is the bottleneck, well,
sometimes not much can be done about it, but when you know that language well
enough you can often make it perform better.

For the record: every additional mechanism that kicks in, like character spacing (the
ugly one), case treatments, special word and line trickery, marginal stuff, graphics,
line numbering, underlining, referencing, and a few dozen more will add a bit to the
processing time. In that case, in CONTEXT, the font related runtime gets pretty well
obscured by other things happening, just that you know.

5.4 Some timing

Next I will show some timings related to fonts. For this I use stock LUATEX (second
column) as well as LUAJITTEX (last column) which of course performs much better. The
timings are given in 3 decimals but often (within a set of runs) and as the system load
is normally consistent in a set of test runs the last two decimals only matter in relative
comparison. So, for comparing runs over time round to the first decimal. Let’s start
with loading a bodyfont. This happens once per document and normally one has only
one bodyfont active. Loading involves definitions as well as setting up math so a couple

53 Performance

of fonts are actually loaded, even if they’re not used later on. A setup normally involves

a serif, sans, mono, and math setup (in CONTEXT).®

bodyfont

modern 0.023 0.019
pagella 0.127 0.079
termes 0.128 0.087
cambria 0.180 0.123
dejavu 0.140 0.092
ebgaramond 0.142 0.093
lucidaot 0.146 0.120

There is a bit difference between the font sets but a safe average is 150 milli seconds and

this is rather constant over runs.

An actual font switch can result in loading a font but this is a one time overhead. Load-
ing four variants (regular, bold, italic and bold italic) roughly takes the following time:

bodyfont switch and 4 style changes (first time)

modern 0.028
pagella 0.035
termes 0.036
cambria 0.052
dejavu 0.091
ebgaramond 0.022
lucidaot 0.017

0.028
0.031
0.069
0.047
0.069
0.016
0.031

Using them again later on takes no time:

bodyfont switch and 4 style changes (follow up)

modern 0.000
pagella 0.001
termes 0.000
cambria 0.000
dejavu 0.001
ebgaramond 0.000
lucidaot 0.000

0.000
0.000
0.001
0.000
0.000
0.000
0.000

Before we start timing the font handler, first a few baseline benchmarks are shown.
When no font is applied and nothing else is done with the node list we get:

8 The timing for Latin Modern is so low because that font is loaded already.

Performance 54

100 hboxes with 4 texts and no font handling
baseline 0.142 2.343

A simple monospaced, no features applied, run takes a bit more:

100 hboxes with 4 texts and no features

baseline 0.275 0.220

Now we show a one font typesetting run. As the two benchmarks before, we just type-
set a text in a \hbox, so no par builder interference happens. We use the sapolsky
sample text and typeset it 100 times 4 (either of not with font switches).

100 hboxes with 4 texts using one font

modern 0.933 0.591
pagella 1.027 0.660
termes 1.032 0.604
cambria 1.483 0.862
dejavu 1.009 0.581
ebgaramond 3.240 1.774
lucidaot 0.699 0.444

Much more runtime is needed when we typeset with four font switches. The garamond
is most demanding. Actually we’re not doing 4 fonts there because it has no bold, so
the numbers are a bit lower than expected for this example. One reason for it being
demanding is that it has lots of (contextual) lookups. The only comment I can make
about that is that it also depends on the strategies of the font designer. Combining
lookups saves space and time so complexity of a font is not always a good predictor for
performance hits.

If we typeset paragraphs we get this:

100 times 4 texts on pages

modern 1.377 0.904
pagella 1.523 0.961
termes 1.453 0.898
cambria 1.901 1.138
dejavu 1.437 0917
ebgaramond 3.714 2.133
lucidaot 1.117 0.767

We're talking of some 275 pages here.

55 Performance

100 times 4 texts on pages using 4 styles

modern 2.074 1.307
pagella 2.155 1.338
termes 2.153 1.373
cambria 3.349 2.012
dejavu 2.408 1.453
ebgaramond 4.368 2.512
lucidaot 1.682 1.056

There is of course overhead in handling paragraphs and pages:

100 paragraphs with 4 texts and no features
baseline 0.825 0.559

Before I discuss these numbers in more details two more benchmarks are shown. The
next table concerns a paragraph with only a few (bold) words.

100 texts on pages with [1,2,4] bold font switches

modern 0.409 0.263
pagella 0.445 0.281
termes 0.432 0.300
cambria 0.606 0.368
dejavu 0.465 0.295
ebgaramond 0.922 0.530
lucidaot 0.345 0.220

The following table has paragraphs with a few mono spaced words typeset using \type.

100 texts on pages with [1,2,4] word verbatim switches

modern 0.380 0.255
pagella 0.396 0.266
termes 0.384 0.278
cambria 0.535 0.355
dejavu 0.366 0.247
ebgaramond 0.939 0.533
lucidaot 0.322 0.216

When a node list (hbox or paragraph) is processed, each glyph is looked at. One im-
portant property of LUATEX (compared to PDFTEX) is that it hyphenates the whole text,
not only the most feasible spots. For the sapolsky snippet this results in 200 poten-
tial breakpoints, registered in an equal number of discretionary nodes. The snippet
has 688 characters grouped into 125 words and because it’s an English quote we’re not
hampered with composed characters or complex script handling. And, when we men-
tion 100 runs then we actually mean 400 ones when font switching and bodyfonts are
compared

Performance 56

Agriculture is a fairly recent human invention, and in many ways it was one of
the great stupid moves of all time. Hunter-gatherers have thousands of wild
sources of food to subsist on. Agriculture changed that all, generating an over-
whelming reliance on a few dozen domesticated food sources, making you ex-
tremely vulnerable to the next famine, the next locust infestation, the next potato
blight. Agriculture allowed for stockpiling of surplus resources and thus, in-
evitably, the unequal stockpiling of them — stratification of society and the in-
vention of classes. Thus, it allowed for the invention of poverty. I think that
the punch line of the primate-human difference is that when humans invented
poverty, they came up with a way of subjugating the low-ranking like nothing
ever seen before in the primate world. Robert M. Sapolsky

In order to get substitutions and positioning right we need not only to consult streams
of glyphs but also combinations with preceding pre or replace, or trailing post and
replace texts. When a font has a bit more complex substitutions, as ebgaramond has,
multiple (sometimes hundreds of) passes over the list are made. This is why the more
complex a font is, the more runtime is involved.

Another factor, one you could easily deduce from the benchmarks, is intermediate font
switches. Even a few such switches (in the last benchmarks) already result in a runtime
penalty. The four switch benchmarks show an impressive increase of runtime, but it’s
good to know that such a situation seldom happens. It’s also important not to confuse
for instance a verbatim snippet with a bold one. The bold one is indeed leading to a
pass over the list, but verbatim is normally skipped because it uses a font that needs
no processing. That verbatim or bold have the same penalty is mainly due to the fact
that verbatim itself is costly: the text is picked up using a different catcode regime
and travels through TEX and LUA before it finally gets typeset. This relates to special
treatments of spacing and syntax highlighting and such.

Also keep in mind that the page examples are quite unreal. We use a layout with no
margins, just text from edge to edge.

So what is a realistic example? That is hard to say. Unfortunately no one ever asked us
to typeset novels. They are rather brain dead products for a machinery so they process
fast. On the mentioned laptop 350 word pages in Dejavu fonts can be processed at a rate
of 75 pages per second with LUATEX and over 100 pages per second with LUAIITTEX. On
a more modern laptop or professional server performance is of course better. And for
automated flows batch mode is your friend. The rate is not much worse for a document
in a language with a bit more complex character handling, take accents or ligatures. Of
course PDFIEX is faster on such a dumb document but kick in some more functionality
and the advantage quickly disappears. So, if someone complains that LUATEX needs 10
or more seconds for a simple few page document . .. you can bet that when the fonts
are seen as reason, that the setup is pretty bad. Personally I'd not waste time on such a
complaint.

57 Performance

‘priom oyewurid oY) Ul 9I0Joq UIIS I0AD SUIIOU I SunyurI-mo] o) Suryedniqns jo Aem e yim dn oure:
€1y ‘A110A0d PajULAUL SURTINT TSM JRY) ST 9OULIPIP Uewm-ojewLid o) jo aur] ypund oy Jey) Jury) | “A11eaod
O UOIJUSAUL O1[} I0J POMO[[R J1 ‘STYJ, "SOSSR[D JO UOLUSAUL o} pue £391008 JO UOIIROYIIRI)S — WYY Jo Sulfidposy
[enbaun oy ‘A[qeIAduI ‘sny) pue seoanosel snidims jo Surrdyo0)s 10] pamo[re amIMoLdy “y3Iq orejod jxXeu oY)
[013R)SOJUL JSTIOO] JXOU A} ‘DUIUIR] JXOU Y} 0} d[(RIOUNA A[OUIDIFXD NOA SUI LU ‘SOOINOS POOJ POJRIIISIWOP USZO)
MO] ® TO 9OURI[AI SUTTIDYMIIA0 e SUIjRIDUas ‘e Jey) Pasuerpd aIm)mousy "Uo JSISqus 0) PooJ JO $90INos Pl jd
BPURSNON) 9ARY SIOIAY)eS-109Uny] -ouw) (e Jo soaour pidnys 1eard o) Jo ouo sem §1 sfem AueUl Ul UL ‘UOIJUIAU]
ety Juedad A[1rey © ST onjMmoudy “pliom sjewtiad o1} Ul 810Jo(| UAAS 1049 SUNIOU oXI] Suryuel-mor a1y Suryednlqny
fo Lem e M dn owred £o1) ‘£110A0d POIULAUT SURTINT UM JRY) ST 9dUIOPIp wewmy-oyewtid o) Jo aut] yound oy
ey yuryy ['A310a0d JO UOIJUSAUL 9} 10 POMO[[R 1 ‘ST, 'SISSB[D JO UOIIUSAUL 81} PUR AJ9100S JO UOIJRIYIJRI)S
o1} Jo Sur[idyools fenboun oY) ‘A[qeiisour ‘snyy pue seoinosal snjdins Jo Sulidyo03s 10} Pomo[[e oIn3NoLdy 1Y3I|
yejod JXoU 9} ‘UOIYRISOJUI JSNDO] JXU B} ‘OUIWIR] XU oY} 0} J[RISUNA A[oWSI)Xd NOA SUIRW ‘S80IN0S POOY
91BO1)SIWOP USZOP MIJ B UO 2OURI[I SUTW[IYMIIAO0 T Jurjersauad ‘[[e Je) paSued aInjmoLsy "o 1sisqns 0} pooj
O SO0INOS PIIA JO SPURSNON) OARY SIOIOY)RS-IOJUNF] "OUIl} [[@ JO soaowl PIdnjs Jeald o1y Jo ouo sem 91 sem Auruy
[l PUe ‘UOTIUSAUT WRTINY] U831 A[1Ie] ® ST 9INIMOLISY "Pliom ojewrtid oY) Ul 210Ja(UsdS IoAd SUIYOU oY Suryued
Fmor o1y Suryesnlqns jo Aem e im dn owred A9} ‘A)1oA0d POJUOAUT STRTINY UDYM JRT[) ST 9OUSIOPIP Wewmy-ojeulid
Py Jo aury ypund oYy eyl uny) | A310a0d JO UOTIUSAUI O} 10J POMO[e 1 ‘SyJ, 'S9sSe[d JO UOJULAUl d) pud
101008 Jo woIpROYIIRI)S — oY) Jo Sulidspogs [enboun o1y ‘Ajqe)iasut ‘snyj pue seomosol sndins jo Suridspo)s 10
PMOT[® DI MOLIBY “IYSI[q 01ejod 1XoU o) ‘UOIPRISAJUI JSIOO] JXSU S} ‘DUIUTR] JXoU Y} 0 J[(eIDUNA A[oUISIXY
04 JuD[eW ‘S9DINOS POOJ POJROIISOWOP USZOP MO] ® UO 9OURIDI SUIW[OYMIIA0 UR FuljrIoussd ‘[[e jey) podueyd
PINIMOLISY ‘WO JSISqNS 0} POOJ JO S9OINOS P[IM JO SPUBSLON) SARY SIOIYLS-19JUN] ‘owl) [[e Jo seaow pidni
eaIs o) JO U0 sem 1 sfem AURW Ul PUR ‘UOIUOAUT WeUWINY U009l A[Ire] & St ormnjmoudy priom ojewrd o) uf
pI0joq woes Ioa0 Surlou oyl Sun{uel-mof o) Suresnlqns jo Aem e yym dn suren Loty ‘Ayresod pajuosur sueTINT]
19U YR} ST 9dUaIIp uewny-ojewad o) Jo aur] yound oYy yeys) yuryy | ‘£1310a0d Jo UOIUSAUL B} I0] POMO[[e 1]
ST], "Sesse[d JO UOIULAUL 9} pue A19100S JO UOROYIIRI)s — wery) jo Sulidypo)s renbaun o) ‘A[qejiasur ‘snyj pu
eoamosal snjdims Jo Suiidspols 10] pamofe 2Immotdy “NSi[q 01e1od IXoU S} ‘UOIPRISAIUL JSNOO] JXoU I} ‘durure]
fxou 9} 03 S[(RIOUNA A[oWSIIXd NOA SUR{RW ‘S9DINOS POOJ POJRIIISOWOP USZOP MIJ ® UO 9OURI[DI SUTW[IYMIIAO U
Buryetsuas ‘e eyl paSuerd am)Mmousy Uo ISISqNS 01 POOJ JO SAOINOS P[IM JO SPURSNIOY]) SARY SIBIBYIRS-Iojuny|
[owry e jo soaowr prdngs o138 o) Jo 9UO sem 1 sem AURT Ul PUR ‘UOTUDAUI URTUNY JU0III ATIIR] © ST 91N} NOLISY|
‘priom ayewrrad o) UI 8I0Jo(WSS I9Ad SUIYOU oI SULueRI-mo[) uresnlqns jo Aem e yym dn sure
o1} ‘A310A0d POJUOAUL SURIINY UM e[} ST 90UDIOPIP wewmny-oewtad oy jo ourf yound oy yer) uryy J £11040
O UOTYUSAUT 81} I0] PAMO[R T ‘ST], 'SISSB[D JO UOIULAUT 81} pue £J91008 JO UOIPROYIIRI)S — WLY) Jo Suridypoi
enbaun o) ‘A[qeyiadul ‘snyy pue seormosal snjdims jo Surrdpols 105 pamofe amymousy ySiq ojyejod xau oy
[T101YR)SOJUT JSTIDO] JXU AT} ‘SUIUIR] JXOU Y} 0} S[RISUNA A[oUWSIJXS NOA FUIYRW ‘S90IN0S POOJ PIIRIIISIWOP USZOL
Moy © 1O POURI[AI SUMHI[DYMIIAC e SurjeIdUAS ‘(B Yey) PaSuerd aInjnoudy "Uo ISISqNS 0} POOJ JO SIIINOS P[IA Ji
SPURSNON) 9ARY SISISY)RS-10UN] ‘owl) [[® JO seaow PIdnys jeald o) Jo U0 sem J1 sAem AURW UL PUR ‘UOTJUSAU]
TeUIN JUue0d A1re] © ST omymoudy prios sjewrid o) Ul 910Jo(WIS 10Ad Suljou ax1] Suryuer-mof oty Suryednlqny
fo Lem e Y dn sured £o1) ‘A310A0d PojULAUL SURWINY USYM JRY) ST 90UIoPIp wewny-oyewttid oy} jo aur] yound oy
hey) yuryy ['£110a0d Jo UOIULAUL S} 10 PAMO[[R T ‘SIY], 'SISSBD JO UOIIUSAUL 81} PUR £}I1D0S JO UOIYRIYIIRIS —|
oty Jo Surpidspogs Tenboun o1y ‘Ajqeiraout ‘sniy) pue s90mosal snjdans jo Suridspo)s 10] pomojre oImnoLsy “P3I[q
1ej0d 9XOU 9} ‘UOIYRISSJUI JSNDO] JXU B} ‘QUIUIR] JXAU |} 0} J[RISUNA A[PWLIIXd NOA JUIYeW ‘S8dIN0S POO]
[POYROIISOUWOP UOZOP MO] ® TO 9OURIDI SUTIIDYMIOAO TR FUIRIDUDS ‘[[R JRI) PISURYD 9INYMOLISY UO ISISqNS 0} POO]
O S90INOS P[IM JO SPURSNOY) SARY SIDIBIRS-IJUNY "ouwl) [[e Jo saaow prdnjs jeaid o) Jo auo sem 1 sfem Auweut
1 puR ‘UOIJUSAUL URWINY JUS0L AIIR) © ST 9IMYNOMSY “plIom djewiad oY) Ul 910jo(U9dS 1940 JUMjou I Supjued
Faor 1) SuryeSnlqns jo Aem e ym dn oured A9} ‘A)10A0d PIJUSATT STRTINT TDTM JRT[) ST 9DUIIOPTP WRTINIT[-0)RUILI
1) jo our ypund oy jery yuryy [£310a0d JO UOIIUOAUT SY) I0] POMO[[R T ‘SNIJ, "SOSSR[D JO UOIJUIAUL O} PUF
(101008 Jo worROYIIRIYS — W) Jo Sulidypogs Tenbaun o1y ‘A[qe)Iasul ‘sny) pue s9mosal snjdins jo Suridols 10j
PMO[[e DI MOLISY “IYSI[q 0yejod JXoU oY) ‘UOIPRISAJUT JSNOO] IXOU oY) ‘QUIUIR] IXOU O} 0 J[(RIDUNA A[OUIAIXI
104 SunyeW ‘S9dINOS POOJ PIYRIIISOUWOP USZOP MdJ ® UO 9OURIAI SUMUPYMISA0 UR 3uljeisuss ‘e jey) paduery
PMIMOLISY WO JSISqNS 0} POOJ JO SIIINOS P[IM JO SPUBSNON) dARY SIOIOYeS-1Junyy ‘owr) [[e Jo saaow prdni
heolId o) Jo oUO sem 91 sfem AURW UT PUR ‘TWOTJUOAUT UWRWINY JUdI A[ITR] ® SI 9IN)MOLFy -priom oyewrid o) uf
pIojoq uees Ioa0 Surylou oI SunjuRI-mo[oY) Suresnlqns jo Aem e yim dn swreo Loy) ‘Ayresod pajuesur suewny
ey Jet[y St 9oueteyIp uewny-ojewitid o) jo ourl yound oYy yeyy quiyy ["£310a0d JO UOIIUSAUL O3 10] POMO[[R 1]
SO T, "S9SSR[D JO UOTJUSAUT 9} PUR £19100S JO WOIIROYIIRI)S — WA Jo Sulfidspols renbeun ay) ‘A[qeirasur ‘snyy pue
goomosel sndins jo uridyo0)s 10] pomo[e dMmM)MoLIY “JYSIq 0jejod XU oY) ‘UOIIR)SIJUI JSNOO] JXOU JT[) ‘Durure]
NXoU 9]} 07 S[(RISUMNA A[oWDI)Xe NOA SULRW ‘S9INOS POOJ PAYLIIISIWOP USZOP MIJ © U0 JOURI[DI SUTU[IYMIIAO UH
Burjeiouss ‘e ey} paSueld 2INjMOLISY U0 ISISGUS 0} POOJ JO SOOINOS P[IA JO SPURSIOY} SARY SIDIOYJRS-I0Jun|

Figure 5.1

[owry [Te Jo sesouwt prdngs JeaIs a1} JO AUO sem 1 sem AURW UT PUR ‘UOTUSAUT WRWINY JU091 A[IIR] © ST 9IN)NOLISY|

