
LuaMetaTEX

Reference

Manual

July 2021

Version 2.09.16

LuaMetaTEX

Reference

Manual

copyright : LuaTEX development team

: ConTEXt development team

more info : www.luatex.org

: contextgarden.net

version : July 23, 2021

1

Contents

Introduction 11

1 The internals 13

2 Differences with LuaTEX 17

3 The original engines 25

3.1 The merged engines 25

3.1.1 The rationale 25

3.1.2 Changes from TEX 3.1415926... 25

3.1.3 Changes from 𝜀-TEX 2.2 26

3.1.4 Changes from pdfTEX 1.40 27

3.1.5 Changes from Aleph RC4 28

3.1.6 Changes from standard web2c 28

3.2 Implementation notes 29

3.2.1 Memory allocation 29

3.2.2 Sparse arrays 29

3.2.3 Simple single-character csnames 29

3.2.4 Binary file reading 29

3.2.5 Tabs and spaces 30

3.2.6 Logging 30

3.2.7 Parsing 31

4 Using LuaMetaTEX 33

4.1 Initialization 33

4.1.1 LuaMetaTEX as a Lua interpreter 33

4.1.2 Other commandline processing 33

4.2 Lua behaviour 35

4.2.1 The Lua version 35

4.2.2 Locales 35

4.3 Lua modules 35

4.4 Testing 36

5 Basic TEX enhancements 37

5.1 Introduction 37

5.1.1 Primitive behaviour 37

5.1.2 Version information 37

5.2 Unicode text support 38

5.2.1 Extended ranges 38

5.2.2 \Uchar 39

5.2.3 Extended tables 39

2

5.3 Attributes 41

5.3.1 Nodes 41

5.3.2 Attribute registers 42

5.3.3 Box attributes 43

5.4 Lua related primitives 44

5.4.1 \directlua 44

5.4.2 \luaescapestring 45

5.4.3 \luafunction, \luafunctioncall and \luadef 46

5.4.4 \luabytecode and \luabytecodecall 46

5.5 Catcode tables 47

5.5.1 Catcodes 47

5.5.2 \catcodetable 47

5.5.3 \initcatcodetable 47

5.5.4 \savecatcodetable 48

5.6 Tokens, commands and strings 48

5.6.1 \scantextokens and \tokenized 48

5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp,

\gtokspre, \xtoksapp, \xtokspre 48

5.6.3 \csstring, \begincsname and \lastnamedcs 49

5.6.4 \clearmarks 49

5.6.5 \alignmark and \aligntab 49

5.6.6 \letcharcode 49

5.6.7 \lettonothing and \glettonothing 50

5.6.8 \glet 50

5.6.9 \defcsname, \edefcsname, \edefcsname and \xdefcsname 50

5.6.10 \expanded 50

5.6.11 \ignorepars 51

5.6.12 \futureexpand, \futureexpandis, \futureexpandisap 51

5.6.13 \aftergrouped 51

5.7 Conditions 52

5.7.1 \ifabsnum and \ifabsdim 52

5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and

\ifchkdim 52

5.7.3 \ifmathstyle and \ifmathparameter 53

5.7.4 \ifempty 53

5.7.5 \ifrelax 53

5.7.6 \ifboolean 54

5.7.7 \iftok and \ifcstok 54

5.7.8 \ifarguments, \ifparameters and \ifparameter 54

5.7.9 \ifcondition 55

5.7.10 \orelse and \orunless 56

5.7.11 \ifprotected, \frozen, \iffrozen and \ifusercmd 57

5.8 Boxes, rules and leaders 57

5.8.1 \outputbox 57

5.8.2 \hrule, \vrule, \nohrule and \novrule 57

5.8.3 \vsplit 58

3

5.8.4 Images and reused box objects 58

5.8.5 \hpack, \vpack and \tpack 59

5.8.6 \gleaders 59

5.9 Languages 60

5.9.1 \hyphenationmin 60

5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary 60

5.10 Control and debugging 60

5.10.1 Tracing 60

5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype 61

5.11 Files 61

5.11.1 File syntax 61

5.11.2 Writing to file 62

5.12 Math 62

5.13 Fonts 62

5.14 Directions 62

5.14.1 Two directions 62

5.14.2 How it works 62

5.14.3 Normalizing lines 64

5.14.4 Orientations 64

5.15 Keywords 65

5.16 Expressions and \numericscale 66

5.17 Macro arguments 66

5.18 Overload protection 67

5.19 Constants with \integerdef and \dimendef 69

5.20 Serialization with \todimension, \toscaled and \tointeger 69

5.21 Nodes 70

6 Fonts 71

6.1 Introduction 71

