

LualgX
Reference
Manual

copyright : LuaTgX development team
more info : www.luatex.org
version : April 17, 2018

Contents

Introduction
1 Preamble
2 Basic TEX enhancements

2.1
2.2

2.3

2.4
2.5

2.6

2.7

2.8

2.9

2.10
2.11

Introduction
Version information

2.2.1 \luatexbanner, \luatexversion and \luatexrevision
2.2.2 \formatname

UNICODE text support

2.3.1 Extended ranges

2.3.2 \Uchar

Extended tables

Attributes

2.5.1 Attribute registers

2.5.2 Nodes

2.5.3 Box attributes

LUA related primitives

2.6.1 \directlua

2.6.2 \latelua

2.6.3 \luaescapestring

2.6.4 \luafunction and \luafunctioncall
Alignments

2.7.1 \alignmark and \aligntab
Catcode tables

2.8.1 \catcodetable

2.8.2 \initcatcodetable

2.8.3 \savecatcodetable
Suppressing errors

2.9.1 \suppressfontnotfounderror
2.9.2 \suppresslongerror

2.9.3 \suppressifcsnameerror
2.9.4 \suppressoutererror
2.9.5 \suppressmathparerror
2.9.6 \suppressprimitiveerror
Math

Fonts

2.11.1 Font syntax

2.11.2 \fontid and \setfontid
2.11.3 \noligs and \nokerns
2.11.4 \nospaces

11

15

17
17
17
17
18
18
18
19
19
19
19
19
20
21
21
22
23
23
24
24
24
24
24
25
25
25
25
25
25
26
26
26
26
26
26
27
27

2.12

2.13

2.14

2.15

2.16

3.2
3.3
3.4

Tokens, commands and strings
2.12.1 \scantextokens

2.12.2 \toksapp, \tokspre, \etoksapp and \etokspre
2.12.3 \csstring, \begincsname and \lastnamedcs

2.12.4 \clearmarks

2.12.5 \letcharcode

Boxes, rules and leaders

2.13.1 \outputbox

2.13.2 \vpack, \hpack and \tpack
2.13.3 \vsplit

2.13.4 Images and Forms
2.13.5 \nohrule and \novrule
2.13.6 \gleaders

Languages

2.14.1 \hyphenationmin

2.14.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

Control and debugging
2.15.1 Tracing
2.15.2 \outputmode
2.15.3 \draftmode
Files

2.16.1 File syntax
2.16.2 Writing to file

Modifications

The merged engines

3.1.1 The need for change

3.1.2 Changes from TgX 3.1415926
3.1.3 Changes from &-TgX 2.2

3.1.4 Changes from PDFTEX 1.40
3.1.5 Changes from ALEPH RC4
3.1.6 Changes from standard WEB2C
The backend primitives \pdf *
Directions

Implementation notes

3.4.1 Memory allocation

3.4.2 Sparse arrays

3.4.3 Simple single-character csnames
3.4.4 Compressed format

3.4.5 Binary file reading

3.4.6 Tabs and spaces

LUA general

Initialization

4.1.1 LUATEX as a LUA interpreter
4.1.2 LUATEX as a LUA byte compiler
4.1.3 Other commandline processing

27
27
28
28
28
29
29
29
29
29
29
30
30
30
30
30
31
31
31
31
31
31
32

33
33
33
33
34
34
36
37
38
44
47
47
48
438
49
49
49

51
51
51
51
51

4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3

6.4
6.5

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

LUA behaviour
LUA modules
Testing

Languages, characters, fonts and glyphs

Characters and glyphs

The main control loop

Loading patterns and exceptions
Applying hyphenation

Applying ligatures and kerning
Breaking paragraphs into lines
The lang library

Font structure

The font tables

Real fonts

Virtual fonts

6.3.1 The structure

6.3.2 Artificial fonts

6.3.3 Example virtual font
The vf library

The font library

6.5.1 Loading a TFM file
6.5.2 Loading a VF file

6.5.3 The fonts array

6.5.4 Checking a font’s status
6.5.5 Defining a font directly
6.5.6 Extending a font

6.5.7 Projected next font id
6.5.8 Font ids

6.5.9 Iterating over all fonts

Math

Math styles

7.1.1 \mathstyle
7.1.2 \Ustack
Unicode math characters
Cramped math styles
Math parameter settings
Skips around display math
Font-based Math Parameters
Nolimit correction

Math italic mess

Script and kerning

54
57
58

59
59
64
67
69
71
73
73

77
77
82
84
84
86
86
87
87
87
88
88
88
89
89
89
89
90

91
91
91
92
93
94
95
97
97
101
101
102

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

7.20

8.2

8.3

9.1
9.2

Unscaled

fences

Math spacing setting

Math accent handling

Math root extension

Math kerning in super- and subscripts

Scripts on horizontally extensible items like arrows
Extracting values

fractions
Last lines

Other Math changes

7.19.1
7.19.2
7.19.3

Verbose versions of single-character math commands

Script commands \Unosuperscript and \Unosubscript

Allowed math commands in non-math modes

Math surrounding skips

7.20.1
7.20.2
7.20.3
7.20.4
7.20.5
7.20.6

Nodes

Delimiters: \Uleft, \Umiddle and \Uright
Fixed scripts

Penalties: \mathpenaltiesmode

Equation spacing: \mathegnogapstep
Tracing

Math options

LUA node representation

8.1.1
8.1.2
8.1.3
8.1.4
The node
8.2.1
8.2.2
8.2.3

Attributes

Main text nodes

Math noads

whatsit nodes

library

Node handling functions
Glue handling

Attribute handling

Two access models

LUATgX LUA callbacks
Registering callbacks
File discovery callbacks

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11

find read file and find write file
find font file

find output file

find format_ file

find vf file

find map file

find enc_file

find pk file

find data file

find opentype file

find truetype file and find typel file

103
103
105
105
106
106
107
108
108
108
108
109
109
109
110
111
111
111
112
112

115
115
115
116
123
127
132
133
143
144
146

153
153
153
154
154
154
154
155
155
155
155
155
155
155

9.3

9.4

9.5

9.6

9.2.12
9.2.13
9.2.14
9.2.15

find image file
File reading callbacks
open read file
General file readers

Data processing callbacks

9.3.1
9.3.2
9.3.3

process input buffer
process output buffer
process jobname

Node list processing callbacks

94.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18

contribute filter
buildpage filter
build page insert

pre linebreak filter
linebreak filter
append to vlist filter
post linebreak filter
hpack filter

vpack filter

hpack quality

vpack quality

process rule

pre output filter
hyphenate

ligaturing

kerning

insert _local par
mlist to hlist

Information reporting callbacks

9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13

pre_dump

start _run

stop_run
start page number
stop_page number
show error _hook
show _error_message
show lua error _hook
start file

stop file

call edit

finish synctex
wrapup_run

PDF-related callbacks

9.6.1
9.6.2

finish pdffile
finish pdfpage

156
156
156
157
158
158
158
158
158
158
159
159
160
161
161
161
161
162
162
162
163
163
163
163
164
164
164
164
164
165
165
165
165
165
166
166
166
166
166
167
167
167
167
167

9.7

10
10.1

10.2
10.3

10.4
10.5

10.6

10.7

Font-related callbacks
9.7.1 define font
9.7.2 glyph not found

The TgX related libraries

The lua library

10.1.1 LUA version

10.1.2 LUA bytecode registers
10.1.3 LUA chunk name registers
The status library

The tex library

10.3.1 Internal parameter values
10.3.2 Convert commands

10.3.3 Last item commands

10.3.4 Attribute, count, dimension, skip and token registers
10.3.5 Character code registers
10.3.6 Box registers

10.3.7 Math parameters

10.3.8 Special list heads

10.3.9 Semantic nest levels

10.3.10 Print functions

10.3.11 Helper functions

10.3.12 Functions for dealing with primitives
10.3.13 Core functionality interfaces
10.3.14 Functions related to synctex
The texconfig table

The texio library

10.5.1 texio.write

10.5.2 texio.write nl

10.5.3 texio.setescape

The token library

10.6.1 The scanner

10.6.2 Macros

10.6.3 Pushing back

10.6.4 Nota bene

The kpse library

10.7.1 kpse.set program name and kpse.new
10.7.2 find file

10.7.3 lookup

10.7.4 init prog

10.7.5 readable file

10.7.6 expand path

10.7.7 expand var

10.7.8 expand braces

10.7.9 show path

10.7.10 var_value

10.7.11 version

167
167
168

169
169
169
169
170
170
172
172
175
176
176
177
179
180
181
181
182
184
186
190
191
192
193
193
193
194
194
194
196
197
197
199
199
199
200
200
201
201
201
201
201
201
201

11
11.1

11.2

12

12.1
12.2
12.3
12.4
12.5
12.6

The graphic libraries
The img library

11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8
11.1.9

new

keys

scan

copy

write
immediatewrite
node

types

boxes

The mplib library

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7

new

mp:statistics
mp:execute

mp:finish

Result table

Subsidiary table formats
Character size information

The fontloader

Getting quick information on a font
Loading an OPENTYPE or TRUETYPE file
Applying a ‘feature file’

Applying an ‘AFM file’

Fontloader font tables

Table types

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5
12.6.6
12.6.7
12.6.8
12.6.9
12.6.10
12.6.11
12.6.12
12.6.13
12.6.14
12.6.15
12.6.16
12.6.17
12.6.18
12.6.19
12.6.20

Top-level

Glyph items

map table

private table

cidinfo table

pfminfo table

names table

anchor classes table

gpos table

gsub table

ttf tables and ttf tab saved tables
mm table

mark classes table

math table

validation state table

horiz_base and vert base table
altuni table

vert variants and horiz variants table
mathkern table

kerns table

203
203
203
204
205
205
206
206
206
207
207
207
207
208
208
209
209
212
213

215
215
215
217
217
217
218
218
220
223
224
224
224
225
226
226
227
227
227
228
228
228
229
229
229
230
230

12.6.21 vkerns table
12.6.22 texdata table
12.6.23 lookups table

13 The backend libraries
13.1 The pdf library
13.1.1 mapfile, mapline
13.1.2 [set|get][catalog|info|names|trailer]
13.1.3 [set|get][pageattributes|pageresources|pagesattributes]
13.1.4 [set|get][xformattributes|xformresources]
13.1.5 getversion and [set|get]minorversion
13.1.6 getcreationdate
13.1.7 [set|getlinclusionerrorlevel, [set|get]ignoreunknownimages
13.1.8 [set|get]suppressoptionalinfo
13.1.9 [set|get]ltrailerid
13.1.10 [set|get]compresslevel
13.1.11 [set|get]objcompresslevel
13.1.12 [set|getlgentounicode
13.1.13 [set|get]omitcidset
13.1.14 [set|get]ldecimaldigits
13.1.15 [set|get]lpkresolution
13.1.16 getlast[obj|link|annot] and getretval
13.1.17 maxobjnum and objtype, fontname, fontobjnum, fontsize, xformname
13.1.18 [set|get]origin
13.1.19 [set|get]limageresolution
13.1.20 [set|get][link|dest|thread|xform]lmargin
13.1.21 get[pos|hpos|vpos]
13.1.22 [has|get]lmatrix
13.1.23 print
13.1.24 immediateobj
13.1.25 obj
13.1.26 refobj
13.1.27 reserveobj
13.1.28 registerannot
13.1.29 newcolorstack
13.1.30 setfontattributes
13.2 The pdfscanner library
13.3 The epdf library