fo buapdsyools uof pamoyip aunymowuby -jybuq orpiod 1xTdU Y] ‘U01IDISIfUL ISMD0] ITIU Y] ‘DUIWDY|
prou 2Yy3 01 2)quiauna fippwaLyra nofi Burypur ‘sa0unos poof papILISIULOP UIZOP M3Af D U0 IIUDL)IL
purwpoymizao un buypiauab ‘1o 0y pabupyo aunynouby ‘uo 2s15qns 01 poof fo saounos ppm fo|
FPUDSNOY] 2aDY $43.49YInb-u2jungy 2wy 110 fo saaow prdnys 3paub ay3 fo auo spm 1 sfipm fiuvw ug
puD ‘uoyruaaul upwny UL Aol D s1 UNYNIIUbY priom pwLd Iy} UL 940faq UIIS U0 buyrou 23]
busyuni-mo) vy buyvbnlgns fo fiom v ypm dn awvo fiayy ‘fizueaod pajusaur suDWNY UIYM JDY) I PDULI[J1p uDWNY
agpwiaLd 2y fo auz) yound ayy 9oyg yuryy [fiuaa0d fo uorguaauz ayy Lof pamoyv 1 ‘SnYJ, 'S95§D]D [0 U0UIAUL Y] PUD|
101008 [0 uopv1yvas — wayy fo buapdyoogs ypnboun ayp ‘fijqupasur ‘snyy pup saounosas snyduns fo buypdyoos uof|
2Mmo]D angno1iby ybrq 03v1od 1TIU 21Y) “UODISIIUL JSNV0] 1TAIU YY) ‘DUNUDS JTIU 2Y] 07 2)qVLPUINA fi)Pwa4Td NOf)
Puiypus ‘s90.m08 Poof pagnorsIULop uazop maf v uo 22uPYaL bunu)pym.Loa0 un buyyniouab q yp pabuvyd 2unnoriby)|
U0 1518qNS 01 Poof [0 $90UM08 PlM [0 SPUDSNOY] 2ADY SALIYIDE-AIIUNET “dwir) 17D fo sa00wW prdngs Ipa.b 9y fo U0 sDa
1 sfinm fiuvw ur pup ‘uouaauUL UDWNY JUIIAL filnf D 51 24NNl priom ajewrid 9} UI 9I10J9(USSS I9AY
guryjou axI] Surjuer-mof a3 Suryednlqns jo Lem e yym dn sured Aoy ‘Ayroa0d pajusaul suewINY USYM|
neyy sI sduaIayIp uewrny-ojewrid oy} Jo aur ypund oy} jey) quryy J ‘A31eaod Jo uorjusAul 9y} I0j
pPoMmo[[e 91 ‘snyJ, *S9sSe[d JO UOIJUSAUI 97} Puer AJ9100S JO UOIjedyIjel)s — way} Jo Sur[idoo)s renboaun|
P17 ‘A[qejrasur ‘sny) pue sedanosal snjdans jo Surfidxools 10J pamoje 21n3motady -y31q oyejod jxoul
PY[} ‘UOIyE)SOJUI ISNDO[JXAU O} ‘DUIUTE] JXoU 3Y) 0} d[(eloU[nA A[PUIAIIXS NOA Suryjew ‘sedInos pooj
[p@7e0I1SoWIOP USZOP MBJ B U0 9dURI[ad SUIW[OYMISA0 Ue Fuljessusad ‘[[e jey) paSueyd ainjnoudy ‘ug
NSISqNs 0} POOJ JO S92INOS P[IM JO SPUBSNOYY) dARY SIDISYJe3-I9juny] -owii} [[e Jo seaow pidnjs jeord
PY) JO auO sem 71 sAem Auew Ul PUR ‘UOTJUSAUI URTINY JUSII A[ITe] € ST 9an)notidy ‘pliom ajewrd oy
11 ©10JO(| USOS 104D SUIIOU Y] JUB[URI-MO] 9]} Surpesnlqns jo Lem & yIm dn owred £o1]) ‘A)10a0d pajuosur surwny
TOTM JRT[} ST 90USIOPIP uewny-ojewurad oty jo our yound o1 yer) Yuryy [A310a0d JO TOTIUSAUT O} 10] POMO][® 1}
SN, "SISSBD JO UOIIUDAUL A} PUe £191008 JO UOIpRIYIIRIIS — woy) Jo Surfidpogs fenbaun o) ‘A[qejraaur ‘sni) pue
poomosa1 snidns jo Suridspo)s 10] pomoy[e 2ImIMoLSy IS 0yejod JXou oY) ‘UOIIRISIUI JSNOO] IXOU OY[) ‘duUItIe]
XOU 91} 07 S[(RIAUNA A[OWDIIXD NOA SULYRW ‘SPOINOS POOJ PAJRIIISOTOP USZOP MO B U0 90URI[DI SUTUI[DYMIOAO UY
Buryerous8 ‘(e Jer) paSuryd 2ImM)MOLTY U0 JSISNS 0) POOJ JO SIDINOS P[IA JO SPUBSNON) dARY SIDIOILS-IdUNE|
o) e Jo soAow prdnjs Jeol1d o) JO oUO sem 91 sAem AURT UT PUR ‘UOTIUSAUT WRTINY U091 A[ITR] ® ST 9IM)NOLISY)|
‘plrom a3pwirad Y] U 3.40faqQ UIS 4222 Buryjou a2y buryuvi-mo] ayy buryvbnlqns fo fiv
P ypm dn 2wod fiayy ‘figupaod pajuaaul SUDWNY UIYM DY) ST DULIL1P uDWNY-2IDWIL Y] fO Uy
yound ayy 1oyy yuryy 1 ‘figuaaod fo uorquaaul ayj Lof pamolIp 1 ‘smyJ, °$assD]o fo uouIAUL Y] PUD|
fizo200s fo wo1DOY1IDUYs — wWAY] fo Burpdyooys jpnbaun ayy ‘AlqpEasdul ‘sny) puv $20uN0SIL SNYAUNS|
fo buapdsooys uof pamo)ip aunymowuby -ybuq opiod 1xTdU Y] ‘U01IDISIfUL ISND0] ITIU Y] ‘DUIWDY|
prau 2Yy3 01 2jquuauna fippwasyra nofi Burypur ‘sa0unos poof papILISIUWOP UIZOP M3f D U0 IIUDLIL
purwpoymizao un buypiauab ‘9o 0y pabupyo aunynouby ‘uo 3s15qNs 01 poof fo saounos ppm fo|
FPUDSNOY] 2aDY S43.49YIDb6-423unfy -awy 10 fo saaow. prdnys jpa.b ay3 fo auo svm 1 sfivm fiupw ug
puD ‘uoruaaul upwny JuadRs Aol D s1 3UNYNIUbY priom pwLd 2y} UL 940faq UIIS 420D buyrou 23]
busyuni-mo) ayy buyvbnlgns fo fiom v ypm dn 2wvo fiayy ‘fizueaod pajusaur suDWNY UIYM DY) I PDULILJ1p uDWNY
agwiaLd 2yy fo auz) yound ayy 9oyg yuryy [fiaaa0d fo uorguaauz ayy Lof pamoyv 1 ‘SnYyJ, 's955D]0 [0 U0UIAUL Y] PUD|
1792008 Jo wonwoyyniys — wayy fo buypdyoors ppnbaun ayy ‘fijqopasuy ‘snyy pup saounosat snjdins fo bupdyoogs .o
2MOo] D 2Ungno1byy 1ybryq 03v1od 1TIU 2Y) “‘UODISIIUL JSND0] 1TAU Y] ‘DULWDS 3TIU 2Y) 07 2)qDLPUINA fi)PUa42TD NOf)
Puzyvus ‘s904m0s poof pagnorisauLop uazZop maf v U0 2IUDYAL buguaymLaa0 un buynauab v 1Y) PabuvYd 2 NILLbY|
U0 1515qNS 01 Poof [0 $904n0s PpMm [0 SPUDSNOY] ADY SA4LIYIDE-AIJUNET DY 17D fo saa0w prdngs 1maub 9y fo 2U0 §D
1 sfinm fiuvw ur pup ‘uouaaur UDWNY JUIIAL filnf D §1 24N Mol priom ajewrid 9y} UI 910J9(USS I9AY
guryjou axI] Sunjuer-mof a3 Suryednlqns jo Lem e yym dn swred sy ‘Ayroa0d pajusaul suewINy USYM|
neyy s1 aouaIoyIp uewny-ojewrid oy} Jo our yound oy} jey) quryy J ‘A31esod Jo UoIjuULAUI OY) I0j
[PaMOI[e 71 ‘SN], ‘S9SSB[O JO UOIJUSAUL) Pue AJ3120s JO uoryedsyijel)s — woayj jo Surfidsools renbaun|
P71 ‘A[qejrasul ‘snyy pue sedanosal snjdans jo Surfid}ools 10J pamoje a1n3motidy -y31q oyejod jxoul
P} ‘UOIYE)SOJUI ISNDO[JXAU O} ‘DUIUIE] JXoU 9Y) 0} d[(eIoUNA A[SUIAIIXS NOA Suryewr ‘sedInos pooj
[P27e011SaWIOP USZOP MB] ® U0 9dURI[a1 SUIW[OYMISA0 Ue Juljetousas ‘[[e jey) padueyd ainjnouly ‘u
NSISqNS 0} POOJ JO S92INOS P[IM JO SPUBSNOYY) dARY SIDI9YJe3-I9juny] -owii} [[e Jo seaow pidnjs jeoid
PY[} JO QU0 sem 91 sAem AUew Ul pUe ‘UOIJUSAUI URTINY JU8IdI A[ITe] © ST 2In) oISy priom ajeurrd orpy
11 ©10JO(| USOS 104D SUIIOU Y] JuB[URI-MO[9]} Surpesnlqns jo Aem e M dn owred Loy ‘A)10a0d pajuoaur surwny
TOTM JRT[} ST 90USIOPIP wewny-ojewutad oty jo our yound o1y yer) Yury) A310a0d JO TOTIUSAUT O} 10] POMO][® 1}
SN], 'SOSSR[D JO UOTIUOAUT OY[} PUE AJ9I00S JO UOIPeIYIYeIls — oY) Jo Surfidyools renboun oty ‘A[qejradur ‘snyy pue
poomosar snjdins jo 3urdspo)s 10] pomoj[e 2ImIMoLSy S 0yejod JXou oY) ‘UOIIRISIUI JSNOO] IXOU oY) ‘durte]
XOU 91} 0 S[(RIAUNA A[OWOIIXD NOA SUIYRW ‘SPOINOS POOJ PAJLIIISOTOP USZOP MO B U0 d0URI[DI SUTUI[DYMISAO TY

Buryerous8 ‘e Jer) paSuryd 2IM)MOLITY U0 JSISNS 0) POOJ JO SIOIMOS P[IA JO SPUBSNOY) dARY SIDIOILS-IdunE|

aury [[e Jo seaowt prdigs Jeald o) Jo 9UO seM §1 sAem AURW Ul PUR ‘WOIJUSAUL URTINT] JU8ISI AITR] © ST 8IM)[NOLISY]|

Figure 5.2

Performance 58

Burerousd ‘e jery) peSueypd omM)MOLIBY U0 ISISNS 0} POOJ JO SOOINOS P[IM JO SPURSNON) OARY] SIOIOY)RS-I9JUNH|
[otury e jo seaowr prdngs 1ea18 o1y} Jo oUO sem 1 sAem AU UI PUR ‘UOTIUSAUT URTINTY JU09I A[IIR] ® ST 9IN)NOLISY)|
‘priom oyewurid oY) Ul 910jo(|
199s J9Ad Sulyjou oyl Sunjuel-mof o) Surpesnlqns jo Aem © yym dn suren Loy ‘A310A0d pojueAUl STRINTY WA/
Ne) st oduoIPIp uewny-ojeutid o) jo ourl yound oYy jey) Juiy) [A310a0d JO UOTIUSAUL OY) I0] POMO[[R T ‘SnyJ|
[SOSSe[D JO WOIJULAUT o) PUe AJ9I00S JO UOTIROYIPRI)S — wAT) Jo Suridspojs renboun o1y ‘Aqejrasur ‘snyy puy
koomosor snjdins jo Suiidspols 10j pamofe omymotdy PSijq 0jejod IXoU S} ‘UOIPRISIJUT JSNIDO] JXOU A} ‘durure]
XU oT[) 0} d[(RISUMA AJPUIAIIXD NOA SULRW ‘S9DINOS POOJ PIRIIISOTOP USZOP MOJ B U0 9OURT[DI SUTMU[IMIDAO Y
Buryesuas ‘[ey} paSuerpd oamMmoudy Uo ISISNS 0} POOJ JO SIOINOS PIM JO SPUBSNOY]) JARY SIDIDIRS-IoJuny|
[otr) e jo seaowr prdngs 9ea1d oT[) Jo oUO sem T sAem AURW UI PUR ‘UOTIUSAUT URTUNTY JUDDI A[IIR] ® ST 91N NOLIS Y]
‘plaom ayewrid oY) ur 810jaq|
[I99s I9Ad JUIYjou oyI[SurjueI-mof oY) Surpedn(qns jo Aem e Yim dn oures Ao7) ‘A319A0d POJUOAUT SURTUNT] U]
ety st eoueIeyIp weumy-ojewtid o1 Jo our yound oy Jer) Jury) | A310a0d JO UOTIUGAUT 91} I0] PAMO[[e T ‘SniJ|
[SOSSR[D JO UOIJUOAUT 1) pPue AJOI00S JO UOTIROYIJRIYS wot) Jo Suridspogs [enboun oy ‘A[qelraeur ‘sniy) pu
goomosor snidins jo Surrdyo03s 10J Pomo[Te 9IM)MOLISY “IYSIq 0ej0od JXoU 91} ‘UOTJRISIUI JSNIO] XU JT[} ‘DUIUIR]
NXOU 1]} 0} d[(RIDUMA AJOUIIIX0 NOA SUD{RUI ‘SODINOS POOJ PIJRIIISOUOP UOZOP MO] B UO 9OURIDI JUTMU[IMIAO T
purerouad ‘Tre jer) peSuerd omIMOUISY U0 ISISNS 0} POOJ JO SPIIMOS P[IM JO SPURSTION) 9ARY] SIOIOYIRS-IoJUN|
[owr) [jo soaowr prdmngs 4ea13 o[} Jo oUO sem 1 sfem AURW UL PUR ‘UOTIUDAUT URTINY JU0II A[I[R] © ST 9IN)NOLISY|
‘priom ayeturid o1} UI 9I0Ja(|
I99s I9A® Julyjou oyI[Surjuel-mo[oY) Surpednlqns jo Ldem e Yim dn oures Ao1) ‘£310A0d POJUOAUT SURIUNY UM
NeT) ST ooueIPPIp Uweumy-ojewtid o1 Jo our] yound o1y Jer) Yury) [A310a0d Jo UOTIUSAUT oY) I0] PIMO[[R T ‘SnTJ]
[S9SSB[D JO uOnUeAUl 9y} pue L9108 JO UORIYIIRIIS — W) jo Sul[idyoo)s [enboun o1 ‘A[qejiasur ‘sniy) pu
goomoser snpdims jo Surrdyo0)s 10] pomo[Te aM)MOLISY “JYSTq 0jejod XU oY) ‘UOTIR)SIJUT JSNOO] XU JT[) ‘DuUTUIR]
XU 91} 0} d[eISUMA A[PUIAIIX0 NOA SULYRW ‘S9DINOS POOJ PAJRIIISOUOP UIZOP MOJ B UO dDURI[DI SUITU[IYMIOAO UE
Burerouad ‘Tre jey) peSueyd omM)MOLIBY U0 ISISNS 0} POOJ JO SPIIMOS P[IM JO SPURSNION) OARY] SIOIOY)RS-I9JUNH|
[owry [re jo seaowr prdngs 1ea18 o1} Jo oUO sem 1 sAem AU UI PUR ‘UOTIUIAUT URTINTY JU0II A[IIR] © ST 91N NOLISY|
‘priom oyewurid o) Ul 9I0Jo(|
o9s I9A8 Julyjou oyl Sunjuel-mo[oY) Surpesn(qns jo Lem e [y dn oures Aoy ‘£110A0d PoULAUL SURTINY USTA
Ney) st oouatRpIp uewmy-ojeurtid o) jo our yound o) jer) Yury) [A310a0d JO UOTIUSAUL YY) I0] POMO[[R T ‘SniJ]
[SOSSe[D JO WOIJULAUT o) pPUe AJ9I00S JO UOTIROYIIRI)S — wAT) jo Suridspojs renbaun oty ‘A[qejrasur ‘snyy puy
goomosol sndans jo Suridyo0)s 10] Pomo[[e dM)MOLIY “JYSIq 0jejod JXou oY) ‘UOIIR)SIJUI JSNOO] JXOU dY[) ‘Durure}]
XU oT[} 0} d[(RISUMA AJPUIAIIXD NOA SULRW ‘S9DINOS POOJ PIJRIIISOTOP USZOP MOJ B U0 9OURT[DI SUTIU[IMIDAO e
Buryeouss ‘e ey} paSuerd amMmoLdy U0 ISISINS 0) POOJ JO SIOINOS PIM JO SPUBSNOY) DALY SIDIDIRS-I0Juny|
[otr) e jo seaowr prdngs 9ea1d oT[) Jo oUO sem T sAem ATRT UI PUR ‘UOTIUSAUT URTUNTY JUDDI A[IIR] ® ST 91N NOLISY)|
‘pliom oyewrrid o) ur 8I10jo(|
o9s I9Ad July[jou oyl Sunjuel-mof o) Surpedn(qns jo Aem e ym dn oures Ao1) ‘A110A0d POJUOAUT STRTINT] U4
ey st oouoreyIp uweumy-ojewrtid o) Jo our yound oy jey) Jury) | A310A0d JO UOTIUOAUT Y} I0] PIMO[[e T ‘SniJ]
[SOSSR[D JO WOIJUOAUT 1) pPue AJ0I00S JO UOTIROYIJRIIS wot) Jo Surdspogjs Tenboun oty ‘A[qerAsul ‘sniy) pu
eoamosal snjdims jo Suridpols 10] pamofe 2Imot8y “PSI[q 01ejod IXoU S} ‘UOIPRISAIUL JSNOO] JXoU I} ‘urure]
NXOU 1]} 0} d[(RIDUMA AJUIAIIXO NOA SUD{RU ‘SIDINOS POOJ PIJRIIISOTOP USZOP MOJ B UO 9OURIDI SUTMU[MIDAO T
purerouad ‘Tre jer) peSuerpd omIMOuISy U0 ISISqNS 0} POOJ JO SPIINOS P[IM JO SPURSNION) 9ARY] SIDIOYIES-IoJUN
[owr) [jo seaowr prdngs 9ea13 o1} Jo oUO sem 1 sfem AURW UL PUR ‘UOTIUSAUT URTINY JUDII A[IR] © ST 91N} NOLIFY|
“priom ayewurid o1} UI 910Jo(|
I99s I9A® Julyjou oyI[Surjuel-mof oY) Surpednlqns jo Lem e Yim dn oures Ao1) ‘£310A0d POJUOAUT SURIUNY UM
NeT) ST 9oueIPPIp Ueumy-ojewtid o1 Jo out yound oy Jer) Yury) [A310a0d Jo UOTIUOAUT oY) I0] PIMO[[R T ‘ST J]
[S9SSB[D JO UONUAAUT A} pue £JO10s JO UONRdYIIRIS — W) jo Sul[idyoo)s [enboun oty ‘A[qejiasur ‘sniy) pu
goomoser snpdins jo Surrdyo0)s 10] Pomo[Te aIM)MOLISY “IYSTq 0ejod XU 91} ‘UOTIR)SIJUT JSNOO] XU OT[) ‘DUTUIR]
hxou 9} 07 d(RIOUNA A[PWDI)Xd NOA SULYRU ‘SIINOS POOJ POJRIIISIUWOP UDZOP MIJ © UO JIUPRIDI SUT[IYMIIAO U
Bureouad ‘Tre jey) peSueyd om)MOLI8Y U0 ISISNS 0} POOJ JO SPOIMOS P[IM JO SPURSNON) OARY] SIOIOY)RS-IoJUNH|
[owry e Jo soaowr prdngs 1eaIs a1} Jo U0 sem 1 sAem AURU UL PUR ‘UOTIUSAUT URTUNY YT A[11e] B ST 91N [NOLISY|
‘priom oyewurd o1} Ul 9I0Jo(|
99s IoA8 Julyjou oyl Surjuel-mo[oY) urpesnlqns jo Aem e Yim dn owes 4oy) ‘£310a0d PaJUSAUl SUBINY USY
ey St eoueIRpIp ueuwmy-ojeutid o) jo our yound o) Jer) Jury) [A310a0d JO UOTIUSAUT 1) I0] POMO[[R T ‘S]]
[S9SSe[D JO WOIUAAUT 9T} pue AJ9I00S JO TUOIPRdYIIRI)S — uY) jo Suridspojs renbaun o1y ‘Ajqejrasur ‘snyy puy
goomosel sndins jo uridyo0)s 10] pomo[e dMmM)MoLIY “JYSIq 0jejod XU oY) ‘UOIIR)SIJUI JSNOO] JXOU JT[) ‘Durure]
XU oT[} 0} d[(RISUMA AJPUIAIIXD NOA SULYRW ‘S9DINOS POOJ PIRIIISOWOP UIZOP MOJ B U0 9OURT[DI SUTIU[IMIDAO UH
Bureoued ‘e jey) poSueyd oMIMOUBY U0 ISISNS 0} POOJ JO SOOINOS P[IM JO SPURSTION) OARY] SIOIOY)RS-I0JUN]|

[owry e Jo seaowr prdngs 1eaIs a1} JO U0 Sem 1 sAem AURW Ul PUR ‘UOTIUSAUT URTUNY U1 A[11e] © ST 9IN)[NOLIS Y|

Figure 5.3

BUIRIOUSS ‘[[e JRI) PASURYD SINIMOLSY U0 SISNS 0) POOJ JO SOOINOS P[IM JO SPURSNOY) dARY SIDIOIRS-I0)UNE|
ou) Jre Jo seaowr ptdnas 1eaI8 o1} JO oUO Sem 1 sfem AURW UT PUR ‘UOTIUSAUT WRTINIY JU09T A[ITR] ® ST 9IM)MOLIS Y]
‘priom ayeurtad o) Ul 8103
ees Iens Jurygou oyl Sunyuel-mol o) Sunesnlqns jo Aem e Yim dn oured £o1) ‘A110A0d POJUSATT STURTINY TS
het) st oouatelIp uewny-orewid oty jo out] yound oy yer) NuIyy ‘A310s0d Jo WOIUOAUL O} 10 POMO[[R 1 ‘SnyJ|
SOSSB[D JO UOTJUDAUT 9T} PU®R AJ9I00S JO WONRIYIIRI)s — WOy Jo Suridspols renbaun o) ‘ATqeatasur ‘snyy puy
foomosar snidms jo Sui(idspols 10j pamoqe 2mymoOLSy YSI[q 01ejod JXAU O} ‘UOIIRISIJUT JSNDO] JXAU dY} ‘Durtrey
IXOT o1} 0 J[(RIUNA AOUISIIXS NOA SULYRUI ‘S9INOS POOJ PIYRITISOWOP UIZOP MIJ © WO 9oURI[DI SUTUIDYMIOAO TY
Buryerousd ‘[re jer) peSuryd oIm)Mmoudy ‘Uo ISISqNS 0) POOJ JO $IINOS P[IM JO SPUBSNOY) dARY SIOIOILS-Iajuny|
owr) e Jo seaowr pTdnas 1eaI8 o) Jo ouo Sem 1 sAem AU UT PUR ‘UOTIUIAUT WRTINY JU00ST A[ITR] ® ST 9IM)MOLISY]
‘priom ayewrd o) ur 81038q
ees Ieae Juryzou oI SunueI-mol oY) Surpesnlqns jo Aem e Yim dn ouren Lo1) ‘A10a0d pPojULAUT SURTINY US|
Nty ST eouaIepIp wewmy-ojewiid oty Jo oury yound oy yery Yuryy | ‘A319a0d JO WOIIUOAUT I} I0] POMO[[R T ‘SnT|J|
SOSSB[D JO UOTJUSAUL 9T} PUR AJOID0S JO UOIIROYIIRI)S wo) Jo Suridspo)s renboun o) ‘ATqezrasut ‘snyy pu
soonosar snjdins jo Sur[rdyoo)s 10] pemo[[e 2IN)MOLIZY “ISI[q 01ej0d 1XaU 81} ‘UWOIIR)SAJUI ISNDO] IXOU Y[} ‘DUIUIR]
(XU 1) 0 A[(RIUNA AJOUIDIIXO NOA SULYRUI ‘S9DINOS POOJ PIYRIIISOWOP USZOP MIJ B UO 90URI[DI SUTIIDYMIOAO U
Buryersusd ‘[re jer) peSuryd omIMoudy ‘U0 ISISqNS 0) POOJ JO $9DIMOS P[IM JO SPUBSNOY) dARY SI9ISY}RS-Iajuny|
owy [[® Jo soaowr pTdnas eaI3 o) JO OUO sem 1 sAem AURW UI PUR ‘UOIUIAUT URTINY JU0dT A[1[R] ® ST 9IM)MOLIFY]
‘praom ayeurtad o) Ul 81039
ess 1oa® Suryzou oyI| Surjuel-mo[oYy Suresnlqns jo Lem e yjm dn owred o1y ‘K)roaod pajusAur suRNTY UM
ety ST 9ouRIePIp Uewny-orewiid o1y Jo oury yound o) yer) Yuryy ['A310a0d JO WOTYUOAUT O} I0] POMO[TR T ‘ST J|
SOSSR[D JO UOIIUDAUL A1} Pue L1910 Jo uorjedyrens — woy) jo Suiidyoo)s renboun oy ‘ATqedtasut ‘sniy) pu
Foomosa1 sndins jo Suidoo)s 10 pamoqre oMYMOISY “JYSIq 0jejod XU S} ‘WOTYRISIJUT JSIDO] IXOU Y[} ‘OuUTUIe]
XoU 91} 0} S[(RIAUMA A[OUIDIIXS NOA SUB{RUI ‘S9DINOS POOJ PARIIISOUWOP UDZOP MIJ B UO 9OURI[DI SUIUI[IYMIIAO U
BUIRIOUSS ‘[[e JRI) PASURYD SINIMOLSY U0 SISNS 0) POOJ JO SOOINOS P[IM JO SPURSNOY) dARY SIVIIRS-I0)UNE|
) [[e Jo soaowl prdnas JeaIs 9} JO U0 sem 1 sAem AURW Ul PUR ‘UOTIUSAUT WRWINY JU891 A[IIR] © ST 9IM)[NOLISY|
‘priom ayeurtad oY) Ul 81038
rees Ians Jutyzou oyl Sunyuel-mol oY) Sunesnlqns jo Aem e Yim dn oured £o1) ‘A110A0d POJUSATT STRTINY TS
ety st oouareIp uewny-ojewid oty Jo out] yound oy yer) NuIyy ‘A310a0d JO WOIYUOAUT S} I0] POMO[[R 1 ‘SnyJ|
SOSSB[D JO UOTJUDAUI ST} PUR £J9I00S JO WOIYRIYIIRI)s — W) Jo Suridspols renbaun o) ‘ATqeatasur ‘snyy puy
poomosol snjdins jo 3uiidpos 10j pomo[e oanyMoLI8Y “JYS1q 0jrIod JXoU J[) ‘UOIYRISIJUL JSTIDO] JXOU oY} ‘duUlUIe]
[XOT 91} 0 J[(RIUNA APUIDIIXS NOA SULYRUI ‘S9INOS POOJ PIYRITISOWOP WIZOP MIJ © WO 9oURI[DI SUTUIDYMIOAO TY
Buryerousd ‘[re jery) peSuryd oImMouy ‘UO ISISGNS 0) POOJ JO $IDINOS P[IM JO SPUBSNOY) dARY SIOIO)LS-Iajuny|
o) [[e Jo soaow pTdngs JeaId o1} JO OUO SeM T SABM AURWI UT PUR ‘TOTJUSAUT URTUNT JU9II AITR] ® ST 9IN)NIIISY)|
‘priom ayewrrid o) ur 81038q
wees Ieae Juryzou oI SunyueI-mol oY) Suryesnlqns jo Aem © Yim dn ouren Lo1) ‘A10A0d POJUSATT SURTINY TS|
het[) st eouLIdYIp weumy-ojewtid o) Jo ourl yound oY) yeysy yuryy [£319a0d Jo UOIULAUL B 10] PAmMO[[e I ‘sny |
SOSSB[D JO UOTJUDAUI 9T} PU®R AJ9I00S Jo UWONRIYIIRI)s — WO} Jo Suridspo)s renbaun o) ‘ATqeatasut ‘snyy puy
feomosar snydms Jjo Sui[ids}o0ls 10j pamo[re ammousy YSIq 01ejod JXaU 1) ‘UOIIRISIJUT ISNDO] JXoU B ‘Durure
[XoU o1} 0 d[(RIUMNA AJOUIDIIXS NOA SULYRUI ‘S9DINOS POOJ PIYRIIISOWOP USZOP MIJ © UO 90URI[DI SUTIIDYMIOAO U
Buryersusd ‘[re jer) peSuryd om)Moudy ‘U0 ISISqNS 0) POOJ JO $9DINOS P[IM JO SPUBSNOY) SARY SI9ISY}RS-Iajuny|
our) [Jo seaowr prdnas o138 o) Jo ouO sem 1 sAem AU UT PUR ‘UOTIUIAUT URTINY JU0DT A[IR] ® ST 9IM)MOLIFY]
‘priom ayeurtad o) Ul 81039
ess Ioas Suryzou oyI| Sunjuel-mof oYy Surpesnlqns jo Lem e yjm dn ouwred L1y ‘K)19A0d POJUSAUT SURTINT UM
ety ST 9ouRIePIp Uewny-orewiid o1y Jo our] yound o) yer) Yuryy ['A}10a0d JO WOTYUOAUT S} I0] POMO[[R T ‘ST J|
SOSSR[D JO UOIIUDAUL A} Pue L1910 Jo uorjedyren)s — woy) jo Suiidyoo)s renboun oty ‘ATqedtasut ‘sniy) pu
Feomosa1 snjdins jo Surdyoo)s 10 pamoqre oMYMOISy “JYSIq 0jejod XU O} ‘WOTYRISIJUT JSNIDO] JXOTU Y[} ‘oUTUIeR]
hXou 91} 0} S[(RIAUMA A[OUIAIIXD NOA SUI{RUL ‘S9IINOS POOJ PAYRIIISIWOP USZOP MIJ B UO DURI[DI SUTMI[DYMIIAO U
Buryerousd ‘e jer) peSuryd oI)MOMBy ‘U0 ISISqNS 0) POOJ JO SIDINOS P[IM JO SPURSNOY) SARY SIDIO}RS-I9juny|
o) [[e Jo soaowl prdnas JeaIs oY) JO U0 Sem 1 sAem AURW Ul PUR ‘UOTIUSAUT WRINY Y801 A[I1R] B ST 9IN)[NOLISY]
‘priom ayeurtad o) Ul 81039
ess zsas Suryizou oYl Surjuel-mo[Yy Suresnlqns jo Lem e Yim dn oured 1) ‘A119A0d pajULAUL SURTINT UM
het) st eouareIp urwny-orewid o1y jo out] yound o) yer) Nuryy 'A310a0d JO WOIYUOAUT ST} I0] POMO[[R T ‘SnyJ|
SOSSB[O JO UOTJUDAUI ST} PUR £J9I00S JO WOIYRIYIIRI)s — W) Jo Suridspols renbaun o) ‘ATqeatasur ‘snyy puy
poomosoar snjdins jo Suiid:po)s 10 pomoqe oanyMOLI8Y JYS1q 0jrjod JXoU J[) ‘UOIYRISIJUL JSTIOO] JXOU oY} ‘duUTUIR]
XOT 91} 0 J[(RIUNA A[PUIIIXS NOA SULYRW ‘S92INOS POOJ PIYRITISOWOP UIZOP MIJ © WO 9oURI[DI SUTUIDYMIOAO TY
BUIRIOUSS ‘[[@ JRY) POSURID SINIMOLESY U0 SISGNS 0) POOJ JO SOOINOS P[IM JO SPURSNOY) dARY SIDIDIRS-I10JUNE|