6.2 Defining fonts 71

6.3 Virtual fonts 75

6.4 Additional TEX commands 78

6.4.1 Font syntax 78

6.4.2 \fontid and \setfontid 78

6.4.3 \glyphoptions 78

6.4.4 \glyphxscale, \glyphyscale and \scaledfontdimen 79

6.4.5 \glyphxoffset, \glyphyoffset 79

6.4.6 \glyph 79

6.4.7 \nospaces 80

6.4.8 \protrusionboundary 80

6.5 The Lua font library 81

6.5.1 Introduction 81

6.5.2 Defining a font with define, addcharacters and setfont 81

6.5.3 Font ids: id, max and current 81

6.5.4 Glyph data: \glyphdata, \glyphscript, \glyphstate 82

4

7 Languages, characters, fonts and glyphs 83

7.1 Introduction 83

7.2 Characters, glyphs and discretionaries 83

7.3 The main control loop 88

7.4 Loading patterns and exceptions 90

7.5 Applying hyphenation 92

7.6 Applying ligatures and kerning 93

7.7 Breaking paragraphs into lines 94

7.8 The language library 94

7.8.1 new and id 94

7.8.2 hyphenation 95

7.8.3 clearhyphenation and clean 95

7.8.4 patterns and clearpatterns 95

7.8.5 hyphenationmin 96

7.8.6 [pre|post][ex|]hyphenchar 96

7.8.7 hyphenate 96

7.8.8 [set|get]hjcode 96

8 Math 99

8.1 Traditional alongside OpenType 99

8.2 Unicode math characters 99

8.3 Math styles 101

8.3.1 \mathstyle 101

8.3.2 \Ustack 102

8.3.3 The new \cramped ...style commands 102

8.4 Math parameter settings 104

8.4.1 Many new \Umath* primitives 104

8.4.2 Font-based math parameters 105

8.5 Math spacing 109

8.5.1 Setting inline surrounding space with \mathsurround[skip] 109

8.5.2 Pairwise spacing and \Umath...spacing commands 110

8.5.3 Local \frozen settings with 111

8.5.4 Checking a state with \ifmathparameter 112

8.5.5 Skips around display math and \mathdisplayskipmode 112

8.5.6 Nolimit correction with \mathnolimitsmode 112

8.5.7 Controlling math italic mess with \mathitalicsmode 113

8.5.8 Influencing script kerning with \mathscriptboxmode 113

8.5.9 Forcing fixed scripts with \mathscriptsmode 114

8.5.10 Penalties: \mathpenaltiesmode 115

8.5.11 Equation spacing: \matheqnogapstep 115

8.6 Math constructs 115

8.6.1 Unscaled fences and \mathdelimitersmode 115

8.6.2 Accent handling with \Umathaccent 116

8.6.3 Building radicals with \Uradical and \Uroot 117

8.6.4 Super- and subscripts 117

5

8.6.5 Scripts on extensibles: \Uunderdelimiter, \Uoverdelimiter,

\Udelimiterover, \Udelimiterunder and \Uhextensible 118

8.6.6 Fractions and the new \Uskewed and \Uskewedwithdelims 119

8.6.7 Math styles: \Ustyle 120

8.6.8 Delimiters: \Uleft, \Umiddle and \Uright 121

8.6.9 Accents: \mathlimitsmode 121

8.7 Extracting values 121

8.7.1 Codes and using \Umathcode, \Umathcharclass, \Umathcharfam

and \Umathcharslot 121

8.7.2 Last lines and \predisplaygapfactor 122

8.8 Math mode 122

8.8.1 Verbose versions of single-character math commands like

\Usuperscript and \Usubscript 122

8.8.2 Script commands \Unosuperscript and \Unosubscript 123

8.8.3 Allowed math commands in non-math modes 123

8.9 Goodies 123

8.9.1 Flattening: \mathflattenmode 123

8.9.2 Less Tracing 124

8.10 Experiments 124

8.10.1 Prescripts with \Usuperprescript and Usubprescript 124

8.10.2 Prescripts with \Usuperprescript and Usubprescript 125

9 Nodes 127

9.1 Lua node representation 127

9.2 Main text nodes 128

9.2.1 hlist and vlist nodes 129

9.2.2 rule nodes 129

9.2.3 insert nodes 130

9.2.4 mark nodes 131

9.2.5 adjust nodes 131

9.2.6 disc nodes 131

9.2.7 math nodes 132

9.2.8 glue nodes 132

9.2.9 glue_spec nodes 133

9.2.10 kern nodes 133

9.2.11 penalty nodes 134

9.2.12 glyph nodes 134

9.2.13 boundary nodes 135