Topics
Primitives

Callbacks

230
230
230

233
233
233
233
233
233
233
233
234
234
234
234
234
234
234
234
234
234
235
235
235
235
235
235
236
236
237
238
238
238
238
238
238
241

251

255

261

Nodes

Statistics

263

265

Introduction

This is the reference manual of LuaTgX. We don’t claim it is complete and we assume that the
reader knows about TgX as described in “The TgX Book”, the “e-TgX manual”, the “pdfTEX man-
ual”, etc. Additional reference material is published in journals of user groups and ConTgXt
related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versions
brought new functionality, more control, some cleanup of internals. Experimental features
evolved into stable ones or were dropped. Already quite early LuaTgX could be used for produc-
tion and it was used on a daily basis by the authors. Successive versions sometimes demanded
a adaption to the Lua interfacing, but the concepts were unchanged. The current version can
be considered stable in functionality and there will be no fundamental changes. Of course we
then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTgX to behave the same as pdfIgX! Although the core functionality of that 8 bit
engine was starting point, it has been combined with the directional support of Omega (Aleph).
But, LuaTgX can behave different due to its wide (32 bit) characters, many registers and large
memory support. The pdf code produced differs from pdfTEX but users will normally not notice
that. There is native utf input, support for large (more than 8 bit) fonts, and the math machinery
is tuned for OpenType math. There is support for directional typesetting too. The log output
can differ from other engines and will likely differ more as we move forward. When you run
plain TgX for sure LuaTgX runs slower than pdfTgX but when you run for instance ConTEXt MKIV
in many cases it runs faster, especially when you have a bit more complex documents or input.
Anyway, 32 bit all-over combined with more features has a price, but on a modern machine this
is no real problem.

Testing is done with ConTgXt, but LuaTgX should work fine with other macro packages too. For
that purpose we provide generic font handlers that are mostly the same as used in ConTgXt.
Discussing specific implementations is beyond this manual. Even when we keep LuaTgX lean
and mean, we already have enough to discuss here.

LuaTgX consists of a number of interrelated but (still) distinguishable parts. The organization
of the source code is adapted so that it can glue all these components together. We continue
cleaning up side effects of the accumulated code in TgX engines (especially code that is not
needed any longer).

» We started out with most of pdfTgX version 1.40.9. The code base was converted to C and
split in modules. Experimental features were been removed and utility macros are not inher-
ited because their functionality can be programmed in Lua. The number of backend inter-
face commands has been reduced to a few. The so called extensions are separated from the
core (which we try to keep close to the original TgX core). Some mechanisms like expansion
and protrusion can behave different from the original due to some cleanup and optimization.
Some whatsit based functionality (image support and reusable content) is now core function-
ality. We don’t stay in sync with pdfTEX development.

» The direction model from Aleph RC4 (which is derived from Omega) is included. The related
primitives are part of core LuaTgX but at the node level directional support is no longer based

Introduction 11 {\‘,

on so called whatsits but on real nodes with relevant properties. The number of directions is
limited to the useful set and the backend has been made direction aware.

» Neither Aleph’s I/O translation processes, nor tcx files, nor encTgX are available. These en-
coding-related functions are superseded by a Lua-based solution (reader callbacks). In a
similar fashion all file io can be intercepted.

» We currently use Lua 5.3.*. There are few Lua libraries that we consider part of the core
Lua machinery, for instance lpeg. There are additional Lua libraries that interface to the
internals of TEX. We also keep the Lua 5.2 bit32 library around.

» There are various TgX extensions but only those that cannot be done using the Lua interfaces.
The math machinery often has two code paths: one traditional and the other more suitable
for wide OpenType fonts. Here we follow the Microsoft specifications as much as possible.
Some math functionality has been opened up a bit so that users have more control.

» The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific for
usage in a TgX engine. We try to minimize specific font support to what TgX needs: character
references and dimensions and delegate everything else to Lua. That way we keep TgX open
for extensions without touching the core. In order to minimize dependencies at some point
we may decide to make this an optional library.

» The MetaPost library is integral part of LuaTgX. This gives TgX some graphical capabilities
using a relative high speed graphical subsystem. Again Lua is used as glue between the
frontend and backend. Further development of MetaPost is closely related to LuaTgX.

» The virtual font technology that comes with TgX has been integrated into the font machinery
in a way that permits creating virtual fonts at runtime. Because LuaTgX can also act as a
Lua interpreter this means that a complete TgX workflow can be built without the need for
additional programs.

We try to keep upcoming versions compatible but intermediate releases can contain experimen-
tal features. A general rule is that versions that end up on TgXlive and/or are released around
ConTgXt meetings are stable. Future versions will probably become a bit leaner and meaner.
Some libraries might become external as we don’t want to bloat the binary and also don’t want
to add more hard coded solutions. After all, with Lua you can extend the core functionality. The
less dependencies, the better.

You might find Lua helpers that are not yet documented. These are considered experimental,
although when you encounter them in a ConTEXt version that has been around for a while you
can assume that they will stay. Of course it can just be that we forgot to document them yet.

The TgXLive version is to be considered the current stable version. Any version between the
yearly TgXLive releases are to be considered beta and in the repository end up as trunk releases.
We have an experimental branch that we use for development but there is no support for any
of its experimental features. Intermediate releases (from trunk) are normally available via the
ConTgXt distribution channels (the garden and so called minimals).

Hans Hagen
Harmut Henkel
Taco Hoekwater
Luigi Scarso

- ~

7 o\
k‘; 12 Introduction

hy -

Version : April 17, 2018
LuaTgX : luatex 1.08 /6710
ConTgXt : MkIV 2018.04.16 22:59

Introduction 13

- ~

M e _
k‘; 14 Introduction

- -

1 Preamble

This is a reference manual, not a tutorial. This means that we discuss changes relative to tra-
ditonal TgX and also present new functionality. As a consequence we will refer to concepts that
we assume to be known or that might be explained later.

The average user doesn’t need to know much about what is in this manual. For instance fonts
and languages are normally dealt with in the macro package that you use. Messing around with
node lists is also often not really needed at the user level. If you do mess around, you’d better
know what you’re dealing with. Reading “The TgX Book” by Donald Knuth is a good investment
of time then also because it’s good to know where it all started. A more summarizing overview
is given by “TgX by Topic” by Victor Eijkhout. You might want to peek in “The £-TgX manual” and
documentation about pdfTgX.

But ... if you’'re here because of Lua, then all you need to know is that you can call it from within
a run. The macro package that you use probably will provide a few wrapper mechanisms but
the basic \directlua command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load that
file with the usual Lua commands.

Ifyou still decide to read on, then it’s good to know what nodes are, so we do a quick introduction
here. If you input this text:

Hi There

eventually we will get a linked lists of nodes, which in ascii art looks like:

H<=>1<=> [glue] <=> T <=> h <=> e <=>r <=> ¢

When we have a paragraph, we actually get something:

[localpar] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e <=> [qglue]

Each character becomes a so called glyph node, a record with properties like the current font,
the character code and the current language. Spaces become glue nodes. There are many node
types that we will discuss later. Each node points back to a previous node or next node, given
that these exist.

It’s also good to know beforehand that TgX is basically centered around creating paragraphs
and pages. The par builder takes a list and breaks it into lines. We turn horizontal material
into vertical. Lines are so called boxes and can be separated by glue, penalties and more. The
page builder accumulates lines and when feasible triggers an output routine that will take the
list so far. Constructing the actual page is not part of TgX but done using primitives that permit
manipulation of boxes. The result is handled back to TgX and flushed to a (often pdf) file.

The LuaTgX engine provides hooks for Lua code at nearly every reasonable point in the process:
collecting content, hyphenating, applying font features, breaking into lines, etc. This means

Preamble 15 {\‘

that you can overload TgX’s natural behaviour, which still is the benchmark. When we refer to
‘callbacks’ we means these hooks.

Where plain TgX is basically a basic framework for writing a specific style, macro packages
like ConTgXt and IXTEX provide the user a whole lot of additional tools to make documents look
good. They hide the dirty details of font management, language demands, turning structure
into typeset results, wrapping pages, including images, and so on. You should be aware of the
fact that when you hook in your own code to manipulate lists, this can interfere with the macro
package that you use.

When you read about nodes in the following chapters it’s good to keep in mind their commands
that relate to then. here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist wvertical box with the baseline at the bottom
\vtop vlist vertical box with the baseline at the top
\hskip glue horizontal skip with optional stretch and shrink
\vskip glue vertical skip with optional stretch and shrink
\kern kern horizontal or vertical fixed skip
\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdir dir a change in text direction

For now this should be enough to enable you to understand the next chapters.

0;‘ 16 Preamble

2 Basic TgX enhancements

2.1 Introduction

From day one, LuaTgX has offered extra features compared to the superset of pdfTEX and Aleph.
This has not been limited to the possibility to execute Lua code via \directlua, but LuaTgX also
adds functionality via new TgX-side primitives or extensions to existing ones.

When LuaTgX starts up in ‘iniluatex’ mode (Luatex -ini), it defines only the primitive commands
known by TgX82 and the one extra command \directlua. As is fitting, a Lua function has to be
called to add the extra primitives to the user environment. The simplest method to get access
to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this
early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before
the above line:

\catcode "\{=1
\catcode *\}=2

More fine-grained primitives control is possible and you can look up the details in section 10.3.12.
For simplicity’s sake, this manual assumes that you have executed the \directlua command as
given above.

The startup behaviour documented above is considered stable in the sense that there will not
be backward-incompatible changes any more. We have promoted some rather generic pdfTgX
primitives to core LuaTgX ones, and the ones inherited frome Aleph (Omega) are also promoted.
Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 3 we discuss several primitives that are derived from pdfIgX and Aleph (Omega).
Here we stick to real new ones. In the chapters on fonts and math we discuss a few more new
ones.

2.2 Version information

2.2.1 \luatexbanner, \luatexversion and \luatexrevision

There are three new primitives to test the version of LuaTgX:

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaTeX, Version 1.08.0 the banner reported on the command line
\luatexversion 108 a combination of major and minor number
\luatexrevision O the revision number, the current value is

The official LuaTgX version is defined as follows:

Basic TgX enhancements 17 !

» The major version is the integer result of \luatexversion divided by 100. The primitive is
an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

» The minor version is the two-digit result of \luatexversion modulo 100.

