LualgX
Reference
Manual

Lualp)
Reference
Manua

copyright : LuaTgX development team
more info : www.luatex.org
version : January 7, 2019

Contents

Introduction
1 Preamble
2 Basic TgX enhancements
2.1 Introduction
2.1.1 Primitive behaviour
2.1.2 Version information
2.2 UNICODE text support
2.2.1 Extended ranges
2.2.2 \Uchar
2.2.3 Extended tables
2.3 Attributes
2.3.1 Nodes
2.3.2 Attribute registers
2.3.3 Box attributes

2.4 LUA related primitives
2.4.1 \directlua
2.4.2 \latelua and \lateluafunction
2.4.3 \luaescapestring
2.4.4 \luafunction, \luafunctioncall and \luadef
2.4.5 \luabytecode and \luabytecodecall
2.5 Catcode tables
2.5.1 Catcodes
2.5.2 \catcodetable
2.5.3 \initcatcodetable
2.5.4 \savecatcodetable
2.6 Suppressing errors

2.6.1 \suppressfontnotfounderror

2.6.2 \suppresslongerror

2.6.3 \suppressifcsnameerror

2.6.4 \suppressoutererror

2.6.5 \suppressmathparerror

2.6.6 \suppressprimitiveerror
2.7 Fonts

2.7.1 Font syntax

2.7.2 \fontid and \setfontid

2.7.3 \noligs and \nokerns

2.7.4 \hospaces

2.8 Tokens, commands and strings

2.8.1 \scantextokens

2.8.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,
\xtoksapp, \xtokspre

2.8.3 \csstring, \begincsname and \lastnamedcs

2.8.4 \clearmarks
2.8.5 \alignmark and \aligntab
2.8.6 \letcharcode
2.8.7 \glet
2.8.8 \expanded, \immediateassignment and \immediateassigned
2.8.9 \ifcondition
2.9 Boxes, rules and leaders
2.9.1 \outputbox
2.9.2 \vpack, \hpack and \tpack
2.9.3 \vsplit
2.9.4 Images and reused box objects
2.9.5 \nohrule and \novrule
2.9.6 \gleaders
2.10 Languages
2.10.1 \hyphenationmin
2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary
2.11 Control and debugging
2.11.1 Tracing
2.11.2 \outputmode
2.11.3 \draftmode
2.12 Files
2.12.1 File syntax
2.12.2 Writing to file
2.13 Math

3 Modifications
3.1 The merged engines
3.1.1 The need for change
3.1.2 Changes from TgX 3.1415926
3.1.3 Changes from &-TgX 2.2
3.1.4 Changes from PDFTgEX 1.40
3.1.5 Changes from ALEPH RC4
3.1.6 Changes from standard WEB2C
3.2 The backend primitives
3.2.1 Less primitives
3.2.2 \pdfextension, \pdfvariable and \pdffeedback
3.2.3 Defaults
3.2.4 Backward compatibility
3.3 Directions
3.3.1 Four directions
3.3.2 How it works
3.3.3 Controlling glue with \breakafterdirmode
3.3.4 Controling parshapes with \shapemode
3.3.5 Symbols or numbers

3.4 Implementation notes
3.4.1 Memory allocation
3.4.2 Sparse arrays
3.4.3 Simple single-character csnames
3.4.4 The compressed format file
3.4.5 Binary file reading
3.4.6 Tabs and spaces

4 Using LUATEX
4.1 [Initialization
4.1.1 LUATEX as a LUA interpreter
4.1.2 LUATEX as a LUA byte compiler
4.1.3 Other commandline processing
4.2 LUA behaviour
4.2.1 The LUA version
4.2.2 Integration in the TDS ecosystem
4.2.3 Loading libraries

4.2.4 Executing programs

4.2.5 Multibyte string functions

4.2.6 Extra os library functions

4.2.7 Binary input from files with fio
4.2.8 Binary input from strings with sio
4.2.9 Hashes conform sha2

4.2.10 Locales
4.3 LUA modules
4.4 Testing

5 Languages, characters, fonts and glyphs
5.1 Introduction
5.2 Characters, glyphs and discretionaries
5.3 The main control loop
5.4 Loading patterns and exceptions
5.5 Applying hyphenation
5.6 Applying ligatures and kerning
5.7 Breaking paragraphs into lines
5.8 The lang library
5.8.1 new and id
5.8.2 hyphenation

5.8.3 clear _hyphenation and clean
5.8.4 patterns and clear patterns
5.8.5 hyphenationmin

5.8.6 [pre|post][ex]|lhyphenchar

5.8.7 hyphenate
5.8.8 [set|get]lhjcode

6.1
6.2
6.3

6.4
6.5

7.1
7.2
7.3

7.4

7.5

7.6

Font structure

The font tables

Real fonts

Virtual fonts

6.3.1 The structure

6.3.2 Artificial fonts

6.3.3 Example virtual font
The vf library

The font library

6.5.1 Loading a TFM file
6.5.2 Loading a VF file

6.5.3 The fonts array

6.5.4 Checking a font’s status
6.5.5 Defining a font directly
6.5.6 Extending a font

6.5.7 Projected next font id
6.5.8 Font ids

6.5.9 Iterating over all fonts

Math

Traditional alongside OPENTYPE
Unicode math characters

Math styles

7.3.1 \mathstyle

7.3.2 \Ustack

7.3.3 Cramped math styles
Math parameter settings

7.4.1 Many new \Umath* primitives
7.4.2 Font-based math parameters
Math spacing

7.5.1 Inline surrounding space
7.5.2 Pairwise spacing

7.5.3 Skips around display math
7.5.4 Nolimit correction

7.5.5 Math italic mess

7.5.6 Script and kerning

7.5.7 Fixed scripts

7.5.8 Penalties: \mathpenaltiesmode
7.5.9 Equation spacing: \mathegnogapstep
Math constructs

7.6.1 Unscaled fences

7.6.2 Accent handling

7.6.3 Radical extensions
7.6.4 Super- and subscripts
7.6.5 Scripts on extensibles

7.6.6 Fractions
7.6.7 Delimiters: \Uleft, \Uniddle and \Uright

P T R VS R T R T W T W T W T W T W T VT WS VT WA VT VT W T W T W T W T WS W T VT W,

7.7

7.8

7.9

8.1
8.2

8.3

Extracting values

7.7.1 Codes

7.7.2 Last lines

Math mode

7.8.1 Verbose versions of single-character math commands
7.8.2 Script commands \Unosuperscript and \Unosubscript
7.8.3 Allowed math commands in non-math modes

Goodies

7.9.1 Flattening: \mathflattenmode

7.9.2 Less Tracing

7.9.3 Math options with \mathoption

Nodes

LUA node representation
Main text nodes

8.2.1 hlist nodes

8.2.2 vlist nodes

8.2.3 rule nodes

8.2.4 ins nodes

8.2.5 mark nodes

8.2.6 adjust nodes

8.2.7 disc nodes

8.2.8 math nodes

8.2.9 glue nodes

8.2.10 kern nodes

8.2.11 penalty nodes

8.2.12 glyph nodes

8.2.13 boundary nodes
8.2.14 local par nodes
8.2.15 dir nodes

8.2.16 marginkern nodes
Math noads

8.3.1 Math kernel subnodes
8.3.2 math char and math text char subnodes
8.3.3 sub_box and sub_mlist subnodes
8.34 delim subnodes

8.3.5 Math core nodes
8.3.6 simple noad nodes
8.3.7 accent nodes

8.3.8 style nodes

8.3.9 choice nodes

8.3.10 radical nodes

8.3.11 fraction nodes

8.3.12

fence nodes

Ly . .y Ly Ly oy

I T TS W A VT R T W T W T W T W T W T W T VT VS WS WS VT W T W T W T W T W T VT W T VT WS VT W T W T W T W T W S—

8.4 Front-end whatsits

8.5

8.6

8.7

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

open
write

close
user_defined
save_pos
late lua

DVI backend whatsits

8.5.1

special

PDF backend whatsits

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14

pdf literal
pdf refobj

pdf annot

pdf start link
pdf _end link
pdf dest

pdf action

pdf thread

pdf start thread
pdf end thread
pdf colorstack
pdf setmatrix
pdf save

pdf restore

The node library

8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
8.7.8
8.7.9
8.7.10
8.7.11
8.7.12
8.7.13
8.7.14
8.7.15
8.7.16
8.7.17
8.7.18
8.7.19
8.7.20
8.7.21

Introduction

is node

types and whatsits
id

type and subtype
fields

has field

new

free, flush node and flush list
copy and copy list
prev and next
current attr

hpack

vpack

prepend prevdepth
dimensions and rangedimensions
mlist to hlist
slide

tail
length and type count
is char and is glyph

P TR R WS W T W T VT W T W T W T W T T VT W T W T VT W T W VT W T T S W T W T YT VT W T W T VT W T VT WS AT VT VT W T W T W T W T VT VT YT WA VT W T W .

8.8

8.9

8.10
8.11

9
9.1
9.2

8.7.22
8.7.23
8.7.24
8.7.25
8.7.26
8.7.27
8.7.28
8.7.29
8.7.30
8.7.31
8.7.32
8.7.33
8.7.34
8.7.35
8.7.36
8.7.37
8.7.38

traverse

traverse id
traverse char and traverse glyph
traverse list

has _glyph
end of math

remove

insert before

insert _after

first glyph
ligaturing

kerning

unprotect glyph[s]
protect glyph[s]
last node

write

protrusion skippable

Glue handling

8.8.1
8.8.2
8.8.3

setglue
getglue
is zero glue

Attribute handling

8.9.1
8.9.2
8.9.3
8.9.4
8.9.5
8.9.6
8.9.7
8.9.8
8.9.9
8.9.10
8.9.11
8.9.12

Attributes

attribute list nodes
attr nodes
has_attribute

get attribute

find attribute

set attribute

unset attribute

slide

check discretionary, check discretionaries
flatten discretionaries
family font

Two access models
Properties

LUA callbacks
Registering callbacks
File discovery callbacks

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7

find read file and find write file
find font file

find output file

find format file

find vf file

find map file

find enc file

P T W T W T W T WS VS T WA VT W T W T W T W T VT T W T WS WS W T W T W T W T W T T WS VT W T W T W W T W T W T W T YT .

L T W T W T W TR N S N S W TR W TS W S—

9.3

9.4

9.5

9.2.8

9.2.9

9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.2.15

find pk file
find data file
find opentype file

find truetype file and find typel file

find image file
File reading callbacks
open read file
General file readers

Data processing callbacks

9.3.1
9.3.2
9.3.3

process input buffer

process output buffer

process _jobname

Node list processing callbacks

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18

contribute filter
buildpage filter
build page insert
pre_linebreak filter
linebreak filter

append to vlist filter
post linebreak filter

hpack filter
vpack filter
hpack quality
vpack quality
process rule

pre output filter
hyphenate
ligaturing
kerning

insert _local par
mlist to hlist

Information reporting callbacks

9.5.1
9.5.2
9.5.3
9.5.4
9.56.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13

pre_dump

start_run

stop_run
start page number
stop page number
show_error_hook
show _error_message
show lua error hook
start _file

stop file

call edit

finish synctex
wrapup_run

P T W T W T W TS W VS S WS W T W T W T W T W T T WS VT WA VT W T VT W T W T W T T W T VT W T W T W T W T W T VT T W S WS VT W S W T Y T W T T W T W T YT

9.6 PDF related callbacks

9.6.1
9.6.2
9.6.3
9.6.4

finish pdffile

finish pdfpage

page _objnum provider
process pdf image content

9.7 Font-related callbacks

9.7.1
9.7.2

define font
glyph not found

10 The TgX related libraries
10.1 The lua library

10.1.1
10.1.2
10.1.3
10.1.4

Version information
Bytecode registers
Chunk name registers
Introspection

10.2 The status library
10.3 The tex library

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17
10.3.18
10.3.19

Introduction

Internal parameter values, set and get
Convert commands

Last item commands

Accessing registers: set*, get* and is*

Character code registers: [get|set]*code[s]

Box registers: [get|set]box

Reusing boxes: [use|save]boxresource and getboxresourcedimensions

triggerbuildpage
splitbox

Accessing math parameters: [get|set]math

Special list heads: [get|set]list
Semantic nest levels: getnest and ptr
Print functions

Helper functions

Functions for dealing with primitives
Core functionality interfaces
Randomizers

Functions related to synctex

10.4 The texconfig table
10.5 The texio library

10.5.1
10.5.2
10.5.3
10.5.4

write
write nl
setescape
closeinput

10.6 The token library

10.6.1
10.6.2
10.6.3
10.6.4

The scanner

Picking up one token
Creating tokens
Macros

PR T T W T W T W T W TS W

ANY MNY MY OAMY MY RMY ORAY ORMTY RNMTY RAMTY RAMY ORNMTYORNMMTYRNY OMNY Yy Yy ey ey oYYy e e

10.7

11
11.1

11.2

12

12.1
12.2
12.3
12.4
12.5
12.6

10.6.5 Pushing back
10.6.6 Nota bene

The kpse library

10.7.1 set program_name and new
10.7.2 find file
10.7.3 lookup

10.7.4 init prog
10.7.5 readable file
10.7.6 expand path
10.7.7 expand var
10.7.8 expand_braces
10.7.9 show_path
10.7.10 var_value
10.7.11 version

The graphic libraries

The img library

11.1.1 new

11.1.2 fields

11.1.3 scan

11.1.4 copy

11.1.5 write, immediatewrite, immediatewriteobject
11.1.6 node

11.1.7 types

11.1.8 boxes

The mplib library

11.2.1 new

11.2.2 statistics

11.2.3 execute

11.2.4 finish

11.2.5 Result table

11.2.6 Subsidiary table formats
11.2.7 Pens and pen_info

11.2.8 Character size information

The fontloader

Getting quick information on a font
Loading an OPENTYPE or TRUETYPE file
Applying a ‘feature file’

Applying an ‘AFM file’

Fontloader font tables

Table types

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5

The main table
glyphs

map

private
cidinfo

N) ANY MDY MY ORMCYT A€M NN O N 9NNy

ANY NMNMDY MDY A€ ORNMC€C TR NN NMRTY OONRTYY O OONRMTY OOONTYOMNRT"YOONMRTYY ONMNMT"OORAMY"Y MY

AY NY AT AT AT AY ANY ANYANY AMYORNT MY

12.6.6 pfminfo
12.6.7 names
12.6.8 anchor classes

12.6.9 gpos

12.6.10 gsub

12.6.11 ttf tables and ttf tab saved
12.6.12 mm

12.6.13 mark classes

12.6.14 math

12.6.15 validation state

12.6.16 horiz base and vert base

12.6.17 altuni

12.6.18 vert variants and horiz variants
12.6.19 mathkern

12.6.20 Kkerns

12.6.21 vkerns

12.6.22 texdata

12.6.23 lookups

13 The backend libraries
13.1 The pdf library
13.1.1 mapfile, mapline
13.1.2 [set|get][catalog|info|names|trailer]
13.1.3 [set|get][pageattributes|pageresources|pagesattributes]
13.1.4 [set|get][xformattributes|xformresources]
13.1.5 [set|get]l[major|minor]version
13.1.6 getcreationdate
13.1.7 [set|getlinclusionerrorlevel and [set|get]lignoreunknownimages
13.1.8 [set|get]lsuppressoptionalinfo, [set|get]trailerid and
[set|get]lomitcidset
13.1.9 [set|get]l[obj|]lcompresslevel and [set|get]recompress
13.1.10 [set|getlgentounicode
13.1.11 [set|get]ldecimaldigits
13.1.12 [set|get]pkresolution
13.1.13 getlast[obj|link|annot] and getretval
13.1.14 getmaxobjnum and getobjtype, getfontname, getfontobjnum,
getfontsize, getxformname
13.1.15 [set|getlorigin
13.1.16 [set|get]imageresolution
13.1.17 [set|get][link|dest|thread|xform]lmargin
13.1.18 get[pos|hpos|vpos]
13.1.19 [has|get]lmatrix
13.1.20 print
13.1.21 immediateobj
13.1.22 obj
13.1.23 refobj
13.1.24 reserveobj