9.2.14 par nodes 135

9.2.15 dir nodes 136

9.2.16 Whatsits 136

9.2.17 Math noads 136

9.3 The node library 140

9.3.1 Introduction 140

9.3.2 Housekeeping 142

9.3.3 Manipulating lists 144

6

9.3.4 Glue handling 149

9.3.5 Attribute handling 150

9.3.6 Glyph handling 152

9.3.7 Packaging 153

9.3.8 Math 155

9.4 Two access models 156

9.5 Normalization 162

9.6 Properties 163

10 Lua callbacks 167

10.1 Registering callbacks 167

10.2 File related callbacks 168

10.2.1 find_format_file and find_log_file 168

10.2.2 open_data_file 168

10.3 Data processing callbacks 168

10.3.1 process_jobname 168

10.4 Node list processing callbacks 169

10.4.1 contribute_filter 169

10.4.2 buildpage_filter 169

10.4.3 build_page_insert 169

10.4.4 pre_linebreak_filter 170

10.4.5 linebreak_filter 171

10.4.6 append_to_vlist_filter 171

10.4.7 post_linebreak_filter 171

10.4.8 glyph_run 172

10.4.9 hpack_filter 172

10.4.10 vpack_filter 172

10.4.11 hpack_quality 173

10.4.12 vpack_quality 173

10.4.13 process_rule 173

10.4.14 pre_output_filter 173

10.4.15 hyphenate 174

10.4.16 ligaturing 174

10.4.17 kerning 174

10.4.18 insert_par 174

10.4.19 mlist_to_hlist 175

10.5 Information reporting callbacks 175

10.5.1 pre_dump 175

10.5.2 start_run 175

10.5.3 stop_run 175

10.5.4 intercept_tex_error, intercept_lua_error 176

10.5.5 show_error_message and show_warning_message 176

10.5.6 start_file 176

10.5.7 stop_file 176

10.5.8 wrapup_run 176

7

10.6 Font-related callbacks 177

10.6.1 define_font 177

10.6.2 show_whatsit 177

11 The TEX related libraries 179

11.1 The lua library 179

11.1.1 Version information 179

11.1.2 Table allocators 179

11.1.3 Bytecode registers 179

11.1.4 Introspection 180

11.2 The status library 180

11.3 The tex library 189

11.3.1 Introduction 189

11.3.2 Internal parameter values, set and get 189

11.3.3 Convert commands 191

11.3.4 Item commands 192

11.3.5 Accessing registers: set*, get* and is* 192

11.3.6 Character code registers: [get|set]*code[s] 194

11.3.7 Box registers: [get|set]box 195

11.3.8 triggerbuildpage 196

11.3.9 splitbox 196

11.3.10 Accessing math parameters: [get|set]math 196

11.3.11 Special list heads: [get|set]list 197

11.3.12 Semantic nest levels: getnest and ptr 198

11.3.13 Print functions 199

11.3.14 Helper functions 201

11.3.15 Functions for dealing with primitives 204

11.3.16 Core functionality interfaces 209

11.3.17 Functions related to synctex 211

11.4 The texconfig table 211

11.5 The texio library 212

11.5.1 write and writeselector 212

11.5.2 writenl and writeselectornl 212

11.5.3 setescape 213

11.5.4 closeinput 213

11.6 The token library 213

11.6.1 The scanner 213

11.6.2 Picking up one token 216

11.6.3 Creating tokens 216

11.6.4 Macros 217

11.6.5 Pushing back 218

11.6.6 Nota bene 219

8

12 The MetaPost library mplib 221

12.1 Introduction 221

12.2 Process management 221

12.2.1 new 221

12.2.2 getstatistics 223

12.2.3 execute 224

12.2.4 finish 224

12.2.5 settolerance and gettolerance 224

12.2.6 Errors 224

12.2.7 The scanner status 224

12.2.8 The hash 225

12.2.9 Callbacks 225

12.3 The end result 225

12.3.1 The figure 225

12.3.2 fill 226

12.3.3 outline 226

12.3.4 start_bounds, start_clip, start_group 227

12.3.5 stop_bounds, stop_clip, stop_group 227

12.4 Subsidiary table formats 227

12.4.1 Paths and pens 227

12.4.2 Colors 227

12.4.3 Transforms 228

12.4.4 Dashes 228

12.4.5 Pens and peninfo 228

12.4.6 Character size information 228

12.5 Scanners 229