» The revision is the given by \luatexrevision. This primitive expands to a positive integer.

» The full version number consists of the major version, minor version and revision, separated
by dots.

2.2.2 \formatname

The \formatname syntax is identical to \jobname. In iniTEX, the expansion is empty. Otherwise,
the expansion is the value that \jobname had during the iniTgX run that dumped the currently
loaded format. You can use this token list to provide your own version info.

2.3 UNICODE text support

2.3.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the
full range of Unicode (220 + 216 _ 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a
character is always converted to a suitable graphic representation of that character in a specific
font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a
character. Inside LuaTgX there is no clear separation between the two concepts. Because the
subtype of a glyph node can be changed in Lua it is up to the user: subtypes larger than 255
indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate
for a larger range of acceptable numbers. For instance, \char now accepts values between 0 and
1,114,111. This should not be a problem for well-behaved input files, but it could create incom-
patibilities for input that would have generated an error when processed by older TgX-based
engines. The affected commands with an altered initial (left of the equals sign) or secondary
(right of the equals sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode,
\efcode, \lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input
files can be pre-processed using the reader callback. This will be explained in section 9.2.13.
Normalization of the Unicode input is on purpose not built-in can be handled by a macro package
during callback processing.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode
range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
c=1,114,112, LuaTgX will actually print the single byte corresponding to ¢ minus 1,114,112.

Output to the terminal uses ~" notation for the lower control range (¢ < 32), with the exception
of ~I, ~J and ~"M. These are considered ‘safe’ and therefore printed as-is. You can disable
escaping with texio.setescape(false) in which case you get the normal characters on the
console.

‘e
0; 18 Basic TgX enhancements

2.3.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

2.4 Extended tables

All traditional TEX and &-TgX registers can be 16-bit numbers. The affected commands are:

\count \countdef \box \wd
\dimen \dimendef \unhbox \ht
\skip \skipdef \unvbox \dp
\muskip \muskipdef \copy \setbox
\marks \toksdef \unhcopy \vsplit
\toks \insert \unvcopy

Because font memory management has been rewritten, character properties in fonts are no
longer shared among fonts instances that originate from the same metric file.

2.5 Attributes

2.5.1 Attribute registers

Attributes are a completely new concept in LuaTgX. Syntactically, they behave a lot like counters:
attributes obey TgX’s nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute (16-bit number) (optional equals) (32-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value
to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,
a.k.a. —2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in
this ‘unset’ state in iniTgX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact
that the numbers and values of all ‘set’ attributes are attached to all nodes created in their
scope. These can then be queried from any Lua code that deals with node processing. Further
information about how to use attributes for node list processing from Lua is given in chapter 8.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits
efficient testing and updating.

2.5.2 Nodes

When TgX reads input it will interpret the stream according to the properties of the characters.
Some signal a macro name and trigger expansion, others open and close groups, trigger math

Basic TEX enhancements 19 {‘/b

mode, etc. What’s left over becomes the typeset text. Internally we get linked list of nodes.
Characters become glyph nodes that have for instance a font and char property and \kern
10pt becomes a kern node with a width property. Spaces are alien to TgX as they are turned
into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)
and glue nodes (spaces).

The sequences of characters at some point are extended with disc nodes that relate to hy-
phenation. After that font logic can be applied and we get a list where some characters can
be replaced, for instance multiple characters can become one ligature, and font kerns can be
injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes withwidth, height, depth and shift
properties and a pointer list to its actual content. Boxes can be constructed explicitly or can
be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines
are a linked list of hlist nodes.

We will see more of these nodes later on but for now that should be enough to be able to follow
the rest oof this chapter.

2.5.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment
can be quite asynchronous. For example: in paragraph building, the individual line boxes are
created after the \par command has been processed, so they will receive the list of attributes
that is in effect then, not the attributes that were in effect in, say, the first or third line of the
paragraph.

Similar situations happen in LuaTgX regularly. A few of the more obvious problematic cases are
dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-
ing borrow their attributes from their surrounding glyphs, and it is possible to influence box
attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are
unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the
same as characters that have been converted to references to glyphs in fonts. For instance,
when you use attributes to implement color support, each node carries information about its
eventual color. In that case, unless you implement mechanisms that deal with it, applying a color
to already boxed material will have no effect. Keep in mind that this incompatibility is mostly
due to the fact that separate specials and literals are a more unnatural approach to colors than
attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the
use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also
specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

/0;. 20 Basic TEX enhancements

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the
nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative
value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do
for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [a]))
tex.sprint("\\quad\\quad")
tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))
tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist
nodes that have a field list that points to the content. Because the attributes are a list them-
selves you can access them by indexing the node (here we do that with [a]. Running this snippet
gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123
box 0 : attr 998 : 456 list 0 : attr 998 : 456
box 0 : attr 999 : nil list 0 : attr 999 : nil
box 2 : attr 997 : 123 list 2 : attr 997 : 123
box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the
word nil.

2.6 LUA related primitives

2.6.1 \directlua

In order to merge Lua code with TgX input, a few new primitives are needed. The primitive
\directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua (16-bit number) (general text)

The (general text) is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the (general text), the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk. In such a chunk you can use the local directive to keep your variables from
interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments
(starting with - -) within the argument. As there typically will be only one ‘line’ the first line com-
ment will run on until the end of the input. You will either need to use TgX-style line comments
(starting with %), or change the TgX category codes locally. Another possibility is to say:

Basic TEX enhancements 21 {\‘

\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TgX does not replace line endings with spaces. Of
course such an approach depends on the macro package that you use.

The (16-bit number) designates a name of a Lua chunk and is taken from the lua.name array
(see the documentation of the lua table further in this manual). When a chunk name starts with
a @ it will be displayed as a file name. This is a side effect of the way Lua implements error
handling.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its
expansion from the TgX viewpoint is usually empty. However, there are some Lua functions that
produce material to be read by TgX, the so called print functions. The most simple use of these
istex.print(<string> s). The characters of the string s will be placed on the TgX input buffer,
that is, ‘before TEX’s eyes’ to be read by TgX immediately. For example:

\count10=20
a\directlua{tex.print(tex.count[10]+5)}b

expands to
a25b

Here is another example:
$\pi = \directlua{tex.print(math.pi)}$

will result in
o =3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all
TEX commands. So formally speaking its expansion is null, but it places material on a pseudo-file
to be immediately read by TgX, as €-TgX’s \scantokens. For a description of print functions look
at section 10.3.10.

Because the (general text) is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-
tual information is still pretty bad. Often, you will only see the line number of the right brace at
the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up
LuaTgX pretty bad. If you are not careful while working with the node list interface, you may
even end up with assertion errors from within the TgX portion of the executable.

2.6.2 \latelua

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the time
of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliteral)
and the traditional TgX extension \write. Within the Lua code you can print pdf statements

- ~

, \
\0;‘ 22 Basic TgX enhancements

\
-

directly to the pdf file via pdf.print, or you can write to other output streams via texio.write
or simply using Lua io routines.

\latelua (general text)
\latelua (16-bit number) (general text)

Expansion of macros in the final <general text> is delayed until just before the whatsit is exe-
cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page literals.
The name (general text) and (16-bit number) behave in the same way as they do for \directlua

2.6.3 \luaescapestring

This primitive converts a TgX token sequence so that it can be safely used as the contents of a
Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns
are escaped. This is done by prepending an extra token consisting of a backslash with category
code 12, and for the line endings, converting them to n and r respectively. The token sequence
is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between the
TgX and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of
Lua code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

2.6.4 \luafunction and \luafunctioncall

The \directlua commands involves tokenization of its argument (after picking up an optional
name or number specification). The tokenlist is then converted into a string and given to Lua to
turn into a function that is called. The overhead is rather small but when you have millions of
calls it can have some impact. For this reason there is a variant call available: \luafunction.
This command is used as follows:

\directlua {
local t = lua.get functions table()
t[1] = function() tex.print("!") end
t[2] = function() tex.print("?") end

\luafunctionl
\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of
functions apart from normal Lua limitations. Of course there is the limitation of no arguments
but that would involve parsing and thereby give no gain. The function, when called in fact gets
one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

, \
Basic TEX enhancements 23 \‘,’

local t = lua.get functions table()
t[8] = function(slot) tex.print(slot) end
}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.
2.7 Alignments

2.7.1 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while
\aligntab duplicates the functionality of &.

2.8 Catcode tables

Catcode tables are a new feature that allows you to switch to a predefined catcode regime
in a single statement. You can have a practically unlimited number of different tables. This
subsystem is backward compatible: if you never use the following commands, your document
will not notice any difference in behaviour compared to traditional TgX. The contents of each
catcode table is independent from any other catcode tables, and their contents is stored and
retrieved from the format file.

2.8.1 \catcodetable

\catcodetable (15-bit number)

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-
ously created using one of the two primitives below, or it has to be zero. Table zero is initialized
by iniTgX.

2.8.2 \initcatcodetable

\initcatcodetable (15-bit number)

The primitive \initcatcodetable creates a new table with catcodes identical to those defined
by iniTgX. The new catcode table is allocated globally: it will not go away after the current group
has ended. If the supplied number is identical to the currently active table, an error is raised.
The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape
5 ~M return car_ret
9 ~™@ null ignore
10 <space> space spacer
11 a-z letter
11 A-Z letter

, \
\0,’ 24 Basic TEX enhancements

12 everything else other
14 % comment
15 7 delete invalid char

2.8.3 \savecatcodetable

\savecatcodetable (15-bit number)

\savecatcodetable copies the current set of catcodes to a new table with the requested number.
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the
supplied number is the currently active table, an error is raised.

2.9 Suppressing errors

2.9.1 \suppressfontnotfounderror

If this integer parameter is non-zero, then LuaTgX will not complain about font metrics that are
not found. Instead it will silently skip the font assignment, making the requested csname for the
font \ifx equal to \nullfont, so that it can be tested against that without bothering the user.

\suppressfontnotfounderror = 1

2.9.2 \suppresslongerror

If this integer parameter is non-zero, then LualgX will not complain about \par commands en-
countered in contexts where that is normally prohibited (most prominently in the arguments of
macros not defined as \long).

\suppresslongerror = 1

2.9.3 \suppressifcsnameerror

If this integer parameter is non-zero, then LuaTgX will not complain about non-expandable com-
mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded
tokens from the input until it encounters an \endcsname command. If the input expansion is un-
balanced with respect to \csname ...\endcsname pairs, the LuaTgX process may hang indefinitely.

\suppressifcsnameerror = 1

2.9.4 \suppressoutererror

If this new integer parameter is non-zero, then LuaTgX will not complain about \outer commands
encountered in contexts where that is normally prohibited.