ANY NMNMDY MDY M€Y RMAMC€C AR MM ONMRMTY O OONMRMTYY OONRMTMY N OMNRTYCOOCOMRMTYY OORMY"YRARAM'"MNMY

NY NMNY MY ONMDY NY MY AY NY ANYT NYT ANY ANY AMY AN Y M

ANY MDY ORMCY AMCY A€M NN N ONAY MY

13.1.25
13.1.26
13.1.27
13.1.28

getpageref
registerannot
newcolorstack
setfontattributes

13.2 The pdfe library

13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11

Introduction

open, new, status, close, unencrypt

size, version, getnofobjects, getnofpages
get[catalog|trailer|info]

getpage, getbox
get[string|integer|number|boolean|name]
get[from][dictionary|array|stream]
[open|close|readfrom] [whole|]stream
getfrom[dictionary|array]
[dictionary|array]ltotable
getfromreference

13.3 Memory streams
13.4 The pdfscanner library

Topics
Primitives
Callbacks
Nodes
Libraries

Statistics

ANY NMNMDY MDY RN RNMC€C AR NN NMRMTY O OOCNMRTYY O OONMRMTMYONMRMTY OONMRTY"YCOCONMRMTYY OORMY"YRMARM""MNMTY

Introduction

This is the reference manual of LuaTgX. We don’t claim it is complete and we assume that
reader knows about TgX as described in “The TgX Book”, the “e-TEX manual”, the “pdfIgX m
ual”, etc. Additional reference material is published in journals of user groups and ConT
related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versi
brought new functionality, more control, some cleanup of internals. Experimental featu
evolved into stable ones or were dropped. Already quite early LuaTgX could be used for prod
tion and it was used on a daily basis by the authors. Successive versions sometimes demanc
an adaption to the Lua interfacing, but the concepts were unchanged. The current version
be considered stable in functionality and there will be no fundamental changes. Of course
then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTgX to behave the same as pdfIgX! Although the core functionality of that 8
engine was starting point, it has been combined with the directional support of Omega (Alet
But, LuaTgX can behave different due to its wide (32 bit) characters, many registers and las
memory support. The pdf code produced differs from pdfTEX but users will normally not not
that. There is native utf input, support for large (more than 8 bit) fonts, and the math machin
is tuned for OpenType math. There is support for directional typesetting too. The log out;
can differ from other engines and will likely differ more as we move forward. When you 1
plain TgX for sure LuaTgX runs slower than pdfTEX but when you run for instance ConTgXt MI
in many cases it runs faster, especially when you have a bit more complex documents or ing
Anyway, 32 bit all-over combined with more features has a price, but on a modern machine t
is no real problem.

Testing is done with ConTgXt, but LuaTgX should work fine with other macro packages too.
that purpose we provide generic font handlers that are mostly the same as used in Conlf
Discussing specific implementations is beyond this manual. Even when we keep LuaTgX l¢
and mean, we already have enough to discuss here.

LuaTgX consists of a number of interrelated but (still) distinguishable parts. The organizat
of the source code is adapted so that it can glue all these components together. We contir
cleaning up side effects of the accumulated code in TgX engines (especially code that is |
needed any longer).

» We started out with most of pdfTgX version 1.40.9. The code base was converted to C and s;
in modules. Experimental features were removed and utility macros are not inherited becas
their functionality can be programmed in Lua. The number of backend interface commaz
has been reduced to a few. The so called extensions are separated from the core (which
try to keep close to the original TEX core). Some mechanisms like expansion and protrus
can behave different from the original due to some cleanup and optimization. Some wha
based functionality (image support and reusable content) is now core functionality. We dc
stay in sync with pdfTgX development.

» The direction model from Aleph RC4 (which is derived from Omega) is included. The rela
primitives are part of core LuaTgX but at the node level directional support is no longer ba:

on so called whatsits but on real nodes with relevant properties. The number of direction
limited to the useful set and the backend has been made direction aware.

» Neither Aleph’s I/O translation processes, nor tcx files, nor encTgX are available. These
coding-related functions are superseded by a Lua-based solution (reader callbacks). I
similar fashion all file io can be intercepted.

» We currently use Lua 5.3.*. There are few Lua libraries that we consider part of the c
Lua machinery, for instance lpeg. There are additional Lua libraries that interface to
internals of TEX. We also keep the Lua 5.2 bit32 library around.

» There are various TgX extensions but only those that cannot be done using the Lua interfac
The math machinery often has two code paths: one traditional and the other more suita
for wide OpenType fonts. Here we follow the Microsoft specifications as much as possil
Some math functionality has been opened up a bit so that users have more control.

» The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific
usage in a TgX engine. We try to minimize specific font support to what TgX needs: charac
references and dimensions and delegate everything else to Lua. That way we keep TgX o
for extensions without touching the core. In order to minimize dependencies at some pc
we may decide to make this an optional library.

» The MetaPost library is integral part of LuaTgX. This gives TEX some graphical capabilit
using a relative high speed graphical subsystem. Again Lua is used as glue between
frontend and backend. Further development of MetaPost is closely related to LuaTgX.

» The virtual font technology that comes with TgX has been integrated into the font machin
in a way that permits creating virtual fonts at runtime. Because LuaTgX can also act a
Lua interpreter this means that a complete TgX workflow can be built without the need
additional programs.

» The versions starting from 1.09 no longer use the poppler library for inclusion but a lig
weight dedicated one. This removes a dependency but also makes the inclusion code
LuaTgX different from pdfTgX. In fact it was already much different due to the Lua ims
interfacing.

We try to keep upcoming versions compatible but intermediate releases can contain experim
tal features. A general rule is that versions that end up on TgXLive and/or are released arot
ConTgXt meetings are stable. Any version between the yearly TgXLive releases are to be c
sidered beta and in the repository end up as trunk releases. We have an experimental brazr
that we use for development but there is no support for any of its experimental features. Inf
mediate releases (from trunk) are normally available via the ConTgXt distribution channels (
garden and so called minimals).

Version 1.10 is more or less an endpoint in development: this is what you get. Because not o
ConTgXt, that we can adapt rather easily, uses LuaTgX, we cannot change fundamentals with
unforeseen consequences. By now it has been proven that Lua can be used to extend the c
functionality so there is no need to add more, and definitely no hard coded solutions for (not
common problems. Of course there will be bug fixes, maybe some optimization, and there mi

even be some additions or non-intrusive improvements, but only after testing outside the sta
release. After all, the binary is already more than large enough and there is not that muck
gain.

You might find Lua helpers that are not yet documented. These are considered experimen
although when you encounter them in a ConTgXt version that has been around for a while 3
can assume that they will stay. Of course it can just be that we forgot to document them yet

A manual like this is not really meant as tutorial, for that we refer to documents that ship w
ConTgXt, articles, etc. It is also never complete enough for all readers. We try to keep up but
reader needs to realize that it’s all volunteer work done in spare time. And for sure, complain
about a bad manual or crappy documentation will not really motivate us to spend more time
it. That being said, we hope that this document is useful.

Hans Hagen
Harmut Henkel
Taco Hoekwater
Luigi Scarso

Version : January 7, 2019
LuaTgX : luatex 1.092 /7019
ConTgXt : MkIV 2019.01.05 00:50

1 Preamble

This is a reference manual, not a tutorial. This means that we discuss changes relative to f
ditonal TgX and also present new functionality. As a consequence we will refer to concepts t
we assume to be known or that might be explained later.

The average user doesn’t need to know much about what is in this manual. For instance fo
and languages are normally dealt with in the macro package that you use. Messing around w
node lists is also often not really needed at the user level. If you do mess around, you’d bet
know what you’re dealing with. Reading “The TgX Book” by Donald Knuth is a good investm
of time then also because it’s good to know where it all started. A more summarizing overvi
is given by “TgX by Topic” by Victor Eijkhout. You might want to peek in “The £-TgX manual” ¢
documentation about pdfTgX.

But ... if you're here because of Lua, then all you need to know is that you can call it from wit
a run. The macro package that you use probably will provide a few wrapper mechanisms
the basic \directlua command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load t
file with the usual Lua commands.

Ifyou still decide to read on, then it’s good to know what nodes are, so we do a quick introduct
here. If you input this text:

Hi There

eventually we will get a linked lists of nodes, which in ascii art looks like:

H<=>1<=> [glue] <=> T <=> h <=> e <=>r <=> ¢

When we have a paragraph, we actually get something:

[localpar] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e <=> [qglue]

Each character becomes a so called glyph node, a record with properties like the current fc
the character code and the current language. Spaces become glue nodes. There are many nc
types that we will discuss later. Each node points back to a previous node or next node, gi
that these exist.

It’s also good to know beforehand that TgX is basically centered around creating paragraj
and pages. The par builder takes a list and breaks it into lines. We turn horizontal mate:
into vertical. Lines are so called boxes and can be separated by glue, penalties and more.
page builder accumulates lines and when feasible triggers an output routine that will take
list so far. Constructing the actual page is not part of TgX but done using primitives that per
manipulation of boxes. The result is handled back to TgX and flushed to a (often pdf) file.

The LuaTgX engine provides hooks for Lua code at nearly every reasonable point in the proce
collecting content, hyphenating, applying font features, breaking into lines, etc. This me:

that you can overload TgX’s natural behaviour, which still is the benchmark. When we refet1
‘callbacks’ we means these hooks.

Where plain TgX is basically a basic framework for writing a specific style, macro packa
like ConTgXt and IXTEX provide the user a whole lot of additional tools to make documents I¢
good. They hide the dirty details of font management, language demands, turning struct
into typeset results, wrapping pages, including images, and so on. You should be aware of
fact that when you hook in your own code to manipulate lists, this can interfere with the ma
package that you use.

When you read about nodes in the following chapters it’s good to keep in mind their commaz
that relate to then. Here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist wvertical box with the baseline at the bottom
\vtop vlist vertical box with the baseline at the top
\hskip glue horizontal skip with optional stretch and shrink
\vskip glue vertical skip with optional stretch and shrink
\kern kern horizontal or vertical fixed skip
\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdir(ection) dir a change in text direction

For now this should be enough to enable you to understand the next chapters.

2 Basic TgX enhancements

2.1 Introduction

2.1.1 Primitive behaviour

From day one, LuaTgX has offered extra features compared to the superset of pdfIgX, wh
includes e-TgX, and Aleph. This has not been limited to the possibility to execute Lua code
\directlua, but LuaTgX also adds functionality via new TgX-side primitives or extensions
existing ones.

When LuaTgX starts up in ‘iniluatex’ mode (Luatex -ini), it defines only the primitive comma:i
known by TgX82 and the one extra command \directlua. As is fitting, a Lua function has to
called to add the extra primitives to the user environment. The simplest method to get acc
to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at t
early time (giving a ‘Missing number’ error), so it may be needed to put these assignments bef
the above line:

\catcode "\{=1
\catcode *\}=2

More fine-grained primitives control is possible and you can look up the details in section 10.3.
For simplicity’s sake, this manual assumes that you have executed the \directlua command
given above.

The startup behaviour documented above is considered stable in the sense that there will
be backward-incompatible changes any more. We have promoted some rather generic pdf
primitives to core LuaTgX ones, and the few that we inherited from Aleph (Omega) are a
promoted. Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 3 we discuss several primitives that are derived from pdfIgX and Aleph (Omec
Here we stick to real new ones. In the chapters on fonts and math we discuss a few more n
ones.

2.1.2 Version information

2.1.2.1 \luatexbanner, \luatexversion and \luatexrevision

There are three new primitives to test the version of LuaTgX:

PRIMITIVE VALUE EXPLANATION
\luatexbanner This is LuaTeX, Version 1.09.2 the banner reported on the command lir

\luatexversion 109 a combination of major and minor numb
\luatexrevision 2 the revision number, the current value i

The official LuaTgX version is defined as follows:

» The major version is the integer result of \luatexversion divided by 100. The primitive
an ‘internal variable’, so you may need to prefix its use with \the depending on the conte

» The minor version is the two-digit result of \luatexversion modulo 100.

» The revision is reported by \luatexrevision. This primitive expands to a positive intege

» The full version number consists of the major version, minor version and revision, separa
by dots.

2.1.2.2 \formatname

The \formatname syntax is identical to \jobname. In iniTgX, the expansion is empty. Otherwi
the expansion is the value that \jobname had during the iniTgX run that dumped the currer
loaded format. You can use this token list to provide your own version info.

2.2 UNICODE text support

2.2.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use
full range of Unicode (22° + 216 — 1 = 0x10FFFF). Later chapters will talk of characters &
glyphs. Although these are not interchangeable, they are closely related. During typesetting
character is always converted to a suitable graphic representation of that character in a spec
font. However, while processing a list of to-be-typeset nodes, its contents may still be seen &
character. Inside LuaTgX there is no clear separation between the two concepts. Because
subtype of a glyph node can be changed in Lua it is up to the user. Subtypes larger than -
indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommod
for a larger range of acceptable numbers. For instance, \char now accepts values betwee
and 1,114,111. This should not be a problem for well-behaved input files, but it could create
compatibilities for input that would have generated an error when processed by older TgX-ba:
engines. The affected commands with an altered initial (left of the equal sign) or secondary (ri
of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efco
\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. In;
files can be pre-processed using the reader callback. This will be explained in section 9.2.
Normalization of the Unicode input is on purpose not built-in and can be handled by a ma
package during callback processing. We have made some practical choices and the user has
live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicc
range, starting at the value 1,114,112 (0x110000). When the time comes to print a charac
c=1,114,112, LuaTgX will actually print the single byte corresponding to ¢ minus 1,114,11:

Output to the terminal uses *" notation for the lower control range (c < 32), with the except
of ~~I, ~J and ~"M. These are considered ‘safe’ and therefore printed as-is. You can disa
escaping with texio.setescape(false) in which case you get the normal characters on
console.

2.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to
associated Unicode character.

2.2.3 Extended tables

All traditional TEX and &-TgX registers can be 16-bit numbers. The affected commands are:

\count \countdef \box \wd
\dimen \dimendef \unhbox \ht
\skip \skipdef \unvbox \dp
\muskip \muskipdef \copy \setbox
\marks \toksdef \unhcopy \vsplit
\toks \insert \unvcopy

Because font memory management has been rewritten, character properties in fonts are
longer shared among font instances that originate from the same metric file. Of course
share fonts in the backend when possible so that the resulting pdf file is as efficient as possil
but for instance also expansion and protrusion no longer use copies as in pdfTgX.

2.3 Attributes

2.3.1 Nodes

When TgX reads input it will interpret the stream according to the properties of the characte
Some signal a macro name and trigger expansion, others open and close groups, trigger m
mode, etc. What's left over becomes the typeset text. Internally we get linked list of nod
Characters become glyph nodes that have for instance a font and char property and \ke
10pt becomes a kern node with a width property. Spaces are alien to TgX as they are turt
into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (wor
and glue nodes (spaces).

The sequences of characters at some point are extended with disc nodes that relate to

phenation. After that font logic can be applied and we get a list where some characters «
be replaced, for instance multiple characters can become one ligature, and font kerns can
injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes withwidth, height, depth and sh:
properties and a pointer list to its actual content. Boxes can be constructed explicitly or

be the result of subprocesses. For instance, when lines are broken into paragraphs, the li
are a linked list of hlist nodes.