12.6 Injectors 230

12.7 To be checked 232

13 The pdf related libraries 233

13.1 The pdfe library 233

13.1.1 Introduction 233

13.1.2 open, openfile, new, getstatus, close, unencrypt 233

13.1.3 getsize, getversion, getnofobjects, getnofpages 234

13.1.4 get[catalog|trailer|info] 234

13.1.5 getpage, getbox 234

13.1.6 get[string|integer|number|boolean|name] 235

13.1.7 get[dictionary|array|stream] 235

13.1.8 [open|close|readfrom|whole|]stream 235

13.1.9 getfrom[dictionary|array] 236

13.1.10 [dictionary|array]totable 236

13.1.11 getfromreference 237

13.2 Memory streams 237

9

13.3 The pdfscanner library 237

14 Extra libraries 239

14.1 Introduction 239

14.2 File and string readers: fio and type sio 239

14.3 md5 240

14.4 sha2 240

14.5 xzip 240

14.6 xmath 240

14.7 xcomplex 242

14.8 xdecimal 243

14.9 lfs 243

14.10 pngdecode 244

14.11 basexx 245

14.12 Multibyte string functions 245

14.13 Extra os library functions 246

14.14 The lua library functions 247

Primitive codes 249

Topics 269

Primitives 273

Callbacks 281

Nodes 283

Libraries 285

Statistics 293

Some remarks 295

10

11Introduction

Introduction

Around 2005 we started the LuaTEX project and it took about a decade to reach a state where

we could consider the experiments to have reached a stable state. Pretty soon LuaTEX could be

used in production, even if some of the interfaces evolved, but ConTEXt was kept in sync so that

was not really a problem. In 2018 the functionality was more or less frozen. Of course we might

add some features in due time but nothing fundamental will change as we consider version 1.10

to be reasonable feature complete. Among the reasons is that this engine is now used outside

ConTEXt too which means that we cannot simply change much without affecting other macro

packages.

In reaching that state some decisions were delayed because they didn't go well with a current

stable version. This is why at the 2018 ConTEXtmeeting those present agreed that we couldmove

on with a follow up tagged MetaTEX, a name we already had in mind for a while, but as Lua is an

important component, it got expanded to LuaMetaTEX. This follow up is a lightweight companion

to LuaTEX that will be maintained alongside. More about the reasons for this follow up as well as

the philosophy behind it can be found in the document(s) describing the development. During

LuaTEX development I kept track of what happened in a series of documents, parts of which

were published as articles in user group journals, but all are in the ConTEXt distribution. I did

the same with the development of LuaMetaTEX.

The LuaMetaTEX engine is, as said, a follow up on LuaTEX. Just as we have ConTEXt MkII for

pdfTEX and XƎTEX, we have MkIV for LuaTEX so for LuaMetaTEX we have yet another version

of ConTEXt: LMTX. By freezing MkII, and at some point freezing MkIV, we can move on as

we like, but we try to remain downward compatible where possible, something that the user

interface makes possible. Although LuaMetaTEX can be used for production we can also use it

for possibly drastic experiments but without affecting LuaTEX. Because we can easily adapt Con

TEXt to support both, no other macro package will be harmed when (for instance) the interface

that the engine provides change as part of an experiment or cleanup of code. Of course, when

we consider something to be useful, it can be ported back to LuaTEX, but only when there are

good reasons for doing so and when no compatibility issues are involved.