\suppressoutererror = 1

Basic TEX enhancements 25 *:‘

2.9.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:
\suppressmathparerror =1

So, the next code is valid then:

$x+ 1=

as

2.9.6 \suppressprimitiveerror

When set to a non-zero value the following command will not issue an error:
\suppressprimitiveerror =1

\primitive\notaprimitive

2.10 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac-
ing model have been enhanced (thereby introducing many new primitives) but also because some
more control has been added to existing functionality. Much of this relates to the differences
approaches of traditional TgX fonts and OpenType math.

2.11 Fonts

2.11.1 Font syntax
LuaTgX will accept a braced argument as a font name:
\font\myfont = {cmrl@}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

2.11.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with
\number (and using \the gives an error). The currently used font id is 29. Here are some more:

STYLE COMMAND FONT ID

normal \tf 38
bold \bf 38

- ~

’

f\ 0/’ 26 Basic TgX enhancements

\
-

italic \it 49
bold italic \bi 50

These numbers depend on the macro package used because each one has its own way of dealing
with fonts. They can also differ per run, as they can depend on the order of loading fonts. For
instance, when in ConTgXt virtual math Unicode fonts are used, we can easily get over a hundred
ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs
to be a valid one.

2.11.3 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is
built by LuaTgX'’s main control loop. You can enable these primitives when you want to do node
list processing of ‘characters’, where TEX’s normal processing would get in the way.

\noligs (integer)
\nokerns (integer)

These primitives can also be implemented by overloading the ligature building and kerning func-
tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when
you define a font (using Lua) you can also omit the kern and ligature tables, which has the same
effect as the above.

2.11.4 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space
character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a
zero skip. In figure 2.1 we see the results for four characters separated by a space.

X XXX] XXXX] XXXX
O / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm
XXXX]
X X
X X
0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 2.1 The \nospaces options.
2.12 Tokens, commands and strings

2.12.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted
version of e-TEX’s \scantokens. The differences are:

Basic TEX enhancements 27 ‘:‘,’

» The last (and usually only) line does not have a \endlinechar appended.

» \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

» There are no ‘... while end of file ...’ error tests executed. This allows the expansion to end
on a different grouping level or while a conditional is still incomplete.

2.12.2 \toksapp, \tokspre, \etoksapp and \etokspre
Instead of:

\toks@\expandafter{\the\toks0 foo}

you can use:

\etoksapp0O{foo}

The pre variants prepend instead of append, and the e variants expand the passed general text.

2.12.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading
escape character. This can be somewhat more efficient that stripping it of afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there
is no such name. It is equivalent to

\ifcsname foo\endcsname
\csname foo\endcsname
\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that
it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above
example could be written as:

\ifcsname foo\endcsname
\lastnamedcs
\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTgX this also
involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can
make code a bit more more readable.

2.12.4 \clearmarks

This primitive complements the e-TEX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks (16-bit number)

- ~

’

\: ‘/’ 28 Basic TgX enhancements

\
-

2.12.5 \letcharcode
This primitive can be used to assign a meaning to an active character, as in:
\def\foo{bar} \letcharcodel23=\foo

This can be a bit nicer that using the uppercase tricks (using the property of \uppercase that it
treats active characters special).

2.13 Boxes, rules and leaders

2.13.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the
page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to
65535.

\outputbox = 12345

2.13.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

2.13.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative
for the to keyword you can use upto to get a split of the given size but result has the natural
dimensions then.

2.13.4 Images and Forms

These two concepts are now core concepts and no longer whatsits. They are in fact now im-
plemented as rules with special properties. Normal rules have subtype 0, saved boxes have
subtype 1 and images have subtype 2. This has the positive side effect that whenever we need
to take content with dimensions into account, when we look at rule nodes, we automatically also
deal with these two types.

The syntax of the \save...resource is the same as in pdfIgX but you should consider them to
be backend specific. This means that a macro package should treat them as such and check for
the current output mode if applicable.

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later
\saveimageresource save the image as an object to be includes later
\useboxresource include the saved box object here (by index)
\useimageresource include the saved image object here (by index)

Basic TEX enhancements 29 *:‘

!
}

\lastsavedboxresourceindex the index of the last saved box object
\lastsavedimageresourceindex the index of the last saved image object
\lastsavedimageresourcepages the number of pages in the last saved image object

LuaTgX accepts optional dimension parameters for \use. . .resource in the same format as for
rules. With images, these dimensions are then used instead of the ones given to \useimagere-
source but the original dimensions are not overwritten, so that a \useimageresource without
dimensions still provides the image with dimensions defined by \saveimageresource. These
optional parameters are not implemented for \saveboxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex
\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

The box resources are of course implemented in the backend and therefore we do support the
attr and resources keys that accept a token list. New is the type key. When set to non-zero the
/Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or 3 will write a /Matrix.

2.13.5 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were intro-
duced: \nohrule and \novrule. These can be used to reserve space. This is often more efficient
than creating an empty box with fake dimensions).

2.13.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal
\leaders in that they align nicely, except that the alignment is based on the largest enclosing
box instead of the smallest. The g stresses this global nature.

2.14 Languages

2.14.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of
the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive
accepts a number and stores the value with the language.

2.14.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary commands used to inject a whatsit node but now injects a normal node with
type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-
ature builder still sees this as a cancel boundary directive but at the Lua end you can implement

‘,. 30 Basic TEX enhancements

different behaviour. The added benefit of passing this value is a side effect of the generalization.
The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and
have related primitives.

2.15 Control and debugging

2.15.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the
nodes.

2.15.2 \outputmode

The \outputmode variable tells LuaTgX what it has to produce:

VALUE OUTPUT

0 dvi code
1 pdf code

2.15.3 \draftmode

The value of the \draftmode counter signals the backend if it should output less. The pdf back-
end accepts a value of 1, while the dvi backend ignores the value.

2.16 Files

2.16.1 File syntax
LuaTgX will accept a braced argument as a file name:

\input {plain}
\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

The \tracingfonts primitive that has been inherited from pdfTgX has been adapted to support
variants in reporting the font. The reason for this extension is that a csname not always makes
sense. The zero case is the default.

VALUE REPORTED

0 \foo xyz

1 \foo (bar)

2 <bar> xyz

3 <bar @ ..pt> xyz

Basic TEX enhancements 31 {\‘,

4 <id>
5 <id: bar>
6 <id: bar @ ..pt> xyz

2.16.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console
and log. As a consequence a system command is no longer possible but one can use 0s.execute
to do the same.

, \
\‘P 32 Basic TEX enhancements

3 Modifications

3.1 The merged engines

3.1.1 The need for change

The first version of LuaTgX only had a few extra primitives and it was largely the same as pdfTgX.
Then we merged substantial parts of Aleph into the code and got more primitives. When we got
more stable the decision was made to clean up the rather hybrid nature of the program. This
means that some primitives have been promoted to core primitives, often with a different name,
and that others were removed. This made it possible to start cleaning up the code base. In
chapter 2 we discussed some new primitives, here we will cover most of the adapted ones.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-
pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often
than not, a change neccessary to clean up the internal interfaces. These will also be mentioned.

3.1.2 Changes from TgX 3.1415926

Of course it all starts with traditional TgX. Even if we started with pdfTgX, most still comes from
the original. But we divert a bit.

» The current code base is written in C, not Pascal. We use cweb when possible. As a conse-
quence instead of one large file plus change files, we now have multiple files organized in
categories like tex, pdf, lang, font, lua, etc. There are some artefacts of the conversion to
C, but in due time we will clean up the source code and make sure that the documentation is
done right. Many files are in the cweb format, but others, like those interfacing to Lua, are C
files. Of course we want to stay as close as possible to the original so that the documentation
of the fundamentals behind TgX by Don Knuth still applies.

» See chapter 5 for many small changes related to paragraph building, language handling and
hyphenation. The most important change is that adding a brace group in the middle of a word
(like in of{}fice) does not prevent ligature creation.

» There is no pool file, all strings are embedded during compilation.

» The specifier plus 1 fillll does not generate an error. The extra ‘1’ is simply typeset.

» The upper limit to \endlinechar and \newlinechar is 127.

» Magnification (\mag) is only supported in dvi output mode. You can set this parameter and it
even works with true units till you switch to pdf output mode. When you use pdf output you
can best not touch the \mag variable. This fuzzy behaviour is not much different from using
pdf backend related functionality while eventually dvi output is required.

After the output mode has been frozen (normally that happens when the first page is shipped
out) or when pdf output is enabled, the true specification is ignored. When you preload a
plain format adapted to LuaTgX it can be that the \mag parameter already has been set.

Modifications 33 *:

3.1.3 Changes from &-TgX 2.2

Being the de factor standard extension of course we provide the £-TgX functionality, but with a
few small adaptations.

» The &-TgX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTgX is not needed.

» The TgXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,
\endR and \endL are missing. Instead we used the Omega/Aleph approach to directionality
as starting point.

» Some of the tracing information that is output by £-TgX’s \tracingassigns and \tracingre-
stores is not there.

» Register management in LuaTgX uses the Omega/Aleph model, so the maximum value is
65535 and the implementation uses a flat array instead of the mixed flat & sparse model
from e-TEX.

» When kpathsea is used to find files, LuaTgX uses the ofm file format to search for font metrics.
In turn, this means that LuaTgX looks at the OFMFONTS configuration variable (like Omega and
Aleph) instead of TFMFONTS (like TgX and pdfTgX). Likewise for virtual fonts (LuaTgX uses the
variable OVFFONTS instead of VFFONTS).

3.1.4 Changes from PDFTgEX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTgX pro-
gram. We inherit the stable features, dropped most of the experimental code and promoted
some functionality to core LuaTgX functionality which in turn triggered renaming primitives.

For compatibility reasons we still refer to \pdf. .. commands but LuaTgX has a different backend
interface. Instead of these primitives there are three interfacing primitives: \pdfextension,
\pdfvariable and \pdffeedback that take keywords and optional further arguments. This way
we can extend the features when needed but don’t need to adapt the core engine. The front-
and backend are decoupled as much as possible.

» The (experimental) support for snap nodes has been removed, because it is much more natural
to build this functionality on top of node processing and attributes. The associated primitives
that are gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

» The (experimental) support for specialized spacing around nodes has also been removed. The
associated primitives that are gone are: \pdfadjustinterwordglue, \pdfprependkern, and
\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbscode,
\knbccode, and \knaccode.

» A number of ‘pdfIgX primitives’ have been removed as they can be implemented using
Lua: \pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffile-
dump, \pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmatch,
\pdfmdfivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinclu-
sionerrorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex

» The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision are
no longer present as there is no longer a relationship with pdfTgX development.

‘,\O 34 Modifications

The experimental snapper mechanism has been removed and therefore also the primitives
\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth and
\pdflastlinedepth

The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are pro-
moted to core primitives. The \pdf* prefixed originals are not available.

Because LuaTgX has a different subsystem for managing images, more diversion from its
ancestor happened in the meantime. We don’t adapt to changes in pdfTgX.

Two extra token lists are provides, \pdfxformresources and \pdfxformattr, as an alterna-
tive to \pdfxform keywords.