So, to summarize: all that you enter as content eventually becomes a node, often as part ¢
(nested) list structure. They have a relative small memory footprint and carry only the minir
amount of information needed. In traditional TgX a character node only held the font and s
number, in LuaTgX we also store some language related information, the expansion factor; ¢
Now that we have access to these nodes from Lua it makes sense to be able to carry m
information with an node and this is where attributes kick in.

2.3.2 Attribute registers

Attributes are a completely new concept in LuaTgX. Syntactically, they behave a lot like counte
attributes obey TgX’s nesting stack and can be used after \the etc. just like the normal \cot
registers.

\attribute (16-bit number) (optional equals) (32-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative va
to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecin
a.k.a. —2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a le
attribute value, but you can assign - "7FFFFFFF to ‘unset’ an attribute. All attributes start ou
this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the f
that the numbers and values of all ‘set’ attributes are attached to all nodes created in tk
scope. These can then be queried from any Lua code that deals with node processing. Furtl!
information about how to use attributes for node list processing from Lua is given in chapte:

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This pern
efficient testing and updating. You can define many thousands of attributes but normally suc
large number makes no sense and is also not that efficient because each node carries a (possi
shared) link to a list of currently set attributes. But they are a convenient extension and one
the first extensions we implemented in LuaTgX.

2.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This mom
can be quite asynchronous. For example: in paragraph building, the individual line boxes
created after the \par command has been processed, so they will receive the list of attribu
that is in effect then, not the attributes that were in effect in, say, the first or third line of-
paragraph.

Similar situations happen in LuaTgX regularly. A few of the more obvious problematic cases
dealt with: the attributes for nodes that are created during hyphenation, kerning and ligat
ing borrow their attributes from their surrounding glyphs, and it is possible to influence |
attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box
unchanged when such a box is placed, unboxed, or copied. In this respect attributes act

same as characters that have been converted to references to glyphs in fonts. For instan
when you use attributes to implement color support, each node carries information about
eventual color. In that case, unless you implement mechanisms that deal with it, applying a cc
to already boxed material will have no effect. Keep in mind that this incompatibility is mo:
due to the fact that separate specials and literals are a more unnatural approach to colors tt
attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by
use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is &
specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while
nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negat
value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do
for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [al))
tex.sprint("\\quad\\quad")
tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))
tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hl.:
nodes that have a field list that points to the content. Because the attributes are a list the
selves you can access them by indexing the node (here we do that with [a]. Running this snip
gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123
box 0 : attr 998 : 456 list 0 : attr 998 : 456
box 0 : attr 999 : nil list 0 : attr 999 : nil
box 2 : attr 997 : 123 list 2 : attr 997 : 123
box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get
word nil.

2.4 LUA related primitives

2.4.1 \directlua

In order to merge Lua code with TgX input, a few new primitives are needed. The primit

\directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua (16-bit number) (general text)

The (general text) is expanded fully, and then fed into the Lua interpreter. After reading e
expansion has been applied to the (general text), the resulting token list is converted to a str
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated a
separate chunk. In such a chunk you can use the local directive to keep your variables fr
interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comme
(starting with - -) within the argument. As there typically will be only one ‘line’ the first line cc
ment will run on until the end of the input. You will either need to use TgX-style line comme
(starting with %), or change the TgX category codes locally. Another possibility is to say:

\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TgX does not replace line endings with spaces.
course such an approach depends on the macro package that you use.

The (16-bit number) designates a name of a Lua chunk and is taken from the lua.name ar
(see the documentation of the lua table further in this manual). When a chunk name starts w
a @ it will be displayed as a file name. This is a side effect of the way Lua implements er
handling.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter
expansion from the TgX viewpoint is usually empty. However, there are some Lua functions t
produce material to be read by TgX, the so called print functions. The most simple use of th
istex.print(<string> s). The characters of the string s will be placed on the TgX input buf
that is, ‘before TEX'’s eyes’ to be read by TgX immediately. For example:

\count10=20
a\directlua{tex.print(tex.count[10]+5)}b
expands to

a25b

Here is another example:
$\pi = \directlua{tex.print(math.pi)}$

will result in
o =3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to
TgX commands. So formally speaking its expansion is null, but it places material on a pseudo-
to be immediately read by TgX, as €-TgX’'s \scantokens. For a description of print functions lc
at section 10.3.14.

Because the (general text) is a chunk, the normal Lua error handling is triggered if there i
problem in the included code. The Lua error messages should be clear enough, but the cont
tual information is still pretty bad. Often, you will only see the line number of the right brace
the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break
LuaTgX pretty bad. If you are not careful while working with the node list interface, you n
even end up with assertion errors from within the TgX portion of the executable.

2.4.2 \latelua and \lateluafunction

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the ti
of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliter
and the traditional TgX extension \write. Within the Lua code you can print pdf stateme
directly to the pdf file via pdf.print, or you can write to other output streams via texio.wr:
or simply using Lua io routines.

\latelua (general text)
\latelua (16-bit number) (general text)

Expansion of macros in the final <general text> is delayed until just before the whatsit is e
cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page liter:
The name (general text) and (16-bit number) behave in the same way as they do for \directl

The \lateluafunction primitive takes a number and is similar to \luafunction but gets dela
to shipout time. It’s just there for completeness.

2.4.3 \luaescapestring

This primitive converts a TgX token sequence so that it can be safely used as the contents c
Lua string: embedded backslashes, double and single quotes, and newlines and carriage retu
are escaped. This is done by prepending an extra token consisting of a backslash with categ
code 12, and for the line endings, converting them to n and r respectively. The token seque:
is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between -
and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of I
code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

2.4.4 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optio
name or number specification). The tokenlist is then converted into a string and given to Lus
turn into a function that is called. The overhead is rather small but when you have millions
calls it can have some impact. For this reason there is a variant call available: \luafuncti
This command is used as follows:

\directlua {
local t = lua.get functions table()
t[1] = function() tex.print("!") end
t[2] = function() tex.print("?") end

\luafunctionl
\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the numbe:
functions apart from normal Lua limitations. Of course there is the limitation of no argume
but that would involve parsing and thereby give no gain. The function, when called in fact g
one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get functions table()

t[8] = function(slot) tex.print(slot) end
}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \ed
In addition LuaTgX provides a definer:

\luadef\MyFunctionA 1
\global\luadef\MyFunctionB 2
\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens
assume that the function is available when that token expands. On the other hand, as we h:
tested this functionality in relative complex situations normal usage should not give problen

2.4.5 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code calle
Again the call variant is unexpandable.

\directlua {
lua.bytecode[9998] = function(s)
tex.sprint(s*token.scan _int())
end
lua.bytecode[5555] = function(s)
tex.sprint(s*token.scan dimen())
end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp
\luabytecodecall9998 5 \luabytecodecall5555 5sp

The variable s in the code is the number of the byte code register that can be used for diagno:x
purposes. The advantage of bytecode registers over function calls is that they are stored in
format (but without upvalues).

2.5 Catcode tables

2.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regi
in a single statement. You can have a practically unlimited number of different tables. T
subsystem is backward compatible: if you never use the following commands, your document 1
not notice any difference in behaviour compared to traditional TgX. The contents of each catcc
table is independent from any other catcode table, and its contents is stored and retrieved fr
the format file.

2.5.2 \catcodetable

\catcodetable (15-bit number)

The primitive \catcodetable switches to a different catcode table. Such a table has to be pre
ously created using one of the two primitives below, or it has to be zero. Table zero is initiali:
by iniTgX.

2.5.3 \initcatcodetable

\initcatcodetable (15-bit number)

The primitive \initcatcodetable creates a new table with catcodes identical to those defir
by iniTgX. The new catcode table is allocated globally: it will not go away after the current grc
has ended. If the supplied number is identical to the currently active table, an error is rais
The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 ~M return car_ret

9 @ null ignore

10 <space> space spacer

11 a-z letter

11 A-Z letter

12 everything else other

14 % comment

15 ~7 delete invalid char

2.5.4 \savecatcodetable

\savecatcodetable (15-bit number)

\savecatcodetable copies the current set of catcodes to a new table with the requested numtk
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If
supplied number is the currently active table, an error is raised.

2.6 Suppressing errors

2.6.1 \suppressfontnotfounderror

If this integer parameter is non-zero, then LuaTgX will not complain about font metrics that .
not found. Instead it will silently skip the font assignment, making the requested csname for
font \ifx equal to \nullfont, so that it can be tested against that without bothering the use

\suppressfontnotfounderror = 1

2.6.2 \suppresslongerror

If this integer parameter is non-zero, then LuaTgX will not complain about \par commands
countered in contexts where that is normally prohibited (most prominently in the argument:
macros not defined as \long).

\suppresslongerror = 1

2.6.3 \suppressifcsnameerror

If this integer parameter is non-zero, then LuaTgX will not complain about non-expandable cc
mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanc
tokens from the input until it encounters an \endcsname command. If the input expansion is
balanced with respect to \csname ...\endcsname pairs, the LuaTgX process may hang indefinit

\suppressifcsnameerror = 1

2.6.4 \suppressoutererror

If this new integer parameter is non-zero, then LuaTEX will not complain about \outer commar
encountered in contexts where that is normally prohibited.

\suppressoutererror =1

2.6.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:
\suppressmathparerror = 1

So, the next code is valid then:

$x+1-=

as

2.6.6 \suppressprimitiveerror

When set to a non-zero value the following command will not issue an error:
\suppressprimitiveerror =1

\primitive\notaprimitive
2.7 Fonts

2.7.1 Font syntax

LuaTgX will accept a braced argument as a font name:

\font\myfont = {cmrl@}

This allows for embedded spaces, without the need for double quotes. Macro expansion tal
place inside the argument.

2.7.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix w
\number (and using \the gives an error). The currently used font id is 29. Here are some mc

STYLE COMMAND FONT ID

normal \tf 38
bold \bf 38
italic \it 50
bold italic \bi 51

These numbers depend on the macro package used because each one has its own way of deal
with fonts. They can also differ per run, as they can depend on the order of loading fonts.
instance, when in ConTgXt virtual math Unicode fonts are used, we can easily get over a hund:
ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course ne
to be a valid one.

2.7.3 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node lis
built by LuaTgX'’s main control loop. You can enable these primitives when you want to do nc
list processing of ‘characters’, where TgX’s normal processing would get in the way.

\noligs (integer)
\nokerns (integer)

These primitives can also be implemented by overloading the ligature building and kerning fu
tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that wl
you define a font (using Lua) you can also omit the kern and ligature tables, which has the sa
effect as the above.

2.7.4 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a sp:
character is seen in a text flow. The value 1 triggers no injection while 2 results in injection ¢
zero skip. In figure 2.1 we see the results for four characters separated by a space.

X XXX XXXX | XXXX
O / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm
XXXX]
X X
X X
O / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 2.1 The \nospaces options.
2.8 Tokens, commands and strings

2.8.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adap
version of e-TEX’'s \scantokens. The differences are:

» The last (and usually only) line does not have a \endlinechar appended.

» \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

» There are no ‘... while end of file ...’ error tests executed. This allows the expansion to ¢
on a different grouping level or while a conditional is still incomplete.

2.8.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,
\xtoksapp, \xtokspre

Instead of:
\toksO\expandafter{\the\toksO foo}
you can use:

\etoksapp0{foo}

The pre variants prepend instead of append, and the e variants expand the passed general te
The g and x variants are global.

2.8.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the lead
escape character. This can be somewhat more efficient than stripping it afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when th

is no such name. It is equivalent to

\ifcsname foo\endcsname
\csname foo\endcsname
\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is t
it avoids using the \if test. The \lastnamedcs is one that should be used with care. The ab
example could be written as:

\ifcsname foo\endcsname
\lastnamedcs
\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTgX this a
involves some utf8 juggling), but probably more relevant is that it saves a few tokens and ¢
make code a bit more readable.

2.8.4 \clearmarks

This primitive complements the ¢-TgX mark primitives and clears a mark class completely,
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks {(16-bit number)

2.8.5 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, wl
\aligntab duplicates the functionality of &.

2.8.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

\def\foo{bar} \letcharcodel23=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase t
it treats active characters special).

2.8.7 \glet
This primitive is similar to:
\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all
also have \gdef).

2.8.8 \expanded, \immediateassignment and \immediateassigned

The \expanded primitive takes a token list and expands it content which can come in han
it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happ
inside the body of an \edef. But this kind of expansion it still doesn’t expand some primit
operations.

\newcount\NumberOfCalls
\def\TestMe{\advance\NumberOfCallsl }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

The result is a macro that has the not expanded code in its body
macro:->\advance \NumberOfCalls 1 foo:0

Instead we can define \TestMe in a way that expands the assignment immediately. You neec
course to be aware of preventing look ahead interference by using a space or \relax (often
expression works better as it doesn’t leave an \relax).

\def\TestMe{\immediateassignment\advance\NumberOfCallsl }

\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

This time the counter gets updates and we don’t see interference in the resulting \Tested mac
macro:->foo:3

Here is a somewhat silly example of expanded comparison:
\def\expandeddoifelse#1#2#3#4%

{\immediateassignment\edef\tempa{#1}%
\immediateassignment\edef\tempb{#2}%

\ifx\tempa\tempb
\immediateassignment\def\next{#3}%

\else
\immediateassignment\def\next{#4}%

\fi

\next}

\edef\Tested
{(\expandeddoifelse{abc}{def}{yes}{nop}/%
\expandeddoifelse{abc}{abc}{yes}{nop})}

\meaning\Tested

It gives:
macro:->(nop/yes)

A variant is:

\def\expandeddoifelse#1#2#3#4%
{\immediateassigned{
\edef\tempa{#1}%
\edef\tempb{#2}%
}%
\ifx\tempa\tempb
\immediateassignment\def\next{#3}%
\else
\immediateassignment\def\next{#4}%
\fi
\next}

The possible error messages are the same as using assignments in preambles of alignments «
after the \accent command. The supported assignments are the so called prefixed commai

(except box assignments).

2.8.9 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balan
in order to let TEX’s fast branch skipping work well. This new primitive is basically a no-
flagged as a condition so that the scanner can recognize it as an if-test. However, when a r
test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%
{\edef\tempa{#1}%
\edef\tempb{#2}
\ifx\tempa\tempb}

\ifcondition\something{a}{b}%
\ifcondition\something{a}{a}%

true 1
\else
false 1
\fi
\else
\ifcondition\something{a}{a}%
true 2
\else
false 2
\fi
\fi

If you are familiar with MetaPost, this is a bit like vardef where the macro has a return val
Here the return value is a test.

2.9 Boxes, rules and leaders

2.9.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store
page sent to the output routine. Its default value is 255, and the acceptable range is from (
65535.

\outputbox = 12345

2.9.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks

2.9.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternat
for the to keyword you can use upto to get a split of the given size but result has the natu
dimensions then.

2.9.4 Images and reused box objects

These two concepts are now core concepts and no longer whatsits. They are in fact now
plemented as rules with special properties. Normal rules have subtype 0, saved boxes h:
subtype 1 and images have subtype 2. This has the positive side effect that whenever we ne
to take content with dimensions into account, when we look at rule nodes, we automatically a
deal with these two types.

The syntax of the \save...resource is the same as in pdfITgX but you should consider themn
be backend specific. This means that a macro package should treat them as such and check
the current output mode if applicable.