By now the code of these two related engines differs a lot so in retrospect it makes less sense

to waste time on porting back. When considering this follow up one consideration was that a

lean and mean version with an extension mechanism is a bit closer to original TEX. Of course,

because we also have new primitives, this is not entirely true. The basic algorithms remain the

same but code got reshuffled and because we expose internal names of variables and such that

is reflected in the code base (like more granularity in nodes and token commands). Delegating

tasks to Lua alreadymeant that some aspects, especially system dependent ones, no longermade

sense and therefore had consequences for the interface at the system level. In LuaMetaTEXmore

got delegated, like all file related operations. The penalty of moving even more responsibility to

Lua has been compensated by (hopefully) harmless optimization of code in the engine and some

more core functionality. In the process system dependencies have been minimalized.

One side effect of opening up is that what normally is hidden gets exposed and this is also true

for all kind of codes that are used internally to distinguish states and properties of commands,

tokens, nodes and more. Especially during development these can change but the good news

is that they can be queried so on can write in code independent ways (in LuaTEX node id's are

Introduction12

an example). That also means more interface related commands, so again lean and mean is not

applicable here, especially because the detailed control over the text, math, font and language

subsystems also results in additional commands to query their state. And, as the MetaPost got

extended, that subsystem is on the one hand leaner and meaner because backend code was

dropped but on the other hand got a larger code base due to opening up the scanner and adding

a feedback mechanism.

This manual started as an adaptation of the LuaTEX manual and therefore looks similar. Some

chapters are removed, others were added and the rest has been (and will be further) adapted.

It also discusses the (main) differences. Some of the new primitives or functions that show up in

LuaMetaTEX might show up in LuaTEX at some point, but most will be exclusive to LuaMetaTEX,

so don't take this manual as reference for LuaTEX! As long as we're experimenting we can change

things at will but as we keep ConTEXt LMTX synchronized users normally won't notice this.

Often you can find examples of usage in ConTEXt related documents and the source code so that

serves a reference too. More detailed explanations can be found in documents in the ConTEXt

distribution, if only because there we can present features in the perspective of useability.

For ConTEXt users the LuaMetaTEX engine will become the default. As mentioned, the ConTEXt

variant for this engine is tagged LMTX. The pair can be used in production, just as with LuaTEX

and MkIV. In fact, most users will probably not really notice the difference. In some cases there

will be a drop in performance, due to more work being delegated to Lua, but on the average

performance is much be better, due to some changes below the hood of the engine. Memory

consumption is also less. The timeline of development is roughly: from 2018 upto 2020 engine

development, 2019 upto 2021 the stepwise code split between MkIV and LMTX, while in 2021

and 2022 we will (mostly) freeze MkIV and LMTX will be the default.

As this follow up is closely related to ConTEXt development, and because we expect stock LuaTEX

to be used outside the ConTEXt proper, there will be no special mailing list nor coverage (or

pollution) on the LuaTEX related mailing lists. We have the ConTEXt mailing lists for that. In

due time the source code will be part of the regular ConTEXt distribution so that is then also the

reference implementation: if needed users can compile the binary themselves.

This manual sometimes refers to LuaTEX, especially when we talk of features common to both

engine, as well as to LuaMetaTEX, when it is more specific to the follow up. A substantial amount

of timewent into the transition andmore will go in, so if you want to complain about LuaMetaTEX,

don't bother me. Of course, if you really need professional support with these engines (or TEX

in general), you can always consider contacting the developers.

Hans Hagen

Version : July 23, 2021

LuaMetaTEX : luametatex 2.0916 / 20210630

ConTEXt : MkIV 2021.07.22 19:16

LuaTEX Team : Hans Hagen, Hartmut Henkel, Taco Hoekwater, Luigi Scarso

13The internals

1 The internals

This is a reference manual and not a tutorial. This means that we discuss changes relative to

traditional TEX and also present new (or extended) functionality. As a consequence we will refer

to concepts that we assume to be known or that might be explained later. Because the LuaTEX

and LuaMetaTEX engines open up TEX there's suddenly quite some more to explain, especially

about the way a (to be) typeset stream moves through the machinery. However, discussing all

that in detail makes not much sense, because deep knowledge is only relevant for those who

write code not possible with regular TEX and who are already familiar with these internals (or

willing to spend time on figuring it out).