The current version of LuaTgX no longer replaces and/or merges fonts in embedded pdf files
with fonts of the enveloping pdf document. This regression may be temporary, depending on
how the rewritten font backend will look like.

The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewidth
and \pageheight have that purpose.

The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed and
\pdfrandomseed have been promoted to core primitives without pdf prefix so the original
commands are no longer recognized.

The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

As the hz and protrusion mechanism are part of the core the related primitives \lpcode,
\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitives.
The two commands \protrudechars and \adjustspacing replace their prefixed with \pdf
originals.

The hz optimization code has been partially redone so that we no longer need to create extra
font instances. The front- and backend have been decoupled and more efficient (pdf) code is
generated.

When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When
the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

The \tagcode primitive is promoted to core primitive.

The \letterspacefont feature is now part of the core but will not be changed (improved).
We just provide it for legacy use.

The \pdfnoligatures primitive is now \ignoreligaturesinfont.

The \pdfcopyfont primitive is now \copyfont.

The \pdffontexpand primitive is now \expandglyphsinfont.

Because position tracking is also available in dvi mode the \savepos, \lastxpos and \lasty-
pos commands now replace their pdf prefixed originals.

The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been re-
moved. One can use external applications to determine these properties or use the built-in
img library.

The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is now
\draftmode.

The pixel multiplier dimension \pdfpxdimen lost its prefix and is now called \pxdimen.

An extra \pdfimageaddfilename option has been added that can be used to block writing the
filename to the pdf file.

The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backend.
The experimental primitive \pdfinsertht is kept as \insertht.

There is some more control over what metadata goes into the pdf file.

Modifications 35 *:‘

» The promotion of primitives to core primitives as well as the separation of font- and backend
means that the initialization namespace pdftex is gone.

One change involves the so called xforms and ximages. In pdfTEX these are implemented as so
called whatsits. But contrary to other whatsits they have dimensions that need to be taken into
account when for instance calculating optimal line breaks. In LuaTgX these are now promoted
to a special type of rule nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the ability
to use content that has been rendered in several places, and images are also common. As already
mentioned in section 2.13.4, we now have:

LUATEX PDFTEX

\saveboxresource \pdfxform
\saveimageresource \pdfximage
\useboxresource \pdfrefxform
\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform
\lastsavedimageresourceindex \pdflastximage
\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdffeedback features that relate to this but these are typical backend specific
ones. The index that gets returned is to be considered as ‘just a number’ and although it still
has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.
When protrusion characters are identified some nodes are skipped:

» zero glue » dir nodes

» penalties » empty horizontal lists

» empty discretionaries » local par nodes

» normal zero kerns » inserts, marks and adjusts
» rules with zero dimensions > boundaries

» math nodes with a surround of zero » whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next
node being ignored. When the value is 1 or 3, the next node will be ignored in the test when
locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored
when locating a right boundary condition (the search goes from right to left). This permits
protrusion combined with for instance content moved into the margin:

\protrusionboundaryl\llap{!\quad}«Who needs protrusion?»

3.1.5 Changes from ALEPH RC4

Because we wanted proper directional typesetting the Aleph mechanisms looked most attractive.
These are rather close to the ones provided by Omega, so what we say next applies to both these
programs.

- ~

‘i“’ 36 Modifications

hy -

The extended 16-bit math primitives (\omathcode etc.) have been removed.

The OCP processing has been removed completely and as a consequence, the following
primitives have been removed: \ocp, \externalocp, \ocplist, \pushocplist, \popoc-
plist, \clearocplists, \addbeforeocplist, \addafterocplist, \removebeforeocplist,
\removeafterocplist and \ocptracelevel.

LuaTgX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arabic),
RTT (cjk), LTL (mongolian). All other direction specifiers generate an error.

The input translations from Aleph are not implemented, the related primitives are not
available: \DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \De-
faultOutputMode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInput-
Translation, \noDefaultInputTranslation, \noInputTranslation, \InputTranslation,
\DefaultOutputTranslation, \noDefaultOutputTranslation, \noOutputTranslation and
\OutputTranslation.

Several bugs have been fixed an confusing implementation details have been sorted out.
The scanner for direction specifications now allows an optional space after the direction is
completely parsed.