) e Jo seaowl prdnas Jeald oY) JO U0 sem 1 sAem AURW Ul PUR ‘UOTIUSAUT WRTINY U891 A[IIR] ® ST 8IN)[NOLISY|

Figure 5.4

59 Performance

140M 93ewTdd Syl uT 940)9g udBS JaAd BuTylou 9YT) BuTyueu-moy 9yl butiebnlgns Jjo Aem e yitm dn swed|
3 ‘A3uan0d paIUSAUT suewny udaym eyl ST 9JUSJSLLTP uewny-d3ewTdd ayy Jo auTy yound 8yl eyl YUTyl I
d JO UOTIUSAUT Sy} J0) pPaMO1)e 3T ‘SNYL *S9SSE1D JO UOTIUSAUT 3y} pue A33TD0S JO UOTILITITILULS ---
40 Bbut)Td¥0031S 1ENbaun 8yl ‘A1geITASUT ‘sny} pue sad4nosad sniduns jo BuTITAYD03}S J40) pamolle a.any
1ndT4by "3ybT1q 03elod 3IXdU BY} ‘UOTIRISDIUT ISND0] IXdU BY} ‘SUTWES IXdU dY} 03} d1gedaulna Ajawsuy
noA BuTsew ‘sa24n0S poo) Pa}LITISAWOP USZOP M3 B U0 ddUeT)aJ Butwyaymiano ue Hutiessusb ‘11e ey
eyd> 94n31nNdT4by "UO 31STSQNS 01 POOJ JO SIUNOS P1TM JO SPUBSNOY] dARY SJaJayleb-uajuny "awty 11e 40
Aow ptdnis 3eadb oyl Jo duo sem 31T SAem Auew UT pue ‘UOTIUSAUT uewNY 3U3I3J4 A1JTe) e ST 94n31ndTJby
140M 931ewTJd 9yl UT 940}3Q UIBS JaAd BuTylou o)1) BuTyues-mol 9yl bHutiebnlgns jo Aem e yitm dn swed|
3 ‘A3J4anod palUSAUT suewny usym eyl ST 9JUSJSLJTP uewny-diewTdd 8yl Jo auTy yound Byl eyl YUTYl I
d JO UOTIUSAUT By} JO4 PAMOY1E 3T ‘SNYLl "S9SSE1D JO UOTIUSAUT By} pue A1STJ0S 4O UOTIEITSTILULS ---
40 Bbut)Td¥o031S 1ENbaun 8yl ‘A1geITASUT ‘snyl pue sadu4nosad snyduns jo BuT1TAY201S JU0J pamolle a.any
1noT4by "3ybT1q 01elod 3IXBU SY} ‘UOTILISSIUT 1ISND0] IXdU BY} ‘SUTWES IXdU dY)} 03 d)1gedaulna Ajawsuy
noA BuTyew ‘sa54n0S pooj Pa3eITISAWOP USZOP MI) B UO ddueT1ad HBuTwiaymusro ue Butiessusb ‘11e eyl
eyd> a4n31nNdT4by "UO }STSQNS 0} POO4 JO SDUNOS P1TM JO SPUBSNOY} DARY SJdJdy3eb-uajuny “dWT} 11e 49
Aow ptdnis 3eaub ayy Jo duo sem }T SAem Auew UT pue ‘UOTIUSAUT uewny 3uadad AyjJTe) e ST 24n31ndTJby
140M 931ewTdd 9yl UT 240}3g UIBS JaAd BuTylou 93T) BuTyued-mol ayy butiebnlgns jo Aem e yi3tm dn swed|
3 ‘A3Janod palUSAUT Suewny udYM JBYL ST 9JUSJSSJTP uewny-siewTdd ayi Jo auTy yound Byl eyl YUTYY I
d JO UOTIUSAUT Byl JOJ POMOY1E 3T ‘SNYL "S9SSE1D JO UOTIUSAUT 9y} pue A19TJ0S JO UOTIEITSTIRULS ---
40 BuT1TdY001S 1Enbaun 8yl ‘A1geRITASUT ‘Snyl pue Sa24nosad snyidans jo BuTITAYD01S JOJ pamolle oJ4ny
1noTJ4by "3ybT1g 01el0d IXBU BY} ‘UOTILISILUT ISND0] IXSU BY]l ‘SUTWE) IXdU 9y} 03 31qedaulna Aawsd)
noA BuTsew ‘sad24n0s pooj Pal}edTISAWOP USZOP M3 B U0 ddueT)ad Butwysymiano ue BuTiedsusb ‘)1e ey
eyd> aun11ndT4by "UO 3}STSQNS 01 POO4 JO SIJUNOS P1TM JO SPUBSNOY} SABRY SJaiayleb-uajuny ‘dwTl 11e 49
Aow ptdnis 3eaub syl Jo suo sem 31T SAem Auew UT pue ‘UOTIUSAUT uewny 3uadad AjdTe) e ST a.4n3ndTJby
140M 931ewTdd Syl uT 240)3g uddS JaAd BuTylou 9YT) Buryues-mol 9y} bButiebnlqns jo Aem e yitm dn swed
1 ‘A3Jaanod palusAUT Suewny usym eyl ST dDOUIUDSSTIP uewny-d3ewTdd ayl Jo auTy yound ayji 3Ieyl Hutyl I
d JO UOTIUSAUT By} JOJ PaMO11e 3T ‘SNYL *S9SSE1D 4O UOTIUSAUT 9y} pue A3dTD0S JO UOTIRITITIRILS ---
40 Bbut)1TdXD031S 1Enbaun 8yl ‘A1QeITASUT ‘sSny} pue s$ad24nosad snidans jo BUTITAYD03}S J40J pamolle aJ4ny
12146y "3ybT1g 031e0d IXBU BYJ ‘UOTILISILUT ISNI0] IXSU BY] ‘SUTWE) IXdU 9y} 03 31qedaulnA A1swsd)
noA BuTsew ‘s824nos pooj Pal}eITISAWOP USZOP Md) B U0 ddueT]ad Butwysymiano ue HuTiessusb ‘11e ey
eyd> 94n11nNdT4By "UO 3STSQNS 01 POOJ JO SIJNOS P1TM JO SPUBSNOY) dABRY SJaJayleb-uajuny "awtl 11e 49
Aow pTdnys 1eaub syl 4o Buo sem 3T sAem Auew UT pue ‘UOTIUSAUT uewny 3uadad A1JTe) B ST 94n3|NdTJ6Y
140M 931ewTdd Syl uT 940)9g UIBS JaAd BuTylou 9YT) BuTyues-mol 9yl butiebnlqns Jo Aem e yitm dn swed
3 ‘A3uan0d palUSAUT suewny usaym Jeyl ST 9JUSJSLLTP uewny-diewTdd ayi Jo auTy yound 8yl eyl YUTyl I
d JO UOTIUSAUT Sy} J0) pPaMO1)e 3T ‘SNYL *S9SSE1D JO UOTIUSAUT 3y} pue A39TD0S JO UOTILITITILULS ---
40 BbuT1Td¥0031S 1ENbaun 8yl ‘A1QeITASUT ‘sny} pue sa2u4nosad snyduns jo BuTITAYD031S J40) pamolle a.any
1ndT4by "3ybT1q 03erod 3IXdU SY} ‘UOTIRISDJUT ISND0] IXdU BY} ‘SUTWRS IXdU dY} 03} d1gedaulna Ajawsuy
noA BuTyew ‘sa54n0S pooj Pa}LITISIWOP UIZOP MdJ B UO ddueT1aJd HBuTwiaymusano ue Hutiessusab ‘11e eyl
eyd> 94n311nNdT4by "UO 31STSQNS 01 POOJ JO SIUNOS P1TM JO SPUBSNOY] dARY SJdJayieb-uajuny "awty 11e 40
Aow ptdnis 3eadb oyl Jo duo sem 31T SAem Auew UT pue ‘UOTIUSAUT uewnYy 3u3ddJ4 A1JTe) e ST 94n31ndTJby
140M 931ewTJd 9yl UT 240}3Q UIDS JaAd BuTylou o)1) BuTyued-mol 9yl bHutiebnlgns jo Aem e yitm dn swed|
3 ‘A3J4anod palUSAUT suewny usym eyl ST 9JUSJSLJTP uewny-diewTdd ayi Jo auTy yound Byl eyl YUTYl I
d JO UOTIUSAUT By} JOJ PAMOY1E 3T ‘SNYLl "S9SSE1D JO UOTIUSAUT By} pue A19TJ0S 4O UOTIEDTSTILULS ---
40 BbutTd¥2031S 1ENbaun 8yl ‘A1geITASUT ‘snyl pue sad.4nosad snyduns jo BuT1TAY201S JU0J pamolle a.any
1n0T4by *3ybT1g 01ejod IXBU BY} ‘UOTILISILUT ISND0| 3IXSU BY} ‘SUTWES IXdU dY} 03} d1qedaulna Aawady
noA BuTyew ‘sad54n0S pooj Pa3LITISAWOP USZOP MO) B UO ddueTlad HBuTwiaymusno ue Butiessusab ‘11e eyl
eyd> 94n3nNdT4by "UO 3}STSQNS 0} POO4 JO SDUNOS P1TM JO SPUBSNOY} DARY SJaJdyleb-uajuny *dwWTy 11e 49
Aow ptdnis 3eaub ayy Jo duo sem }T SAem Auew UT pue ‘UOTIUSAUT uewny 3uadad AjdTe) e ST a4n31ndTJby

Figure 5.5

5.5 Valid questions

Here are some reasonable questions that you can ask when someone complains to you

about the slowness of LUATEX

What engines do you compare?

ing are

input and font handl

If you come from PDFIEX you come from an 8 bit world

based on bytes and hyphenation is integrated into the par builder. If you use UTF-8 in

PDFIEX, the input is decoded by TEX macros which carries a speed penalty. Because in

the wide engines macro names can also be UTF sequences, construction of macro names

t too.

1C1en

less effi

1S

When you try to use wide fonts, again there is a penalty. Now, if you use XgIEX or

LUATEX your input is UTF-8 which becomes something 32 bit internally. Fonts are wide

so more resources are needed, apart from these fonts being larger and in need of more

. Where XdTEX uses a library, LUATEX uses its own

ing

due to feature handl
handler. Does that have a consequence for performance? Yes and no. First of all it

processing

depends on how much time is spent on fonts at all, but even then the difference is not

that large. Sometimes XgIEX wins, sometimes LUATEX. One thing is clear

is

LUATEX

more flexible as we can roll out our own solutions and therefore do more advanced
font magic. For CONTEXT it doesn’t matter as we use LUATEX exclusively and rely on

the flexible font handler, also for future extensions. If really needed you can kick in a

library based handler but it’s (currently) not distributed as we loose other functionality

Performance 60

which in turn would result in complaints about that fact (apart from conflicting with
the strive for independence).

There is no doubt that PDFIEX is faster but for CONTEXT it’s an obsolete engine. The hard
coded solutions engine XgIEX is also not feasible for CONTEXT either. So, in practice
CONTEXT users have no choice: LUATEX is used, but users of other macro packages can
use the alternatives if they are not satisfied with performance. The fact that CONTEXT
users don’t complain about speed is a clear signal that this is no issue. And, if you
want more speed you can use LUAJITTEX.? In the last section the different engines will
be compared in more detail.

Just that you know, when we do the four switches example in plain TEX on my laptop
I get a rate of 40 pages per second, and for one font 180 pages per second. There is
of course a bit more going on in CONTEXT in page building and so, but the difference
between plain and CONTEXT is not that large.

What macro package is used?

If the answer is that when plain TgX is used, a follow up question is: what variant? The
CONTEXT distribution ships with luatex-plain and that is our benchmark. If there
really is a bottleneck it is worth exploring. But keep in mind that in order to be plain, not
that much can be done. The LUATEX part is just an example of an implementation. We
already discussed CONTEXT, and for IATEX I don’t want to speculate where performance
hits might come from. When we’re talking fonts, CONTEXT can actually a bit slower
than the generic (or IATEX) variant because we can kick in more functionality. Also,
when you compare macro packages, keep in mind that when node list processing code
is added in that package the impact depends on interaction with other functionality and
depends on the efficiency of the code. You can’t compare mechanisms or draw general
conclusions when you don’t know what else is done!

What do you load?

Most CONTEXT modules are small and load fast. Of course there can be exceptions when
we rely on third party code; for instance loading tikz takes a a bit of time. It makes no
sense to look for ways to speed that system up because it is maintained elsewhere.
There can probably be gained a bit but again, no user complained so far.

If CONTEXT is not used, one probably also uses a large TgX installations. File lookup in
CONTEXT is done differently and can can be faster. Even loading can be more efficient
in CONTEXT, but it’s hard to generalize that conclusion. If one complains about loading
fonts being an issue, just try to measure how much time is spent on loading other code.

In plug mode we can actually test a library and experiments have shown that performance on the average
is much worse but it can be a bit better for complex scripts, although a gain gets unnoticed in normal
documents. So, one can decide to use a library but at the cost of much other functionality that CONTEXT
offers, so we don’t support it.

61 Performance

10

Did you patch macros?

Not everyone is a TeXpert. So, coming up with macros that are expanded many times
and/or have inefficient user interfacing can have some impact. If someone complains
about one subsystem being slow, then honestly demands to complain about other sub-
systems as well. You get what you ask for.

How efficient is the code that you use?

Writing super efficient code only makes sense when it’s used frequently. In CONTEXT
most code is reasonable efficient. It can be that in one document fonts are responsible
for most runtime, but in another document table construction can be more demanding
while yet another document puts some stress on interactive features. When hz or pro-
trusion is enabled then you run substantially slower anyway so when you are willing
to sacrifice 10% or more runtime don’t complain about other components. The same is
true for enabling SYNCTEX: if you are willing to add more than 10% runtime for that,
don’t wither about the same amount for font handling.'

How efficient is the styling that you use?

Probably the most easily overseen optimization is in switching fonts and color. Al-
though in CONTEXT font switching is fast, I have no clue about it in other macro pack-
ages. But in a style you can decide to use inefficient (massive) font switches. The effects
can easily be tested by commenting bit and pieces. For instance sometimes you need
to do a full bodyfont switch when changing a style, like assigning \small\bf to the
style key in \setuphead, but often using e.g. \tfd is much more efficient and works
quite as well. Just try it.

Are fonts really the bottleneck?

We already mentioned that one can look in the wrong direction. Maybe once someone
is convinced that fonts are the culprit, it gets hard to look at the real issue. If a similar
job in different macro packages has a significant different runtime one can wonder what
happens indeed.

It is good to keep in mind that the amount of text is often not as large as you think. It’s
easy to do a test with hundreds of paragraphs of text but in practice we have whitespace,
section titles, half empty pages, floats, itemize and similar constructs, etc. Often we
don’t mix many fonts in the running text either. So, in the end a real document is the
best test.

If you use LUA, is that code any good?

You can gain from the faster virtual machine of LUAJITTEX. Don’t expect wonders from
the jitting as that only pays of for long runs with the same code used over and over

In CONTEXT we use a SYNCTEX alternative that is somewhat faster but it remains a fact that enabling more
and more functionality will make the penalty of for instance font processing relatively small.

Performance 62

again. If the gain is high you can even wonder how well written your LUA code is
anyway.

What if they don’t believe you?

So, say that someone finds LUATEX slow, what can be done about it? Just advice him
or her to stick to tool used previously. Then, if arguments come that one also wants
to use UTF-8, OPENTYPE fonts, a bit of METAPOST, and is looking forward to using LUA
runtime, the only answer is: take it or leave it. You pay a price for progress, but if you
do your job well, the price is not that large. Tell them to spend time on learning and
maybe adapting and bark against their own tree before barking against those who took
that step a decade ago. Most CONTEXT users took that step and someone still using
LUATEX after a decade can’t be that stupid. It's always best to first wonder what one
actually asks from LUATEX, and if the benefit of having LUA on board has an advantage.
If not, one can just use another engine.

Also think of this. When a job is slow, for me it’s no problem to identify where the
problem is. The question then is: can something be done about it? Well, I happily keep
the answer for myself. After all, some people always need room to complain, maybe if
only to hide their ignorance or incompetence. Who knows.

5.6 Comparing engines

The next comparison is to be taken with a grain of salt and concerns the state of affairs
mid 2017. First of all, you cannot really compare MKII with MKIV: the later has more
functionality (or a more advanced implementation of functionality). And as mentioned
you can also not really compare PDFIEX and the wide engines. Anyway, here are some
(useless) tests. First a bunch of loads. Keep in mind that different engines also deal
differently with reading files. For instance MKIV uses LUATEX callbacks to normalize
the input and has its own readers. There is a bit more overhead in starting up a LUATEX
run and some functionality is enabled that is not present in MKII. The format is also
larger, if only because we preload a lot of useful font, character and script related data.

\starttext
\dorecurse {#1} {
\input knuth
\par
}
\stoptext

When looking at the numbers one should realize that the times include startup and
job management by the runner scripts. We also run in batchmode to avoid logging to
influence runtime. The average is calculated from 5 runs.

engine 50 500 2500
pdftex 043 0.77 233

63 Performance

xetex 0.85 2.66 10.79
luatex 094 250 9.44
luajittex 0.68 1.69 6.34

The second example does a few switches in a paragraph:

\starttext
\dorecurse {#1} {
\tf \input knuth
\bf \input knuth
\it \input knuth
\bs \input knuth
\par
}
\stoptext

engine 50 500 2500

pdftex 0.58 210 8.97
xetex 147 8.66 42.50
luatex 1.59 8.26 38.11
luajittex 1.12 5.57 25.48

The third examples does a few more, resulting in multiple subranges per style:

\starttext
\dorecurse {#1} {
\tf \input knuth \it knuth
\bf \input knuth \bs knuth
\it \input knuth \tf knuth
\bs \input knuth \bf knuth
\par
}
\stoptext

engine 50 500 2500

pdftex 059 220 9.52
xetex 1.49 8.88 43.85
luatex 1.64 891 41.26
luajittex 1.15 591 27.15

The last example adds some color. Enabling more functionality can have an impact on
performance. In fact, as MKIV uses a lot of LUA and is also more advanced that MKII,
one can expect a performance hit but in practice the opposite happens, which can also
be due to some fundamental differences deep down at the macro level.

Performance 64

\setupcolors[state=start] 7 default in MkIV

\starttext
\dorecurse {#1} {
{\red \tf \input knuth \green \it knuth}
{\red \bf \input knuth \green \bs knuth}
{\red \it \input knuth \green \tf knuth}
{\red \bs \input knuth \green \bf knuth}
\par
}
\stoptext

engine 50 500 2500

pdftex 0.61 236 10.33
xetex 1.53 9.25 4559
luatex 1.65 891 41.32
luajittex 1.15 593 27.34

In these measurements the accuracy is a few decimals but a pattern is visible. As ex-
pected PDFIEX wins on simple documents but starts loosing when things get more com-
plex. For these tests I used 64 bit binaries. A 32 bit XgIEX with MKII performs the same
as LUANITTEX with MKIV, but a 64 bit X4TEX is actually quite a bit slower. In that case
the mingw cross compiled LUATEX version does pretty well. A 64 bit PDFIEX is also
slower (it looks) that a 32 bit version. So in the end, there are more factors that play
a role. Choosing between LUATEX and LUAJITTEX depends on how well the memory
limited LUANITTEX variant can handle your documents and fonts.

Because in most of our recent styles we use OPENTYPE fonts and (structural) features as
well as recent METAFUN extensions only present in MKIV we cannot compare engines
using such documents. The mentioned performance of LUATEX (or LUAIITTEX) and
MKIV on the METAFUN manual illustrate that in most cases this combination is a clear
winner.

\starttext
\dorecurse {#1} {
\null \page
}
\stoptext

This gives:

engine 50 500 2500

pdftex 046 1.05 3.72
xetex 0.73 1.80 6.56
luatex 0.84 144 407
luajittex 0.61 1.10 3.33

65 Performance

That leaves the zero run:

\starttext
\dorecurse {#1} {
% nothing

}
\stoptext

This gives the following numbers. In longer runs the difference in overhead is neglec-
table.

engine 50 500 2500

pdftex 0.36 0.36 0.36
xetex 0.57 057 0.59
luatex 0.74 074 0.74
luajittex 0.53 0.53 0.54

It will be clear that when we use different fonts the numbers will also be different. And
if you use a lot of runtime METAPOST graphics (for instance for backgrounds), the MKIV
runs end up at the top. And when we process XML it will be clear that going back to
MKII is no longer a realistic option. It must be noted that I occasionally manage to
improve performance but we’ve now reached a state where there is not that much to
gain. Some functionality is hard to compare. For instance in CONTEXT we don’t use
much of the PDF backend features because we implement them all in LUA. In fact, even
in MKII already a done in TgX, so in the end the speed difference there is not large and
often in favour of MKIV.