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later
\saveimageresource save the image as an object to be included later
\useboxresource include the saved box object here (by index)
\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object
\lastsavedimageresourceindex the index of the last saved image object
\lastsavedimageresourcepages the number of pages in the last saved image object

LuaTgX accepts optional dimension parameters for \use. . .resource in the same format as
rules. With images, these dimensions are then used instead of the ones given to \useimage!
source but the original dimensions are not overwritten, so that a \useimageresource with
dimensions still provides the image with dimensions defined by \saveimageresource. Th
optional parameters are not implemented for \saveboxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceinde
\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

The box resources are of course implemented in the backend and therefore we do support
attr and resources keys that accept a token list. New is the type key. When set to non-zero
/Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or 3 will write a /Matri

2.9.5 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were int
duced: \nohrule and \novrule. These can be used to reserve space. This is often more effici
than creating an empty box with fake dimensions.

2.9.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like nort
\leaders in that they align nicely, except that the alignment is based on the largest enclos
box instead of the smallest. The g stresses this global nature.

2.10 Languages

2.10.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 me:
that only words of 6 characters and more will be hyphenated, of course within the constraint:
the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primit
accepts a number and stores the value with the language.

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundar

The \noboundary command is used to inject a whatsit node but now injects a normal node w
type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional
ature builder still sees this as a cancel boundary directive but at the Lua end you can implem
different behaviour. The added benefit of passing this value is a side effect of the generalizati
The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation e
have related primitives.

2.11 Control and debugging

2.11.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of
nodes.

2.11.2 \outputmode

The \outputmode variable tells LuaTgX what it has to produce:

VALUE OUTPUT

0 dvi code
1 pdf code

2.11.3 \draftmode

The value of the \draftmode counter signals the backend if it should output less. The pdf ba
end accepts a value of 1, while the dvi backend ignores the value. This is no critical feature
we can remove it in future versions when it can make the backend cleaner.

2.12 Files

2.12.1 File syntax
LuaTgX will accept a braced argument as a file name:

\input {plain}
\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion tal
place inside the argument.

The \tracingfonts primitive that has been inherited from pdfTEX has been adapted to supp
variants in reporting the font. The reason for this extension is that a csname not always mal
sense. The zero case is the default.

VALUE REPORTED

\foo xyz

\foo (bar)

<bar> xyz

<bar @ ..pt> xyz
<id>

<id: bar>

<id: bar @ ..pt> xyz

S Uk, WN PR O

2.12.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the cons
and log. As a consequence a system command is no longer possible but one can use 0s.execl
to do the same.

2.13 Math

We will cover math extensions in its own chapter because not only the font subsystem and sp
ing model have been enhanced (thereby introducing many new primitives) but also beca:
some more control has been added to existing functionality. Much of this relates to the differ
approaches of traditional TgX fonts and OpenType math.

3 Modifications

3.1 The merged engines

3.1.1 The need for change

The first version of LuaTgX only had a few extra primitives and it was largely the same as pdfT
Then we merged substantial parts of Aleph into the code and got more primitives. When we
more stable the decision was made to clean up the rather hybrid nature of the program. T
means that some primitives have been promoted to core primitives, often with a different na
and that others were removed. This made it possible to start cleaning up the code base.
chapter 2 we discussed some new primitives, here we will cover most of the adapted ones.

Besides the expected changes caused by new functionality, there are a number of not-so-
pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more of
than not, a change necessary to clean up the internal interfaces. These will also be mention

3.1.2 Changes from TgX 3.1415926

Of course it all starts with traditional TgX. Even if we started with pdfTgX, most still comes fr
the original. But we divert a bit.

» The current code base is written in C, not Pascal. We use cweb when possible. As a con
quence instead of one large file plus change files, we now have multiple files organized
categories like tex, pdf, lang, font, lua, etc. There are some artifacts of the conversior
C, but in due time we will clean up the source code and make sure that the documentatio:
done right. Many files are in the cweb format, but others, like those interfacing to Lua, ar
files. Of course we want to stay as close as possible to the original so that the documentat
of the fundamentals behind TgX by Don Knuth still applies.

» See chapter 5 for many small changes related to paragraph building, language handling «
hyphenation. The most important change is that adding a brace group in the middle of a wi
(like in of{}fice) does not prevent ligature creation.

» There is no pool file, all strings are embedded during compilation.

» The specifier plus 1 fillll does not generate an error. The extra ‘1’ is simply typeset.

» The upper limit to \endlinechar and \newlinechar is 127.

» Magnification (\mag) is only supported in dvi output mode. You can set this parameter an
even works with true units till you switch to pdf output mode. When you use pdf output 3
can best not touch the \mag variable. This fuzzy behaviour is not much different from us
pdf backend related functionality while eventually dvi output is required.

After the output mode has been frozen (normally that happens when the first page is shipg
out) or when pdf output is enabled, the true specification is ignored. When you preloa
plain format adapted to LuaTgX it can be that the \mag parameter already has been set.

3.1.3 Changes from g-TgX 2.2

Being the de factor standard extension of course we provide the £-TgX functionality, but wit
few small adaptations.

» The &-TgX functionality is always present and enabled so the prepended asterisk or -ef
switch for iniTgX is not needed.

» The TgXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \begi
\endR and \endL are missing. Instead we used the Omega/Aleph approach to directiona
as starting point.

» Some of the tracing information that is output by £-TgX’s \tracingassigns and \tracingi
stores is not there.

» Register management in LuaTgX uses the Omega/Aleph model, so the maximum value
65535 and the implementation uses a flat array instead of the mixed flat & sparse mo
from e-TEX.

» When kpathsea is used to find files, LuaTgX uses the ofm file format to search for font metr:
In turn, this means that LuaTgX looks at the OFMFONTS configuration variable (like Omega &
Aleph) instead of TFMFONTS (like TgX and pdfTgX). Likewise for virtual fonts (LuaTgX uses:
variable OVFFONTS instead of VFFONTS).

3.1.4 Changes from PDFTEX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTEX p
gram. We inherit the stable features, dropped most of the experimental code and promo
some functionality to core LuaTgX functionality which in turn triggered renaming primitives

For compatibility reasons we still refer to \pdf. .. commands but LuaTgX has a different backe
interface. Instead of these primitives there are three interfacing primitives: \pdfextensi
\pdfvariable and \pdffeedback that take keywords and optional further arguments (below
will still use the \pdf prefix names as reference). This way we can extend the features wtl
needed but don’t need to adapt the core engine. The front- and backend are decoupled as mt
as possible.

» The (experimental) support for snap nodes has been removed, because it is much more natu
to build this functionality on top of node processing and attributes. The associated primiti
that are gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

» The (experimental) support for specialized spacing around nodes has also been removed.
associated primitives that are gone are: \pdfadjustinterwordglue, \pdfprependkern, ¢
\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbsco
\knbccode, and \knaccode.

» A number of ‘pdfIgX primitives’ have been removed as they can be implemented us
Lua: \pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffil
dump, \pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmat
\pdfmdfivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinc]
sionerrorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex

» The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision
no longer present as there is no longer a relationship with pdfTgX development.

The experimental snapper mechanism has been removed and therefore also the primiti
\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth ¢
\pdflastlinedepth.

The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are p
moted to core primitives. The \pdf* prefixed originals are not available.

Because LuaTgX has a different subsystem for managing images, more diversion from
ancestor happened in the meantime. We don’t adapt to changes in pdfTgX.

Two extra token lists are provided, \pdfxformresources and \pdfxformattr, as an alter
tive to \pdfxform keywords.

Image specifications also support visiblefilename, userpassword and ownerpassword.]
password options are only relevant for encrypted pdf files.

The current version of LuaTgX no longer replaces and/or merges fonts in embedded pdf fi
with fonts of the enveloping pdf document. This regression may be temporary, depending
how the rewritten font backend will look like.

The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewit
and \pageheight have that purpose.

The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed =
\pdfrandomseed have been promoted to core primitives without pdf prefix so the origi
commands are no longer recognized.

The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

As the hz and protrusion mechanism are part of the core the related primitives \'lpco
\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitiv
The two commands \protrudechars and \adjustspacing replace their prefixed with \|
originals.

The hz optimization code has been partially redone so that we no longer need to create ex
font instances. The front- and backend have been decoupled and more efficient (pdf) cod
generated.

When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. Wl
the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.
The \tagcode primitive is promoted to core primitive.

The \letterspacefont feature is now part of the core but will not be changed (improve
We just provide it for legacy use.

The \pdfnoligatures primitive is now \ignoreligaturesinfont.

The \pdfcopyfont primitive is now \copyfont.

The \pdffontexpand primitive is now \expandglyphsinfont.

Because position tracking is also available in dvi mode the \savepos, \lastxpos and \las
pos commands now replace their pdf prefixed originals.

The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been
moved. One can use external applications to determine these properties or use the buil
img library.

The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is n
\draftmode.

The pixel multiplier dimension \pdfpxdimen lost its prefix and is now called \pxdimen.
An extra \pdfimageaddfilename option has been added that can be used to block writing
filename to the pdf file.

The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backer

» The experimental primitive \pdfinsertht is kept as \insertht.

» There is some more control over what metadata goes into the pdf file.

» The promotion of primitives to core primitives as well as the separation of font- and backe
means that the initialization namespace pdftex is gone.

One change involves the so called xforms and ximages. In pdfTgX these are implemented as
called whatsits. But contrary to other whatsits they have dimensions that need to be taken i
account when for instance calculating optimal line breaks. In LuaTgX these are now promo
to a special type of rule nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the abi
to use content that has been rendered in several places, and images are also common. As alre:
mentioned in section 2.9.4, we now have:

LUATEX PDFTEX

\saveboxresource \pdfxform
\saveimageresource \pdfximage
\useboxresource \pdfrefxform
\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform
\lastsavedimageresourceindex \pdflastximage
\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdffeedback features that relate to this but these are typical backend spec
ones. The index that gets returned is to be considered as ‘just a number’ and although it «
has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situatio
When protrusion characters are identified some nodes are skipped:

» zero glue » dir nodes

» penalties » empty horizontal lists

» empty discretionaries » local par nodes

» normal zero kerns » inserts, marks and adjusts
» rules with zero dimensions > boundaries

» math nodes with a surround of zero > whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the n
node being ignored. When the value is 1 or 3, the next node will be ignored in the test wl
locating a left boundary condition. When the value is 2 or 3, the previous node will be igno:
when locating a right boundary condition (the search goes from right to left). This pern
protrusion combined with for instance content moved into the margin:

\protrusionboundaryl\1lap{!\quad}«Who needs protrusion?»

3.1.5 Changes from ALEPH RC4

Because we wanted proper directional typesetting the Aleph mechanisms looked most attract;
These are rather close to the ones provided by Omega, so what we say next applies to both th

programs.

» The extended 16-bit math primitives (\omathcode etc.) have been removed.

» The OCP processing has been removed completely and as a consequence, the follow
primitives have been removed: \ocp, \externalocp, \ocplist, \pushocplist, \popc
plist, \clearocplists, \addbeforeocplist, \addafterocplist, \removebeforeocpli
\removeafterocplist and \ocptracelevel.

» LuaTgX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arab
RTT (cjk), LTL (mongolian). All other direction specifiers generate an error. In addition t
keyword driven model we also provide an integer driven one.

» The input translations from Aleph are not implemented, the related primitives are
available: \DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \L
faultOutputMode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInp
Translation, \noDefaultInputTranslation, \noInputTranslation, \InputTranslati
\DefaultOutputTranslation, \noDefaultOutputTranslation, \noQutputTranslation ¢
\OutputTranslation.

» Several bugs have been fixed and confusing implementation details have been sorted out

» The scanner for direction specifications now allows an optional space after the directior
completely parsed.

» The ~" notation has been extended: after ~~"~" four hexadecimal characters are expected ¢
after ~*~""" six hexadecimal characters have to be given. The original TgX interpretatio:
still valid for the *" case but the four and six variants do no backtracking, i.e. when they
not followed by the right number of hexadecimal digits they issue an error message. Beca:
~~* is a normal TgX case, we don’t support the odd number o either.

> Glues immediately after direction change commands are not legal breakpoints.

» Several mechanisms that need to be right-to-left aware have been improved. For insta:
placement of formula numbers.

» The page dimension related primitives \pagewidth and \pageheight have been promotec
core primitives. The \hoffset and \voffset primitives have been fixed.

» The primitives \charwd, \charht, \chardp and \charit have been removed as we have
e-TgX variants \fontchar*.

» The two dimension registers \pagerightoffset and \pagebottomoffset are now core pr
itives.

» The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir
\boxdir are now core primitives.

» The promotion of primitives to core primitives as well as removing of all others means t
the initialization namespace aleph that early versions of LuaTgX provided is gone.

f ANANANAN

The above let’s itself summarize as: we took the 32 bit aspects and much of the directio
mechanisms and merged it into the pdfTEX code base as starting point for further developme
Then we simplified directionality, fixed it and opened it up.

3.1.6 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C st
This framework also provides some common features that deal with reading bytes from files ¢
locating files in tds. This is what we do different:

» There is no mltex support.

» There is no enctex support.

» The following encoding related command line switches are silently ignored, even in non-I1
mode: -8bit, -translate-file, -mltex, -enc and -etex.

» The \openout whatsits are not written to the log file.

» Some of the so-called web2c extensions are hard to set up in non-kpse mode beca
texmf.cnf isnot read: shell-escape is off (but that is not a problem because of Lua’s 0s . ¢
ecute), and the paranoia checks on openin and openout do not happen. However, it is e
for a Lua script to do this itself by overloading io.open and alike.

» The ‘E’ option does not do anything useful.

3.2 The backend primitives

3.2.1 Less primitives

In a previous section we mentioned that some pdfIgX primitives were removed and others p
moted to core LuaTgX primitives. That is only part of the story. In order to separate the backe
specific primitives in de code these commands are now replaced by only a few. In traditio
TgX we only had the dvi backend but now we have two: dvi and pdf. Additional functionalit;
implemented as ‘extensions’ in TEX speak. By separating more strickly we are able to keep
core (frontend) clean and stable and isolate these extensions. If for some reason an extra ba
end option is needed, it can be implemented without touching the core. The three pdf backe
related primitives are:

\pdfextension command [specification]
\pdfvariable name
\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (k
of) register and can be read and written, while a feedback is reporting something (as it con
from the backend it’s normally a sequence of tokens).