So, the average user doesn't need to know much about what is in this manual. For instance fonts

and languages are normally dealt with in the macro package that you use. Messing around with

node lists is also often not really needed at the user level. If you do mess around, you'd better

know what you're dealing with. Reading “The TEX Book” by Donald Knuth is a good investment

of time then also because it's good to know where it all started. A more summarizing overview

is given by “TEX by Topic” by Victor Eijkhout. You might want to peek in “The 𝜀-TEX manual” too.

But . . . if you're here because of Lua, then all you need to know is that you can call it from

within a run. If you want to learn the language, just read the well written Lua book. The macro

package that you use probably will provide a few wrapper mechanisms but the basic \directlua

command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it's a lot you can also put it in a file and load that

file with the usual Lua commands. If you don't know what this means, you definitely need to

have a look at the Lua book first.

If you still decide to read on, then it's good to know what nodes are, so we do a quick introduction

here. If you input this text:

Hi There ...

eventually we will get a linked lists of nodes, which in ascii art looks like:

H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e ...

When we have a paragraph, we actually get something like this, where a par node stores some

metadata and is followed by a hlist flagged as indent box:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e ...

Each character becomes a so called glyph node, a record with properties like the current font,

the character code and the current language. Spaces become glue nodes. There are many node

types and nodes can have many properties but that will be discussed later. Each node points

back to a previous node or next node, given that these exist. Sometimes multiple characters are

represented by one glyph (shape), so one can also get:

The internals14

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

And maybe some characters get positioned relative to each other, so we might see:

[par] <=> [hlist] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

Actually, the above representation is one view, because in LuaMetaTEX we can choose for this:

[par] <=> [glue] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

where glue (currently fixed) is used instead of an empty hlist (think of a \hbox). Options like this

are available because want a certain view on these lists from the Lua end and the result being

predicable is part of that.

It's also good to know beforehand that TEX is basically centered around creating paragraphs and

pages. The par builder takes a list and breaks it into lines. At some point horizontal blobs are

wrapped into vertical ones. Lines are so called boxes and can be separated by glue, penalties

and more. The page builder accumulates lines and when feasible triggers an output routine that

will take the list so far. Constructing the actual page is not part of TEX but done using primitives

that permit manipulation of boxes. The result is handled back to TEX and flushed to a (often pdf)

file.

\setbox\scratchbox\vbox\bgroup

line 1\par line 2

\egroup

\showbox\scratchbox

The above code produces the next log lines that reveal how the engines sees a paragraph

(wrapped in a \vbox):

1:4: > \box257=

1:4: \vbox[normal][16=1,17=1,47=1], width 483.69687, height 27.58083, depth 0.1416, direction l2r

1:4: .\list

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction l2r

1:4: ...\list

1:4:\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4:\glue[left][16=1,17=1,47=1] 0.0pt

1:4:\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4:\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemer

its 10000, linepenalty 10, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty

2000, brokenpenalty 100, emergencystretch 12.0, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006C l

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000031 1

15The internals

1:4:\penalty[line][16=1,17=1,47=1] 10000

1:4:\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4:\glue[right hang][16=1,17=1,47=1] 0.0pt

1:4: ..\glue[par][16=1,17=1,47=1] 5.44995pt plus 1.81665pt minus 1.81665pt

1:4: ..\glue[baseline][16=1,17=1,47=1] 6.79396pt

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction l2r

1:4: ...\list

1:4:\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4:\glue[left][16=1,17=1,47=1] 0.0pt

1:4:\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4:\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemer

its 10000, linepenalty 10, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty

2000, brokenpenalty 100, emergencystretch 12.0, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006C l

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000032 2

1:4:\penalty[line][16=1,17=1,47=1] 10000

1:4:\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4:\glue[right hang][16=1,17=1,47=1] 0.0pt