For the record I mention that shipping out the about 1250 pages has some overhead
too: about 2 seconds. Here LUAJITTEX is 20% more efficient which is an indication of
quite some LUA involvement. Loading the input files has an overhead of about half a
second. Starting up LUATEX takes more time that PDFTEX and XgTEX, but that disad-
vantage disappears with more pages. So, in the end there are quite some factors that
blur the measurements. In practice what matters is convenience: does the runtime feel
reasonable and in most cases it does.

If I would replace my laptop with a reasonable comparable alternative that one would
be some 35% faster (single threads on processors don’t gain much per year). I guess that
this is about the same increase in performance that CONTEXT MKIV got in that period.
I don’t expect such a gain in the coming years so at some point we’re stuck with what
we have.

5.7 Summary

So, how “slow” is LUATEX really compared to the other engines? If we go back in time to
when the first wide engines showed up, OMEGA was considered to be slow, although I

Performance 66

never tested that myself. Then, when XgIEX showed up, there was not much talk about
speed, just about the fact that we could use OPENTYPE fonts and native UTF input. If
you look at the numbers, for sure you can say that it was much slower than PDFIEX. So
how come that some people complain about LUATEX being so slow, especially when
we take into account that it’s not that much slower than XqTEX, and that LUAJITTEX is
often faster that XgIEX. Also, computers have become faster. With the wide engines
you get more functionality and that comes at a price. This was accepted for XJIEX and
is also acceptable for LUATEX. But the price is nto that high if you take into account that
hardware performs better: you just need to compare LUATEX (and X4TEX) runtime with
PDFIEX runtime 15 years ago.

As a comparison, look at games and video. Resolution became much higher as did
color depth. Higher frame rates were in demand. Therefore the hardware had to be-
come faster and it did, and as a result the user experience kept up. No user will say
that a modern game is slower than an old one, because the old one does 500 frames per
second compared to some 50 for the new game on the modern hardware. In a similar
fashion, the demands for typesetting became higher: UNICODE, OPENTYPE, graphics,
XML, advanced PDF, more complex (niche) typesetting, etc. This happened more or
less in parallel with computers becoming more powerful. So, as with games, the user
experience didn’t degrade with demands. Comparing LUATEX with PDFTEX is like com-
paring a low res, low frame rate, low color game with a modern one. You need to have
up to date hardware and even then, the writer of such programs need to make sure it
runs efficient, simply because hardware no longer scales like it did decades ago. You
need to look at the larger picture.

67 Performance

6 Editing

6.1 Introduction

Some users like the synctex feature that is built in the TgX engines. Personally I never
use it because it doesn’t work well with the kind of documents I maintain. If you have
one document source, and don’t shuffle around (reuse) text too much it probably works
out okay but that is not our practice. Here I will describe how you can enable a more
CONTEXT specific synctex support so that aware PDF viewers can bring you back to the
source.

6.2 The premise
Most of the time we provide our customers with an authoring workflow consisting of:

the typesetting engine CONTEXT

the styles to generate the desired PDF files
the text editor SCITE

the SUMATRAPDF viewer

For the MATHML we advice the MATHTYPE editor and we provide them with a cus-
tomized MATHML translator for the copy & paste actions. When ASCIIMATH is used to
code math no special tools are needed.

What people operate this workflow? Sometimes it’s an author, but most of the time
they are editors with a background in copy-editing. We call them XML editors, because
they are maintaining the large (sets of) XML documents and edit directly in the XML
sources.

Maybe you’ll ask yourself “Can they do that? Can they edit directly in the XML re-
source?” The answer is yes, because after they have hit the processing key they are
rewarded with a publishable PDF document in a demanding layout.

The XML sources have a dual purpose. They form the basis for:

e all folio products that are generated in XML to PDF workflow(s)
e the digital web product(s)

The XML editors do their proofing chapter-wise. Sometimes a chapter is one big XML file
(10.000 lines is no exception when the chapter contains hundreds of bloated MATHML
snippets). In other projects they have to deal with chapters that are made up of hun-
dreds (100 upto 500) of smaller XML files.

6.3 The problem

Let’s keep it simple: there’s a typo. Here’s what an XML editor will do:

Editing 68

11
12

start SCITE

open a file

correct the typo

generate the PDF

proof the PDF and see if his alteration has some undesired side effects like text flow
of image floating

So far so good. When the editor dealing with one big XML file there’s no problem.
Hopefully the filename will indicate the specific chapter. He or she opens the file and
searches for the typo. And then correction happens. But what if there are hundreds of
small XML files. How does the editor know in which file the typo can be found?

First, let’s give a few statistics based on two projects that are in a revision stage.

project chapters # of files average # of lines

A 16 16 11000
B 132 16000 100

The XML resource passes three stages: a raw, a semi final and a final version. The raw
XML version originates from a web authoring tool that is used by the author. Then the
PDF is proofread and the XML editor goes to work.

workflow # edit locations and adaptations # runs'?
raw to semifinal 75 105
semifinal to final 35 55

Keep in mind that altering text may cause text to flow and images to float in a way that
an XML editor will have to finetune and needs multiple runs for one correction.

Just to give an idea of the work involved. A typical semi final needs some 50 runs
where each run takes 20 seconds (assuming 3 runs to get all cross referencing right). The
numbers of explicit pagebreaks is about 5, and (related to formulas) explicit linebreaks
around 8. It takes some 2 hours to get everything right, which includes checking in
detail, fixing some things and if needed moving content a bit around.

Now we broaden the earlier question into: how can we make the work of an XML editor
as easy and efficient as possible?

6.4 Enhancing efficiency

Since it is easier to proof content for folio and web via PDF documents we generate
proof PDF files in which the complete content is shown. The proof can be a massive

132 chapters consisting of +120 files.
Maybe you can now see why we put quite some effort in keeping CONTEXT working at a comfortable
speed.

69 Editing

document. A normal 40 page chapter can explode to 140 pages visualizing all the con-
tent that is coded in the XML file(s).

The content in the proof is shown in an effective way and a functional order. Let’s give
a few examples of how we enhance the XML editors effectiveness:

e By default the proof PDF file is interactive which serves testing the tocs and the reg-
ister.

e The web hyperlinks are active so their destinatation can be tested.

e The questions and their answers are displayed in eachothers proximity. This sounds
logical but in folio they are two seperate products (theory and answer books).

e Medium specific content (web or folio) is typographically highligthed. For example
by colored backgrounds.

e When spelling mode is on the XML editor can easily pick out the colored misspelled
words.

e Images can be active areas although this is of no interest to XML editors. Clicking the
image results in opening the image file in its corresponding application for mainte-
nance.

e For practical reasons the filenames and paths of the XML files are displayed. The
tilenames are active links and clicking them results in opening the destination XML
tile in SCITE.

Okay. The last option is a nice feature. However, the destination file is opened at the
top of the file and you still have to find the typo or whatever incorrect issue you are
looking for.

So a further enhancement in efficiency would be to jump to the typo’s corresponding
line in the XML source. This is where SYNCTEX comes into view. This feature, present
in the TEX engines, provides a way to go from PDF to source by using a secondary file
with positions. Unfortunately that mechanism is hardly useable for CONTEXT because
it assumes a page and file handling model different from what we use. However, as
CONTEXT uses LUATEX, it can also provide it’s own alternative.

6.5 What we want

The SYNCTEX method roughly works as follows. Internally TEX constricts linked lists of
glyphs, kerns, glue, boxes, rules etc. These elements are called nodes. Some nodes carry
information about the file and line where they were created. In the backend this infor-
mation gets somehow translated in a (sort of) verbose tree that describes the makeup
in terms of boxes, glue and kerns. From that information the SYNCTEX parser library,
hooked into a PDF viewer, can go back from a position on the screen to a line in a file.
One would expect this to be a relative simple rectangle based model, but as far as I
can see it's way more complex than that. There are some comments that CONTEXT
is not supported well because it has a layered page model, which indicates that there
are some assumptions about how macro packages are supposed to work. Also the used
heuristics not only involve some specific spot (location) but also involve the corners and

Editing 70

13

edges. It is therefore not so much a (simple) generic system but a mechanism geared
for a macro package like IATEX.

Because we have a couple of users who need to edit complex sets of documents, coded
in TEX or XML, I decided to come up with a variant that doesn’t use the SYNCTEX ma-
chinery but manipulates the few SYNCTEX fields directly'® and eventually outputs a
straightforward file for the editor. Of course we need to follow some rules so that the
editor can deal with it. It took a bit of trial and error to get the right information in the
support file needed by the viewer but we got there.

The prerequisites of a decent CONTEXT “click on preview and goto editor” are the fol-
lowing;:

e It only makes sense to click on text in the text flow. Headers and footers are often
generated from structure, and special typographic elements can originate in macros
hooked into commands instead of in the source.

e Users should not be able to reach environments (styles) and other files loaded from
the (normally read-only) TgX tree, like modules. We don’t want accidental changes
in such files.

e We not only have TgX files but also XML files and these can normally flush in rather
arbitrary ways. Although the concept of lines is sort of lost in such a file, there is
still a relation between lines and the snippets that make out the content of an XML
node.

e In the case of XML files the overhead related to preserving line numbers should be
minimal and have no impact on loading and memory when these features are not
used.

e The overhead in terms of an auxiliary file size and complexity as well as producing
that file should be minimal. It should be easy to turn on and off these features. (I'd
never turn them on by default.)

It is unavoidable that we get more run time but I assume that for the average user that
is no big deal. It pays off when you have a workflow when a book (or even a chapter
in a book) is generated from hundreds of small XML files. There is no overhead when
SYNCTEX is not used.

In CONTEXT we don’t use the built-in SYNCTEX features, that is: we let filename and
line numbers be set but often these are overloaded explicitly. The output file is not
compressed and constructed by CONTEXT. There is no benefit in compression and the
files are probably smaller than default SYNCTEX anyway.

This is something that in my opinion should have been possible right from the start but it’s too late now
to change the system and it would not be used beyond CONTEXT anyway.

71 Editing

6.6 Commands

Although you can enable this mechanism with directives it makes sense to do it using
the following command.

\setupsynctex[state=start]

The advantage of using an explicit command instead of some command line option is
that in an editor it’s easier to disable this trickery. Commenting that line will speed up
processing when needed. This command can also be given in an environment (style).
On the command line you can say

context --synctex somefile.tex
A third method is to put this at the top of your file:
% synctex=yes

Often an XML files is very structured and although probably the main body of text is
flushed as a stream, specific elements can be flushed out of order. In educational doc-
uments flushing for instance answers to exercises can happen out of order. In that case
we still need to make sure that we go to the right spot in the file. It will never be 100%
perfect but it’s better than nothing. The above command will also enable XML support.

If you don’t want a file to be accessed, you can block it:
\blocksynctexfile[foo.tex]

Of course you need to configure the viewer to respond to the request for editing. In
Sumatra combined with SciTE the magic command is:

c:\data\system\scite\wscite\scite.exe "/f" "-goto:%l"

Such a command is independent of the macro package so you can just consult the man-
ual or help info that comes with a viewer, given that it supports this linking back to the
source at all.

If you enable tracing (see next section) you can what has become clickable. Instead of
words you can also work with ranges, which not only gives less runtime but also much
smaller . synctex files. Use

\setupsynctex[state=start,method=min]
to get words clickable and
\setupsynctex[state=start,method=max]

if you want somewhat more efficient ranges. The overhead for min is about 10 percent
while max slows down around 5 percent.

Editing 72

6.7 Tracing

In case you want to see what gets synced you can enable a tracker:

\enabletrackers[system.synctex.visualize]
\enabletrackers[system.synctex.visualize=real]

The following tracker outputs some status information about XML flushing. Such track-
ers only make sense for developers.

\enabletrackers[system.synctex.xml]

6.8 Warning

Don’t turn on this feature when you don’t need it. This is one of those mechanism that
hits performance badly.

Depending on needs the functionality can be improved and/or extended. Of course
you can always use the traditional SYNCTEX method but don’t expect it to behave as
described here.

73 Editing

7 Tricky fences

Occasionally one of my colleagues notices some suboptimal rendering and asks me to
have a look at it. Now, one can argue about “what is right” and indeed there is not
always a best answer to it. Such questions can even be a nuisance; let’s think of the
following scenario. You have a project where TgX is practically the only solution. Let
it be an XML rendering project, which means that there are some boundary conditions.
Speaking in 2017 we find that in most cases a project starts out with the assumption
that everything is possible.

Often such a project starts with a folio in mind and therefore by decent tagging to match
the educational and esthetic design. When rendering is mostly automatic and concerns
too many (variants) to check all rendering, some safeguards are used (an example will
be given below). Then different authors, editors and designers come into play and
their expectations, also about what is best, often conflict. Add to that rendering for
the web, and devices and additional limitations show up: features get dropped and
even more cases need to be compensated (the quality rules for paper are often much
higher). But, all that defeats the earlier attempts to do well because suddenly it has
to match the lesser format. This in turn makes investing in improving rendering very
inefficient (read: a bottomless pit because it never gets paid and there is no way to gain
back the investment). Quite often it is spacing that triggers discussions and questions
what rendering is best. And inconsistency dominates these questions.

So, in case you wonder why I bother with subtle aspects of rendering as discussed
below, the answer is that it is not so much professional demand but users (like my
colleagues or those on the mailing lists) that make me look into it and often something
that looks trivial takes days to sort out (even for someone who knows his way around
the macro language, fonts and the inner working of the engine). And one can be sure
that more cases will pop up.

All this being said, let’'s move on to a recent example. In CONTEXT we support MATHML
although in practice we're forced to a mix of that standard and ASCIMATH. When
we're lucky, we even get a mix with good old TEX-encoded math. One problem with
an automated flow and processing (other than raw TgX) is that one can get anything
and therefore we need to play safe. This means for instance that you can get input like
this:

f(x) + £(1/x)
or in more structured TEX speak:

$f(x) + £f(\frac{1}{x})$

Using TEX Gyre Pagella, this renders as: f(x) + f (%), and when seeing this a TEX user
will revert to:

Tricky fences 74

$f(x) + f\left(\frac{it{x*\right)$

which gives: f(x) + f (% > So, in order to be robust we can always use the \1eft and
\right commands, can’t we?

$f(x) + f\left(x\right)$

which gives f(x) + f(x), but let’s blow up this result a bit showing some additional
tracing from left to right, now in Latin Modern:

1(379 1.079
just characters just characters just characters
D i
using delimiters using delimiters using delimiters

When we visualize the glyphs and kerns we see that there’s a space instead of a kern
when we use delimiters. This is because the delimited sequence is processed as a sub-
formula and injected as a so-called inner object and as such gets spaced according to
the ordinal (for the f) and inner (“fenced” with delimiters x) spacing rules. Such a dif-
ference normally will go unnoticed but as we mentioned authors, editors and designers
being involved, there’s a good chance that at some point one will magnify a PDF pre-
view and suddenly notice that the difference between the f and (is a bit on the large
side for simple unstacked cases, something that in print is likely to go unnoticed. So,
even when we don’t know how to solve this, we do need to have an answer ready.

When I was confronted by this example of rendering I started wondering if there was
a way out. It makes no sense to hard code a negative space before a fenced subformula
because sometimes you don’t want that, especially not when there’s nothing before
it. So, after some messing around I decided to have a look at the engine instead. I
wondered if we could just give the non-scaled fence case the same treatment as the
character sequence.

Unfortunately here we run into the somewhat complex way the rendering takes place.
Keep in mind that it is quite natural from the perspective of TEX because normally a
user will explicitly use \1eft and \right as needed, while in our case the fact that we
automate and therefore want a generic solution interferes (as usual in such cases).

Once read in the sequence f (x) can be represented as a list:

list = {
{

75 Tricky fences

id = "noad", subtype = "ord", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00066",
s
3,
1,
{
id = "noad", subtype = "open", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00028",
s
¥,
3,
{
id = "noad", subtype = "ord", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00078",
3,
X,
3,
{
id = "noad", subtype = "close", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00029",
i
3,
3,
b

The sequence f \left(x \right) isalsoalistbutnow itis a tree (we leave out some
unset keys):

list = {
{
id = "noad", subtype = "ord", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00066",
+,
},
1,
{
id = "noad", subtype = "inner", nucleus = {
{
id = "submlist", head = {
{

id = "fence", subtype = "left", delim = {

Tricky fences 76

14

id = "delim", small fam = 0, small char = "U+00028",

s

s

{

id = "noad", subtype = "ord", nucleus = {
{

id = "mathchar", fam = 0, char = "U+00078",

s

s

s

{

id = "fence", subtype = "right", delim = {
{

id = "delim", small_fam = O, small_char = "U+00029",

So, the formula f (x) is just four characters and stays that way, but with some inter-
character spacing applied according to the rules of TgX math. The sequence f \left (
x \right) however becomes two components: the f is an ordinal noad,'* and \1eft (
x \right) becomes an inner noad with a list as a nucleus, which gets processed inde-
pendently. The way the code is written this is what (roughly) happens:

A formula starts; normally this is triggered by one or two dollar signs.
The f becomes an ordinal noad and TEX goes on.
A fence is seen with a left delimiter and an inner noad is injected.

That noad has a sub-math list that takes the left delimiter up to a matching right
one.

When all is scanned a routine is called that turns a list of math noads into a list of
nodes.

So, we start at the beginning, the ordinal f.

Noads are the mathematical building blocks. Eventually they become nodes, the building blocks of
paragraphs and boxed material.

77 Tricky fences

e Before moving on a check happens if this character needs to be kerned with another
(but here we have an ordinal-inner combination).

e Then we encounter the subformula (including fences) which triggers a nested call
to the math typesetter.

e The result eventually gets packaged into a hlist and we’re back one level up (here
after the ordinal f).

e DProcessing a list happens in two passes and, to cut it short, it’s the second pass that
deals with choosing fences and spacing.

e Each time when a (sub)list is processed a second pass over that list happens.
e So, now TEX will inject the right spaces between pairs of noads.

e In our case that is between an ordinal and an inner noad, which is quite different
from a sequence of ordinals.

It’s these fences that demand a two-pass approach because we need to know the height
and depth of the subformula. Anyway, do you see the complication? In our inner
formula the fences are not scaled, but this is not communicated back in the sense that
the inner noad can become an ordinal one, as in the simple f (pair. The information is
not only lost, it is not even considered useful and the only way to somehow bubble it
up in the processing so that it can be used in the spacing requires an extension. And
even then we have a problem: the kerning that we see between f (is also lost. It must
be noted that this kerning is optional and triggered by setting \mathitalicsmode=1.
One reason for this is that fonts approach italic correction differently, and cheat with
the combination of natural width and italic correction.

Now, because such a workaround is definitely conflicting with the inner workings of
TEX, our experimenting demands another variable be created: \mathdelimitersmode.
It might be a prelude to more manipulations but for now we stick to this one case. How
messy it really is can be demonstrated when we render our example with Cambria.

0.352 1 0.363 0.352 | 0.363

(x) f(x) f(x)

just characters just characters just characters
O«T %363
(x) f (x))
using delimiters using delimiters using delimiters

If you look closely you will notice that the parenthesis are moved up a bit. Also notice
the more accurate bounding boxes. Just to be sure we also show Pagella:

Tricky fences 78

1.955 44 1.955 44

(x) f(x) f(x)

just characters just characters just characters
0.14 0.144
(x) f(X) faksk)

using delimiters using delimiters using delimiters

When we really want the unscaled variant to be somewhat compatible with the fenced
one we now need to take into account:

e the optional axis-and-height/depth related shift of the fence (bit 1)
e the optional kern between characters (bit 2)
e the optional space between math objects (bit 4)

Each option can be set (which is handy for testing) but here we will set them all, so,
when \mathdelimitersmode=7, we want cambria to come out as follows:

0,362 1 0.363 0.352 1 0.363

(x) f(x) f(x)

just characters just characters just characters

0.352 1 0.363 0.352 | 0.363

(x) f(x) f(x)

7 1/

using delimiters using delimiters using delimiters

When this mode is set the following happens:

o We keep track of the scaling and when we use the normal size this is registered in
the noad (we had space in the data structure for that).

e This information is picked up by the caller of the routine that does the subformula
and stored in the (parent) inner noad (again, we had space for that).

e Kerns between a character (ordinal) and subformula (inner) are kept, which can be
bad for other cases but probably less than what we try to solve here.

e When the fences are unscaled the inner property temporarily becomes an ordinal
one when we apply the inter-noad spacing.

79 Tricky fences

Hopefully this is good enough but anything more fancy would demand drastic changes
in one of the most sensitive mechanisms of TEX. It might not always work out right, so
for now I consider it an experiment, which means that it can be kept around, rejected
or improved.

In case one wonders if such an extension is truly needed, one should also take into
account that automated typesetting (also of math) is probably one of the areas where
TEX can shine for a while. And while we can deal with much by using LUA, this is one
of the cases where the interwoven and integrated parsing, converting and rendering of
the math machinery makes it hard. It also fits into a further opening up of the inner
working by modes.

Another objection to such a solution can be that we should not alter the engine too
much. However, fences already are an exception and treated specially (tests and jumps
in the program) so adding this fits reasonably well into that part of the design.

In the following examples we demonstrate the results for Latin Modern, Cambria and
Pagella when \mathdelimitersmode is set to zero or one. First we show the case
where \mathitalicsmode is disabled:

1.079

flx) fz) f(z) flx)

\mathdelimitersmode =0 \mathdelimitersmode =7
modern
0(352 3263 () 652 3363 T(_j
\mathdelimitersmode =0 \mathdelimitersmode =7
cambria
1.955 0.144 1.955 44
\mathdelimitersmode = \mathdelimitersmode =7
pagella

When we enable \mathitalicsmode we get:

Tricky fences 80

1.079

1.079 1 079

flz) f(x)

fz) flz)

\mathdelimitersmode =0

\mathdelimitersmode =

modern
O(.352 5263 (363 O(.352 5363 652 363
\mathdelimitersmode =0 \mathdelimitersmode =7
cambria
1(%5) 44 () 44 (QRR) 44 1&55) 44
\mathdelimitersmode = \mathdelimitersmode =
pagella

So is this all worth the effort? I don’t know, but at least I got the picture and hopefully
now you have too. It might also lead to some more modes in future versions of LUATEX.

1.079 1.079 1.079

1.079 1.079 1.079

1.079

flx)

flx)

flz)

f(x)

fx) flz)

fx)

f(x)

1.079

079 079

079

()

fz)

flz) f

f) flz) f(x) .

()

f(z)

ns it ns it or ns or it or mns it or

modern
0.352 | 0.363 0.352 | 0.363 0.352 | 0.363 0.352 | 0.363 0.352 | 0.363 0.352 | 0.363 0,352 | 0.363 0.352 1 0.363
x) f(x) f(x) f(x) f(x) f(x) f(x) f(x)
0.363 0.363 0.352 0.363 0.352 0.363 0.363 0.363 0,352 1 0.363 0,352 10.363
Fx) f(x) fx) f(x) flx) f(x) flx) f(x)
ns it ns it or ns or it or mns it or

cambria

1.955 (.144 1.955 (.144 1.955 (.144

1.955 (.144 1.955 (.144 1.955 (.144 1.955 (.144

1.985 (0.144

(x)

(x)

(x) f(x) f(x)

(x)

] 44 1.955 44

1.985 44 0 1.955

1.985

<x>

f(x)

(x) f(x)

“(x) f(x)

(x)

ns it

or ns or it or

pagella

ns it or

In CONTEXT, a regular document can specify \setupmathfences [method=auto],
but in MATHML or ASCIIMATH this feature is enabled by default (so that we can test it).