3.2.2 \pdfextension, \pdfvariable and \pdffeedback

In order for LuaTgX to be more than just TEX you need to enable primitives. That has alre:
been the case right from the start. If you want the traditional pdfTEX primitives (for as far th
functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}
\protected\def\pdfcolorstack {\pdfextension colorstack}
\protected\def\pdfsetmatrix {\pdfextension setmatrix}
\protected\def\pdfsave {\pdfextension save\relax}
\protected\def\pdfrestore {\pdfextension restore\relax}
\protected\def\pdfobj {\pdfextension obj }
\protected\def\pdfrefobj {\pdfextension refobj }

\protected\def\pdfannot {\pdfextension annot }

\protected\def\pdfstartlink
\protected\def\pdfendlink
\protected\def\pdfoutline
\protected\def\pdfdest
\protected\def\pdfthread

\protected\def\pdfstartthread

\protected\def\pdfendthread
\protected\def\pdfinfo
\protected\def\pdfcatalog
\protected\def\pdfnames

\protected\def\pdfincludechars

\protected\def\pdffontattr
\protected\def\pdfmapfile
\protected\def\pdfmapline
\protected\def\pdftrailer

\protected\def\pdfglyphtounicode

{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension
{\pdfextension

The introspective primitives can be defined as:

startlink }
endlink\relax}
outline }

dest }

thread }
startthread }
endthread\relax}
info }

catalog }

names }
includechars }
fontattr }
mapfile }
mapline }
trailer }
glyphtounicode }

\def\pdftexversion {\numexpr\pdffeedback version\relax}
\def\pdftexrevision {\pdffeedback revision}
\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}
\def\pdfretval {\numexpr\pdffeedback retvallrelax}
\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}
\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}
\def\pdfxformname {\numexpr\pdffeedback xformname\relax}
\def\pdfcreationdate {\pdffeedback creationdate}
\def\pdffontname {\numexpr\pdffeedback fontname\relax}
\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}
\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}
\def\pdfpageref {\numexpr\pdffeedback pageref\relax}
\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The configuration related registers have become:

\edef\pdfcompresslevel {\pdfvariable compresslevel}
\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}
\edef\pdfrecompress {\pdfvariable recompress}
\edef\pdfdecimaldigits {\pdfvariable decimaldigits}
\edef\pdfgamma {\pdfvariable gamma}
\edef\pdfimageresolution {\pdfvariable imageresolution}
\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}
\edef\pdfimagegamma {\pdfvariable imagegamma}
\edef\pdfimagehicolor {\pdfvariable imagehicolor}
\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}
\edef\pdfpkresolution {\pdfvariable pkresolution}
\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}
\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}
\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}
\edef\pdfgentounicode {\pdfvariable gentounicode}
\edef\pdfomitcidset {\pdfvariable omitcidset}
\edef\pdfomitcharset {\pdfvariable omitcharset}
\edef\pdfpagebox {\pdfvariable pagebox}
\edef\pdfminorversion {\pdfvariable minorversion}
\edef\pdfuniqueresname {\pdfvariable uniqueresname}
\edef\pdfhorigin {\pdfvariable horigin}
\edef\pdfvorigin {\pdfvariable vorigin}
\edef\pdflinkmargin {\pdfvariable linkmargin}
\edef\pdfdestmargin {\pdfvariable destmargin}
\edef\pdfthreadmargin {\pdfvariable threadmargin}
\edef\pdfxformmargin {\pdfvariable xformmargin}
\edef\pdfpagesattr {\pdfvariable pagesattr}
\edef\pdfpageattr {\pdfvariable pageattr}
\edef\pdfpageresources {\pdfvariable pageresources}
\edef\pdfxformattr {\pdfvariable xformattr}
\edef\pdfxformresources {\pdfvariable xformresources}
\edef\pdfpkmode {\pdfvariable pkmode}
\edef\pdfsuppressoptionalinfo {\pdfvariable suppressoptionalinfo }
\edef\pdftrailerid {\pdfvariable trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a 1

previously defined ones:

\meaning\pdfhorigin
\meaning\pdfcompresslevel
\meaning\pdfpageattr

you will get:

macro:->[internal backend dimension]

macro:->[internal backend integer]
macro:->[internal backend tokenlist]

The \edef can also be a \def but it’s a bit more efficient to expand the lookup related regis
beforehand.

The backend is derived from pdfTEX so the same syntax applies. However, the outline commae
accepts a objnum followed by a number. No checking takes place so when this is used it 1
better be a valid (flushed) object.

In order to be (more or less) compatible with pdfIgX we also support the option to suppr
some info but we do so via a bitset:

\pdfvariable suppressoptionalinfo \numexpr

0
+ 1 % PTEX.FullBanner
+ 2 % PTEX.FileName
+ 4 % PTEX.PageNumber
+ 8 % PTEX.InfoDict
+ 16 % Creator
+ 32 % CreationDate
+ 64 % ModDate
+ 128 % Producer
+ 256 % Trapped
+ 512 % ID
\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you h:
to pass a valid array. The following is like the ones normally generated by the engine. You e
need to include the brackets here!

\pdfvariable trailerid {[
<FA052949448907805BA83C1E78896398>
<FA052949448907805BA83C1E78896398>

1}

Although we started from a merge of pdfTEX and Aleph, by now the code base as well as fu
tionality has diverted from those parents. Here we show the options that can be passed to
extensions.

\pdfextension literal
[direct | page | raw] { tokens }

\pdfextension dest
num integer | name { tokens }!crlf
[fitbh | fitbv | fitb | fith| fitv | fit |
fitr <rule spec> | xyz [zoom <integer>]

\pdfextension annot
reserveobjnum | useobjnum <integer>
{ tokens }

\pdfextension save
\pdfextension restore

\pdfextension setmatrix
{ tokens }

[\immediate] \pdfextension obj
reserveobjnum

[\immediate] \pdfextension obj

[useobjnum <integer>]

[uncompressed]

[stream [attr { tokens }] 1]
[file]

{ tokens }

\pdfextension refobj
<integer>

\pdfextension colorstack
<integer>
set { tokens } | push { tokens } | pop | current

\pdfextension startlink
[attr { tokens } 1]
user { tokens } | goto | thread
[file { tokens }]
[page <integer> { tokens } | name { tokens } | num integer]
[newwindow | nonewwindow]

\pdfextension endlink

\pdfextension startthread
num <integer> | name { tokens }

\pdfextension endthread

\pdfextension thread
num <integer> | name { tokens }

\pdfextension outline
[attr { tokens }]
[useobjnum <integer>]
[count <integer>]
{ tokens }

\pdfextension glyphtounicode
{ tokens }
{ tokens }

\pdfextension catalog
{ tokens }
[openaction
user { tokens } | goto | thread
[file { tokens } 1]
[page <integer> { tokens } | name { tokens } | num <integer>]
[newwindow | nonewwindow]]

\pdfextension fontattr

<integer>
{tokens}

\pdfextension
{tokens}

mapfile

\pdfextension
{tokens}

mapline

\pdfextension includechars

{tokens}
\pdfextension info
{tokens}

\pdfextension
{tokens}

names

\pdfextension trailer

{tokens}

3.2.3 Defaults

The engine sets the following defaults.

\pdfcompresslevel
\pdfobjcompresslevel
\pdfrecompress
\pdfdecimaldigits
\pdfgamma
\pdfimageresolution
\pdfimageapplygamma
\pdfimagegamma
\pdfimagehicolor
\pdfimageaddfilename
\pdfpkresolution
\pdfpkfixeddpi
\pdfinclusioncopyfonts
\pdfinclusionerrorlevel
\pdfignoreunknownimages
\pdfgentounicode
\pdfomitcidset
\pdfomitcharset
\pdfpagebox
\pdfminorversion
\pdfuniqueresname

\pdfhorigin

9
1
0
4

1000
71

0

2200

1
1

~
N

O PO O OCOOOC OO

1lin

% used: (0,9)
% mostly for debugging
% used: (3,6)

\pdfvorigin
\pdflinkmargin
\pdfdestmargin
\pdfthreadmargin
\pdfxformmargin

lin
Opt
Opt
Opt
Opt

3.2.4 Backward compatibility

If you also want some backward compatibility, you can add:

\let\pdfpagewidth
\let\pdfpageheight

\let\pdfadjustspacing
\let\pdfprotrudechars
\let\pdfnoligatures
\let\pdffontexpand
\let\pdfcopyfont

\let\pdfxform
\let\pdflastxform
\let\pdfrefxform

\let\pdfximage
\let\pdflastximage

\pagewidth
\pageheight

\adjustspacing
\protrudechars
\ignoreligaturesinfont
\expandglyphsinfont
\copyfont

\saveboxresource
\lastsavedboxresourceindex
\useboxresource

\saveimageresource
\lastsavedimageresourceindex

\let\pdflastximagepages\lastsavedimageresourcepages

\let\pdfrefximage
\let\pdfsavepos
\let\pdflastxpos
\let\pdflastypos

\let\pdfoutput
\let\pdfdraftmode

\let\pdfpxdimen
\let\pdfinsertht

\let\pdfnormaldeviate

\let\pdfuniformdeviate

\let\pdfsetrandomseed
\let\pdfrandomseed

\let\pdfprimitive
\let\ifpdfprimitive

\useimageresource

\savepos
\lastxpos
\lastypos

\outputmode
\draftmode

\pxdimen
\insertht
\normaldeviate
\uniformdeviate
\setrandomseed

\randomseed

\primitive
\ifprimitive

\let\ifpdfabsnum \ifabsnum
\let\ifpdfabsdim \ifabsdim

And even:

\newdimen\pdfeachlineheight
\newdimen\pdfeachlinedepth
\newdimen\pdflastlinedepth
\newdimen\pdffirstlineheight
\newdimen\pdfignoreddimen

3.3 Directions

3.3.1 Four directions

The directional model in LuaTgX is inherited from Omega/Aleph but we tried to improve it a |
At some point we played with recovery of modes but that was disabled later on when we fot
that it interfered with nested directions. That itself had as side effect that the node list was
longer balanced with respect to directional nodes which in turn can give side effects whe
series of dir changes happens without grouping.

When extending the pdf backend to support directions some inconsistencies were found and
a result we decided to support only the four models that make sense TLT (latin), TRT (arab
RTT (cjk) and LTL (mongolian).

3.3.2 How it works

The approach is that we again make the list balanced but try to avoid some side effects. W
happens is quite intuitive if we forget about spaces (turned into glue) but even there what h
pens makes sense if you look at it in detail. However that logic makes in-group switching k
of useless when no proper nested grouping is used: switching from right to left several tin
nested, results in spacing ending up after each other due to nested mirroring. Of cours
sane macro package will manage this for the user but here we are discussing the low level
injection.

This is what happens:

\textdir TRT nur {\textdir TLT run \textdir TRT NUR} nur

This becomes stepwise:

injected: [+TRTInur {[+TLTlrun [+TRTINUR} nur
balanced: [+TRTInur {[+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {RUNrun } run

And this:

\textdir TRT nur {nur \textdir TLT run \textdir TRT NUR} nur

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur
balanced: [+TRTInur {nur [+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:
\textdir TRT nur {{\textdir TLT run} {\textdir TRT NUR}} nur

This becomes:
run RUN run run

Compare this to:
\textdir TRT nur {{\textdir TLT run }{\textdir TRT NUR}} nur

Which renders as:
run RUNrun run

So how do we deal with the next?

\def\ltr{\textdir TLT\relax}
\def\rtl{\textdir TRT\relax}

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run run RUNrun RUNrun run
run run runRUN runRUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the
node. But that way we loose the subtype information that for some applications can be handy
be kept as-is. This is why we now have a variant of \textdir which injects the balanced nc
before the skip. Instead of the previous definition we can use:

\def\ltr{\linedir TLT\relax}
\def\rt1{\linedir TRT\relax}

and this time:

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run run RUN run RUN run run
run run run RUN run RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should
handled in the input or macro package because there is no way we can predict the expec
behaviour. In fact, the \linedir is just a convenience extra which could also have been imj
mented using node list parsing.

3.3.3 Controlling glue with \breakafterdirmode

Glue after a dir node is ignored in the linebreak decision but you can bypass that by sett
\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

pre {\textdir TLT xxx} post pre pre
XXX post XXX

post

pre {\textdir TLT xxx }post pre pre
XXX XXX

post post

pre{ \textdir TLT xxx} post pre pre
XXX post XXX

post

pre{ \textdir TLT xxx }post pre pre
XXX XXX

post post

pre { \textdir TLT xxx } post pre pre
XXX XXX

post
post
pre {\textdir TLT\relax \space xxx} post pre pre
XXX post
XXX
post

3.3.4 Controling parshapes with \shapemode

Another adaptation to the Aleph directional model is control over shapes driven by \hangind
and \parshape. This is controlled by a new parameter \shapemode:

VALUE \HANGINDENT \PARSHAPE

0 normal normal
1 mirrored normal
2 normal mirrored
3 mirrored mirrored

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done w:
You can use negative values to prevent this. In figure 3.1 a few examples are given.

We thrive in information-thick worlds because of our

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat from
_the chaff and separate the sheep from the goats.

TLT: hangindent

e thrive in information-thick worlds because of our mar-

velous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, syn-
thesize, focus, organize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats

TLT: parshape

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

-nis ,tide ,tceles ot yticapac yadyreve dna suolevram

-rah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg
nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf taechw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdIrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev

-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts
rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taehw eht wonniw ,ezisponys ,naelg
staog eht morf peeh

TRT: hangindent mode 0

TRT: parshape mode 0

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

rnis ,tide ,tceles ot yticapac yadyreve dna suolevram

rrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom

otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc

kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi

,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo

rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva

hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi

morf tachw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts

rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht

etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin

etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid

etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb

pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc

etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht

eht etarapes dna ffahc eht morf taechw eht wonniw ,ezisponys ,naelg
staog eht morf peehs

TRT: hangindent mode 1 & 3

TRT: parshape mode 2 & 3

Figure 3.1 The effect of shapemode.

3.3.5 Symbols or numbers

Internally the implementation is different from Aleph. First of all we use no whatsits but de
cated nodes, but also we have only 4 directions that are mapped onto 4 numbers. A text direct
node can mark the start or end of a sequence of nodes, and therefore has two states. At the "
end we don’t see these states because TgX itself will add proper end state nodes if needed.

The symbolic names TLT, TRT, etc. originate in Omega. In LuaTEX we also have a number ba:
model which sometimes makes more sense.

VALUE EQUIVALENT

0 TLT
1 TRT
2 LTL
3 RTT

We support the Omega primitives \textdir, \pardir, \pagedir, \pardir and \mathdir. Th
accept three character keywords. The primitives that set the direction by number are: \text
rection, \pardirection, \pagedirection and \bodydirection and \mathdirection. Wi
specifying a direction for a box you can use bdir instead of dir.

3.4 Implementation notes

3.4.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into t
separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main_memo
mem_bot, extra mem top and extra mem bot). ‘Out of main memory’ errors can still occur, -
the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant cc
now lives in the C file texnode. ¢, and basically uses a dozen or so ‘avail’ lists instead of a doul
linked model. An extra function layer is added so that the code can ask for nodes by type inste
of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, so
of the macros have been duplicated. For instance, there are now vlink and vinfo as well
token link and token info. All access to the variable memory array is now hidden behin
macro called vmem. We mention this because using the TgXbook as reference is still quite ve
but not for memory related details. Another significant detail is that we have double linked nc
lists and that most nodes carry more data.

The input line buffer and pool size are now also reallocated when needed, and the texmf.
settings buf size and pool size are silently ignored.

3.4.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjco
tables are now sparse arrays that are implemented in C. They are no longer part of the -
‘equivalence table’ and because each had 1.1 million entries with a few memory words ea
this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don’t show up when us
the e-TEX tracing routines \tracingassigns and \tracingrestores but we don’t see that a
real limitation.

A side-effect of the current implementation is that \global is now more expensive in terms
processing than non-global assignments but not many users will notice that.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go
to index 22! — 1 but these are never accessed directly so again users will not notice this.

3.4.3 Simple single-character csnames
Single-character commands are no longer treated specially in the internals, they are storec
the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has
decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequen:
that uses a prefix that is otherwise impossible to obtain.

3.4.4 The compressed format file

The format is passed through z1ib, allowing it to shrink to roughly half of the size it would h:
had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it sho
still be faster. We use a level 3 compression which we found to be the optimal trade-off betwe
filesize and decompression speed.

3.4.5 Binary file reading

All of the internal code is changed in such a way that if one of the read xxx_file callbacks is
set, then the file is read by a C function using basically the same convention as the callback
single read into a buffer big enough to hold the entire file contents. While this uses more mem
than the previous code (that mostly used getc calls), it can be quite a bit faster (depending
your io subsystem).

3.4.6 Tabs and spaces

We conform to the way other TgX engines handle trailing tabs and spaces. For decades trail
tabs and spaces (before a newline) were removed from the input but this behaviour was chanc
in September 2017 to only handle spaces. We are aware that this can introduce compatibi
issues in existing workflows but because we don’t want too many differences with upstre
TeXLive we just follow up on that patch (which is a functional one and not really a fix). It is uy
macro packages maintainers to deal with possible compatibility issues and in LuaTgX they ¢
do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes fr
generated sources) it was normally dealt with by adding a comment token to the line in case
spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradi
some of our other choices but consistency with other engines and the fact that in kpse mod
common file io layer is used can have a side effect of breaking compatibility. We still stick to
view that at the log level we can (and might be) more incompatible. We already expose so
more details.