The LuaTEX engine provides hooks for Lua code at nearly every reasonable point in the process:

collecting content, hyphenating, applying font features, breaking into lines, etc. This means

that you can overload TEX's natural behaviour, which still is the benchmark. When we refer to

‘callbacks’ we means these hooks. The TEX engine itself is pretty well optimized but when you

kick in much Lua code, you will notices that performance drops. Don't blame and bother the

authors with performance issues. In ConTEXt over 50% of the time can be spent in Lua, but so

far we didn't get many complaints about efficiency. Adding more callbacks makes no sense, also

because at some point the performance hit gets too large. There are plenty of ways to achieve

goals. For that reason: take remarks about LuaTEX, features, potential, performance etc. with

a natural grain of salt.

Where plain TEX is basically a basic framework for writing a specific style, macro packages like

ConTEXt and L
ATEX provide the user a whole lot of additional tools to make documents look good.

They hide the dirty details of font management, language support, turning structure into typeset

results, wrapping pages, including images, and so on. You should be aware of the fact that when

you hook in your own code to manipulate lists, this can interfere with the macro package that

you use. Each successive step expects a certain result and if you mess around to much, the

engine eventually might bark and quit. It can even crash, because testing everywhere for what

users can do wrong is no real option.

When you read about nodes in the following chapters it's good to keep in mind what commands

relate to them. Here are a few:

The internals16

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist vertical box with the baseline at the bottom

\vtop vlist vertical box with the baseline at the top

\hskip glue horizontal skip with optional stretch and shrink

\vskip glue vertical skip with optional stretch and shrink

\kern kern horizontal or vertical fixed skip

\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdirection dir a change in text direction

Whatever we feed into TEX at some point becomes a token which is either interpreted directly or

stored in a linked list. A token is just a number that encodes a specific command (operator) and

some value (operand) that further specifies what that command is supposed to do. In addition

to an interface to nodes, there is an interface to tokens, as later chapters will demonstrate.

Text (interspersedwithmacros) comes from an inputmedium. This can be a file, token list, macro

body cq. arguments, some internal quantity (like a number), Lua, etc. Macros get expanded.

In the process TEX can enter a group. Inside the group, changes to registers get saved on a

stack, and restored after leaving the group. When conditionals are encountered, another kind

of nesting happens, and again there is a stack involved. Tokens, expansion, stacks, input levels

are all terms used in the next chapters. Don't worry, they loose their magic once you use TEX a

lot. You have access to most of the internals and when not, at least it is possible to query some

state we're in or level we're at.

When we talk about pack(ag)ing it can mean two things. When TEX has consumed some tokens

that represent text they are added to the current list. When the text is put into a so called \hbox

(for instance a line in a paragraph) it (normally) first gets hyphenated, next ligatures are build,

and finally kerns are added. Each of these stages can be overloaded using Lua code. When these

three stages are finished, the dimension of the content is calculated and the box gets its width,

height and depth. What happens with the box depends on what macros do with it.

The other thing that can happen is that the text starts a new paragraph. In that case some

information is stored in a leading par node. Then indentation is appended and the paragraph

ends with some glue. Again the three stages are applied but this time afterwards, the long line

is broken into lines and the result is either added to the content of a box or to the main vertical

list (the running text so to say). This is called par building. At some point TEX decides that

enough is enough and it will trigger the page builder. So, building is another concept we will

encounter. Another example of a builder is the one that turns an intermediate math list into

something typeset.

Wrapping something in a box is called packing. Adding something to a list is described in terms

of contributing. The more complicated processes are wrapped into builders. For now this should

be enough to enable you to understand the next chapters. The text is not as enlightening and

entertaining as Don Knuths books, sorry.