81 Tricky fences

We end with a summary of all the modes (assuming italics mode is enabled) in the table
below.

Tricky fences 82

83 Tricky fences

8 The state of PDF

8.1 Introduction

Below I will spend some words on the state of PDF in CONTEXT mid 2018. These are just
some reflections, not an in-depth discussion of the state of affairs. I sometimes feel the
need to wrap up.

8.2 Media

For over two decades CONTEXT has supported fancy PDF features like movies and sound.
In fact, as happens more, the flexibility of TEX made it possible to support such features
right after they became available, often even before other applications supported them.

The first approach to support such media clips was relatively easy. In PDF one has
the text flow, resulting from the typesetting process, either or not enhanced with im-
ages that are referred to from the flow. In that respect images are an integral part of
PDF. On a separate layer there can be annotations. There are many kinds and they are
originally a sort of extension mechanism that permits plugins to add features to a doc-
ument. Examples of this are hyperlinks and the already mentioned media clips. Video
was supported by the quicktime movie plugin. As far as I know in the meantime that
plugin has been dropped as official part of Acrobat but one can still plug it in.

Later an extra mechanism was introduced, tagged renditions. It separates the views
from the media and was more complex. When I first played with it, quite some media
were possible, and I made a demo that could handle mov, mp3, smi and swf files. But
last time I checked none of these really worked, apart from the swf file. One gets pop-
ups for missing viewers and a look at the reader preferences makes one pessimistic
about future support anyway. But one should be able to set up a list of useable players
with this mechanism (although only an Adobe one seems to be okay so we’re back to
where we started).

At some point support for u3d was added. Interesting is that there is quite some in-
frastructure described in the PDF standard. Also something called rich media was in-
troduced and that should replace the former video and audio annotations (definitely
in PDF version 2) and probably some day the renditions will no longer be supported
either. Open source PDF viewers just stuck to supporting text and static images.

Now, do these rich media work well? Hardly. The standard leaves it to the viewer
and provides ways to define viewers (although it’s unclear to me how that works out
in practice.) Basically in PDF version 2 there is no native support for simple straightfor-
ward video. One has to construct a complex set of related annotations.

One can give arguments (like security risks) for not supporting all these fancy features
but then why make rich media part of the specification at all? Browsers beat PDF viewers

The state of PDF 84

15

in showing media and as browsers can operate in kiosk mode I suppose that it’s not
that hard to delegate showing whatever you want in an embedded window in the PDF
viewer. Or why not simply support videolan out of the box. All we need is the ability
to view movies and control them (play, pause, stop, rewind, etc). Where HTML evolved
towards easier media support, PDF evolved to more obscurity.

So, how bad is it really? There are PDF files around that have video! Indeed, but the way
they’re supposed to do this is as follows: currently one actually has to embed a shock-
wave video player (a user interface around something built-in) and let that player show
for instance an mp4 movie. However, support for shockwave (flash) will be dropped
in 2020 and that renders documents that use it obsolete. This even makes one wonder
about JAVASCRIPT and widgets like form fields, also a rather moving and somewhat
unstable target. (I must have a document being a calculator somewhere made in the
previous century, in the early days of PDF.)

I'think that the plugin model failed already rather early in the PDF history if only because
it made no sense to develop them when in a next version of Acrobat the functionality
was copied in the core. In a similar fashion JAVASCRIPT support seems to have stalled.

Unfortunately the open source viewers never catched on with media, forms and JAVA-
SCRIPT and therefore there has been no momentum created to keep things supported.
It all makes efforts spent on supporting this kind of PDF features a waste of time. It also
makes one careful in using them: it only works on the short term.

Get me right, I'm not talking of complex media like 3d or animations but of straightfor-
ward video support. [understand that the rich media framework tries to cover complex
cases but it’s simple cases that carry the format. On the other hand, one can wonder
why the PDF format makes it possible to specify behaviour that in practice depends on
JAVASCRIPT and therefore could as well have been delegated to JAVASCRIPT as well. It
would probably have been much cleaner.!

The PDF version 2 specification mentions 3D, Video and Audio as primary content types
so maybe future viewers will support video out of the box. Who knows. We try to
keep up in CONTEXT because it’s often not that complex to support PDF features but
with hardly any possibility to test them, they have a low priority. And with Acrobat
moving to the cloud and thereby creating a more of less lifelong dependency on remote
resources it doesn’t become much interesting to explore those routes either.

8.3 Accessibility

A popular PDF related topic is accessibility. One aspect of that is tagged PDF. This
substandard is in my opinion not something that deserves a price for beauty. I know
that there are CONTEXT users who need to be compliant but I always wonder what a

It looks like muPDF in 2018 got some support related to widgets aka fields but alas not for layers which
would be quite useful.

85 The state of PDF

publisher really does with such a file. It’s a bit like requiring XML as source but at the
same time sacrificing really rich encoded and sources for tweaks that suite the current
limitations of for instance browsers, tool-chains and competence. We’ve seen it happen.

Support for tagged PDF has been available in CONTEXT already for a while but as far as I
know only Acrobat professional can do something with it. The reason for tagging is that
a document is then useable for (for instance) visually impaired users, but aren’t they
better served with a proper complete and very structured source in some format that
tools suitable for it can use? How many publishers distribute PDF files while they can
still make money on prints? How many are really interested in distributing enriched
content that then can be reused somehow? And how many are willing to invest in tools
instead of waiting for it to happen for free? It’s a bit cheap trick to just expect authors
(and their in the case of TEX free tools) to suit a publishers needs. Anyway, just as
with advanced interactive documents or forms, I wonder if it will catch on. At least no
publisher ever asked us and by the time they might do the competition of web based
dissemination could have driven PDF to the background. But, in CONTEXT we will keep
supporting such features anyway, if only because it’s quite doable. But ... it’s user
demand that drives development, not the market, which means that the motivation for
implementing such features depends on user input as well as challenging aspects that
make it somewhat fun to spend time on them.

8.4 Quality assurance

Another aspect popping up occasionally is validation. I'm not entirely sure what drives
that but delegating a problem can be one reason. Often we see publishers and printers
use old versions of PDF related tools. Also, some workflows are kind of ancient anyway
and are more driven by POSTSCRIPT history than PDF possibilities. I sometimes get the
impression that it takes at least a decade for these things to catch on, and by that time it
doesn’t matter any more that TEX and friends were at the front: their users are harassed
by what the market demands by then.

Support for several standards related to validation is already part of CONTEXT for quite
a while. For instance the bump from PDF 1.7 to 2.0 was hardly worth noticing, simply
because there are not that many fundamental changes. Adapting LUATEX was trivial
(and actually not really needed), and macro packages can provide what is needed with-
out much problems. So, yes, we can support it without much hassle. Personally I never
ran into a case where validation was really needed. The danger of validation is that it
can give a false impression of quality. And as with everything quality control created a
market. As with other features it is users who drive the availability of support for this.
After all, they are the ones testing it and figuring out the often fuzzy specifications.
These are things that one can always look at in retrospect (like: it has to be done this or
that way) while in practice in order to be an early adopter one has to gamble a bit and
see where it fails or succeeds. Fortunately it’s relatively easy to adapt macro packages
and CONTEXT users are willing to update so it’s not really an issue.

The state of PDF 86

Putting a stamp of approval on a PDF cannot hide the inconsistencies between for in-
stance vector graphics produced by a third party. They also don’t expose inconsistent
use of color and fonts. The page streams produced by LUATEX are simple and clean
enough to not give problems with validation. The problem lays more with resources
coming from elsewhere. When you’re phoned by a printing house about an issue with
RGB images in a file where there is no sign of RGB being used but where a validator
reports an issue, you're lucky when an experienced printer dating back decades then
replies that he already had that impression and will contact the origin. There is no easy
way out of this but educating users (authors) is an option. However, they are often
dependent on the publishers and departments that deal with these and those tend to
come with directives that the authors cannot really argue with (or about).

8.5 Interactivity

This is an area where TEX (an therefore also CONTEXT) always had an edge, There is a lot
possible and in principle all that PDF provides can be supported. But the more fancy one
goes, the more one depends on Acrobat. Interactivity in PDF evolved stepwise and is
mostly market driven. As a result it is (or was) not always consistent. This is partly due
to the fact that we have a chicken-egg issue: you need typesetting machinery, viewer
as well as a standard.

The regular hyperlinks, page or named driven are normally supported by viewers.
Some redefined named destinations (like going to a next page, or going back in a chain
of followed links) not always. Launching applications, as it also relates to security,
can be qualified as an unreliable mechanism. More advanced linking, for instance us-
ing JAVASCRIPT is hardly supported. In that respect PDF viewers lag way behind HTML
browsers. I understand that there can be security risks involved. It’s interesting to see
that in Acrobat one can mess with internals of files which makes the API large and com-
plex, but if we stick to the useful core, the amount of interfacing needed is quite small.
Lack of support in open source viewers (we're talking of about two decades now) made
me loose interest in these features but they are and will be supported in CONTEXT. We'll
see if and when viewers catch up.

Comments and attachments are also part of interactivity and of course we supported
them right from the start. Some free viewers also support them by now. Personally I
never use comments but they can be handy for popping up information or embedding
snippets or (structured) sources (like MATHML or bibliographic data). In CONTEXT we
can even support PDF inclusion with (a reasonable) subset of these so called annotations.
As the PDF standard no longer evolves much we can expect all these features to become
stable.

8.6 Summary

We have always supported the fancy PDF features and we will continue doing so in
CONTEXT. However, many of them depends on what viewers support, and after decades

87 The state of PDF

of PDF that is still kind of disappointing, which is not that motivating. We'll see what
happens.

The state of PDF 88

89 The state of PDF

16

9 From LUA 5.2 to 5.3

When we started with LUATEX we used LUA 5.1 and moved to 5.2 when that became
available. We didn’t run into issues then because there were no fundamental changes
that could not be dealt with. However, when LUA 5.3 was announced in 2015 we were
not sure if we should make the move. The main reason was that we’d chosen LUA
because of its clean design which meant that we had only one number type: double. In
5.3 on the other hand, deep down a number can be either an integer or a floating point
quantity.

Internally TEX is mostly (up to) 32-bit integers and when we go from LUA to TEX we
round numbers. Nonetheless one can expect some benefits in using integers. Perfor-
mance-wise we didn’t expect much, and memory consumption would be the same too.
So, the main question then was: can we get the same output and not run into trouble
due to possible differences in serializing numbers; after all TgX is about stability. The
serialization aspect is for instance important when we compare quantities and/or use
numbers in hashes.

Apart from this change in number model, which comes with a few extra helpers, an-
other extension in 5.3 was that bit-wise operations are now part of the language. The
lpeg library is still not part of stock LUA. There is some minimal UTF8 support, but less
than we provide in LUATEX already. So, looking at these changes, we were not in a
hurry to update. Also, it made sense to wait till this important number-related change
was stable.

But, a few years later, we still had it on our agenda to test, and after the CONTEXT 2017
meeting we decided to give it a try; here are some observations. A quick test was just
dropping in the new LUA code and seeing if we could make a CONTEXT format. Indeed
that was no big deal but a test run failed because at some point a (for instance) 1 became
a 1.0. It turned out that serializing has some side effects. And with some ad hoc prints
for tracing (in the LUATEX source) I could figure out what went on. How numbers are
seen can (to some extent) be deduced from the string.format function, which is in
LUA a combination of parsing, splitting and concatenation combined with piping to the
C sprintf function.!®

local a = 2 * (1/2) print(string.format("%s", a),math.type(x))
local b 2 x (1/2) print(string.format("%d", b),math.type(x))
local ¢ = 2 print (string.format("%d", c),math.type(x))
local d = -2 print(string.format("%d", d),math.type(x))
local e = 2 * (1/2) print(string.format("%i", e),math.type(x))

Actually, at some point I decided to write my own formatter on top of format and I ended up with
splitting as well. It’s only now that I realize why this is working out so well (in terms of performance):
simple format (single items) are passed more or less directly to sprintf and as LUA itself is fast, due
to some caching, the overhead is small compared to the built-in splitter method. And the CONTEXT
formatter has many more options and is extensible.

From LuAa52t053 90

local £ = 2.1 print (string.format ("%.0f",f) ,math.type(x))
local g = 2.0 print(string.format("%.0f",g) ,math.type(x))
local h = 2.1 print (string.format ("%G", h),math.type(x))
local i = 2.0 print(string.format ("%G", 1i),math.type(x))
local j = 2 print (string.format("%.0f",j) ,math.type(x))
local k = -2 print (string.format ("%.0f",k) ,math.type(x))

This gives the following results:

a 2*(1/2) s 1.0 float
b 2*(1/2) 4 1 float
c 2 d 2 integer
d -2 d 2 integer
e 2*(1/2) i 1 float
f 2.1 .0f 2 float
g 2.0 .0f 2 float
h 2.1 G 21 float
i 2.0 G 2 float
j 2 .0f 2 integer
k -2 .0f 2 integer

This demonstrates that we have to be careful when we need these numbers represented
as strings. In CONTEXT the number of places where we had to check for that was not
that large; in fact, only some hashing related to font sizes had to be done using explicit
rounding.

Another surprising side effect is the following. Instead of:
local n = 276

we now need to use:

local n 0x40

or just:
local n = 64

because we don’t want this to be serialized to 64 . 0 which is due to the fact that a power
results in a float. One can wonder if this makes sense when we apply it to an integer.

Atany rate, once we could process a file, two documents were chosen for a performance
test. Some experiments with loops and casts had demonstrated that we could expect
a small performance hit and indeed, this was the case. Processing the LUATEX manual
takes 10.7 seconds with 5.2 on my 5-year-old laptop and 11.6 seconds with 5.3. If we
consider that CONTEXT spends 50% of its time in LUA, then we see a 20% performance
penalty. Processing the METAFUN manual (which has lots of METAPOST images) went
from less than 20 seconds (LUAJITTEX does it in 16 seconds) up to more than 27 seconds.

91 From LUAb5.2t05.3

So there we lose more than 50% on the LUA end. When we observed these kinds of
differences, Luigi and I immediately got into debugging mode, partly out of curiosity,
but also because consistent performance is important to us.

Because these numbers made no sense, we traced different sub-mechanisms and even-
tually it became clear that the reason for the speed penalty was that the core string. for-
mat function was behaving quite badly in the mingw cross-compiled binary, as seen by
this test:

local t = os.clock()
for i=1,1000%1000 do
-- local a = string.format("%.3f",1.23)
-- local b = string.format("%i",123)
local c = string.format("%s",123)

end
print (os.clock()-t)

lua5.3 lua5.2 texlua5.3 texlua5.2
a 043 054 3.71(0.47) 0.53
b 0.18 024 3.78(0.17) 0.22
¢ 026 0.68 3.67(0.29) 0.66

The 5.2 binaries perform the same but the 5.3 Lua binary greatly outperforms LUATEX,
and so we had to figure out why. After all, all this integer optimization could bring
some gain! It took us a while to figure this out. The numbers in parentheses are the
results after fixing this.

Because font internals are specified in integers one would expect a gain in running;:
mtxrun --script font --reload force

and indeed that is the case. On my machine a scan results in 2561 registered fonts from
4906 read files and with 5.2 that takes 9.1 seconds while 5.3 needs a bit less: 8.6 seconds
(with the bad format performance) and even less once that was fixed. For a test:

\setupbodyfont [modern] \tf \bf \it \bs
\setupbodyfont [pagellal \tf \bf \it \bs
\setupbodyfont [dejavul \tf \bf \it \bs
\setupbodyfont [termes] \tf \bf \it \bs

\setupbodyfont [cambria] \tf \bf \it \bs
\starttext \stoptext

This code needs 30% more runtime so the question is: how oftendowecall string. format
there? A first run (when we wipe the font cache) needs some 715,000 calls while succes-
sive runs need 115,000 calls so that slow down definitely comes from the bad handling
of string.format. When we drop in a LUA update or whatever other dependency
we don’t want this kind of impact. In fact, when one uses external libraries that are or
can be compiled under the TEX Live infrastructure and the impact would be such, it’s

From LuAa52t053 92

bad advertising, especially when one considers the occasional complaint about LUATEX
being slower than other engines.

The good news is that eventually Luigi was able to nail down this issue and we got a
binary that performed well. It looks like LUA 5.3.4 (cross)compiles badly with GcC 5.3.0
and 6.3.0.

So in the end caching the fonts takes:

caching running

5.2 stock 8.3 1.2
5.3 bugged 12.6 2.1
5.3 fixed 6.3 1.0

So indeed it looks like 5.3 is able to speed up LUATEX a bit, given that one integrates
it in the right way! Using a recent compiler is needed too, although one can wonder
when a bad case will show up again. One can also wonder why such a slow down can
mostly go unnoticed, because for sure LUATEX is not the only compiled program.

The next examples are some edge cases that show you need to be aware that (1) an
integer has its limits, (2) that hexadecimal numbers are integers and (3) that LUA and
LUAJIT can be different in details.

print (OxFFFFFFFFFFFFFFFF) print (0x7FFFFFFFFFFFFFFF)

lua52 1.844674407371e+019 9.2233720368548e+018
luajit 1.844674407371e+19 9.2233720368548e+18
lua53 -1 9223372036854775807

So, to summarize the process. A quick test was relatively easy: move 5.3 into the code
base, adapt a little bit of internals (there were some LUATEX interfacing bits where ex-
plicit rounding was needed), run tests and eventually fix some issues related to the
Makefile (compatibility) and C obscurities (the slow sprintf). Adapting CONTEXT was
also not much work, and the test suite uncovered some nasty side effects. For instance,
the valid 5.2 solution:

local s = string.format("02X",u/1024)
local s = string.char (u/1024)

now has to become (both 5.2 and 5.3):

local s = string.format("02X",math.floor(u/1024))
local s = string.char (math.floor(u/1024))

or (both 5.2 and (emulated or real) 5.3):

local s string.format ("02X",bit32.rshift (u,10))

string.char (bit32.rshift(u,10))

local s

93 From LUA 5.2t05.3

or (only 5.3):

local s
local s

string.format ("02X",u >> 10))
string.char (u >> 10)

or (only 5.3):

local s
local s

string.format ("02X",u//1024)
string.char (u//1024)

A conditional section like:

if LUAVERSION >= 5.3 then

local s = string.format("02X",u >> 10))
local s = string.char (u >> 10)
else
local s = string.format("02X",bit32.rshift(u,10))
local s = string.char (bit32.rshift(u,10))

end

will fail because (of course) the 5.2 parser doesn’t like that. In CONTEXT we have some
experimental solutions for that but that is beyond this summary.

In the process a few UTF helpers were added to the string library so that we have a
common set for LUAJIT and LUA (the ut£8 library that was added to 5.3 is not that
important for LUATEX). For now we keep the bit32 library on board. Of course we’ll
not mention all the details here.

When we consider a gain in speed of 5-10% with 5.3 that also means that the gain of
LUANITTEX compared to 5.2 becomes less. For instance in font processing both engines
now perform closer to the same.

As I write this, we’ve just entered 2018 and after a few months of testing LUATEX with
LUA 5.3 we're confident that we can move the code to the experimental branch. This
means that we will use this version in the CONTEXT distribution and likely will ship this
version as 1.10 in 2019, where it becomes the default. The 2018 version of TEX Live will
have 1.07 with LUA 5.2 while intermediate versions of the LUA 5.3 binary will end up
on the CONTEXT garden, probably with number 1.08 and 1.09 (who knows what else
we will add or change in the meantime).

From LuA 52t053 94

95 From LUA 5.2t05.3

10 Executing TEX

Much of the LUA code in CONTEXT originates from experiments. When it survives in
the source code it is probably used, waiting to be used or kept for educational purposes.
The functionality that we describe here has already been present for a while in CON-
TEXT, but improved a little starting with LUATEX 1.08 due to an extra helper. The code
shown here is generic and not used in CONTEXT as such.

Say that we have this code:

for i=1,10000 do
tex.sprint("1")
tex.sprint("2")
for i=1,3 do
tex.sprint("3")
tex.sprint("4")
tex.sprint("5")
end
tex.sprint ("\\space")
end

When we call \directlua with this snippet we get some 30 pages of 12345345345
The printed text is saved till the end of the LUA call, so basically we pipe some 170.000
characters to TEX that get interpreted as one paragraph.

Now imagine this:
\setboxO\hbox{xxxxxxxxxxx} \number\wdO
which gives 4461336. If we check the box in LUA, with:

tex.sprint(tex.box[0] .width)
tex.sprint ("\\enspace")
tex.sprint ("\\setboxO\\hbox{!}")
tex.sprint (tex.box[0] .width)

theresultis 4461336 4461336, which isnot what you would expect at first sight. How-
ever, if you consider that we just pipe to a TEX buffer that gets parsed after the LUA call,
it will be clear that the reported width is the width that we started with. It will work
all right if we say:

tex.sprint (tex.box[0] .width)

tex.sprint ("\\enspace")

tex.sprint ("\\setbox0\\hbox{!}")

tex.sprint ("\\directlua{tex.sprint(tex.box[0] .width)}")

Executing TEX 96

because now we get: 4461336 443625. It's not that complex to write some support
code that makes this more convenient. This can work out quite well but there is a
drawback. If we use this code:

print(status.input_ptr)

tex.sprint (tex.box[0] .width)

tex.sprint ("\\enspace")

tex.sprint ("\\setboxO\\hbox{!}")

tex.sprint ("\\directlua{print (status.input_ptr)\
tex.sprint(tex.box[0] .width)}")

Here we get 6 and 7 reported. You can imagine that when a lot of nested \directlua
calls happen, we can get an overflow of the input level or (depending on what we do)
the input stack size. Ideally we want to do a LUA call, temporarily go to TgX, return to
Lua, etc. without needing to worry about nesting and possible crashes due to LUA itself
running into problems. One charming solution is to use so-called coroutines: indepen-
dent LUA threads that one can switch between — you jump out from the current routine
to another and from there back to the current one. However, when we use \directlua
for that, we still have this nesting issue and what is worse, we keep nesting function
calls too. This can be compared to:

\def\whatever{\ifdone\whatever\fi}

where at some point \ifdone is false so we quit. But we keep nesting when the con-
dition is met, so eventually we can end up with some nesting related overflow. The
following:

\def\whatever{\ifdone\expandafter\whatever\fi}

is less likely to overflow because there we have tail recursion which basically boils down
to not nesting but continuing. Do we have something similar in LUATEX for LUA? Yes,
we do. We can register a function, for instance:

lua.get_functions_table() [1] = function() print("Hi there!") end
and call that one with:

\luafunction 1

This is a bit faster than calling a function like:

\directlua{HiThere ()}

which can also be achieved by

\directlua{print("Hi there!")}

which sometimes can be more convenient. Anyway, a function call is what we can use
for our purpose as it doesn’t involve interpretation and effectively behaves like a tail
call. The following snippet shows what we have in mind:

97 Executing TEX

tex.routine (function()

tex.sprint(tex.box[0] .width)

tex.sprint ("\\enspace")

tex.sprint ("\\setbox0\\hbox{!}")

tex.yield ()

tex.sprint(tex.box[0] .width)

end)

We start a routine, jump out to TgX in the middle, come back when we’re done and

continue. This gives us: 4461336 218508, which is what we expect.

4461336 218508

This mechanism permits efficient (nested) loops like:

tex.routine (function()

for i=1,10000 do

tex.sprint("1")

tex.yield ()

tex.sprint("2")
tex.routine (function()

for i=1,
.sprint ("3")
tex.
tex.
tex.
tex.

tex

end
end)

3 do

yield ()
sprint ("4")
yield)
sprint ("5")

tex.sprint ("\\space")

tex.yield)
end
end)

We do create coroutines, go back and forwards between LUA and TgX, but avoid mem-
ory being filled up with printed content. If we flush paragraphs (instead of e.g. the
space) then the main difference is that instead of a small delay due to the loop unfold-
ing in a large set of prints and accumulated content, we now get a steady flushing and

processing.