4 Using LUATEX

4.1 Initialization

4.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTgX behave like a standalone Lua interpreter:

» ifa --luaonly option is given on the commandline, or
» if the executable is named texlua or luatexlua, or
» if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options
negative values and the rest of the command line in the positive values, just like the Lua inf
preter.

LuaTgX will exit immediately after executing the specified Lua script and is, in effect, a somew
bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

4.1.2 LUATEX as a LUA byte compiler
There are two situations that make LuaTgX behave like the Lua byte compiler:

» ifa --luaconly option is given on the command line, or
» if the executable is named texluac

In this mode, LuaTgX is exactly like luac from the stand alone Lua distribution, except t
it does not have the -1 switch, and that it accepts (but ignores) the --luaconly switch.
current version of Lua can dump bytecode using string.dump so we might decide to drop t
version of LuaTgX.

4.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the --lua command line option. If there is
- -lua option, the command line is interpreted in a similar fashion as the other TEX engin
Some options are accepted but have no consequence. The following command-line options
understood:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

- -debug-format enable format debugging

--draftmode switch on draft mode i.e. generate no output in pdf mode
--[no-]file-line-error disable/enable file:line:error style messages

--[no-]file-line-error-style aliasesof --[no-]file-line-error
- - Tmt=FORMAT load the format file FORMAT

--halt-on-error stop processing at the first error

--help display help and exit

--ini be iniluatex, for dumping formats

--interaction=STRING set interaction mode: batchmode, nonstopmode, scrollme
or errorstopmode

- -jobname=STRING set the job name to STRING

- -kpathsea-debug=NUMBER set path searching debugging flags according to the bits
NUMBER

--lua=FILE load and execute a Lua initialization script

--[no-Imktex=FMT disable/enable mktexFMT generation with FMT is tex or tf

--nosocket disable the Lua socket library

--output-comment=STRING use STRING for dvi file comment instead of date (no effect
pdf)

--output-directory=DIR use DIR as the directory to write files to

--output-format=FORMAT use FORMAT for job output; FORMAT is dvi or pdf

- -progname=STRING set the program name to STRING

--recorder enable filename recorder

--safer disable easily exploitable Lua commands

--[no-]shell-escape disable/enable system calls

--shell-restricted restrict system calls to a list of commands given in texmf .

- -synctex=NUMBER enable synctex

--utc use utc times when applicable

--version display version and exit

We don’t support \write 18 because 0s.execute can do the same. It simplifies the code &
makes more write targets possible.

The value to use for \ jobname is decided as follows:

» If --jobname is given on the command line, its argument will be the value for \jobna
without any changes. The argument will not be used for actual input so it need not exist. ']
- - jobname switch only controls the \ jobname setting.

» Otherwise, \jobname will be the name of the first file that is read from the file system, w
any path components and the last extension (the part following the last .) stripped off.

» There is an exception to the previous point: if the command line goes into interactive m
(by starting with a command) and there are no files input via \everyjob either, then
\jobname is set to texput as a last resort.

The file names for output files that are generated automatically are created by attaching
proper extension (log, pdf, etc.) to the found \ jobname. These files are created in the direct
pointed to by --output-directory, or in the current directory, if that switch is not present.

Without the - - lua option, command line processing works like it does in any other web2c-ba:
typesetting engine, except that LuaTgX has a few extra switches and lacks some others. Alsc
the - -lua option is present, LuaTgX will enter an alternative mode of command line process
in comparison to the standard web2c programs. In this mode, a small series of actions is tal
in the following order:

1. First, it will parse the command line as usual, but it will only interpret a small subset
the options immediately: --safer, --nosocket, --[no-]shell-escape, --enable-write
--disable-writel8, --shell-restricted, --help, --version, and --credits.

2. Next LuaTgX searches for the requested Lua initialization script. If it cannot be found us
the actual name given on the command line, a second attempt is made by prepending
value of the environment variable LUATEXDIR, if that variable is defined in the environme:

3. Then it checks the various safety switches. You can use those to disable some Lua commaz
that can easily be abused by a malicious document. At the moment, - -safer nils the follc
ing functions:

LIBRARY FUNCTIONS

0s execute exec spawn setenv rename remove tmpdir
io popen output tmpfile
1fs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail
files that are opened for anything besides reading.

4. When LuaTgX starts it sets the locale to a neutral value. If for some reason you use 0s.’
cale, you need to make sure you nil it afterwards because otherwise it can interfere w
code that for instance generates dates. You can ignore the locale with:

os.setlocale(nil,nil)

The - -nosocket option makes the socket library unavailable, so that Lua cannot use netwc
ing.
The switches - -[no-]shell-escape, --[enable|disable] -writel8, and - -shell-restri
have the same effects as in pdfTEX, and additionally make io.popen(), os.execute, 0s.e
and os.spawn adhere to the requested option.

5. Next the initialization script is loaded and executed. From within the script, the entire cc
mand line is available in the Lua table arg, beginning with arg[0], containing the name
the executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX’s initialsi
tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, tok
node and pdf, are off-limits during the execution of the startup file (they are nil’d). Special c.
is taken that texio.write and texio.write nl function properly, so that you can at least rep
your actions to the log file when (and if) it eventually becomes opened (note that TgX does:
even know its \ jobname yet at this point).

Everything you do in the Lua initialization script will remain visible during the rest of the r
with the exception of the TgX specific libraries like tex, token, node and pdf tables. These 1
be initialized to their documented state after the execution of the script. You should not st
anything in variables or within tables with these four global names, as they will be overwrit
completely.

We recommend you use the startup file only for your own TgX-independent initializations
you need any), to parse the command line, set values in the texconfig table, and register
callbacks you need.

LuaTgX allows some of the command line options to be overridden by reading values from
texconfig table at the end of script execution (see the description of the texconfig table la
on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTgX not to initialize kpathsea at all (set texce
fig.kpse_init to false for that), LuaTgX acts on some more command line options after
initialization script is finished: in order to initialize the built-in kpathsea library properly, Lua’
needs to know the correct program name to use, and for that it needs to check - -progname,
--ini and - -fmt, if - -progname is missing.

4.2 LUA behaviour

4.2.1 The LUA version

We currently use Lua 5.3 and will follow developments of the language but normally with so
delay. Therefore the user needs to keep an eye on (subtle) differences in successive version:
the language. Also, LuajitTEX lags behind in the sense that LuaJIT is not in sync with regu
Lua development. Here is an example of one aspect.

Luas tostring function (and string.format may return values in scientific notation, there
confusing the TgX end of things when it is used as the right-hand side of an assignment t
\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua
you can get different output than from 5.2.

4.2.2 Integration in the TDS ecosystem

The main TgX distributions follow the TgX directory structure (tds). LuaTgX is able to use
kpathsea library to find require()d modules. For this purpose, package.searchers[2] is
placed by a different loader function, that decides at runtime whether to use kpathsea or
built-in core Lua function. It uses kpathsea when that is already initialized at that point in tiz
otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTgX starts up and the star
script has not set texconfig.kpse init to false), or explicitly by calling the Lua funct
kpse.set program name().

4.2.3 Loading libraries

LuaTgX is able to use dynamically loadable Lua libraries, unless - -safer was given as an opt
on the command line. For this purpose, package.searchers[3] is replaced by a different loa
function, that decides at runtime whether to use kpathsea or the built-in core Lua function
uses kpathsea when that is already initialized at that point in time, otherwise it reverts to us
the normal package.cpath loader.

This functionality required an extension to kpathsea. There is a new kpathsea file forn
kpse clua_format that searches for files with extension .d11l and .so. The texmf.cnf sett
for this variable is CLUAINPUTS, and by default it has this value:

CLUAINPUTS=. : $SELFAUTOLOC/1lib/{$progname, $engine, }/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the archit
ture has to be in the path somewhere, and the currently simplest way to do that is to sea:
below the binaries directory only. Of course it no big deal to write an alternative loader and
that in a macro package. One level up (a 1ib directory parallel to bin) would have been nic
but that is not doable because TgXLive uses a bin/<arch> structure.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same ti
(which will typically happen on win32, because there is one Lua 5.3 inside LuaTgX, and anot
will likely be linked to the dll file of the module itself).

4.2.4 Executing programs

In keeping with the other TgX-like programs in TgXLive, the two Lua functions os.execute &
io.popen, as well as the two new functions os.exec and os.spawn that are explained bel
take the value of shell escape and/or shell escape commands in account. Whenever Lua’
is run with the assumed intention to typeset a document (and by that we mean that it is callec
luatex, as opposed to texlua, and that the command line option - -luaonly was not given]
will only run the four functions above if the matching texmf.cnf variable(s) or their texcon
(see section 10.4) counterparts allow execution of the requested system command. In ‘script
terpreter’ runs of LuaTgX, these settings have no effect, and all four functions have their origi
meaning.

Some libraries have a few more functions, either coded in C or in Lua. For instance, when
started with LuaTgX we added some helpers to the luafilesystem namespace 1fs. The t
boolean functions 1fs.isdir and lfs.isfile were speedy and better variants of what co
be done with 1fs.attributes. The additional function lfs.shortname takes a file name ¢
returns its short name on win32 platforms. Finally, for non-win32 platforms only, we provic
1fs.readlink that takes an existing symbolic link as argument and returns its name. Howe
the ibrary evoved so we have dropped these in favour of pure Lua variants. The shortn:
helper is obsolete and now just returns the name.

4.2.5 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function tal
upto two arguments: string.explode(s[,m]) and returns an array containing the string ar
ment s split into sub-strings based on the value of the string argument m. The second argumen
a string that is either empty (this splits the string into characters), a single character (this sp
on each occurrence of that character, possibly introducing empty strings), or a single charac
followed by the plus sign + (this special version does not create empty sub-strings). The defe
value for mis * + (multiple spaces). Note: m is not hidden by surrounding braces as it would
if this function was written in TgX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfv:
ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes:
string.bytepairs.

» string.utfvalues(s): an integer value in the Unicode range

» string.utfcharacters(s): a string with a single utf-8 token in it

» string.cWharacters(s): a string containing one byte

» string.characterpairs(s): two strings each containing one byte or an empty second str
if the string length was odd

» string.bytes(s): a single byte value

» string.bytepairs(s): two byte values or nil instead of a number as its second return va
if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in
conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean whi
if true, strips the symbols from the dumped data. This matches an extension made in luaj
This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in
utf8 encoding, i.e., strings containing characters above code point 127, the corresponding fu
tions from the slnunicode library can be used, e.g., unicode.utf8.1len, unicode.utf8. 1o\
etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, ¢
unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general
Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capt
() but other captures work as expected. For the interpretation of character classes in ur
code.utf8 functions refer to the library sources at http://luaforge.net/projects/sin.

Version 5.3 of Lua provides some native utf8 support but we have added a few similar help
too: string.utfvalue, string.utfcharacter and string.utflength.

» string.utfvalue(s): returns the codepoints of the characters in the given string
» string.utfcharacter(c,...): returns a string with the characters of the given code poi
» string.utflength(s): returns the length oif the given string

These three functions are relative fast and don’t do much checking. They can be used as build
blocks for other helpers.

4.2.6 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.exec, 0s.spa
os.setenv, 0s.env, os.gettimeofday, os.times, os.tmpdir, os.type, os.name and 0s.una
that we will discuss here.

» o0s.selfdir is a variable that holds the directory path of the actual executable. For examj

\directlua{tex.sprint(os.selfdir)}.

» os.exec(commandline) is a variation on os.execute. Here commandline can be eithe
single string or a single table.

- If the argument is a table LuaTgX first checks if there is a value at integer index zero
there is, this is the command to be executed. Otherwise, it will use the value at inte
index one. If neither are present, nothing at all happens.

- The set of consecutive values starting at integer 1 in the table are the arguments t
are passed on to the command (the value at index 1 becomes arg[0]). The commanc

searched for in the execution path, so there is normally no need to pass on a fully qualif
path name.

- If the argument is a string, then it is automatically converted into a table by splitting
whitespace. In this case, it is impossible for the command and first argument to dif
from each other.

- In the string argument format, whitespace can be protected by putting (part of) an ar
ment inside single or double quotes. One layer of quotes is interpreted by LuaTgX, ¢
all occurrences of \", \'' or \\ within the quoted text are unescaped. In the table forn
there is no string handling taking place.

This function normally does not return control back to the Lua script: the command 1

replace the current process. However, it will return the two values nil and error if th

was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the executior

the command has finished. This prevents crashes in situations where TgXLua scripts are 1

inside integrated TgX environments.

The original reason for this command is that it cleans out the current process before start

the new one, making it especially useful for use in TgXLua.

os.spawn(commandline) is a returning version of 0s.exec, with otherwise identical call

conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwi

it will return the two values nil and error.

os.setenv(key,value) sets a variable in the environment. Passing nil instead of a va

string will remove the variable.

0s.env is a hash table containing a dump of the variables and values in the process er

ronment at the start of the run. It is writeable, but the actual environment is not upda

automatically.

os.gettimeofday () returns the current ‘Unix time’, but as a float. This function is not av

able on the SunOS platforms, so do not use this function for portable documents.

os.times ()returns the current process times according to the Unix C library function ‘time

This function is not available on the MS Windows and SunOS platforms, so do not use t

function for portable documents.

os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXX

where the X-es are replaced by a unique string. The function also returns this string, so 1

can Lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible

cleaning up at the end of the run, it does not happen automatically.

0s.typeis a string that gives a global indication of the class of operating system. The possi

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wil.

0s.name is a string that gives a more precise indication of the operating system. These p

sible values are not yet fixed, and for os. type values windows and msdos, the os.name val

are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, :

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), s\

(unknown, but sysv-like), generic (unknown).

0s.uname returns a table with specific operating system information acquired at runtir

The keys in the returned table are all string values, and their names are: sysname, machi

release, version, and nodename.

4.2.7 Binary input from files with fio

There is a whole set of helpers for reading numbers and strings from a file: fio.readcar
nall, fio.readcardinal2, fio.readcardinal3, fio.readcardinal4, fio.readcardinaltab
fio.readintegerl, fio.readinteger2, fio.readinteger3, fio.readinteger4, fio.read:
tegertable, fio.readfixed2, fio.readfixed4, fio.read2dotl14, fio.setposition, fio.ge
position, fio.skipposition, fio.readbytes, fio.readbytetable. They work on normal I
file handles.

This library provides a set of functions for reading numbers from a file and in addition to
regular io library functions.

readcardinall(f) a 1 byte unsigned integer
readcardinal2(f) a 2 byte unsigned integer
readcardinal3(f) a 3 byte unsigned integer
readcardinal4(f) a 4 byte unsigned integer
readcardinaltable(f,n,b) n cardinals of b bytes
readintegerl(f) a 1 byte signed integer
readinteger2(f) a 2 byte signed integer
readinteger3(f) a 3 byte signed integer
readinteger4(f) a 4 byte signed integer
readintegertable(f,n,b) nintegers of b bytes
readfixed2(f) a 2 byte float (used in font files)
readfixed4(f) a 4 byte float (used in font files)
read2dotl14(f) a 2 byte float (used in font files)
setposition(f,p) goto position p

getposition(f) get the current position
skipposition(f,n) skip n positions
readbytes(f,n) n bytes

readbytetable(f,n) n bytes

4.2.8 Binary input from strings with sio

A similar set of function as in the fio library is available in the sio library: sio.readcar
nall, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltab
sio.readintegerl, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.read:
tegertable, sio.readfixed2, sio.readfixed4, sio.read2dotl4, sio.setposition, sio.qge
position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first ar
ment is a string instead of a file handle. More details can be found in the previous section.