The ~” notation has been extended: after ~~"" four hexadecimal characters are expected and
after """ six hexadecimal characters have to be given. The original TgX interpretation is
still valid for the ~" case but the four and six variants do no backtracking, i.e. when they are
not followed by the right number of hexadecimal digits they issue an error message. Because
~~~ is a normal TgX case, we don’t support the odd number of **"*"" either.

Glues immediately after direction change commands are not legal breakpoints.

Several mechanisms that need to be right-to-left aware have been improved. For instance
placement of formula numbers.

The page dimension related primitives \pagewidth and \pageheight have been promoted to
core primitives. The \hoffset and \voffset primitives have been fixed.

The primitives \charwd, \charht, \chardp and \charit have been removed as we have the
e-TgX variants \fontchar*.

The two dimension registers \pagerightoffset and \pagebottomoffset are now core prim-
itives.

The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir and
\boxdir are now core primitives.

The promotion of primitives to core primitives as well as the removed of all others means that
the initialization namespace aleph that early versions of LuaTgX provided is gone.

The above let’s itself summarize as: we took the 32 bit aspects and much of the directional
mechanisms and merged it into the pdfTEX code base as starting point for further development.
Then we simplified directionality, fixed it and opened it up.

3.1.6 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C step.
This framework also provides some common features that deal with reading bytes from files and
locating files in tds. This is what we do different:

There is no mltex support.
There is no enctex support.

Modifications 37 {\‘\p



» The following encoding related command line switches are silently ignored, even in non-Lua
mode: -8bit, -translate-file, -mltex, -enc and -etex.

» The \openout whatsits are not written to the log file.

» Some of the so-called web2c extensions are hard to set up in non-kpse mode because
texmf.cnf is not read: shell-escape is off (but that is not a problem because of Lua’s 0s.ex-
ecute), and the paranoia checks on openin and openout do not happen. However, it is easy
for a Lua script to do this itself by overloading io.open and alike.

» The ‘E’ option does not do anything useful.

3.2 The backend primitives \pdf *

In a previous section we mentioned that some pdfIgX primitives were removed and others pro-
moted to core LuaTgX primitives. That is only part of the story. In order to separate the backend
specific primitives in de code these commands are now replaced by only a few. In traditional
TgX we only had the dvi backend but now we have two: dvi and pdf. Additional functionality is
implemented as ‘extensions’ in TgX speak. By separating more strickly we are able to keep the
core (fontend) clean and stable and isolate these extensions. If for some reason an extra back-
end option is needed, it can be implemented without touching the core. The three pdf backend
related primitives are:

\pdfextension command [specification]
\pdfvariable name
\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (kind
of) register and can be read and written, while a feedback is reporting something (as it comes
from the backend it’s normally a sequence of tokens).

In order for LuaTgX to be more than just TEX you need to enable primitives. That has already
be the case right from the start. If you want the traditional pdfIgX primitives (for as far their
functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}
\protected\def\pdfcolorstack {\pdfextension colorstack}
\protected\def\pdfsetmatrix {\pdfextension setmatrix}
\protected\def\pdfsave {\pdfextension save\relax}
\protected\def\pdfrestore {\pdfextension restore\relax}
\protected\def\pdfobj {\pdfextension obj }
\protected\def\pdfrefobj {\pdfextension refobj }
\protected\def\pdfannot {\pdfextension annot }
\protected\def\pdfstartlink {\pdfextension startlink }
\protected\def\pdfendlink {\pdfextension endlink\relax}
\protected\def\pdfoutline {\pdfextension outline }
\protected\def\pdfdest {\pdfextension dest }
\protected\def\pdfthread {\pdfextension thread }
\protected\def\pdfstartthread {\pdfextension startthread }
\protected\def\pdfendthread {\pdfextension endthread\relax}

- ~

// \\
! \ . .
\‘, 38 Modifications

hy -



\protected\def\pdfinfo
\protected\def\pdfcata
\protected\def\pdfname
\protected\def\pdfincl
\protected\def\pdffont
\protected\def\pdfmapf
\protected\def\pdfmapl
\protected\def\pdftrai
\protected\def\pdfglyp

{\pdfextension info }
log {\pdfextension catalog }
S {\pdfextension names }
udechars {\pdfextension includechars }
attr {\pdfextension fontattr }
ile {\pdfextension mapfile }
ine {\pdfextension mapline }
ler {\pdfextension trailer }
htounicode {\pdfextension glyphtounicode }

The introspective primitives can be defined as:

\def\pdftexversion {\numexpr\pdffeedback version\relax}
\def\pdftexrevision {\pdffeedback revision}
\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}
\def\pdfretval {\numexpr\pdffeedback retvallrelax}
\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}
\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}
\def\pdfxformname {\numexpr\pdffeedback xformname\relax}
\def\pdfcreationdate {\pdffeedback creationdate}
\def\pdffontname {\numexpr\pdffeedback fontname\relax}
\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}
\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}
\def\pdfpageref {\numexpr\pdffeedback pageref\relax}
\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The configuration related registers have become:

\edef\pdfcompresslevel {\pdfvariable compresslevel}
\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}
\edef\pdfdecimaldigits {\pdfvariable decimaldigits}
\edef\pdfgamma {\pdfvariable gamma}
\edef\pdfimageresolution {\pdfvariable imageresolution}
\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}
\edef\pdfimagegamma {\pdfvariable imagegamma}
\edef\pdfimagehicolor {\pdfvariable imagehicolor}
\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}
\edef\pdfpkresolution {\pdfvariable pkresolution}
\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}
\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}
\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}
\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}
\edef\pdfgentounicode {\pdfvariable gentounicode}
\edef\pdfomitcidset {\pdfvariable omitcidset}
\edef\pdfpagebox {\pdfvariable pagebox}
\edef\pdfminorversion {\pdfvariable minorversion}
\edef\pdfuniqueresname {\pdfvariable uniqueresname}

Modifications 39



\edef\pdfhorigin {\pdfvariable horigin}
\edef\pdfvorigin {\pdfvariable vorigin}
\edef\pdflinkmargin {\pdfvariable linkmargin}
\edef\pdfdestmargin {\pdfvariable destmargin}
\edef\pdfthreadmargin {\pdfvariable threadmargin}
\edef\pdfxformmargin {\pdfvariable xformmargin}
\edef\pdfpagesattr {\pdfvariable pagesattr}
\edef\pdfpageattr {\pdfvariable pageattr}
\edef\pdfpageresources {\pdfvariable pageresources}
\edef\pdfxformattr {\pdfvariable xformattr}
\edef\pdfxformresources {\pdfvariable xformresources}
\edef\pdfpkmode {\pdfvariable pkmode}
\edef\pdfsuppressoptionalinfo {\pdfvariable suppressoptionalinfo }
\edef\pdftrailerid {\pdfvariable trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a few

previously defined ones:

\meaning\pdfhorigin
\meaning\pdfcompresslevel
\meaning\pdfpageattr

you will get:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]

The \edef can also be an \def but it’s a bit more efficient to expand the lookup related register
beforehand. After that you can adapt the defaults; these are:

\pdfcompresslevel 9
\pdfobjcompresslevel 1 % used: (0,9)
\pdfdecimaldigits 4 % used: (3,6)
\pdfgamma 1000
\pdfimageresolution 71
\pdfimageapplygamma 0
\pdfimagegamma 2200
\pdfimagehicolor 1
\pdfimageaddfilename 1
\pdfpkresolution 72
\pdfpkfixeddpi 0
\pdfinclusioncopyfonts 0
\pdfinclusionerrorlevel 0
\pdfignoreunknownimages 0
\pdfgentounicode 0

- ~

‘:“. 40 Modifications

hy -



\pdfomitcidset
\pdfpagebox
\pdfminorversion
\pdfuniqueresname

\pdfhorigin
\pdfvorigin
\pdflinkmargin
\pdfdestmargin
\pdfthreadmargin
\pdfxformmargin

If you also want some backward compatibility, you can add:

\let\pdfpagewidth
\let\pdfpageheight

\let\pdfadjustspacing
\let\pdfprotrudechars
\let\pdfnoligatures
\let\pdffontexpand
\let\pdfcopyfont

\let\pdfxform
\let\pdflastxform
\let\pdfrefxform

\let\pdfximage
\let\pdflastximage

\let\pdfrefximage
\let\pdfsavepos
\let\pdflastxpos
\let\pdflastypos

\let\pdfoutput
\let\pdfdraftmode

\let\pdfpxdimen
\let\pdfinsertht

\let\pdfnormaldeviate

\let\pdfuniformdeviate

\let\pdfsetrandomseed
\let\pdfrandomseed

o b~ OO

lin
lin
Opt
Opt
Opt
Opt

\pagewidth
\pageheight

\adjustspacing
\protrudechars

\ignoreligaturesinfont
\expandglyphsinfont

\copyfont

\saveboxresource

\lastsavedboxresourceindex

\useboxresource

\saveimageresource
\lastsavedimageresourceindex
\let\pdflastximagepages\lastsavedimageresourcepages
\useimageresource

\savepos
\lastxpos
\lastypos

\outputmode
\draftmode

\pxdimen
\insertht
\normaldeviate
\uniformdeviate

\setrandomseed
\randomseed

Modifications 41



\let\pdfprimitive \primitive
\let\ifpdfprimitive \ifprimitive

\let\ifpdfabsnum \ifabsnum
\let\ifpdfabsdim \ifabsdim
And even:

\newdimen\pdfeachlineheight
\newdimen\pdfeachlinedepth
\newdimen\pdflastlinedepth
\newdimen\pdffirstlineheight
\newdimen\pdfignoreddimen

The backend is derived from pdfTEX so the same syntax applies. However, the outline command
accepts a objnum followed by a number. No checking takes place so when this is used it had
better be a valid (flushed) object.

In order to be (more or less) compatible with pdfIgX we also support the option to suppress
some info:

\pdfvariable suppressoptionalinfo \numexpr

0
+ 1 % PTEX.FullBanner
+ 2 % PTEX.FileName
+ 4 % PTEX.PageNumber
+ 8 % PTEX.InfoDict
+ 16 % Creator
+ 32 % CreationDate
+ 64 % ModDate
+ 128 % Producer
+ 256 % Trapped
+ 512 % ID
\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you have
to pass a valid array. The following is like the ones normally generated by the engine:

\pdfvariable trailerid {[
<FA052949448907805BA83C1E78896398>
<FA052949448907805BA83C1E78896398>

1}

So, you even need to include the brackets!

Although we started from a merge of pdfIgX and Aleph, by now the code base as well as func-
tionality has diverted from those parents. Here we show the options that can be passed to the
extensions.

\pdfextension literal

- ~

{‘\. 42 Modifications

hy -



[ direct | page | raw ] { tokens }

\pdfextension dest
num integer | name { tokens }!crlf
[ fitbh | fitbv | fitb | fith| fitv | fit |
fitr <rule spec> | xyz [ zoom <integer> ]

\pdfextension annot
reserveobjnum | useobjnum <integer>
{ tokens }

\pdfextension save
\pdfextension restore

\pdfextension setmatrix
{ tokens }

[ \immediate ] \pdfextension obj
reserveobjnum

[ \immediate ] \pdfextension obj
[ useobjnum <integer> ]

[ uncompressed ]

[ stream [ attr { tokens } ] 1]

[ file ]

{ tokens }

\pdfextension refobj
<integer>

\pdfextension colorstack
<integer>
set { tokens } | push { tokens } | pop | current

\pdfextension startlink
[ attr { tokens } 1]
user { tokens } | goto | thread
[ file { tokens } ]
[ page <integer> { tokens } | name { tokens } | num
[ newwindow | nonewwindow ]

\pdfextension endlink

\pdfextension startthread
num <integer> | name { tokens }

\pdfextension endthread

\pdfextension thread

integer ]

Modifications 43 ‘:‘\b



num <integer> | name { tokens }

\pdfextension outline
[ attr { tokens } ]
[ useobjnum <integer> ]
[ count <integer> ]

{ tokens }

\pdfextension glyphtounicode
{ tokens }
{ tokens }

\pdfextension catalog
{ tokens }
[ openaction
user { tokens } | goto | thread
[ file { tokens } 1]
[ page <integer> { tokens } | name { tokens } | num <integer> ]
[ newwindow | nonewwindow ] ]

\pdfextension fontattr
<integer>
{tokens}

\pdfextension mapfile
{tokens}

\pdfextension mapline
{tokens}

\pdfextension includechars
{tokens}

\pdfextension info
{tokens}

\pdfextension names
{tokens}

\pdfextension trailer
{tokens}

3.3 Directions

The directional model in LuaTgX is inherited from Omega/Aleph but we tried to improve it a bit.
At some point we played with recovery of modes but that was disabled later on when we found
that it interfered with nested directions. That itself had as side effect that the node list was no
longer balanced with respect to directional nodes which in turn can give side effects when a
series of dir changes happens without grouping.

- ~

{\‘\6 44 Modifications



The current (0.97 onward) approach is that we again make the list balanced but try to avoid

some side effects. What happens is quite intuitive if we forget about spaces (turned into glue)

but even there what happens makes sense if you look at it in detail. However that logic makes in-
group switching kind of useless when no proper nested grouping is used: switching from right to

left several times nested, results in spacing ending up after each other due to nested mirroring.

Of course a sane macro package will manage this for the user but here we are discussing the

low level dir injection.

This is what happens:
\textdir TRT nur {\textdir TLT run \textdir TRT NUR} nur
This becomes stepwise:

injected: [+TRT]nur {[+TLT]run [+TRT]INUR} nur
balanced: [+TRTInur {[+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {RUNrun } run

And this:
\textdir TRT nur {nur \textdir TLT run \textdir TRT NUR} nur
becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]INUR} nur
balanced: [+TRTInur {nur [+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:
\textdir TRT nur {{\textdir TLT run} {\textdir TRT NUR}} nur

This becomes:
run RUN run run

Compare this to:
\textdir TRT nur {{\textdir TLT run }{\textdir TRT NUR}} nur

Which renders as:
run RUNrun run

So how do we deal with the next?

\def\ltr{\textdir TLT\relax}
\def\rtl{\textdir TRT\relax}

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

Modifications 45



run run RUNrun RUNrun run
run run runRUN runRUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir
node. But that way we loose the subtype information that for some applications can be handy to
be kept as-is. This is why we now have a variant of \textdir which injects the balanced node
before the skip. Instead of the previous definition we can use:

\def\ltr{\linedir TLT\relax}
\def\rt1{\linedir TRT\relax}

and this time:

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run run RUN run RUN run run
run run run RUN run RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be
handled in the input or macro package because there is no way we can predict the expected
behaviour. In fact, the \linedir is just a convenience extra which could also have been imple-
mented using node list parsing.

Glue after a dir node is ignored in the linebreak decision but you can bypass that by setting
\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

pre {\textdir TLT xxx} post pre pre
XXX post XXX

post

pre {\textdir TLT xxx }post pre pre
XXX XXX

post post

pre{ \textdir TLT xxx} post pre pre
XXX post XXX

post

pre{ \textdir TLT xxx }post pre pre
XXX XXX

post post

pre { \textdir TLT xxx } post pre pre
XXX XXX

post
post
pre {\textdir TLT\relax \space xxx} post pre pre
XXX post

. 46 Modifications



XXX
post

Another adaptation to the Aleph directional model is control over shapes driven by \hangindent

and \parshape. This is controlled by a new parameter \shapemode:

VALUE \HANGINDENT \PARSHAPE

0

1
2
3

normal normal
mirrored  normal
normal mirrored
mirrored  mirrored

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done with.

You can use negative values to prevent this. In figure 3.1 a few examples are given.

‘We thrive in information-thick worlds because of our]

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the goats.

e thrive in information-thick worlds because of our mar-
velous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, syn-

thesize, focus, organize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats

TLT: hangindent

TLT: parshape

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

-nis ,tide ,tceles ot yticapac yadyreve dna suolevram

-rah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg
nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf tachw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks

staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts

rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht

etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin

etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid

etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb

pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc

etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht

eht etarapes dna ffahc eht morf taechw eht wonniw ,ezisponys ,naelg
staog eht morf peehs

TRT: hangindent mode 0

TRT: parshape mode 0

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

rnis ,tide ,tceles ot yticapac yadyreve dna suolevram

trah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
tmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf taechw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks

taog eht morf peehs eht etarapes dna ffahc eht

TRT: hangindent mode 1 & 3

fram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts

rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva ,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taechw eht wonniw ,ezisponys ,naelg
staog eht morf peehs

TRT: parshape mode 2 & 3

Figure 3.1 The effect of shapemode.

3.4 Implementation notes

3.4.1 Memory allocation

The single internal memory heap that traditional TgX used for tokens and nodes is split into two

Modifications 47




separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main memory,
mem_bot, extra mem top and extra mem bot). ‘Out of main memory’ errors can still occur, but
the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code
now lives in the C file texnode. ¢, and basically uses a dozen or so ‘avail’ lists instead of a doubly-
linked model. An extra function layer is added so that the code can ask for nodes by type instead
of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some
of the macros have been duplicated. For instance, there are now vlink and vinfo as well as
token link and token info. All access to the variable memory array is now hidden behind a
macro called vmem. We mention this because using the TgXbook as reference is still quite valid
but not for memory related details. Another significate detail is that we have double linked node
lists and that most nodes carry more data.

The implementation of the growth of two arrays (via reallocation) introduces a potential pitfall:
the memory arrays should never be used as the left hand side of a statement that can modify
the array in question. Details like this are of no concern to users.

The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf
settings buf size and pool size are silently ignored.

3.4.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)
tables are now sparse arrays that are implemented in C. They are no longer part of the TgX
‘equivalence table’ and because each had 1.1 million entries with a few memory words each,
this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don’t show up when using
the e-TEX tracing routines \tracingassigns and \tracingrestores but we don’t see that as a
real limitation.

A side-effect of the current implementation is that \global is now more expensive in terms of
processing than non-global assignments but not many users will notice that.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up
to index 221 — 1 but these are never accessed directly so again users will not notice this.

3.4.3 Simple single-character csnames
Single-character commands are no longer treated specially in the internals, they are stored in
the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to
decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequences
that uses a prefix that is otherwise impossible to obtain.

/ ‘\6 48 Modifications



3.4.4 Compressed format

The format is passed through z1ib, allowing it to shrink to roughly half of the size it would have
had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it should
still be faster.

3.4.5 Binary file reading

All of the internal code is changed in such a way that if one of the read xxx_file callbacks is not
set, then the file is read by a C function using basically the same convention as the callback: a
single read into a buffer big enough to hold the entire file contents. While this uses more memory
than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on
your io subsystem).

3.4.6 Tabs and spaces

We conform to the way other TgX engines handle trailing tabs and spaces. For decades trailing
tabs and spaces (before a newline) were removed from the input but this behaviour was changed
in September 2017 to only handle spaces. We are aware that this can introduce compatibility
issues in existing workflows but because we don’t want too many differences with upstream
TeXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to
macro packages maintainers to deal with possible compatibility issues and in LuaTgX they can
do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from
generated sources) it was normally dealt with by adding a comment token to the line in case the
spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts
some of our other choices but consistency with other engines and the fact that in kpse mode a
common file io layer is used can have a side effect of breaking compatibility. We still stick to our
view that at the log level we can (and might be) more incompatible. We already expose some
more details.

Modifications 49 {‘,



50 Modifications



4 LUA general

4.1 Initialization

4.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTgX behave like a standalone Lua interpreter:

» ifa --luaonly option is given on the commandline, or
» if the executable is named texlua or luatexlua, or
» if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in
negative values and the rest of the command line in the positive values, just like the Lua inter-
preter.

LuaTgX will exit immediately after executing the specified Lua script and is, in effect, a somewhat
bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

4.1.2 LUATEX as a LUA byte compiler
There are two situations that make LuaTgX behave like the Lua byte compiler:

» ifa --luaconly option is given on the command line, or
» if the executable is named texluac

In this mode, LuaTgX is exactly like luac from the stand alone Lua distribution, except that
it does not have the -1 switch, and that it accepts (but ignores) the --luaconly switch. The
current version of Lua can dump bytecode using string.dump so we might decide to drop this
version if LuaTgX.

4.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the - -lua command line option. If there is no
- -lua option, the command line is interpreted in a similar fashion as the other TgX engines.
Some options are accepted but have no consequence. The following command-line options are
understood:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--debug-format enable format debugging

--draftmode switch on draft mode i.e. generate no output in pdf mode
--[no-]file-line-error disable/enable file:line:error style messages
--[no-]file-line-error-style aliasesof --[no-]file-line-error

- - Tmt=FORMAT load the format file FORMAT

// \\
/ \
Lua general 51 \‘.f



--halt-on-error stop processing at the first error

--help display help and exit

--ini be iniluatex, for dumping formats

--interaction=STRING set interaction mode: batchmode, nonstopmode, scrollmode
or errorstopmode

- -jobname=STRING set the job name to STRING

- -kpathsea-debug=NUMBER set path searching debugging flags according to the bits of
NUMBER

--lua=FILE load and execute a Lua initialization script

--[no-Imktex=FMT disable/enable mktexFMT generation with FMT is tex or tfm

--nosocket disable the Lua socket library

--output-comment=STRING use STRING for dvi file comment instead of date (no effect for
pdf)

--output-directory=DIR use DIR as the directory to write files to

--output-format=FORMAT use FORMAT for job output; FORMAT is dvi or pdf

- -progname=STRING set the program name to STRING

--recorder enable filename recorder

--safer disable easily exploitable Lua commands

--[no-]shell-escape disable/enable system calls

--shell-restricted restrict system calls to a list of commands given in texmf.cnf

- -synctex=NUMBER enable synctex

--utc use utc times when applicable

--version display version and exit

We don’t support \write 18 because 0s.execute can do the same. It simplifies the code and
makes more write targets possible.

The value to use for \ jobname is decided as follows:

» If --jobname is given on the command line, its argument will be the value for \jobname,
without any changes. The argument will not be used for actual input so it need not exist. The
- - jobname switch only controls the \ jobname setting.

» Otherwise, \ jobname will be the name of the first file that is read from the file system, with
any path components and the last extension (the part following the last .) stripped off.

» There is an exception to the previous point: if the command line goes into interactive mode
(by starting with a command) and there are no files input via \everyjob either, then the
\jobname is set to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the
proper extension (log, pdf, etc.) to the found \ jobname. These files are created in the directory
pointed to by --output-directory, or in the current directory, if that switch is not present.

Without the - - lua option, command line processing works like it does in any other web2c-based
typesetting engine, except that LuaTgX has a few extra switches and lacks some others. Also, if
the - -lua option is present, LuaTgX will enter an alternative mode of command line processing
in comparison to the standard web2c programs. In this mode, a small series of actions is taken
in order.

- ~

// \\
/ \
\“’ 52 Lua general

hy -



1. First, it will parse the command line as usual, but it will only interpret a small subset of
the options immediately: --safer, --nosocket, --[no-]shell-escape, --enable-writels,
--disable-writel8, --shell-restricted, --help, --version, and --credits.

2. Next LuaTgX searches for the requested Lua initialization script. If it cannot be found using
the actual name given on the command line, a second attempt is made by prepending the
value of the environment variable LUATEXDIR, if that variable is defined in the environment.

3. Then it checks the various safety switches. You can use those to disable some Lua commands
that can easily be abused by a malicious document. At the moment, - -safer nils the follow-
ing functions:

LIBRARY FUNCTIONS

0s execute exec spawn setenv rename remove tmpdir
io popen output tmpfile
1fs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on
files that are opened for anything besides reading.

4. When LuaTgX starts it set the locale to a neutral value. If for some reason you use 0s. locale,
you need to make sure you nil it afterwards because otherwise it can interfere with code that
for instance generates dates. You can nil the locale with

os.setlocale(nil.nil)

The - -nosocket option makes the socket library unavailable, so that Lua cannot use network-
ing.
The switches --[no-]shell-escape, --[enable|disable] -writel8, and - -shell-restricted
have the same effects as in pdfTEX, and additionally make io.popen(), os.execute, 0s.exec
and os.spawn adhere to the requested option.

5. Next the initialization script is loaded and executed. From within the script, the entire com-
mand line is available in the Lua table arg, beginning with arg[0@], containing the name of
the executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TgX’s initializa-
tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, token,
node and pdf, are off-limits during the execution of the startup file (they are nil’d). Special care
is taken that texio.write and texio.write nl function properly, so that you can at least report
your actions to the log file when (and if) it eventually becomes opened (note that TgX does not
even know its \ jobname yet at this point).

Everything you do in the Lua initialization script will remain visible during the rest of the run,
with the exception of the TgX specific libraries like tex, token, node and pdf tables. These will
be initialized to their documented state after the execution of the script. You should not store
anything in variables or within tables with these four global names, as they will be overwritten
completely.

We recommend you use the startup file only for your own TgX-independent initializations (if
you need any), to parse the command line, set values in the texconfig table, and register the
callbacks you need.

// \\
!
Lua general 53 \‘.



LuaTgX allows some of the command line options to be overridden by reading values from the
texconfig table at the end of script execution (see the description of the texconfig table later
on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTgX not to initialize kpathsea at all (set texcon-
fig.kpse init to false for that), LuaTEgX acts on some more command line options after the
initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTgX
needs to know the correct program name to use, and for that it needs to check - -progname, or
--ini and - -fmt, if - -progname is missing.

4.2 LUA behaviour

Luas tostring function (and string.format may return values in scientific notation, thereby
confusing the TEX end of things when it is used as the right-hand side of an assignment to a
\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua 5.3
you can get different output than from 5.2.

LuaTgX is able to use the kpathsea library to find require()d modules. For this purpose, pack-
age.searchers[2] is replaced by a different loader function, that decides at runtime whether to
use kpathsea or the built-in core Lua function. It uses kpathsea when that is already initialized
at that point in time, otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTgX starts up and the startup
script has not set texconfig.kpse init to false), or explicitly by calling the Lua function
kpse.set program name().

LuaTgX is able to use dynamically loadable Lua libraries, unless - -safer was given as an option
on the command line. For this purpose, package.searchers[3] is replaced by a different loader
function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It
uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using
the normal package.cpath loader.

This functionality required an extension to kpathsea. There is a new kpathsea file format:
kpse clua format that searches for files with extension .d1l1 and .so. The texmf.cnf setting
for this variable is CLUAINPUTS, and by default it has this value:

CLUAINPUTS=. : $SELFAUTOLOC/lib/{$progname, $engine, }/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the architec-
ture has to be in the path somewhere, and the currently simplest way to do that is to search
below the binaries directory only. Of course it no big deal to write an alternative loader and use
that in a macro package. One level up (a 1ib directory parallel to bin) would have been nicer,
but that is not doable because TgXLive uses a bin/<arch> structure.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time
(which will typically happen on win32, because there is one Lua 5.3 inside LuaTgX, and another
will likely be linked to the dll file of the module itself).

In keeping with the other TgX-like programs in TgXLive, the two Lua functions os.execute and
io.popen, as well as the two new functions os.exec and os.spawn that are explained below,
take the value of shell escape and/or shell escape commands in account. Whenever LuaTgX

- ~

i \\
\“’ 54 Lua general

hy -



is run with the assumed intention to typeset a document (and by that we mean that it is called as
luatex, as opposed to texlua, and that the command line option --luaonly was not given), it
will only run the four functions above if the matching texmf. cnf variable(s) or their texconfig
(see section 10.4) counterparts allow execution of the requested system command. In ‘script
interpreter’ runs of LuaTgX, these settings have no effect, and all four functions function as
normal.

Some libraries have a few more functions, either coded in C or in Lua. For instance, when we
started with LuaTgX we added some helpers to the luafilesystem namespace 1fs. The two
boolean functions 1fs.isdir and lfs.isfile were speedy and better variants of what could