However, we can still have an overflow of input buffers because we still nest them: the
limitation at the TEX end has moved to a limitation at the LUA end. How come? Here

is the code that we use:

local stepper = nil
local stack =1}
local fid = OxFFFFFF

Executing TEX 98

local goback = "\\luafunction" .. fid .. "\\relax"

function tex.resume()
if coroutine.status(stepper) == "dead" then
stepper = table.remove(stack)
end
if stepper then
coroutine.resume (stepper)
end
end

lua.get_functions_table() [fid] = tex.resume

function tex.yield()
tex.sprint (goback)
coroutine.yield()
texio.closeinput ()
end

function tex.routine(f)
table.insert(stack,stepper)
stepper = coroutine.create(f)
tex.sprint (goback)

end

The routine creates a coroutine, and yield gives control to TEX. The resume is done
at the TEX end when we’re finished there. In practice this works fine and when you
permit enough nesting and levels in TEX then you will not easily overflow.

When I picked up this side project and wondered how to get around it, it suddenly
struck me that if we could just quit the current input level then nesting would not be a
problem. Adding a simple helper to the engine made that possible (of course figuring

it out took a while):

local stepper = nil

local stack = { }

local fid = OxFFFFFF

local goback = "\\luafunction" .. fid .. "\\relax"

function tex.resume()
if coroutine.status(stepper) == "dead" then

99

stepper
end

= table.remove(stack)

if stepper then
coroutine.resume (stepper)

end

Executing TEX

end
lua.get_functions_table() [fid] = tex.resume

if texio.closeinput then
function tex.yield()
tex.sprint (goback)
coroutine.yield()
texio.closeinput ()
end
else
function tex.yield()
tex.sprint (goback)
coroutine.yield()
end
end

function tex.routine(f)
table.insert(stack,stepper)
stepper = coroutine.create(f)
tex.sprint (goback)

end

The trick is in texio.closeinput, a recent helper and one that should be used with
care. We assume that the user knows what she or he is doing. On an old laptop with
a i7-3840 processor running WINDOWS 10 the following snippet takes less than 0.35
seconds with LUATEX and 0.26 seconds with LUAJITTEX.

tex.routine (function()
for i=1,10000 do
tex.sprint ("\\setboxO\\hpack{x}")
tex.yield ()
tex.sprint(tex.box[0] .width)
tex.routine (function()
for i=1,3 do
tex.sprint ("\\setboxO\\hpack{xx}")
tex.yield()
tex.sprint(tex.box[0] .width)
end
end)
end
end)

Say that we run the bad snippet:

for i=1,10000 do
tex.sprint ("\\setboxO\\hpack{x}")

Executing TEX 100

tex.sprint(tex.box[0] .width)
for i=1,3 do
tex.sprint ("\\setbox0\\hpack{xx}")
tex.sprint (tex.box[0] .width)
end
end

This time we need 0.12 seconds in both engines. So what if we run this:

\dorecurse{10000}{%
\setbox0\hpack{x}
\number\wdO0
\dorecurse{3}{%

\setbox0\hpack{xx}
\number\wdO
jA
+

Pure TEX needs 0.30 seconds for both engines but there we lose 0.13 seconds on the loop
code. In the LUA example where we yield, the loop code takes hardly any time. As we
need only 0.05 seconds more it demonstrates that when we use the power of LUA the
performance hit of the switch is quite small: we yield 40.000 times! In general, such
differences are far exceeded by the overhead: the time needed to typeset the content
(which \hpack doesn’t do), breaking paragraphs into lines, constructing pages and
other overhead involved in the run. In CONTEXT we use a slightly different variant
which has 0.30 seconds more overhead, but that is probably true for all LUA usage in
CONTEXT, but again, it disappears in other runtime.

Here is another example:

\def\TestWord#1Y
{\directlua{
tex.routine(function()
tex.sprint ("\\setboxO\\hbox{\\tttf #1}")
tex.yield ()
tex.sprint(math.round (100 * tex.box[0].width/tex.hsize))
tex.sprint (" percent of the hsize: ")
tex.sprint ("\\box0")
end)
1}

The width of next word is \TestWord {inlinel}!
The width of next word is 9 percent of the hsize: inline!
Now, in order to stay realistic, this macro can also be defined as:

\def\TestWord#1Y,

101 Executing TEX

{\setboxO\hbox{\tttf #1}
\directluaf{
tex.sprint(math.round (100 * tex.box[0].width/tex.hsize))
B A
percent of the hsize: \boxO\relax}

We get the same result: “The width of next word is 9 percent of the hsize: inline!”.

We have been using a LUA-TEX mix for over a decade now in CONTEXT, and have never
really needed this mixed model. There are a few places where we could (have) bene-
titted from it and we might use it in a few places, but so far we have done fine without
it. In fact, in most cases typesetting can be done fine at the TEX end. It’s all a matter of
imagination.

Executing TEX 102

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 103

103 Executing TEX

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 104

11 Modern Latin

11.1 Introduction

In CONTEXT, already in MKII, we have a feature tagged ‘effects’ that can be used to
render a font in outline or bolder versions. It uses some low level PDF directives to ac-
complish this and it works quite well. When a user on the CONTEXT list asked if we
could also provide it as a font feature in the repertoire of additional features in CON-
TEXT, I was a bit reluctant to provide that because it operates at another level than the
glyph stream. Also, such a feature can be abused and result in a bad looking document.
However, by adding a few simple options to the LUATEX engine such a feature could
actually be achieved rather easy: it was trivial to implement given that we can influ-
ence font handling at the LUA end. In retrospect extended and pseudo slanted fonts
could be done this way too but there we have some historic ballast. Also, the backend
now handles such transformations very efficient because they are combined with font
scaling. Anyway, by adding this feature in spite of possible objections, I could do some
more advanced experiments.

In the following pages I will demonstrate how we support effects as a feature in CON-
TEXT. Instead of simply applying some magic PDF text operators in the backend a more
integrated approach is used. The difference with the normal effect mechanism is that
where the one described here is bound to a font instance while the normal mechanism
operates on the glyph stream.

11.2 The basics

Let’s start with a basic boldening example. First we demonstrate a regular Latin Mod-
ern sample (using ward. tex):

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not.
But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day—and we humans are the cigarettes.

This font looks rather thin (light). Next we define an effect or 0. 2 and typeset the same
sample:

\definefontfeature
[effect-1]
[effect=.2]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

Modern Latin 104

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 105

This simple call gives reasonable default results. But you can have more control than
this. The previous examples use the following properties:

id : 107 factor : 0 wdelta : 1
effect : both hfactor : 0 hdelta : 1
width : 0.2 vfactor : 0 ddelta : 1

\definefontfeature
[effect-2]
[effect={width=.3}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved
or not. But our presence is like the effect of an old-age patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.

This time we use:

id : 108 factor : 0 wdelta : 1
effect : both hfactor : 0 hdelta : 1
width : 0.3 vfactor : 0 ddelta : 1

\definefontfeature
[effect-3]
[effect={width=.3,delta=0.4}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

We have now tweaked one more property and show the fontkerns in order to see what
happens with them:

id : 109 factor : 0 wdelta : 0.4
effect : both hfactor : 0 hdelta : 0.4
width : 0.3 vfactor : 0 ddelta : 0.4

\definefontfeature
[effect-4]
[effect={width=.3,delta=0.4,factor=0.3}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

An additional parameter factor will influence the way (for instance) kerns get af-
fected:

105 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 106

id : 111 factor : 0.3 wdelta : 0.4
effect : both hfactor : 0.3 hdelta : 0.4
width : 0.3 vfactor : 0.3 ddelta : 0.4

11.3 Outlines

There are four effects. Normally a font is rendered with effect inner. The outer effect

just draws the outlines while both gives a rather fat result. The hidden effect hides the
text.

\definefontfeature
[effect-5]

[effect={width=0.2,delta=0.4,factor=0.3,effect=inner}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Sevﬁfal, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

An inner effect is rather useless unless you want to use the other properties of this
mechanism.

\definefontfeature
[effect-6]

[effect={width=.2,delta=0.4,factor=0.3,effect=outer}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

\definefontfeature
[effect-T7]

[effect={width=.2,delta=0.4,factor=0.3,effect=both}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Sevﬁifal, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

\definefontfeature
[effect-8]

[effect={width=.2,delta=0.4,factor=0.3,effect=hidden},
boundingbox=yes] % to show something

We also show the boundingboxes of the glyphs here so that you can see what you're
missing. Actually this text is still there and you can select it in the viewer.

Modern Latin 106

Version July 20, 2018 project: onandon product: onandon component: onandon=modern not corrected yet 107

11.4 The logic

In order to support this had to make some choices. The calculations involved are best
explained in terms of CONTEXT font machinery.

Ayq = effect, geita X parameter x effect,,iqg x 100

hfactor

Ay = effectygeira X parameter x effecty,;qg x 100

vfactor

Agp = effectyqerra X parameter x effect,igm x 100

P

vfactor
The factors in the parameter namespace are adapted according to:
Afactor = effectsycior X parameters, .

Ahfactor = effeCthfactor X parametershfactor

Avfac’cor = effecJ[Vfac’cor x parametersvfactor

The horizontal and vertical scaling factors default to the normal factor that defaults to
zero so by default we have no additional scaling of for instance kerns. The width (wd),
height (ht) and depth (dp) of a glyph are adapted in relation to the line width. A glyph
is shifted in its bounding box by half the width correction. The delta defaults to one.

11.5 About features

This kind of boldening has limitations especially because some fonts use positioning
features that closely relate to the visual font properties. Let’s give some examples. The
most common positioning is kerning. Take for instance these shapes:

cdd Ccd Cd

The first one is that we start with. The circle and square have a line width of one unit
and a distance (kern) of five units. The second pair has a line width of two units and
the same distance while the third pair has a distance of seven units. So, in the last case
we have just increased the kern with a value relative to the increase of line width.

Ct C4d Cd

In this example we have done the same but we started with a distance of zero. You can
consider this a kind of anchoring. This happens in for instance cursive scripts where

107 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 108

entry and exit points are used to connect shapes. In a latin script you can think of a poor-
mans attachment of a cedilla or ogonek. But what to do with for instance an accent on
top of a character? In that case we could do the same as with kerning. However, when
we mix styles we would like to have a consistent height so maybe there scaling is not
a good idea. This is why we can set the factors and deltas explictly for vertical and
horizontal movements. However, this will only work well when a font is consistent in
how it applies these movements. In this case, if could recognize cursive anchoring (the
last pair in the example) we could compensate for it.

Cl CGd Cd

-

So, an interesting extension to the positioning part of the font handler could be to influ-
ence all the scaling factors: anchors, cursives, single and pair wise positioning in both
directions (so eight independent factors). Technically this is no big deal so I might give
it a go when I have a need for it.

11.6 Some (extreme) examples

The last decade buying a font has become a bit of a nightmare simply because you have
to choose the weights that you need. It’s the business model to not stick to four shapes
in a few weights but offer a whole range and each of course costs money.

Latin Modern is based on Computer Modern and is meant for high resolution render-
ing. The design of the font is such that you can create instances but in practice that
isn’t done. One property that let the font stand out is its bold which runs rather wide.
However, how about cooking up a variant? For this we will use a series of definitions:

\definefontfeature[effect-2-0-0]
[effect={width=0.2,delta=0}]
\definefontfeature[effect-2-3-0]

[effect={width=0.2,delta=0.3}]
\definefontfeature[effect-2-6-0]
[effect={width=0.2,delta=0.6}]
\definefontfeature[effect-4-0-0]
[effect={width=0.4,delta=0}]
\definefontfeature[effect-4-3-0]
[effect={width=0.4,delta=0.3}]
\definefontfeature[effect-4-6-0]
[effect={width=0.4,delta=0.6}]
\definefontfeature[effect-8-0-0]
[effect={width=0.8,delta=0}]
\definefontfeature[effect-8-3-0]
[effect={width=0.8,delta=0.3}]
\definefontfeature[effect-8-6-0]
[effect={width=0.8,delta=0.6}]

Modern Latin 108

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 109

no effect

width=0.2
delta=0

\definefontfeature[effect-8-6-2]
[effect={width=0.8,delta=0.6,factor=0.2}]

\definefontfeature[effect-8-6-4]
[effect={width=0.8,delta=0.6,factor=0.4}]

And a helper macro:

\starttexdefinition ShowOneSample #1#2#3#4
%\testpage [5]
%\startsubsubsubject[title=\type{#1}]

\start
\definedfont [#2*#3 @ 10pt]
\setupinterlinespace
\startlinecorrection
\showglyphs \showfontkerns
\scale[sx=#4,sy=#4]{effective n\"ots}
\stoplinecorrection
\blank [samepage]
\dontcomplain
\showfontkerns
\margintext{\tt\txx\maincolor#1}
\samplefile{ward}
\par
\stop
%\stopsubsubsubject
\stoptexdefinition

We show some extremes, using the font used in this document. so don’t complain about
beauty here.

Serif

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nOts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

109 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 110

width=0.2
delta=0.3

width=0.2
delta=0.6

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective noOts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

°C

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

ff

effective néts

Modern Latin 110

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 111

width=0.8
delta=0.6

width=0.8
delta=0.6

factor=0.2

width=0.8
delta=0.6

factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old-age patient who smokes many packs of cigarettes per day—and we humans are
the cigarettes.

effective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is Iike the
effect of an old-age patient who smokes many packs of cigarettes per day—and we humans are
the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old-age patient who smokes many packs of cigarettes per day—and we humans are
the cigarettes.

SerifBold

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an
old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

111 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 112

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

width=0.8
delta=0.6
factor=0.2

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an
old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an
old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective ndts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

ettective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an
old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nbts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old-age patient who smokes many packs of cigarettes per day—and we humans
are the cigarettes.

ffective ndts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is Iike the

Modern Latin 112

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 113

width=0.8
delta=0.6
factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

effect of an old-age patient who smokes many packs of cigarettes per day—and we humans
are the cigarettes.

ffective ndts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is Iike the
effect of an old-age patient who smokes many packs of cigarettes per day—and we humans
are the cigarettes.

Serifltalic

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening

whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

113 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 114

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the cigarettes.

- - - -

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. I would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many

e.@'e;tiée nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans arethe cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. I would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans arethe cigarettes.

effective nots

Modern Latin 114

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 115

width=0.8
delta=0.6

factor=0.2

width=0.8
delta=0.6

factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. I would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigurettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

SerifBoldItalic

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

115 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 116

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigaretfes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nits

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes per day—and we humans are the cigareties.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the effect
of an old-age patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.

effective nits

Modern Latin 116

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 117

width=0.8
delta=0.

(o2}

factor=0.2

width=0.8
delta=0.

(o2}

factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

width=0.4
delta=0

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the effect
of an old-age patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.

effective nits

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the effect
of an old-age patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.

Sans

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of aga‘rettes per day—and we humans are the agarettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of uga‘rettes per day—and we humans are the aga‘rettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of uga‘rettes per day—and we humans are the aga‘rettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be ”
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of aga‘rettes per day—and we humans are the C|garettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of uga‘rettes per day—and we humans are the ugarettes

117 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 118

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

width=0.8
delta=0.6
factor=0.2

width=0.8
delta=0.6
factor=0.4

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of mga‘rettes per day—and we humans are the mga‘rettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of uga‘rettes per day—and we humans are the ugarettes

The Earth, as a habitat for animal life, is in old age and has a fatal iliness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of qga}etl:es per day—and we humans are the qga}etl:

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of mga‘rettes per day—and we humans are the mga}ettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal iliness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of mga‘rettes per day—and we humans are the mga‘rettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happemng whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of qga‘rettes per day—and we humans are the agarettes

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happemng whether humans had ever evolved or not. But our presence is like the effect of an old-
age patient who smokes many packs of cnga}ettes per day—and we humans are the aga\rettes

Mono

effective nots

Modern Latin 118

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 119

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illmess.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illmess.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective noéts

119 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 120

width=0.8 The Earth, as a habitat for animal life, is in old age and has a fatal illness.
delta=0 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective noéts

width=0.8 The Earth, as a habitat for animal life, is in old age and has a fatal illness.

delta=0.3 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective néts

width=0.8 The Earth, as a habitat for animal life, is in o0ld age and has a fatal illness.

delta=0.6 Several, in fact. It would be happening whether humans had ever evolved or not.
But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day-and we humans are the cigarettes.

effective néts

width=0.8 The Earth, as a habitat for animal life, is in old age and has a fatal illmess.

delta=0.6 Several, in fact. It would be happening whether humans had ever evolved or not.

factor=0.2 But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day-and we humans are the cigarettes.

effective noéts

width=0. The Earth, as a habitat for animal life, is in old age and has a fatal illness.

delta=0. Several, in fact. It would be happening whether humans had ever evolved or not.

factor=0.4 But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day-and we humans are the cigarettes.

o

11.7 Pitfall

The quality of the result depends on how the font is made. For instance, ligatures can be
whole shapes, replaced glyphs and/or repositioned glyphs, or whatever the designer
thinks reasonable. In figure 11.1 this is demonstrated. We use the following feature
sets:

\definefontfeature
[demo-1]
[default]
[hlig=yes]

\definefontfeature
[demo-2]
[demo-1]
[effect=0.5]

Modern Latin 120

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 121

fist effe fist effe

texgyre pagella regular

fist effe fist effe

cambria

fist effe fi§t effe

ebgaramond 12 regular

Figure 11.1 The effects on ligatures.

Normally the artifacts (as in the fi ligature in ebgaramond as of 2018) will go unnoticed
atsmall sized. Also, when the user has a low res display, printer or when the publishers
is one of those who print a scanned PDF the reader might not notice it at all. Most readers

don’t even know what to look at.

11.8 A modern Modern

So how can we make an effective set of Latin Modern that fits in todays look and feel. Of
course this is a very subjective experiment but we’ve seen experiments with these fonts
before (like these cm super collections). Here is an example of a typescript definition:

\starttypescriptcollection[modernlatin]

\definefontfeature [lm-rm-regular] [effect={width=0.
\definefontfeature [lm-rm-bold] [effect={width=0.
\definefontfeature[lm-ss-regular] [effect={width=0.
\definefontfeature[lm-ss-bold] [effect={width=0.
\definefontfeature[lm-tt-regular] [effect={width=0.
\definefontfeature [lm-tt-bold] [effect={width=0.
\definefontfeature[lm-mm-regular] [effect={width=0.
\definefontfeature [lm-mm-bold] [effect={width=0.

\starttypescript [serif] [modern-latin]
\definefontsynonym
[Serif] [file:lmromanlO-regular]
[features={default,lm-rm-regular}]
\definefontsynonym
[SerifItalic] [file:lmromanlO-italic]

121 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern

15,delta=1.
30,delta=1.
10,delta=1.
.003}]
15,delta=1.
30,delta=1.
15,delta=1.
30,delta=1.

20,delta=1

00}]
00}]
00}]

003}]
00}]
00}]
00}]

not corrected yet 122

[features={default,lm-rm-regular}]
\definefontsynonym

[SerifSlanted] [file:lmromanslantlO-regular]

[features={default,lm-rm-regular}]
\definefontsynonym

[SerifBold] [file:lmromanlO-regular]

[features={default,lm-rm-bold}]
\definefontsynonym

[SerifBoldItalic] [file:lmromanlO-italic]

[features={default,lm-rm-bold}]
\definefontsynonym

[SerifBoldSlanted] [file:lmromanslantlO-regular]

[features={default,lm-rm-bold}]

\stoptypescript

\starttypescript [sans] [modern-latin]

\definefontsynonym

[Sans] [file:lmsans10-regular]

[features={default,lm-ss-regular}]
\definefontsynonym

[SansItalic] [file:1lmsans10-oblique]

[features={default,lm-ss-regular}]
\definefontsynonym

[SansSlanted] [file:1lmsans10-oblique]

[features={default,lm-ss-regular}]
\definefontsynonym

[SansBold] [file:1lmsansl0-regular]

[features={default,1lm-ss-bold}]
\definefontsynonym

[SansBoldItalic] [file:lmsans10-obliquel

[features={default,1lm-ss-bold}]
\definefontsynonym

[SansBoldSlanted] [file:lmsans10-oblique]

[features={default,1lm-ss-bold}]

\stoptypescript

\starttypescript [mono] [modern-latin]
\definefontsynonym
[Mono] [file:lmmonol0O-regular]
[features={default,lm-tt-regular}]
\definefontsynonym
[MonoItalic] [file:lmmonolO-italic]
[features={default,lm-tt-regular}]
\definefontsynonym
[MonoSlanted] [file:1lmmonoslantl0O-regular]

Modern Latin 122

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 123

[features={default,lm-tt-regular}]
\definefontsynonym

[MonoBold] [file:lmmonolO-regular]

[features={default,lm-tt-bold}]
\definefontsynonym

[MonoBoldItalic] [file:lmmonol0-italic]

[features={default,lm-tt-bold}]
\definefontsynonym

[MonoBoldSlanted] [file:lmmonoslantl0-regular]

[features={default,lm-tt-bold}]

\stoptypescript

\starttypescript [math] [modern-latin]
\loadfontgoodies [1m]
\definefontsynonym
[MathRoman] [file:latinmodern-math-regular.otf]
[features={math\mathsizesuffix,lm-mm-regular,mathextral,
goodies=1m]
\definefontsynonym
[MathRomanBold] [file:latinmodern-math-regular.otf]
[features={math\mathsizesuffix,lm-mm-bold,mathextral,
goodies=1m]
\stoptypescript

\starttypescript [modern-latin]
\definetypeface [\typescriptone]
[rm] [serif] [modern-latin] [default]
\definetypeface [\typescriptone]
[ss] [sans] [modern-latin] [default]
\definetypeface [\typescriptone]
[tt] [mono] [modern-latin] [default]
\definetypeface [\typescriptone]
[mm] [math] [modern-latin] [default]
\quittypescriptscanning
\stoptypescript

\stoptypescriptcollection
We show some more samples now for which we usezapf . tex.

\switchtobodyfont [modern-latin,rm,10pt]

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,

123 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 124

and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-
phers receive their knowledge and information about the rules of typography from books,
from computer magazines or the instruction manuals which they get with the purchase
of a PC or software. There is not so much basic instruction, as of now, as there was in
the old days, showing the differences between good and bad typographic design. Many
people are just fascinated by their PC’s tricks, and think that a widely—praised program,
called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with the purchase of a PC
or software. There is not so much basic instruction, as of now, as there was in the old
days, showing the differences between good and bad typographic design. Many people are
just fascinated by their PC'’s tricks, and think that a widely—praised program, called up
on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-
phers receive their knowledge and information about the rules of typography from books,
from computer magazines or the instruction manuals which they get with the purchase
of a PC or software. There is not so much basic instruction, as of now, as there was in
the old days, showing the differences between good and bad typographic design. Many
people are just fascinated by their PC’s tricks, and think that a widely—praised program,
called up on the screen, will make everything automatic from now on.

\switchtobodyfont [modern-latin,ss,10pt]

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely-
praised program, called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Modern Latin 124

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 125

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely—-
praised program, called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their PC’s tricks, and think that a widely-
praised program, called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC’s tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

\switchtobodyfont [modern-latin,tt,10pt]

Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines or
the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as
there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their
PC’s tricks, and think that a widely--praised program, called up on
the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing:
many of the new typographers receive their knowledge and
information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing the
differences between good and bad typographic design. Many people
are just fascinated by their PC’s tricks, and think that a
widely--praised program, called up on the screen, will make
everything automatic from now on.

125 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 126

Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines or
the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as
there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their
PC’s tricks, and think that a widely--praised program, called up on
the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing:
many of the new typographers receive their knowledge and
information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing the
differences between good and bad typographic design. Many people
are just fascinated by their PC’s tricks, and think that a
widely--praised program, called up on the screen, will make
everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines or
the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as
there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their
PC’s tricks, and think that a widely--praised program, called up on
the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing:
many of the new typographers receive their knowledge and
information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing the
differences between good and bad typographic design. Many people
are just fascinated by their PC’s tricks, and think that a
widely--praised program, called up on the screen, will make
everything automatic from now on.