4.2.9 Hashes conform sha2

This library is a side effect of the pdfe library that needs such helpers. The sha2.digest?2
sha2.digest384 and sha2.digest512 functions accept a string and return a string with
hash.

4.2.10 Locales

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, becaus
makes documents unportable. While LuaTgX is running if forces the following locale setting:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

4.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTgX, beca
they offer useful functionality:

>

lpeg, by Roberto lerusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. T
library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mai
means that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, ¢
thus lpeg.S will look for one of those two bytes when matching, not the combination of"
two. The same is true for lpeg.R, although the latter will display an error message if u
with multibyte characters. Therefore lpeg.R('aa') results in the message bad argument
to 'R' (range must have two characters), since to lpeg, a is two 'characters’ (bytes),
aa totals three. In practice this is no real issue and with some care you can deal with Unicc
just fine.

slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has be
slightly extended so that the unicode.utf8.* functions also accept the first 256 values
plane 18. This is the range LuaTgX uses for raw binary output, as explained above. We h:
no plans to provide more like this because you can basically do all that you want in Lua.
luazip, from the kepler project, http://www.keplerproject.org/luazip/.

luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem
1z1lib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/.

md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.
luasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The .lua supp
modules from luasocket are also preloaded inside the executable, there are no external
dependencies.

4.4 Testing

For development reasons you can influence the used startup date and time. This can be done
two ways.

1.

By setting the environmment variable SOURCE_DATE_EPOCH. This will influence the TgX pa
meters time and date, the random seed, the pdf timestamp and the pdf id that is deriy
from the time as well. This variable is consulted when the kpse library is enabled. Resolv
is delegated to this library.

. By setting the start time variable in the texconfig table; as with other variables we use

internal name there. For compatibility reasons we also honour a SOURCE_DATE_EPOCH en

It should be noted that there are no such variables in other engines and this method is o
relevant in case the while setup happens in Lua.

When Universal Time is needed, you can pass the flag utc to the engine. This property also wo
when the date and time are set by LuaTgX itself. It has a complementary entry use_utc_time
the texconfig table.

There is some control possible, for instance prevent filename to be written to the pdf file. Thi
discussed elsewhere. In ConTgXt we provide the command line argument - -nodates that ds
a bit more disabling of dates.

5 Languages, characters, fonts and
glyphs

5.1 Introduction

LuaTgX’s internal handling of the characters and glyphs that eventually become typeset is qu
different from the way TEX82 handles those same objects. The easiest way to explain the diff
ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. La
on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TgX82, the characters you type are converted into char node records when they are enco
tered by the main control loop. TgX attaches and processes the font information while creat
those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and
plicit kerning. This packaging is needed because we may want to get the effective width of
instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at tir
the char node records into a string by replacing ligatures with their components and ignor
the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphena
result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stre:
Keep in mind that the paragraph may contain unboxed horizontal material, which then alre:
contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific for
and therefore not really ‘characters’ in the linguistic sense. There is no language information
side the char node records at all. Instead, language information is passed along using langu:
whatsit nodes inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted i
glyph node records with a special subtype to identify them as being intended as linguistic ch
acters. LuaTgX stores the needed language information in those records, but does not do ¢
font-related processing at the time of node creation. It only stores the index of the current f
and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTgX first inserts all hyphenation poi
right into the whole node list. Next, it processes all the font information in the whole list (creat
ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that
records are ‘glyph nodes’ from now on.

5.2 Characters, glyphs and discretionaries

TEX82 (including pdfTEX) differentiates between char nodes and lig nodes. The former
simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in
same memory as tokens did. The latter also contained a list of components, and a subt;
indicating whether this ligature was the result of a word boundary, and it was stored in
same place as other nodes like boxes and kerns and glues.

In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph no
Besides having the old character, font, and component fields there are a few more, like ‘attr’ t
we will see in section 8.2.12, these nodes also contain a subtype, that codes four main types «
two additional ghost types. For ligatures, multiple bits can be set at the same time (in case ¢
single-glyph word).

» character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

» glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

» ligature, for constructed ligatures bit 1 is set.

» ghost, for so called ‘ghost objects’ bit 2 is set.

» left, forligatures created from a left word boundary and for ghosts created from \ leftgh
bit 3 gets set.

» right, for ligatures created from a right word boundary and for ghosts created from \rig|
ghost bit 4 is set.

The glyph nodes also contain language data, split into four items that were current when
node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenr
(8 bits), and \uchyph (1 bit).

Incidentally, LuaTgX allows 16383 separate languages, and words can be 256 characters lo
The language is stored with each character. You can set \firstvalidlanguage to for instanc
and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. T
value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different fr
TEX82: changes to \uchyph become effective immediately, not at the end of the current par
paragraph.

Typeset boxes now always have their language information embedded in the nodes themselv
so there is no longer a possible dependency on the surrounding language settings. In TEX8:
mid-paragraph statement like \unhbox® would process the box using the current paragraph 1
guage unless there was a \setlanguage issued inside the box. In LuaTgX, all language variab
are already frozen.

In traditional TgX the process of hyphenation is driven by lccodes. In LuaTgX we made this
pendency less strong. There are several strategies possible. When you do nothing, the currer
used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of lccodes will
saved with the language. In that case changing a lccode afterwards has no effect. Howex
you can adapt the set with:

\hjcode a="a

This change is global which makes sense if you keep in mind that the moment that hyphenat
happens is (normally) when the paragraph or a horizontal box is constructed. When \saving|
phcodes was zero when the language got initialized you start out with nothing, otherwise 3
already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the
lowing example we map a character (x) onto another one in the patterns and tell the engine th:

counts as one character. Because traditionally zero itself is reserved for inhibiting hyphenati
a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

foobar foo-bar

\hjcode “x="0 fxxbar fxx-bar
\lefthyphenmin 3 edipus @di-pus
\lefthyphenmin 4 edipus @dipus
\hjcode "@=2 edipus @di-pus

\hjcode "i=32 \hjcode "d=32 edipus edipus

Carrying all this information with each glyph would give too much overhead and also make
process of setting up these codes more complex. A solution with hjcode sets was considered -
rejected because in practice the current approach is sufficient and it would not be compati
anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyj
codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instaz
discretionary injection. For this you can use the \wordboundary as a trigger. Here are a {
examples of usage:

discrete---discrete
discrete—discrete
discrete\discretionary{}{}{---}discrete

discrete
discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-
crete
discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-
crete
dis-
crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-
crete—
dis-
crete

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence
explicit hyphens since that normally indicates a -- or --- ligature in which case we can i
worse case usage get bad node lists later on due to messed up ligature building as these das!
are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing e
kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or bound:
node. But by default also a hlist, vlist, rule, dir, whatsit, ins, and adjust node indicat
start or end. You can omit the last set from the test by setting \hyphenationbounds to a non-z
value:

VALUE BEHAVIOUR

0 not strict

1 strict start

2 strict end

3 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when hyphenationbounds 1 or 3

vlist when hyphenationbounds 1 or 3

rule when hyphenationbounds 1 or 3

dir when hyphenationbounds 1 or 3

whatsit when hyphenationbounds 1 or 3

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no - —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language
glue yes

penalty yes

kern yes when not italic (for some historic reason)
hlist when hyphenationbounds 2 or 3
vlist when hyphenationbounds 2 or 3
rule when hyphenationbounds 2 or 3
dir when hyphenationbounds 2 or 3
whatsit when hyphenationbounds 2 or 3
ins when hyphenationbounds 2 or 3
adjust when hyphenationbounds 2 or 3

Figures 5.1 upto 5.5 show some examples. In all cases we set the min values to 1 and make s
that the words hyphenate at each character.

Figure 5.1 one

0- o- onet- onetwo
n- n- w-
et- etwo 0
W-
0
0 1 2 3

Figure 5.2 one\null two

o- o- onet- onetwo
n- n- w-
et- etwo o]
W-
0
0 1 2 3

Figure 5.3 \null one\null two

o- o- onetwo onetwo
n- n-
et- etwo
W-
0
0 1 2 3

Figure 5.4 one\null two\null

In traditional TgX ligature building and hyphenation are interwoven with the line break me
anism. In LuaTgX these phases are isolated. As a consequence we deal differently with (a
quence of) explicit hyphens. We already have added some control over aspects of the hyph
ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

When \automatichyphenmode has a value of 0, a hyphen will be turned into an automatic disc
tionary. The snippets before and after it will not be hyphenated. A side effect is that a lead
hyphen can lead to a split but one will seldom run into that situation. Setting a pre and p
character makes this more prominent. A value of 1 will prevent this side effect and a value
2 will not turn the hyphen into a discretionary. Experiments with other options, like permitt
hyphenation of the words on both sides were discarded.

In figure ?? and 5.7 we show what happens with three samples:
Input A:

before-after \par
before--after \par

onetwo

2

onetwo

3

Figure 5.5 \null one\null two\null

before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after
after before---after
before---
after
A O bem A 0 2pt A 1 2pt A 2 2pt
-before i} -before -before
after- before after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after

after before---after
before- - -
after
C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 5.6 The automatic modes 0 (default), 1 and 2, with a \hsize of

6em and 2pt (which triggers a linebreak).

before---after \par
Input B:

-before \par
after- \par
--before \par
after-- \par
---before \par
after--- \par

before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after
Aafter before---after
before--B
Aafter
A 0 6em A 0 2pt A 1 2pt A 2 2pt
-before B -before -before
after- Abefore after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after

Aafter before---after
before--B
Aafter
C 0 6em C 0 2pt C1 2pt C 2 2pt

Figure 5.7 The automatic modes 0 (default), 1 and 2, with \preexhy-
phenchar and \postexhyphenchar set to characters A and B.

Input C:

before-after \par
before--after \par
before---after \par

As with primitive companions of other single character commands, the \ - command has a m
verbose primitive version in \explicitdiscretionary and the normally intercepted in the
phenator character - (or whatever is configured) is available as \automaticdiscretionary.

5.3 The main control loop

In LuaTgX's main loop, almost all input characters that are to be typeset are converted into g1
node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for:
actual accent and one for the accentee. The primary reason for this is that \accent in T
is explicitly dependent on the current font encoding, so it would not make much sense

attach a new meaning to the primitive’s name, as that would invalidate many old docume
and macro packages. A secondary reason is that in TgX82, \accent prohibits hyphenatior
the current word. Since in LuaTgX hyphenation only takes place on ‘character’ nodes, i
possible to achieve the same effect. Of course, modern Unicode aware macro packages 1
not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes wit
character subtype. In traditional TgX there was a strong relationship between the 8-bit inj
encoding, hyphenation and glyphs taken from a font. In LuaTgX we have utf input, and
most cases this maps directly to a character in a font, apart from glyph replacement in
font engine. If you want to access arbitrary glyphs in a font directly you can always use I
to do so, because fonts are available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtyp
In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalti
boxes etc.

3. The Aleph-derived commands \leftghost and \rightghost create nodes of a third subty
‘ghost’. These nodes are ignored completely by all further processing until the stage wh
inter-glyph kerning is added.

4. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary af
sensing an input character that matches the \hyphenchar in the current font. This tes
wrong in our opinion: whether or not hyphenation takes place should not depend on
current font, it is a language property.!

In LuaTgX, it works like this: if LuaTgX senses a string of input characters that matches
value of the new integer parameter \exhyphenchar, it will insert an explicit discretion
after that series of nodes. Initially TEX sets the \exhyphenchar="\-. Incidentally, this i
global parameter instead of a language-specific one because it may be useful to change |
value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the sa
time as the other hyphenation processing, not inside the main control loop.

The only use LuaTgX has for \hyphenchar is at the check whether a word should be con:
ered for hyphenation at all. If the \hyphenchar of the font attached to the first character nc
in a word is negative, then hyphenation of that word is abandoned immediately. This beh
iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a mean:
preventing hyphenation should not be used in new LuaTgX documents.

5. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage
changed so that it is now an integer parameter like all others. That integer parameter is u
in \glyph node creation to add language information to the glyph nodes. In conjunction,
\language primitive is extended so that it always also updates the value of \setlanguage

6. The \noboundary command (that prohibits word boundary processing where that would n
mally take place) now does create nodes. These nodes are needed because the exact pl
of the \noboundary command in the input stream has to be retained until after the ligat:
and font processing stages.

7. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lof
processing while adding char nodes to the horizontal list? For speed reasons, it hand

! When TeX showed up we didn’t have Unicode yet and being limited to eight bits meant that one sometimes ha
compromise between supporting character input, glyph rendering, hyphenation.

that processing code outside of the ‘main control’ loop, and only the first character of «
‘word’ was handled by that ‘main control’ loop. In LuaTgX, there is no longer a need for t
(all hard work is done later), and the (now very small) bits of character-handling code h:
been moved back inline. When \tracingcommands is on, this is visible because the full wi
is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have be
added:

\hyphenpenaltymode
\automatichyphenpenalty
\explicithyphenpenalty

The first parameter has the following consequences for automatic discs (the ones resulting fr
an \exhyphenchar:

MODE AUTOMATIC DISC - EXPLICIT DISC \ -

0 \exhyphenpenalty \exhyphenpenalty

1 \hyphenpenalty \hyphenpenalty

2 \exhyphenpenalty \hyphenpenalty

3 \hyphenpenalty \exhyphenpenalty

4 \automatichyphenpenalty \explicithyphenpenalty
5 \exhyphenpenalty \explicithyphenpenalty
6 \hyphenpenalty \explicithyphenpenalty
7 \automatichyphenpenalty \exhyphenpenalty

8 \automatichyphenpenalty \hyphenpenalty

other values do what we always did in LuaTgX: insert \exhyphenpenalty.

5.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior)
implementation of the hyphenation algorithm in LuaTgX is quite different from the one in TgX

After expansion, the argument for \patterns has to be proper utf8 with individual patterns s
arated by spaces, no \char or \chardefd commands are allowed. The current implementat
is quite strict and will reject all non-Unicode characters. Likewise, the expanded argument
\hyphenation also has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretion:
with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in nort
document input.

3. Internal command names are ignored. This rule is provided especially for \discretiona
but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping
internal command names. This string is then converted into a dictionary by a routine that crea

key-value pairs by converting the other listed items. It is important to note that the keys in
exception dictionary can always be generated from the values. Here are a few examples:

VALUE IMPLIED KEY (INPUT) EFFECT
ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)
ba{k-}{}{c}tken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code tha
the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value:
command is optional in the TgX-based input syntax. The underlying reason for that is that i
conceivable that a whole dictionary of words is stored as a plain text file and loaded into Lua’
using one of the functions in the Lua lang library. This loading method is quite a bit faster tl
going through the TgX language primitives, but some (most?) of that speed gain would be los
it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for
explicit hyphen character (replace - by the actual explicit hyphen character if needed). |
example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetwe
‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the e-TEX extension \savinghyphcodes was that hyphenation heavily
pended on font encodings. This is no longer true in LuaTgX, and the corresponding primitive
basically ignored. Because we now have \hjcode, the case relate codes can be used exclusiv
for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will
to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and
pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement t
(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax n
also can take a penalty specification. The value between square brackets is a multiplier
\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the examp

x{a-}{-b}{}Ix{a-}{-bH{}Ix{a-}{-b}H{Ix{a-}{-b}{}xx

10em 3em Oem 6em
123 xxxxxx 123 |123 123 123 xxxxxx
XXa- Xa- XXXXXX XXa-
-bxa- -bxa- -bxxxx xxa-
-bxa- -bxa- -bxxxx 123

-bxx -bxa-

123 -bxx

123

x{a-}{-b}{}Ix{a-}{-b}{}[31x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em Oem 6em
123 xxxxxx 123 |123 123 123 xxxxa-
xa- xa- -bxx XXXXXX
-bxxxa- -bxxxa- XXXXXX Xa-
-bxx -bxx -bxxxxx 123
123 123

z{a-}{-b}{z}{a-}{-b}{z}

{a-}{-b}{z}{a-}{-b}{z}z

10em

3em

Oem

6em

123 zzzzzz 123

123
za-
-bza-
-bza-
-b
123

123
za-
-bza-
-bza-
-b

a-

-b23

123 zzzzz77
777777 7ZZa-
-bzz zzz777
123

z{a-}{-b}{z}{a-}{-b}{z}[3]

{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em Oem 6em
123 zzzzzz 123 |123 123 123 zzzzzz
Za- Za- 7277777 Za-
-bzzzz -bzzzz -bzzzz a-
123 a- -bzzzzz 123
-b23

5.5 Applying hyphenation

The internal structures LuaTgX uses for the insertion of discretionaries in words is very differ
from the ones in TEX82, and that means there are some noticeable differences in handling

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm -
reads pattern files generated by patgen, but LuaTgX uses a finite state hash to match the
terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used

OpenOffice, which in turn is inspired by TgX.