be done with 1fs.attributes. The additional function 1fs.shortname takes a file name and
returns its short name on win32 platforms. Finally, for non-win32 platforms only, we provided
1fs.readlink that takes an existing symbolic link as argument and returns its name. However,
the ibrary evoved sop now we dropped these in favour of pure Lua variants. The shortname
helper is considered obsolete and now just returns the name.

The string library has a few extra functions like string.explode(s[,m]). This function re-
turns an array containing the string argument s split into sub-strings based on the value of the
string argument m. The second argument is a string that is either empty (this splits the string
into characters), a single character (this splits on each occurrence of that character, possibly
introducing empty strings), or a single character followed by the plus sign + (this special version
does not create empty sub-strings). The default value for mis * +’ (multiple spaces). Note: m is
not hidden by surrounding braces as it would be if this function was written in TgX macros.

The string library also has six extra iterators that return strings piecemeal:

» string.utfvalues(s): an integer value in the Unicode range

» string.utfcharacters(s): a string with a single utf-8 token in it

» string.characters(s): a string containing one byte

» string.characterpairs(s): two strings each containing one byte or an empty second string
if the string length was odd

» string.bytes(s): a single byte value

» string.bytepairs(s): two byte values or nil instead of a number as its second return value
if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the
conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,
if true, strips the symbols from the dumped data. This matches an extension made in luajit.
This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the
utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func-
tions from the slnunicode library can be used, e.g., unicode.utf8.1len, unicode.utf8.lower
etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and
unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are
Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture
() but other captures work as expected. For the interpretation of character classes in uni-
code.utf8 functions refer to the library sources at http://luaforge.net/projects/sin.

Lua general 55 {\“



}
\

’

~

-

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers
too:

» string.utfvalue(s): returns the codepoints of the characters in the given string
» string.utfcharacter(c,...): returns a string with the characters of the given code points
» string.utflength(s): returns the length oif the given string

These three functions are relative fast and don’t do much checking. They can be used as building
blocks for other helpers. So, eventually we can decide to drop the sln library, just that you know.

The os library has a few extra functions and variables:

» os.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

» o0s.exec(commandline) is a variation on os.execute. Here commandline can be either a
single string or a single table.

- If the argument is a table LuaTgX first checks if there is a value at integer index zero. If
there is, this is the command to be executed. Otherwise, it will use the value at integer
index one. If neither are present, nothing at all happens.

- The set of consecutive values starting at integer 1 in the table are the arguments that
are passed on to the command (the value at index 1 becomes arg[0]). The command is
searched for in the execution path, so there is normally no need to pass on a fully qualified
path name.

- If the argument is a string, then it is automatically converted into a table by splitting on
whitespace. In this case, it is impossible for the command and first argument to differ
from each other.

- In the string argument format, whitespace can be protected by putting (part of) an argu-
ment inside single or double quotes. One layer of quotes is interpreted by LuaTgX, and
all occurrences of \", \'' or \\ within the quoted text are unescaped. In the table format,
there is no string handling taking place.

This function normally does not return control back to the Lua script: the command will

replace the current process. However, it will return the two values nil and error if there

was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of

the command has finished. This prevents crashes in situations where TgXLua scripts are run

inside integrated TgX environments.

The original reason for this command is that it cleans out the current process before starting

the new one, making it especially useful for use in TgXLua.

» 0s.spawn(commandline) is a returning version of os.exec, with otherwise identical calling
conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,

it will return the two values nil and error.

» os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value
string will remove the variable.

» o0s.env is a hash table containing a dump of the variables and values in the process envi-
ronment at the start of the run. It is writeable, but the actual environment is not updated
automatically.

"“, 56 Lua general



» os.gettimeofday() returns the current ‘Unix time’, but as a float. This function is not avail-
able on the SunOS platforms, so do not use this function for portable documents.

» o0s.times ()returns the current process times according to the Unix C library function ‘times’.
This function is not available on the MS Windows and SunOS platforms, so do not use this
function for portable documents.

» os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXXXXX
where the X-es are replaced by a unique string. The function also returns this string, so you
can Lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for
cleaning up at the end of the run, it does not happen automatically.

» o0s.typeisastring that gives a global indication of the class of operating system. The possible
values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

» o0s.name is a string that gives a more precise indication of the operating system. These pos-
sible values are not yet fixed, and for os.type values windows and msdos, the os.name values
are simply windows and msdos
The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-
laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv
(unknown, but sysv-like), generic (unknown).

» os.uname() returns a table with specific operating system information acquired at runtime.
The keys in the returned table are all string valued, and their names are: sysname, machine,
release, version, and nodename.

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, because it
makes documents unportable. While LuaTgX is running if forces the following locale settings:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

4.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTgX, because
they offer useful functionality:

» 1peg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. This
library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly
means that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, and
thus 1peg.S will look for one of those two bytes when matching, not the combination of the
two. The same is true for lpeg.R, although the latter will display an error message if used
with multibyte characters. Therefore lpeg.R('aa') results in the message bad argument #1
to 'R' (range must have two characters), since to lpeg, a is two ‘characters’ (bytes), so
aa totals three. In practice this is no real issue and with some care you can deal with Unicode
just fine.

» slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has been
slightly extended so that the unicode.utf8.* functions also accept the first 256 values of
plane 18. This is the range LuaTgX uses for raw binary output, as explained above. We have
no plans to provide more like this because you can basically do all that you want in Lua.

» luazip, from the kepler project, http://www.keplerproject.org/luazip/.
Lua general 57 {\“



» Tluafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.

» 1z1lib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/.

» md>5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.

» Tluasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The . lua support
modules from luasocket are also preloaded inside the executable, there are no external file
dependencies.

4.4 Testing

For development reasons you can influence the used startup date and time. This can be done in
two ways.

1. By setting the environmment variable SOURCE_DATE_EPOCH. This will influence the TgX para-
meters time and date, the random seed, the pdf timestamp and the pdf id that is derived
from the time as well. This variable is consulted when the kpse library is enabled. Resolving
is delegated to this library.

2. By setting the start_time variable in the texconfig table; as with other variables we use the
internal name there. For compatibility reasons we also honour a SOURCE_DATE EPOCH entry.
It should be noted that there are no such variables in other engines and this method is only
relevant in case the while setup happens in Lua.

When Universal Time is needed, you can pass the flag utc to the engine. This property also works
when the date and time are set by LuaTgX itself. It has a complementary entry use_utc_time in
the texconfig table.

There is some control possible, for instance prevent filename to be written to the pdf file. This is
discussed elsewhere. In ConTEXt we provide the command line argument - -nodates that does
bit more disabling of dates.

- ~

i \\
\“f 58 Lua general

hy -



5 Languages, characters, fonts and
glyphs

LuaTgX’s internal handling of the characters and glyphs that eventually become typeset is quite
different from the way TgX82 handles those same objects. The easiest way to explain the differ-
ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later
on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char node records when they are encoun-
tered by the main control loop. TgX attaches and processes the font information while creating
those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-
plicit kerning. This packaging is needed because we may want to get the effective width of for
instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time)
the char node records into a string by replacing ligatures with their components and ignoring
the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated
result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.
Keep in mind that the paragraph may contain unboxed horizontal material, which then already
contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,
and therefore not really ‘characters’ in the linguistic sense. There is no language information in-
side the char node records at all. Instead, language information is passed along using language
whatsit nodes inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted into
glyph node records with a special subtype to identify them as being intended as linguistic char-
acters. LuaTgX stores the needed language information in those records, but does not do any
font-related processing at the time of node creation. It only stores the index of the current font
and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTgX first inserts all hyphenation points
right into the whole node list. Next, it processes all the font information in the whole list (creating
ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the
records are ‘glyph nodes’ from now on.

5.1 Characters and glyphs

TEX82 (including pdfTgX) differentiates between char nodes and lig nodes. The former are
simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the
same memory as tokens did. The latter also contained a list of components, and a subtype
indicating whether this ligature was the result of a word boundary, and it was stored in the
same place as other nodes like boxes and kerns and glues.

In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph nodes.
Besides having the old character, font, and component fields there are a few more, like ‘attr’ that

Languages, characters, fonts and glyphs 59 *:‘



we will see in section 8.1.2.12, these nodes also contain a subtype, that codes four main types
and two additional ghost types. For ligatures, multiple bits can be set at the same time (in case
of a single-glyph word).

» character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

» glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

» ligature, for constructed ligatures bit 1 is set

» ghost, for so called ‘ghost objects’ bit 2 is set

» left, forligatures created from a left word boundary and for ghosts created from \leftghost
bit 3 gets set

» right, for ligatures created from a right word boundary and for ghosts created from \right-
ghost bit 4 is set

The glyph nodes also contain language data, split into four items that were current when the
node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin (8
bits), and \uchyph (1 bit).

Incidentally, LuaTgX allows 16383 separate languages, and words can be 256 characters long.
The language is stored with each character. You can set \firstvalidlanguage to for instance 1
and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This
value stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from
TEX82: changes to \uchyph become effective immediately, not at the end of the current partial
paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,
so there is no longer a possible dependency on the surrounding language settings. In TgX82, a
mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-
guage unless there was a \setlanguage issued inside the box. In LuaTgX, all language variables
are already frozen.

In traditional TgX the process of hyphenation is driven by lccodes. In LuaTgX we made this de-
pendency less strong. There are several strategies possible. When you do nothing, the currently
used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of Lccodes will be
saved with the language. In that case changing a lccode afterwards has no effect. However,
you can adapt the set with:

\hjcode a="a

This change is global which makes sense if you keep in mind that the moment that hyphenation
happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-
phcodes was zero when the language got initialized you start out with nothing, otherwise you
already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the fol-
lowing example we map a character (x) onto another one in the patterns and tell the engine that e
counts as one character. Because traditionally zero itself is reserved for inhibiting hyphenation,
a value of 32 counts as zero.

‘/‘, 60 Languages, characters, fonts and glyphs



Here are some examples (we assume that French patterns are used):

foobar foo-bar

\hjcode “x="0 fxxbar fxx-bar
\lefthyphenmin 3 edipus @di-pus
\lefthyphenmin 4 edipus edipus
\hjcode "@=2 edipus cdi-pus

\hjcode “i=32 \hjcode “d=32 ®dipus w®dipus

Carrying all this information with each glyph would give too much overhead and also make the
process of setting up thee codes more complex. A solution with hjcode sets was considered but
rejected because in practice the current approach is sufficient and it would not be compatible
anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-
codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance
discretionary injection. For this you can use the \wordboundary as trigger. Here are a few
examples of usage:

discrete---discrete
discrete—discrete
discrete\discretionary{}{}{---}discrete

discrete
discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-
crete
discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-
crete
dis-
crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-

crete—

dis-

crete
We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of
explicit hyphens as that normally indicates a - - or - - - ligature in which case we can in a worse

Languages, characters, fonts and glyphs 61 {\‘



case usage get bad node lists later on due to messed up ligature building as these dashes are
ligatures in base fonts. This is a side effect of the separating the hyphenation, ligaturing and
kerning steps.

The start and end of a characters is signalled by a glue, penalty, kern or boundary node. But
by default also a hlist, vlist, r