11.9 Finetuning

In practice we only need to compensate the width but can leave the height and depth
untouched. In the following examples we see the normal bold next to the regular as
well as the boldened version. For this we will use a couple of definitions:

Modern Latin 126

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 127

\definefontfeature[lm-bald] [effect={width=0.25,effect=both}]
\definefontfeature[pg-bald] [effect={width=0.25,effect=both}]
\definefontfeature[dj-bald] [effect={width=0.35,effect=both}]

\definefontfeature
[Ilm-bold]
[effect={width=0.25,hdelta=0,ddelta=0,effect=both},
extend=1.10]

\definefontfeature
[pg-bold]
[effect={width=0.25,hdelta=0,ddelta=0,effect=both},
extend=1.00]

\definefontfeature
[dj-bold]
[effect={width=0.35,hdelta=0,ddelta=0,effect=both},
extend=1.05]

\definefont [1lmbald] [Serif*default,lm-bald sa dl
\definefont [pgbald] [Serif*default,pg-bald sa dl
\definefont [djbald] [Serif*default,dj-bald sa dl

\definefont [1mbold] [Serif*default,lm-bold sa d]
\definefont [pgbold] [Serif*default,pg-bold sa d]
\definefont [djbold] [Serif*default,dj-bold sa dl

We can combine the extend and effect features to get a bold running as wide as anormal
bold. We limit the height and depth so that we can use regular and bold in the same
sentence. It’s all a matter of taste, but some control is there.

modern pagella dejavu

\tfd

\..bald

\bfd

\..bold

Let’s take another go at Pagella. We define a few features, colors and fonts first:

127 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 128

\definefontfeature
[pg-fake-1]
[effect={width=0.25,effect=both}]

\definefontfeature
[pg-fake-2]
[effect={width=0.25,hdelta=0,ddelta=0,effect=both}]

\definefont [pgregular] [Serif*default]
\definefont [pgbold] [SerifBold*default]
\definefont [pgfakebolda] [Serif*default,pg-fake-1]
\definefont [pgfakeboldb] [Serif*default,pg-fake-2]

\definecolor[color-pgregular] [t=.5,a=1,r=.6]
\definecolor[color-pgbold] [t=.5,a=1,g=.6]
\definecolor[color-pgfakebolda] [t=.5,a=1,b=.6]
\definecolor[color-pgfakeboldb] [t=.5,a=1,r=.6,g=.6]

When we apply these we get the results of figure 11.2 while we show the same over-
layed in figure 11.3. As you can see, the difference in real bold and fake bold is subtle:
the inner shape of the ‘o’ differs. Also note that the position of the accents doesn’t
change in the vertical direction but moves along with the width.

N\ 060

O0éps 0éps

regular (red) bold (green)

O€ps OEps

fakebolda (blue) fakeboldb (yellow)

Figure 11.2 Four pagella style variants compared.

11.10 The code

The amount of code involved is not that large and is a nice illustration of what LUATEX
provides (I have omitted a few lines of tracing and error reporting). The only thing
added to the font scaler elsewhere is that we pass the mode and width parameters to
TEX so that they get used in the backend to inject the few operators needed.

Modern Latin 128

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 129

A o0 y UK X

0éps O0€p

bold over regular takebolda over regular

A\ 00

0éps OEp

fakeboldb over regular fakeboldb over bold

O€ps O€p

fakeboldb over fakebolda all four overlayed

>

Figure 11.3 Four pagella style variants overlayed.

local effects = {

inner = 0,
outer =1,
both 2,
hidden = 3

}

local function initialize(tfmdata,value)
local spec
if type(value) == "number" then
spec = { width = value }
else
spec = utilities.parsers.settings_to_hash(value)
end
local effect
local width
local mode
if mode then
local factor tonumber (spec.factor) or O
local hfactor = tonumber(spec.vfactor) or factor
local vfactor = tonumber(spec.hfactor) or factor

spec.effect or "both"
tonumber (spec.width) or 0
effects[effect]

129 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 130

local delta = tonumber(spec.delta) or 1

local wdelta = tonumber(spec.wdelta) or delta
local hdelta = tonumber(spec.hdelta) or delta
local ddelta = tonumber(spec.ddelta) or hdelta

tfmdata.parameters.mode

mode

tfmdata.parameters.width = width * 1000

tfmdata.properties.effect = {
effect = effect, width = width,
wdelta = wdelta, factor = factor,
hdelta = hdelta, hfactor = hfactor,
ddelta = ddelta, vfactor = vfactor,
}
end

end

local function manipulate(tfmdata)

local effect =
if effect then

local
local

characters

tfmdata.properties.effect

tfmdata.characters

parameters = tfmdata.parameters

local multiplier = effect.width * 100

local wdelta = effect.wdelta * parameters.hfactor
local hdelta = effect.hdelta * parameters.vfactor
local ddelta = effect.ddelta * parameters.vfactor
local hshift = wdelta / 2

local factor = (1 + effect.factor) * parameters.
local hfactor = (1 + effect.hfactor) * parameters.
local vfactor = (1 + effect.vfactor) * parameters.

for unicode,

char in next, characters do

local oldwidth = char.width
local oldheight = char.height
local olddepth = char.depth

if oldwidth and oldwidth > O then
char.width = oldwidth + wdelta
char.commands = {

{ "right", hshift },

{ "char", unicode 1},

+

* multiplier
* multiplier
* multiplier

factor
hfactor
vfactor

end

if oldheight and oldheight > O then
char.height = oldheight + hdelta

end

if olddepth and olddepth > O then
char.depth = olddepth + ddelta

end

Version July 20, 2018 project: onandon product: onandon component: onandon-modern

Modern Latin 130

not corrected yet 131

end
parameters.factor = factor
parameters.hfactor = hfactor
parameters.vfactor = vfactor
end
end

local specification = {
name = "effect",
description = "apply effects to glyphs",
initializers = {
base = initialize,
node = initialize,
s
manipulators = {
base = manipulate,
node = manipulate,

s

fonts.handlers.otf.features.register(specification)
fonts.handlers.afm.features.register(specification)

The real code is slightly more complex because we want to stack virtual features prop-
erly but the principle is the same.

11.11 Arabic

It is tempting to test effects with arabic but we need to keep in mind that for that we
should add some more support in the CONTEXT font handler. Let’s define some fea-
tures.

\definefontfeature
[bolden-arabic-1]
[effect={width=0.4}]

\definefontfeature
[bolden-arabic-2]
[effect={width=0.4,effect=outer}]

\definefontfeature
[bolden-arabic-3]
[effect={width=0.5,wdelta=0.5,ddelta=.2,hdelta=.2,factor=.1}]

With MICROSOFT Arabtype the khatt-ar. tex looks as follows:

131 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 132

\setupalign
[righttoleft]

\setupinterlinespace
[1.5]

\start
\definedfont [arabictest*arabic,bolden-arabic-1 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-2 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-3 @ 30pt]
\samplefile{khatt-ar}\par

\stop
PR P 35.’1 ;.o‘ 0% ol g 5{0 - %
3 g3) ﬁbéuﬁ\%&gmd\b 3 & e J6

5 £330 Gl 5 polatll 56 5 5 S T U
.:L2>J\ ﬁ£>t;¢=i‘).hq-\cfl¥3

25155 4 sl al o m;é&w@du@ \@g@@gtg

5 «Jls3 3l) Ao b st 4B UG G 2 e 06
9B sd 38l 0 s 5 cpatll 5 1 5 AT Bl U

And with Idris” Husayni we get:

\setupalign
[righttoleft]

\setupinterlinespace
[1.5]

\start
\definedfont [arabictest*arabic,bolden-arabic-1 @ 30pt]

Modern Latin 132

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 133

\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-2 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-3 @ 30pt]
\samplefile{khatt-ar}\par

\stop
P) £) 4 - _ E a7
S gl gl bl k2 S B G G A8 Jb
°o & 3 cor o % .tz 20 oi/ o2
G L3 pcdl G 5 el A Jl 5 2B153
Ja:J‘ 5Ly J.L,-\ S3 O ol
£ d - -
i o _ale . © 6 “ » & ;@@ A2 o,
Gl @Jgﬁtgﬁﬁlﬂwaﬁ@%%@“@&d@
2 er @@5/ ,@{fa ce- @wf/ 2 o) w
@ﬁbﬁﬁﬁsgﬁmgﬁ@@ww%@&w@ﬁ
B a2 3asd @u; S5 (gl
o f g . .
)| :Cé" @\Jﬁnlwulﬂ qua ~"°é.l.adta
s Py /: o

\

;séxg,,cw JL\,@J:\,;

L iska, j.x.-,-\ SIS Ol 94,5;4\

Actually, quite okay are the followmg. We don’t over do bold here and to get a distinc-
tion we make the original thinner.

* &\

\definefontfeaturel[effect-ar-thin] [effect={width=0.01,effect=inner}]
\definefontfeaturel[effect-ar-thick] [effect={width=0.20,extend=1.05}]

z z
<

gl o o e S f‘°é}£&u

’”J@J.UUM“\&:;QU gwd\ﬁ.l}"‘pf\ c‘:”

-
w

J»;S\ =L) 33s) OE ub cujf:)\

133 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 134

The results are acceptable at small sizes but at larger sizes you will start to see kerning,
anchoring and cursive artifacts. The outline examples show that the amount of overlap
differs per font and the more overlap we have the better boldening will work.

In arabic (and sometimes latin) fonts the marks (or accents in latin) are attached to base
shapes and normally one will use the mark to anchor a mark to a base character or
specific component of a ligature. The mkmk feature is then used to anchor marks to
other marks. Consider the following example.

. ° ro

mark + mkmk mark + mkmk mark + mkmk
x only x and y x and -y

original instance

We start with original: a base shape with three marks: the red circle and blue square
anchor to the base and the green triangle anchors to the blue square. When we bolden,
the shapes will start touching. In the case of latin scripts, it’s normal to keep the accents
on the same height so this is why the third picture only shifts in the horizontal direction.
The fourth picture demonstrates that we need to compensate the two bound marks.
One can decide to move the lot up as in the fifth picture but that is no option here.

Matters can be even more complex when a non circular pen is introduced. In that case a
transformation from one font to another using the transformed OPENTYPE positioning
logic (values) is even more tricky and unless one knows the properties (and usage) of
a mark it makes no sense at all. Actually the sixths variant is probably nicer here but
there we actually move the marks down!

0" 0" 0"

original instance mark mark + mkmk mark + mkmk mark + mkmk
x only x only x and y x and -y

For effects this means that when it gets applied to such a font, only small values work
out well.

Modern Latin 134

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 135

11.12 Math

Math is dubious as there is all kind of positioning involved. Future versions might deal
with this, although bolder math (math itself has bold, so actually we're talking of bold
with some heavy) is needed for titling. If we keep that in mind we can actually just
bolden math and probably most will come out reasonable well. One of the potential
troublemakers is the radical (root) sign that can be bound to a rule. Bumping the rules
is no big deal and patching the relevant radical properties neither, so indeed we can do:

\switchtobodyfont [modernlatin,17.3pt]

$
\mr \darkblue \getbuffer[mathblob] \quad
\mb \darkgreen \getbuffer [mathblob]

$

2 X

Where the mathblob buffer is:

2\times\sqrt{\frac{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}
{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}2}

Here you also see a fraction rule that has been bumped. In display mode we get:

\switchtobodyfont [modernlatin,17.3pt]
\startformula
\mr \darkblue \getbuffer[mathblob] \quad
\mb \darkgreen \getbuffer[mathblob]
\stopformula

P
X
SIS

2 X

Sl
=
Sha

\

\switchtobodyfont [modernlatin,17.3pt]
\dostepwiserecurse {1} {30} {5} {
$

Extensibles behave well too:

\mr \sqrt{\blackrule[width=2mm,height=#1mm,color=darkblue]}
\quad

135 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 136

\mb \sqrt{\blackrule[width=2mm,height=#1mm,color=darkgreen]}

$
}

%%ﬂﬁﬂ\ﬂ\/\/{\{\]\

In figure 11.4 we overlay regular and bold. The result doesn’t look that bad after all,
does it? It took however a bit of experimenting and a fix in LUATEX: pickup the value
from the font instead of the currently used (but frozen) math parameter.

1

I

Figure 11.4 Modern
Latin regular over bold.

In case you wonder how currently normal Latin Modern bold looks, here we go:

\switchtobodyfont[latinmodern,17.3pt]
\startformula
\mr \darkblue \getbuffer[mathblob] \quad
\mb \darkgreen \getbuffer[mathblob]
\stopformula

Sils]
SIS

2 % 2 %

ml‘

—_
il
-
Ny

Modern Latin 136

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 137

\% % 5 B z
2 2
2x |22 2% 2x | L2 2x |12 o (12
V2 V2 2 2 2
\\ﬁ N 2 2 2
dejavu: 2 2 2 2 2 2 pagella: 2 222 2 2 termes: 2 222 2 2
75 7> \IE j% VZ
- — 2 2
ox |2 oy |12 g, |12 T oox
V2 V2 V2 vz vz
V2 V2 V2 V2 Q 2
bonum: 2 2 2 2 2 2 schola: 2 2 2 2 2 2 cambria: 2 2 2 2 2 2

I must admit that I cheat a bit. In order to get a better looking pseudo math we need
to extend the shapes horizontally as well as squeeze them a bit vertically. So, the real
effect definitions more look like this:

\definefontfeature
[boldened-30]
[effect={width=0.3,extend=1.15,squeeze=0.985,7%
delta=1,hdelta=0.225,ddelta=0.225,vshift=0.225}]

and because we can calculate the funny values sort of automatically, this gets simplified
to:

\definefontfeature
[boldened-30]
[effect={width=0.30,auto=yes}]

We leave it to your imagination to figure out what happens behind the screens. Just
think of some virtual font magic combined with the engine supported extend and
squeeze function. And because we already support bold math in CONTEXT, you will
get it when you are doing bold titling.

\def\MathSample
{\overbrace{2 +
\sqrt{\frac{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}
{\sqrt{\frac{\sqrt{\underbar{2}}}{\sqrt{\overbar{2}}}}}}}}

\definehead
[mysubject]
[subject]

\setuphead
[mysubject]
[style=\tfc,

137 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 138

color=darkblue,
before=\blank,
after=\blank]

\mysubject{Regular\quad$\MathSample\quad\mb\MathSample$?}

\setuphead
[mysubject]
[style=\bfc,

color=darkred]

\mysubject{Bold \quad$\MathSample\quad\mb\MathSample$}

J

P

NIy

B

2+

Regular 2 +

\

—
Tl

NIy
NIy

Bold 2+ 2+

sl
sl

\ \

Of course one can argue about the right values for boldening and compensation if di-
mensions so don’t expect the current predefined related features to be frozen yet.

For sure this mechanism will create more fonts than normal but fortunately it can use
the low level optimizations for sharing instances so in the end the overhead is not that
large. This chapter uses 36 different fonts, creates 270 font instances (different scaling
and properties) of which 220 are shared in the backend. The load time is 5 seconds
in LUATEX and 1.2 seconds in LUAJITTEX on a somewhat old laptop with a i7-3840QM
processor running 64 bit MS WINDOWS. Of course we load a lot of bodyfonts at different
sizes so in a normal run the extra loading is limited to just a couple of extra instances
for math (normally 3, one for each math size).

11.13 Conclusion

So what can we conclude? When we started with LUATEX, right from the start CON-
TEXT supported true UNICODE math by using virtual UNICODE math fonts. One of the
objectives of the TEXGyre project is to come up with a robust complete set of math

Modern Latin 138

Version July 20, 2018 project: onandon product: onandon component: onandon-modern not corrected yet 139

fonts, text fonts with a bunch of useful symbols, and finally a subset bold math font
for titling. Now we have real OPENTYPE math fonts, although they are still somewhat
experimental. Because we're impatient, we now provide bold math by using effects
but the future will learn to what extent the real bold math fonts will differ and be more
pleasant to look at. After all, what we describe he is just an experiment that got a bit
out of hands.

139 Modern Latin

Version July 20, 2018 project: onandon product: onandon component: onandon-expansion not corrected yet 140

12 More (new) expansion trickery

Contrary to what one might expect when looking at macro definitions, TgX is pretty
efficient. Occasionally I wonder if some extra built in functionality could help me write
better code but when you program with a bit care there is often not much to gain
in terms of tokens and performance.!” Also, some possible extensions probably only
would be applied a few times which makes them low priority. When you look at the
extensions brought by e-TEX the number is not that large, and LUATEX only added a few
that deal with the language, for instance \expanded which is like an \edef without the
defining a macro and acts on a token list wrapped in (normally) curly braces. Just as
reference we mention some of the expansion related helpers.

command argument comment

\expandafter token The token after the next token gets expanded (one level
only). In tricky TEX code you can often see multiple
such commands in sequence which makes a nice puz-

zle.

\noexpand token The token after this command is not expanded in the
context of expansion.

\expanded {tokens} Thegiven tokenlistisexpanded. Thiscommand showed

up early in LUATEX development and was taken from
e-TgX follow-ups. I have mails from 2011 mention-
ing its presence in PDFTEX 1.50 (which was targeted
in 2008) but somehow it never ended up in a produc-
tion version at that time (and we're still not at that ver-
sion). In CONTEXT we already had a command with
that name so there we use \normalexpanded. Users
normally can just use the CONTEXT variant of \expanded.

\unexpanded {tokens} The given token list is hidden from expansion. Again,
in CONTEXT we already had a command serving as
prefix for definitions so instead we use \normalunex-
panded. In the core of CONTEXT this new &-TEX com-
mand is hardly used.

\detokenize {tokens} The given tokenlist becomes (basically) verbatim TgX
code. We had something like that in CONTEXT but
have no nameclash. It is used in a few places. It’s also
an e-TEX command.

\scantokens {tokens} This primitive interprets its argument as a pseudo file.
We don’t really use it.

The long trip to the yearly BachoTEX meeting is always a good opportunity to ponder TEX and its features.
The new functionality discussed here is a side effect of the most recent trip.

More (new) expansion trickery 140

Version July 20, 2018 project: onandon product: onandon component: onandon-expansion not corrected yet 141

\scantextokens {tokens} This LUATEX primitive does the same but has no end-
of-file side effects. This one is also not really used in
CONTEXT.

\protected \.def The definition following this prefix, introduced in e-TEX,
is unexpandable in the context of expansion. We al-
ready used such a command in CONTEXT but with a
completely different meaning so use \normalprotected
as prefix or \unexpanded which is an alias.

Here I will present two other extensions in LUATEX that can come in handy, and they
are there simply because their effect can hardly be realized otherwise (never say never
in TEX). One has to do with immediately applying a definition, the other with user
defined conditions. The first one relates directly to expansion, the second one concerns
conditions and relates more to parsing branches which on purpose avoids expansion.

For the first one I use some silly examples. I must admit that although I can envision
useful application, I really need to go over the large amount of CONTEXT source code
to really find a place where it is making things better. Take the following definitions:

\newcount\Number0fCalls
\def\TestMe{\advance\Number0fCallsl }

\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}

\meaning\Tested

The result is a macro \Tested that not only has the unexpanded incrementing code in
its body but also hasn’t done any advancing;:

macro:->\advance \NumberOfCalls 1 foo:0

Of course when you're typesetting something, this kind of expansion normally is not
needed. Instead of the above definition we can define \TestMe in a way that expands
the assignment immediately. You need of course to be aware of preventing look ahead
interference by using a space or \relax (often an expression works better as it doesn’t
leave an \relax).

\def\TestMe{\immediateassignment\advance\Number0fCallsl }
\edef\Tested{\TestMe bar:\the\Number0fCalls}
\edef\Tested{\TestMe bar:\the\Number0fCalls}
\edef\Tested{\TestMe bar:\the\Number0fCalls}

\meaning\Tested

141 More (new) expansion trickery

Version July 20, 2018 project: onandon product: onandon component: onandon-expansion not corrected yet 142

This time the counter gets updated and we don’t see interference in the resulting \Tested
macro:

macro:->bar:3
Here is a somewhat silly example of an expanded comparison of two ‘strings”:

\def\expandeddoifelse#1#2#3#4J,
{\immediateassignment\edef\tempa{#11}J

\immediateassignment\edef\tempb{#2}/

\ifx\tempa\tempb
\immediateassignment\def\next{#3}/

\else
\immediateassignment\def\next{#4}

\fi

\next}

\edef\Tested
{(\expandeddoifelse{abc}{def}{yes}t{nop}t/%
\expandeddoifelse{abc}{abc}{yes}{nop})}

\meaning\Tested

I don’t remember many cases where I needed such an expanded comparison. We have
a variant in CONTEXT that uses LUA but that one is not really used in the core. Anyway,
the above code gives:

macro:->(nop/yes)

You can do the same assignments as in preambles of \halign and after \accent which
means that assignments to box registers are blocked (boxing involves grouping and
delayed assignments and so). The error you will get when you use a non—assignment
command refers to a prefix, because internally such commands are called prefixed com-
mands. Leading spaces and \relax are ignored.

In addition to this one-time immediate assignment a pseudo token list variant is pro-
vided, so the above could be rewritten to:

\def\expandeddoifelse#1#2#3#47,
{\immediateassigned {
\edef\tempa{#1}
\edef\tempb{#2}
iy
\ifx\tempa\tempb
\immediateassignment\def\next{#3}/
\else
\immediateassignment\def\next{#4}J
\fi

More (new) expansion trickery 142

Version July 20, 2018 project: onandon product: onandon component: onandon-expansion not corrected yet 143

\next}

While \expanded first builds a token lists that then gets used, the \immediateas-
signed primitive just walls over the list delimited by curly braces.

A next extension concerns conditions. If you have done a bit of extensive TgX program-
ming you know that nested conditions need to be properly constructed in for instance
macro bodies. This is because (for good reason) TEX goes into a fast scanning mode
when there is a match and it has to skip the \else upto \fi branch. In order to do that
properly a nested \if in there needs to have a matching \fi.

In practice this is no real problem and careful coding will never give a problem here:
you can either hide nested code in a macro or somehow jump over nested conditions
if really needed. Actually you only need to care when you pickup a token inside the
branch because likely you don’t want to pick up for instance a \fi but something that
comes after it. Say that we have a sane conditional setup like this:

\newif\iffoo \foofalse
\newif\ifbar \bartrue

\ifoo

\ifbar \else \fi
\else

\ifbar \else \fi
\fi

Here the \iffoo and \ifbar need to be equivalent to \iftrue or \iffalse in order
to succeed well and that is what for instance \footrue and \foofalse will do: change
the meaning of \iffoo.

But imagine that you want something more complex. You want for instance to let \if-
bar do some calculations. In that case you want it to behave a bit like what a so called
vardef in METAPOST does: the end result is what matters. Now, because TEX macros
often are a complex mix of expandable and non-expandable this is not that trivial. One
solution is a dedicated definer, say \cdef for defining a macro with conditional prop-
erties. I actually implemented such a definer a few years ago but left it so long in a
folder with ideas that I only found it back after I had come up with another solution. It
was probably proof that it was not that good an idea.

The solution implemented in LUATEX is just a special case of a test: \ifcondition.
When looking at the next example, keep in mind that from the perspective of TEX’s
scanner it only needs to know if something is a token that does some test and has a
matching \fi. For that purpose you can consider \ifconditiontobe \iftrue. When
TEX actually wants to do a test, which is the case in the true branch, then it will simply
ignore this \ifcondition primitive and expands what comes after it (which is TEX’s
natural behaviour). Effectively \ifcondition has no meaning except from when it
has to be skipped, in which case it’s a token flagged as \if kind of command.