There are a few differences between LuaTgX and TgX82 that are a direct result of the implem

tation:

» LuaTgX happily hyphenates the full Unicode character range.

» Pattern and exception dictionary size is limited by the available memory only, all allocatic
are done dynamically. The trie-related settings in texmf.cnf are ignored.

» Because there is no ‘trie preparation’ stage, language patterns never become frozen. T
means that the primitive \patterns (and its Lua counterpart lang.patterns) can be usec

any time, not only in iniTgX.

» Only the string representation of \patterns and \hyphenation is stored in the format f
At format load time, they are simply re-evaluated. It follows that there is no real reason
preload languages in the format file. In fact, it is usually not a good idea to do so. It is m1
smarter to load patterns no sooner than the first time they are actually needed.

» LuaTgX uses the language-specific variables \prehyphenchar and \posthyphenchar in
creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of
language-specific variables \preexhyphenchar and \postexhyphenchar for explicit disc
tionaries (instead of TEX82’s empty discretionary).

» The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphe
penalty, are now stored in the discretionary nodes. This permits a local overload for expl
\discretionary commands. The value current when the hyphenation pass is applied is us
When no callbacks are used this is compatible with traditional TEX. When you apply the I
lang.hyphenate function the current values are used.

» The hyphenation exception dictionary is maintained as key-value hash, and that is also
namic, so the hyph size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extenc
to accept an optional penalty specification, so you can do the following:

\hsizelmm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par
2:foo\discretionary penalty 10000 {}{}{}bar\par
3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar
2:foobar

3:foo
bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (u
ally the preceding one, but the following one for the items inserted at the left-hand side c
word).

Word boundaries are no longer implied by font switches, but by language switches. One w
can have two separate fonts and still be hyphenated correctly (but it can not have two differ
languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar="\-, \posthyphenchar=0, \preexhyphencha
and \postexhyphenchar=0. When you assign the values of one of these four parameters, 1
are actually changing the settings for the current \language, this behaviour is compatible w
\patterns and \hyphenation.

LuaTgX also hyphenates the first word in a paragraph. Words can be up to 256 characters Ic
(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitat
will be removed or perhaps it will become possible to silently ignore the excess characters (t
is what happens in TEX82, but there the behaviour cannot be controlled).

If you are using the Lua function lang.hyphenate, you should be aware that this function expe
to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyy
‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

5.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTgX will process the
to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in t
stages: first all ligatures are processed, then all kerning information is applied to the result |
But those two stages are somewhat dependent on each other: If the used font makes it possi
to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the 1
While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes th
word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Fine
at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nod

This word separation is worth mentioning because, if you overrule from Lua only one of the t
callbacks related to font handling, then you have to make sure you perform the tasks norm:
done by LuaTgX itself in order to make sure that the other, non-overruled, routine continues
function properly.

Although we could improve the situation the reality is that in modern OpenType fonts ligatu
can be constructed in many ways: by replacing a sequence of characters by one glyph, or
selectively replacing individual glyphs, or by kerning, or any combination of this. Add to t
contextual analysis and it will be clear that we have to let Lua do that job instead. The gene
font handler that we provide (which is part of ConTgXt) distinguishes between base mode (wh
essentially is what we describe here and which delegates the task to TgX) and node mode (wh
deals with more complex fonts.

Let’s look at an example. Take the word office, hyphenated of-fice, using a ‘normal’ font w
all the f-f and f-i type ligatures:

initial {o}{fH{f}{i}{c}{e}

after hyphenation {o}{f}{{-},{}, {}H{f}{i}{c}{e}
first ligature stage {o}{{f-},{f},{<ff>}}{i}{c}{e}
final result {o}{{f-},{<fi>}, {<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f «
the i, to create of - f-ice. Then the final result should be:

{o}{{f-},
{{f-},
{1},
{<fi>}},
{{<ff>-},
{1},
{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-le
discretionary that resulted from the first hyphenation point.

Here is that nested solution again, in a different representation:

PRE POST REPLACE
topdisc f- (1) sub 1 sub 2
sub 1 f- (2) i (3) <fi> (4)
sub 2 <ff>- (5) i (6) <ffi> (7)

When line breaking is choosing its breakpoints, the following fields will eventually be select:

of-f-ice f- (1)

f- ()

i (3)

of-fice f- (1)
<fi> (4)

off-ice <ff>- (5)
i (6)

office <ffi> (7)

The current solution in LuaTgX is not able to handle nested discretionaries, but it is in f
smart enough to handle this fictional of - f-ice example. It does so by combining two sequen
discretionary nodes as if they were a single object (where the second discretionary node
treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post
placement list (i), and that this would be the case even if i was the first item of a poten
following ligature like ic. This allows LuaTgX to do away with one of the fields, and thus m:z
the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follo

FIELD DESCRIPTION

discl.pre f- (D)
discl.post <fi> (4)
discl.replace <ffi> (7)
disc2.pre f- (2)
disc2.post i (3,6)
disc2.replace <ff>- (5)

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},
{<fi>},
{<ffi>}}
{{f-},
{1},
{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own:
first has subtype 4, and the second has subtype 5. The need for these special subtypes ste

from the fact that not all of the fields appear in their ‘normal’ location. The second discretion
especially looks odd, with things like the <ff>- appearing in disc2. replace. The fact that so
of the fields have different meanings (and different processing code internally) is what make
necessary to have different subtypes: this enables LuaTgX to distinguish this sequence of t
joined discretionary nodes from the case of two standalone discretionaries appearing in a rc

Of course there is still that relationship with fonts: ligatures can be implemented by mappin
sequence of glyphs onto one glyph, but also by selective replacement and kerning. This me:
that the above examples are just representing the traditional approach.

5.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect
discretionaries and ligatures, line breaking will potentially be different from traditional T
The actual line breaking code is still based on the TgX82 algorithms, and it does not exp
there to be discretionaries inside of discretionaries. But, as patterns evolve and font handl
can influence discretionaries, you need to be aware of the fact that long term consistency is
an engine matter only.

But that situation is now fairly common in LuaTgX, due to the changes to the ligaturing me
anism. And also, the LuaTgX discretionary nodes are implemented slightly different from
TEX82 nodes: the no_break text is now embedded inside the disc node, where previously th
nodes kept their place in the horizontal list. In traditional TgX the discretionary node conta
a counter indicating how many nodes to skip, but in LuaTgX we store the pre, post and repl:
text in the discretionary node.

The combined effect of these two differences is that LuaTgX does not always use all of the pot
tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of cou
kerning also complicates matters here.

5.8 The lang library

5.8.1 new and id

This library provides the interface to LuaTgX's structure representing a language, and the as
ciated functions.

lang.new()
lang.new(<number> id)

<language> 1
<language> 1

This function creates a new userdata object. An object of type <language> is the first argum
to most of the other functions in the lang library. These functions can also be used as if tl
were object methods, using the colon syntax. Without an argument, the next available inter
id number will be assigned to this object. With argument, an object will be created that link:
the internal language with that id number.

<number> n = lang.id(<language> 1)

The number returned is the internal \language id number this object refers to.

5.8.2 hyphenation
You can hyphenate a string directly with:

<string> n = lang.hyphenation(<language> 1)
lang.hyphenation(<language> 1, <string> n)

5.8.3 clear_hyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones.
syntax of the string is explained in section 5.4.

lang.clear hyphenation(<language> 1)
This call clears the exception dictionary (string) for this language.

<string> n = lang.clean(<language> 1, <string> o)
<string> n lang.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of
argument string is explained in section 5.4. This function is useful if you want to do someth
else based on the words in a dictionary file, like spell-checking.

5.8.4 patterns and clear_patterns

<string> n = lang.patterns(<language> 1)
lang.patterns(<language> 1, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntas
this string is explained in section 5.4.

lang.clear patterns(<language> 1)

This can be used to clear the pattern dictionary for a language.

5.8.5 hyphenationmin
This function sets (or gets) the value of the TgX parameter \hyphenationmin.

n = lang.hyphenationmin(<language> 1)
lang.hyphenationmin(<language> 1, <number> n)

5.8.6 [pre|post][ex]|]hyphenchar

<number> n = lang.prehyphenchar(<language> 1)

lang.prehyphenchar(<language> 1, <number> n)

<number> n = lang.posthyphenchar(<language> 1)
lang.posthyphenchar(<language> 1, <number> n)

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for impl
hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal O (indic
ing emptiness).

<number> n = lang.preexhyphenchar(<language> 1)
lang.preexhyphenchar(<language> 1, <number> n)

<number> n = lang.postexhyphenchar(<language> 1)
lang.postexhyphenchar(<language> 1, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenatior
this language. Both are initially decimal 0 (indicating emptiness).

5.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given
argument, processing stops on that node. Currently, success is always true if head (and ta
if specified) are proper nodes, regardless of possible other errors.

<boolean> success = lang.hyphenate(<node> head)
<boolean> success = lang.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the nc
subtype having the value 1. Glyph modes with different subtypes are not processed. See s
tion 5.2 for more details.

5.8.8 [set|get]hjcode

The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> 1, <number> char, <number> usedchar)
<number> usedchar = lang.gethjcode(<language> 1, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized «
to \savinghyphcodes being larger than zero.

60 Font structure

6.1 The font tables

All TgX fonts are represented to Lua code as tables, and internally as C structures. All key:
the table below are saved in the internal font structure if they are present in the table retur:
by the define font callback, or if they result from the normal tfm/vf reading routines if th
is no define font callback defined.

The column ‘vf’ means that this key will be created by the font.read vf() routine, ‘tfm’ me:
that the key will be created by the font.read tfm() routine, and ‘used’ means whether or
the LuaTgX engine itself will do something with the key. The top-level keys in the table are
follows:

KEY VF TFM USED VALUE TYPE DESCRIPTION

name yes yes yes string metric (file) name

area no yes vyes string (directory) location, typically empty
used no yes yes boolean indicates usage (initial: false)
characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360 == 10pt)
direction no yes yes number default: 0

encodingbytes no no yes number default: depends on format
encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string This is the PostScript fontname in the in-

coming font source, and it’s used as font
name identifier in the pdf output. This

has to be a valid string, e.g. no spaces ar
such, as the backend will not do a cleanu
This gives complete control to the loader

fullname no no yes string output font name, used as a fallback in tl
pdf output if the psname is not set

header yes no no string header comments, if any

hyphenchar no no yes number default: TgX's \hyphenchar

parameters no vyes yes hash default: 7 parameters, all zero

size no yes yes number the required scaling (by default the same
as designsize)

skewchar no no yes number default: TEX’s \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string the name of the font on disk

tounicode no yes yes number When this is set to 1 LuaTgX assumes pe

glyph tounicode entries are present in th
font.

stretch
shrink

step
expansion factor

attributes
cache

nomath

oldmath

slant

extend

squeeze

width

mode

no

no

no
no

no
no

no

no

no

no

no

no

no

no

no

no
no

no
no

no

no

no

no

no

no

no

yes

yes

yes
no

yes
yes

yes

yes

yes

yes

yes

yes

yes

number

number

number
number

string
string

boolean

boolean

number

number

number

number

number

the ‘stretch’ value from \expandglyphsi
font

the ‘shrink’ value from \expandglyphsir
font

the ‘step’ value from \expandglyphsinfc
the actual expansion factor of an expand
font

the \pdffontattr

This key controls caching of the Lua ta-
ble on the TgX end where yes means: us
a reference to the table that is passed to
LuaTgX (this is the default), and no mean
don’t store the table reference, don’t cac
any Lua data for this font while renew
means: don’t store the table reference, &
save a reference to the table that is crea
at the first access to one of its fields in tk
font.

This key allows a minor speedup for text
fonts. If it is present and true, then Lua’
will not check the character entries for
math-specific keys.

This key flags a font as representing an
old school TEX math font and disables the
OpenType code path.

This parameter will tilt the font and does
the same as SlantFont in the map file fo
Typel fonts.

This parameter will scale the font horizo:
tally and does the same as ExtendFont ir
the map file for Typel fonts.

This parameter will scale the font vertice
and has no equivalent in the map file.
The backend will inject pdf operators the
set the penwidth. The value is (as usual
in TgX) divided by 1000. It works with th
mode file.

The backend will inject pdf operators the
relate to the drawing mode with 0 being
fill, 1 being an outline, 2 both draw and 1
and 3 no painting at all.

The saved reference in the cache option is thread-local, so be careful when you are using cor
tines: an error will be thrown if the table has been cached in one thread, but you referenc

from another thread.

The key name is always required. The keys stretch, shrink, step only have meaning when u

together: they can be used to replace a post-loading \expandglyphsinfont command.
auto_expand option is not supported in LuaTgX. In fact, the primitives that create expanded
protruding copies are probably only useful when used with traditional fonts because all th
extra OpenType properties are kept out of the picture. The expansion factor is value t
can be present inside a font in font.fonts. It is the actual expansion factor (a value betwe
-shrink and stretch, with step step) of a font that was automatically generated by the f
expansion algorithm.

Because we store the actual state of expansion with each glyph and don’t have special f
instances, we can change some font related parameters before lines are constructed, like:

font.setexpansion(font.current(),100,100,20)

This is mostly meant for experiments (or an optimizing routing written in Lua) so there is
primitive.

The key attributes can be used to set font attributes in the pdf file. The key used is set by
engine when a font is actively in use, this makes sure that the font’s definition is written to
output file (dvi or pdf). The tfm reader sets it to false. The direction is a number signalling
‘normal’ direction for this font. There are sixteen possibilities:

DIR # DIR # DIR # DIR

0 LT 4 RT 8 TT 12 BT
1 LL 5 RL 9 TL 13 BL
2 LB 6 RB 10 TB 14 BB
3 LR 7 RR 11 TR 15 BR

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge
the character glyphs (the edge that is seen first in the writing direction), the second the ‘t
side. Keep in mind that LuaTgX has a bit different directional model so these values are not u
for anything.

The parameters is a hash with mixed key types. There are seven possible string keys, as wel
a number of integer indices (these start from 8 up). The seven strings are actually used inste
of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

NAME REMAPPING

slant 1
space

space stretch
space shrink
X_height

quad

extra space

N OOk N

The keys type, format, embedding, fullname and filename are used to embed OpenType fo
in the result pdf.

The characters table is a list of character hashes indexed by an integer number. The num!
is the ‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: left boundary is a virtual character wh
ligatures and kerns are used to handle word boundary processing. right boundary is sim:
but not actually used for anything (yet).

Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in
font cmrl@ at 10pt. The numbers that represent dimensions are in scaled points.

[102] = {
["width"] = 200250,
[