143 More (new) expansion trickery

Version July 20, 2018 project: onandon product: onandon component: onandon-expansion not corrected yet 144

\unexpanded\def\something#1#2Y,
{\edef\tempa{#11}%
\edef\tempb{#2}
\ifx\tempa\tempb}

\ifcondition\something{a}{b}%
\ifcondition\something{a}{al}’
true 1
\else
false 1
\fi
\else
\ifcondition\something{a}{al}’
true 2
\else
false 2
\fi
\fi

Wrapped in a macro you can actually make this fully expandable when you use the
previously mentioned immediate assignment. Here is another example:

\unexpanded\def\onoddpage
{\ifodd\countO }

\ifcondition\onoddpage odd \else even \fi page
The previously defined comparison macro can now be rewritten as:

\def\equaltokens#1#2
{\immediateassignment\edef\tempa{#1}J
\immediateassignment\edef\tempb{#2}/
\ifx\tempa\tempb}

\def\expandeddoifelse#1#2#3#4J,
{\ifcondition\equaltokens{#1}{#2}}
\immediateassignment\def\next{#3}/
\else
\immediateassignment\def\next{#41}J
\fi
\next}

When used this way it will of course also work without the \ifcondition but when
used nested it can be like this. This last example also demonstrates that this feature
probably only makes sense in more complicated cases where more work is done in
the \onoddpage or \equaltokens macro. And again, I am not sure if for instance in
CONTEXT I have a real use for it because there are only a few cases where nesting like

More (new) expansion trickery 144

Version July 20, 2018 project: onandon product: onandon component: onandon-expansion not corrected yet 145

this could benefit. I did some tests with a low level macro where it made the code
look nicer. It was actually a bit faster but most core macros are not called that often.
Although the overhead of this feature can be neglected, performance should not be the
reason for using it: in CONTEXT for instance one can often only measure such possible
speed-ups on macros that are called tens or hundreds of thousands of times and that
seldom happens in a real run end even then a change from say 0.827 seconds to 0.815
seconds for 10K calls of a complex case is just noise as the opposite can also happen.

Although not strictly necessary these extensions might make some code look better so
that is why they officially will be available in the 1.09 release of LUATEX in fall 2018.
It might eventually inspire me to go over some code and see where I can improve the
look and feel.

The last few years I have implemented some more ideas as local experiments, for in-
stance \futurelet variant or a simple (one level) \expand, but in the end rejected
them because there is no real benefit in them (no better looking code, no gain in per-
formance, hard to document, possible side effects, etc.), so it is very unlikely that we
will have more extensions like this. After all, we could do more than 40 years without
them. Although ... who knows what we will provide in LUATEX version 2.

145 More (new) expansion trickery

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 146

13 Amputating code

13.1 Introduction

Because CONTEXT is already rather old in terms of software life and because it evolves
over time, code can get replaced by better code. Reasons for this can be:

e a better understanding of the way TgX and METAPOST work
e demand for more advanced options

e abrainwave resulting in a better solution

e new functionality provided in TEX engine used

e the necessity to speed up a core process

Replacing code that in itself does a good job but is no longer the best to be used comes
with sentiments. It can be rather satisfying to cook up a (conceptually as well as code-
wise) good solution and therefore removing code from a file can result in a somewhat
bad feeling and even a feeling of losing something. Hence the title of this chapter.

Here I will discuss one of the more complex subsystems: the one dealing with typeset
text in METAPOST graphics. I will stick to the principles and not present (much) code
as that can be found in archives. This is not a tutorial, but more a sort of wrap-up for
myself. It anyhow show the thinking behind this mechanism. I'll also introduce a new
LUATEX feature here: subruns.

13.2 The problem

METAPOST is meant for drawing graphics and adding text to them is not really part
of the concept. Its a bit like how TgX sees images: the dimensions matter, the content
doesn’t. This means that in METAPOST a blob of text is an abstraction. The native way
to create a typeset text picture is:

picture p ; p := btex some text etex ;

In traditional METAPOST this will create a temporary TgX file with the words some text
wrapped in a box that when typeset is just shipped out. The result is a DV1 file that with
an auxiliary program will be transformed into a METAPOST picture. That picture itself
is made from multiple pictures, because each sequences of characters becomes a picture
and kerns become shifts.

There is also a primitive infont that takes a text and just converts it into a low level text
object but no typesetting is done there: so no ligatures and no kerns are found there. In
CONTEXT this operator is redefined to do the right thing.

In both cases, what ends up in the POSTSCRIPT file is references to fonts and characters
and the original idea is that DVIPS understands what fonts to embed. Details are com-
municated via specials (comments) that DVIPS is supposed to intercept and understand.
This all happens in an 8 bit (font) universe.

Amputating code 146

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 147

When we moved on to PDF, a converter from METAPOST’s rather predictable and simple
POSTSCRIPT code to PDF was written in TEX. The graphic operators became PDF opera-
tors and the text was retypeset using the font information and snippets of strings and
injected at the right spot. The only complication was that a non circular pen actually
produced two path of which one has to be transformed.

At that moment it already had become clear that a more tight integration in CONTEXT
would happen and not only would that demand a more sophisticated handling of text,
but it would also require more features not present in METAPOST, like dealing with
CMYK colors, special color spaces, transparency, images, shading, and more. All this
was implemented. In the next sections we will only discuss texts.

13.3 Using the traditional method

The btex approach was not that flexible because what happens is that btex triggers the
parser to just grabbing everything upto the etex and pass that to an external program.
It’s special scanner mode and because because of that using macros for typesetting texts
is a pain. So, instead of using this method in CONTEXT we used textext. Before a run
the METAPOST file was scanned and for each textext the argument was copied to a
tile. The btex calls were scanned to and replaced by textext calls.

For each processed snippet the dimensions were stored in order to be loaded at the start
of the METAPOST run. In fact, each text was just a rectangle with certain dimensions.
The PDF converter would use the real snippet (by typesetting it).

Of course there had to be some housekeeping in order to make sure that the right snip-
pets were used, because the order of definition (as picture) can be different from them
being used. This mechanism evolved into reasonable robust text handling but of course
was limited by the fact that the file was scanned for snippets. So, the string had to be
string and not assembled one. This disadvantage was compensated by the fact that we
could communicate relevant bits of the environment and apply all the usual context
trickery in texts in a way that was consistent with the rest of the document.

A later implementation could communicate the text via specials which is more flexible.
Although we talk of this method in the past sense it is still used in MKIL

13.4 Using the library

When the MPLIB library showed up in LUATEX, the same approach was used but soon we
moved on to a different approach. We already used specials to communicate extensions
to the backend, using special colors and fake objects as signals. But at that time paths
got pre- and postscripts fields and those could be used to really carry information with
objects because unlike specials, they were bound to that object. So, all extensions using
specials as well as texts were rewritten to use these scripts.

147 Amputating code

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 148

The textext macro changed its behaviour a bit too. Remember that a text effectively
was just a rectangle with some transformation applied. However this time the post-
script field carried the text and the prescript field some specifics, like the fact that that
we are dealing with text. Using the script made it possible to carry some more infora-
tion around, like special color demands.

draw textext("foo") ;

Among the prescripts are tx_index=trial and tx_state=trial (multiple prescripts
are prepended) and the postscriptis foo. Ina second run the prescriptis tx_index=trial
and tx_state=final. After the first run we analyze all objects, collect the texts (those
with a tx_ variables set) and typeset them. As part of the second run we pass the di-
mensions of each indexed text snippet. Internally before the first run we ‘reset’ states,
then after the first run we “analyze’, and after the second run we ‘process’ as part of the
conversion of output to PDF.

13.5 Using runscript

When the runscript feature was introduced in the library we no longer needed to pass
the dimensions via subscripted variables. Instead we could just run a LUA snippets
and ask for the dimensions of a text with some index. This is conceptually not much
different but it saves us creating METAPOST code that stored the dimensions, at the cost
of potentially a bit more runtime due to the runscript calls. But the code definitely
looks a bit cleaner this way. Of course we had to keep the dimensions at the LUA end
but we already did that because we stored the preprocessed snippets for final usage.

13.6 Using a sub TEX run

We now come the current (post LUATEX 1.08) solution. For reasons I will mention later
a two pass approach is not optimal, but we can live with that, especially because CON-
TEXT with METAFUN (which is what we’re talking about here) is quit efficient. More
important is that it’s kind of ugly to do all the not that special work twice. In addition
to text we also have outlines, graphics and more mechanisms that needed two passes
and all these became one pass features.

A TgX run is special in many ways. At some point after starting up TgX enters the main
loop and begins reading text and expanding macros. Normally you start with a file
but soon a macro is seen, and a next level of input is entered, because as part of the
expansion more text can be met, files can be opened, other macros be expanded. When
a macro expands a token register, another level is entered and the same happens when
a LUA call is triggered. Such a call can print back something to TEX and that has to be
scanned as if it came from a file.

When token lists (and macros) get expanded, some commands result in direct actions,
others result in expansion only and processing later as one of more tokens can end up in

Amputating code 148

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 149

the input stack. The internals of the engine operate in miraculous ways. All commands
trigger a function call, but some have their own while others share one with a switch
statement (in C speak) because they belong to a category of similar actions. Some are
expanded directly, some get delayed.

Does it sound complicated? Well, it is. It’s even more so when you consider that TEX
uses nesting, which means pushing and popping local assignments, knows modes, like
horizontal, vertical and math mode, keeps track of interrupts and at the same type
triggers typesetting, par building, page construction and flushing to the output file.

It is for this reason plus the fact that users can and will do a lot to influence that be-
haviour that there is just one main loop and in many aspects global state. There are
some exceptions, for instance when the output routine is called, which creates a sort of
closure: it interrupts the process and for that reason gets grouping enforced so that it
doesn’t influence the main run. But even then the main loop does the job.

Starting with version 1.10 LUATEX provides a way to do a local run. There are two ways
provided: expanding a token register and calling a LUA function. It took a bit of experi-
menting to reach an implementation that works out reasonable and many variants were
tried. In the appendix we give an example of usage.

The current variant is reasonable robust and does the job but care is needed. First of
all, as soon as you start piping something to TEX that gets typeset you’'d better in a
valid mode. If not, then for instance glyphs can end up in a vertical list and LUATEX
will abort. In case you wonder why we don’t intercept this: we can’t because we don’t
know the users intentions. We cannot enforce a mode for instance as this can have
side effects, think of expanding \everypar or injecting an indentation box. Also, as
soon as you start juggling nodes there is no way that TEX can foresee what needs to be
copied to discarded. Normally it works out okay but because in LUATEX you can cheat
in numerous ways with LUA, you can get into trouble.

So, what has this to do with METAPOST? Well, first of all we could now use a one pass
approach. The textext macro calls LUA, which then let TEX do some typesetting, and
then gives back the dimensions to METAPOST. The ‘analyze” phase is now integrated
in the run. For a regular text this works quite well because we just box some text and
that’s it. However, in the next section we will see where things get complicated.

Let’s summarize the one pass approach: the textext macro creates rectangle with the
right dimensions and for doing passes the string to LUA using runscript. We store
the argument of textext in a variable, then call runtoks, which expands the given
token list, where we typeset a box with the stored text (that we fetch with a LUA call),
and the runscript passes back the three dimensions as fake RGB color to METAPOST
which applies a scantokens to the result. So, in principle there is no real conceptual
difference except that we now analyze in-place instead of between runs. I will not show
the code here because in CONTEXT we use a wrapper around runscript so low level
examples won’t run well.

149 Amputating code

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 150

13.7 Some aspects

Animportant aspect of the text handling is that the whole text can be transformed. Nor-
mally this is only some scaling but rotation is also quite valid. In the first approach, the
original METAPOST one, we have pictures constructed of snippets and pictures trans-
form well as long as the backend is not too confused, something that can happen when
for instance very small or large font scales are used. There were some limitations with
respect to the number of fonts and efficient inclusion when for instance randomiza-
tion was used (I remember cases with thousands of font instances). The PDF backend
could handle most cases well, by just using one size and scaling at the PDF level. All
the textext approaches use rectangles as stubs which is very efficient and permits all
transforms.

How about color? Think of this situation:

\startMPcode
draw textext("some \color[red]{textl}")
withcolor green ;
\stopMPcode

And what about the document color? We suffice by saying that this is all well sup-
ported. Of course using transparency, spot colors etc. also needs extensions. These are
however not directly related to texts although we need to take it into account when
dealing with the inclusion.

\startMPcode
draw textext("some \color[red]{textl}")
withcolor "blue"
withtransparency (1,0.5) ;
\stopMPcode

What if you have a graphic with many small snippets of which many have the same
content? These are by default shared, but if needed you can disable it. This makes sense
if you have a case like this:

\useMPlibrary [dum]

\startMPcode
draw textext("\externalfigure[unknown]") notcached ;
draw textext("\externalfigure[unknown]") notcached ;
\stopMPcode

Normally each unknown image gets a nice placeholder with some random properties.
So, do we want these two to have the same or not? At least you can control it.

When I said that things can get complicated with the one pass approach the previous
code snippet is a good example. The dummy figure is generated by METAPOST. So, as

Amputating code 150

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 151

we have one pass, and jump temporarily back to TEX, we have two problems: we reen-
ter the MPLIB instance again in the middle of a run, and we might pipe back something
to and/or from TEX nested.

The first problem could be solved by starting a new MPLIB session. This normally is not
a problem as both runs are independent of each other. In CONTEXT we can have META-
POST runs in many places and some produce some more of less stand alone graphic in
the text while other calls produce PDF code in the backend that is used in a different
way (for instance in a font). In the first case the result gets nicely wrapped in a box,
while in the second case it might directly end up in the page stream. And, as TgX has
no knowledge of what is needed, it’s here that we can get the complications that can
lead to aborting a run when you are careless. But in any case, if you abort, then you
can be sure you're doing the wrong thing. So, the second problem can only be solved
by careful programming.

When I ran the test suite on the new code, some older modules had to be fixed. They
were doing the right thing from the perspective of intermediate runs and therefore
independent box handling, putting a text in a box and collecting dimensions, but in-
terwoven they demanded a bit more defensive programming. For instance, the multi-
pass approach always made copies snippets while the one pass approach does that
only when needed. And that confused some old code in a module, which inciden-
tally is never used today because we have better functionality built-in (the METAFUN
followtext mechanism).

The two pass approach has special code for cases where a text is not used. Imagine this:

picture p ; p := textext("foo") ;

draw boundingbox p;

Here the ‘analyze’ stage will never see the text because we don’t flush p. However
because textext is called it can also make sure we still know the dimensions. In the
next case we do use the text but in two different ways. These subtle aspects are dealt
with properly and could be made a it simpler in the single pass approach.

picture p ; p := textext("foo") ;

draw p rotated 90 withcolor red ;
draw p withcolor green ;

13.8 One or two runs

So are we better off now? One problem with two passes is that if you use the equation
solver you need to make sure that you don’t run into the redundant equation issue. So,
you need to manage your variables well. In fact you need to do that anyway because
you can call out to METAPOST many times in a run so old variables can interfere anyway.
So yes, we're better off here.

151 Amputating code

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 152

Are we worse off now? The two runs with in between the text processing is very ro-
bust. There is no interference of nested runs and no interference of nested local TEX
calls. So, maybe we're also bit worse off. You need to anyhow keep this in mind when
you write your own low level TEX-METAPOST interaction trickery, but fortunately now
many users do that. And if you did write your own plugins, you now need to make
them single pass.

The new code is conceptually cleaner but also still not trivial because due to the men-
tioned complications. It’s definitely less code but somehow amputating the old code
does hurt a bit. Maybe I should keep it around as reference of how text handling
evolved over a few decades.

13.9 Appendix

Because the single pass approach made me finally look into a (although somewhat lim-
ited) local TgX run, I will show a simple example. For the sake of generality I will use
\directlua. Say that you need the dimensions of a box while in LUA:

\directlua {
tex.sprint("result 1: <")

tex.sprint ("\\setboxO\\hbox{onel}")
tex.sprint ("\\number\\wd0o")

tex.sprint ("\\setboxO\\hbox{\\directlua{tex.print{'first'}}}")
tex.sprint(",")
tex.sprint ("\\number\\wd0")

tex.sprint (">")

}
result 1: <1263102,1375500>

This looks ok, but only because all printed text is collected and pushed into a new input
level once the LUA call is done. So take this then:

\directlua {
tex.sprint("result 2: <")

tex.sprint ("\\setbox0\\hbox{onel}")
tex.sprint(tex.getbox(0) .width)

tex.sprint ("\\setboxO\\hbox{\\directlua{tex.print{'first'}}}")
tex.sprint(",")

tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

Amputating code 152

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating not corrected yet 153

}

result 2: <1375500,1375500>

This time we get the widths of the box known at the moment that we are in LUA, but
we haven’t typeset the content yet, so we get the wrong dimensions. This however will
work okay:

\toksO{\setbox0\hbox{onel}}
\toks2{\setboxO\hbox{first}}
\directlua {

}

tex.forcehmode (true)
tex.sprint ("<")

tex.runtoks(0)
tex.sprint (tex.getbox(0) .width)

tex.runtoks(2)
tex.sprint(",")

tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

<1263102,1375500>

as does this:

\toksO{\setboxO\hbox{\directlua{tex.sprint (MyGlobalText) }}}
\directlua {

tex.forcehmode (true)
tex.sprint("result 3: <")

MyGlobalText = "one"
tex.runtoks(0)
tex.sprint(tex.getbox(0) .width)

MyGlobalText = "first"
tex.runtoks(0)

tex.sprint(",")
tex.sprint(tex.getbox(0) .width)

tex.sprint(">")

153 Amputating code

Version July 20, 2018 project: onandon product: onandon component: onandon-amputating

not corrected yet 154

result 3: <1263102,1375500>
Here is a variant that uses functions:

\directlua {
tex.forcehmode (true)

tex.sprint("result 4: <")

tex.runtoks (function()

tex.sprint ("\\setbox0\\hbox{onel}")
end)
tex.sprint(tex.getbox(0) .width)

tex.runtoks (function()
tex.sprint ("\\setboxO\\hbox{\\directlua{tex.print{'first'}}}")
end)
tex.sprint(",")
tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

¥
result 4: <1263102,1375500>

The forcemode is needed when you do this in vertical mode. Otherwise the run aborts.
Of course you can also force horizontal mode before the call. I'm sure that users will
be surprised by side effects when they really use this feature but that is to be expected:
you really need to be aware of the subtle interference of input levels and mix of input
media (files, token lists, macros or LUA) as well as the fact that TEX often looks one token
ahead, and often, when forced to typeset something, also can trigger builders. You're
warned.

Amputating code 154

Version July 20, 2018 project: onandon product: onandon component: onandon-110 not corrected yet 155

155 Amputating code

Version July 20, 2018 project: onandon product: onandon component: onandon-110 not corrected yet 156

18

14 Getting there, version 1.10

When we decided to turn experiments with a LUA extensions to PDFIEX into developing
LUATEX as alternative engine we had, in addition to opening up some of TgX’s internals,
some extensions in mind. Around version 1.00 most was already achieved and with
version 1.10 we're pretty close to where we want to be. The question is, when are we
ready? In order to answer that I will look at four aspects:

objectives
functionality
performance
stability

The main objective was to open up TEX in a way that permit extensions without the need
to patch the engine. Although it might suit us, we don’t want to change too much the
internals, first of all because TEX is TEX, the documented program with a large legacy.!®
Discussions about how to extend TgX are not easy and seldom lead to an agreement
so better is to provide a way to do what you like without bothering other users and/
or interfering with macro packages. I think that this objective is met quite well now.
Other objectives, like embedding basic graphic capabilities using METAPOST have al-
ready been met long ago. There is more control over the backend and modern fonts
can be dealt with.

The functionality in terms of primitives has been extended but within reasonable bounds:
we only added things that make coding a bit more natural but we realize that this is
very subjective. So, here again we can say that we met our goals. A lot can be achieved
via LUA code and users and developers need to get accustomed to that if they want to
move on with LUATEX. We will not introduce features that get added to or are part of
other engines.

We wanted to keeping performance acceptable. The core TEX engine is already pretty
fast and it’s often the implementation of macros (in macro packages) that creates a per-
formance hit. Going UTF has a price as do modern fonts. At the time of this writing
processing the 270 page LUATEX manual takes about 12 seconds (one run), which boils
down to over 27 pages per second.

runtime overhead
LUATEX 12.0 +0.6
LUANITTEX 9.7 +0.5

Is this fast or slow? One can do tests with specific improvements (using new primitives)
but in practice it’s very hard to improve performance significantly. This is because a
test with millions of calls that show a .05 second improvement disappears when one

This is reflected in the keywords that exposed mechanisms use: they reflect internal variable names and
constants and as a consequence there is inconsistency there.

Getting there, version 1.10 156

Version July 20, 2018 project: onandon product: onandon component: onandon-110 not corrected yet 157

only has a few thousand calls. Many small improvements can add up, but less that one
thinks, especially when macros are already quite optimal. Also this runtime includes
time normally used for running additional programs (e.g. for getting bibliographies
right).

It must be said that performance is not completely under our control. For instance, we
have patched the LUAJIT hash function because it favours URL’s and therefore favours
hashing the middle of the string which is bad for our use as we are more interested
in the (often unique) start of strings. We also compress the format which speeds up
loading but not on the native windows 64 bit binary. At the time this writing the ex-
tra overhead is 2 seconds due to some suboptimal gzip handling; the cross compiled
64 bit mingw binaries that I use don’t suffer from this. When I was testing the 32 bit
binaries on the machine of a colleague, I was surprised to measure the following dif-
ferences on a complex document with hundreds of XML files, many images and a lot of
manipulations.

1.08 with LUA 5.2 1.09 with LUA 5.3
LUATEX 21.5 15.2
LUANITTEX 10.7 10.3

Now, these are just rough numbers but they demonstrate that the gap between LUATEX
and LUAJNITTEX is becoming less which is good because at this moment it looks like
LUAJIT will not catch up with LUA 5.3 so at some point we might drop it. It will be
interesting to see what LUA 5.4 will bring as it offers an alternative garbage collector.
And imagine that the regular LUA virtual machine gets more optimized.

You also have to take into account that having a browser open in the background of a
TEX run has way more impact than a few tenths of a second in LUATEX performance.
The same is true for memory usage: why bother about LUATEX taking tens of megabytes
for fonts while a few tabs in a browser can bump memory consumption to gigabytes of
memory usage. Also, using a large TgX tree (say the whole of TEXLIVE) can have a bit
of a performance hit! Or what about inefficient callbacks, using inefficient LUA code of
badly designed solutions? What we could gain here we loose there, so I think we can
safely say that the current implementation of LUATEX is as good as you can (and will)
get. Why should we introduce obscure optimizations where on workstations TgX is just
one of the many processes? Why should we bother too much to speed up on servers that
have start-up or job management overhead or are connected to relatively slow remote
file system? Why squeeze out a few more milliseconds when badly written macros
or styles can have an way more impact on performance? So, for now we’re satisfied
with performance. Just for the record, the ratio between CONTEXT MKII running other
engines and LUATEX with MKIV for the next snippet of code:

\dorecurse{250}{\input tufte\par}

is 2.8 seconds for XgIEX, 1.5 seconds for LUATEX, 1.2 seconds for LUAJITTEX, and 0.9
seconds for PDFTEX. Of course this is not really a practical test but it demonstrates the

157 Getting there, version 1.10

Version July 20, 2018 project: onandon product: onandon component: onandon-110 not corrected yet 158

baseline performance on just text. The 64 bit version of PDFIEX is actually quite a bit
slower on my machine. Anyway, LUATEX (1.09) with MKIV is doing okey here.

That brings us to stability. In order to achieve that we will not introduce many more
extensions. That way users get accustomed to what is there (read: there is no need to
search for what else is possible). Also, it makes that existing functionality can become
bug free because no new features can interfere. So, at some point we have to decide that
this is it. If we can do what we want now, there are no strong arguments for more. in
that perspective version 1.10 can be considered very close to what we want to achieve.

Of course development will continue. For instance, the PDF inclusion code will be re-
placed by more lightweight and independent code. Names of functions and symbolic
constants might be normalized (as mentioned, currently they are often related to or
derived from internals). More documentation will be added. We will quite probably
keep up with LUA versions. Also the FFI interface will become more stable. And for
sure bugs will be fixed. We might add a few more options to control behaviour of for
instance of math rendering. Some tricky internals (like alignments) might get better at-
tribute support if possible. But currently we think that most fundamental issues have
been dealt with.

Getting there, version 1.10 158

Version July 20, 2018 project: onandon product: onandon component: onandon-media not corrected yet 159

159 Getting there, version 1.10

Version July 20, 2018 project: onandon product: onandon component: onandon-media not corrected yet 160