17Differences with LuaTEX

2 Differences with LuaTEX

As LuaMetaTEX is a leaner and meaner LuaTEX. This means that substantial parts and dependen

cies are gone: quite some font code, all backend code with related frontend code and of course

image and font inclusion. There is also new functionality which makes for less lean but in the

end we still have less, also in terms of dependencies. This chapter will discuss what is gone. We

start with the primitives that were dropped.

fonts \letterspacefont \copyfont \expandglyphsinfont \ignoreligaturesin

font \tagcode \leftghost \rightghost

backend \dviextension \dvivariable \dvifeedback \pdfextension \pdfvariable

\pdffeedback \dviextension \draftmode \outputmode

dimensions \pageleftoffset \pagerightoffset \pagetopoffset \pagebottomoffset

\pageheight \pagewidth

resources \saveboxresource \useboxresource \lastsavedboxresourceindex \saveim

ageresource \useimageresource \lastsavedimageresourceindex \last

savedimageresourcepages

positioning \savepos \lastxpos \lastypos

directions \textdir \linedir \mathdir \pardir \pagedir \bodydir \pagedirection

\bodydirection

randomizer \randomseed \setrandomseed \normaldeviate \uniformdeviate

utilities \synctex

extensions \latelua \lateluafunction \openout \write \closeout \openin \read

\readline \closein \ifeof

control \suppressfontnotfounderror \suppresslongerror \suppressprimitiveer

ror \suppressmathparerror \suppressifcsnameerror \suppressoutererror

\mathoption

system \primitive \ifprimitive \formatname

ignored \long \outer \mag

The resources and positioning primitives are actually useful but can be defined as macros that

(via Lua) inject nodes in the input that suit the macro package and backend. The three--letter

direction primitives are gone and the numeric variants are now leading. There is no need for

page and body related directions and they don't work well in LuaTEX anyway. We only have

two directions left. Because we can hook in Lua functions that get information about what is

expected (consumer or provider) there are plenty possibilities for adding functionality using this

scripting langauge.

The primitive related extensions were not that useful and reliable so they have been removed.

There are some new variants that will be discussed later. The \outer and \long prefixes are

gone as they don't make much sense nowadays and them becoming dummies opened the way to

something new: control sequence properties that permit protection against as well as controlled

overloading of definitions. I don't think that (ConTEXt) users will notice these prefixes being

gone. The definition and parsing related \suppress.. features are now default and can't be

changed so related primitives are gone.

The \shipout primitive does no ship out but just erases the content of the box unless of course

Differences with LuaTEX18

that has happened already in another way. A macro package should implement its own backend

and related shipout. Talking of backend, the extension primitives that relate to backends can

be implemented as part of a backend design using generic whatsits. There is only one type of

whatsit now. In fact we're now closer to original TEX with respect to the extensions.

The img library has been removed as it's rather bound to the backend. The slunicode library

is also gone. There are some helpers in the string library that can be used instead and one can

write additional Lua code if needed. There is no longer a pdf backend library but we have an

up to date pdf parsing library on board.

In the node, tex and status library we no longer have helpers and variables that relate to the

backend. The LuaMetaTEX engine is in principle dvi and pdf unaware. There are, as mentioned,

only generic whatsit nodes that can be used for some management related tasks. For instance

you can use them to implement user nodes. More extensive status information is provided in

the overhauled status library. All libraries have additional functionality and names of functions

have been normalized (for as far as possible).

The margin kern nodes are gone and we now use regular kern nodes for them. As a consequence

there are two extra subtypes indicating the injected left or right kern. The glyph field served no

real purpose so there was no reason for a special kind of node.

The kpse library is no longer built-in, but one can use an external kpse library, assuming that

it is present on the system, because the engine has a so called optional library interface to it.

Because there is no backend, quite some file related callbacks could go away. The following file

related callbacks remained (till now):

find_write_file find_format_file open_data_file

The callbacks related to errors are changed:

intercept_tex_error intercept_lua_error

show_error_message show_warning_message

There is a hook that gets called when one of the fundamental memory structures gets reallocated.

trace_memory

When you use the overload protect mechanisms, a callback can be plugged in to handle excep

tions:

handle_overload

The (job) management hooks are kept:

process_jobname

start_run stop_run wrapup_run

pre_dump

start_file stop_file

Because we use a more generic whatsit model, there is a new callback:

show_whatsit

19Differences with LuaTEX

Because tracing boxes now reports a lot more information, we have a plug in for detail:

get_attribute

Being the core of extensibility, the typesetting callbacks of course stayed. This is what we ended

up with:

append_to_vlist_filter, begin_paragraph, build_page_insert, buildpage_filter,

contribute_filter, define_font, find_format_file, find_log_file, get_attribute,

glyph_run, handle_overload, hpack_filter, hpack_quality, hyphenate, insert_par,

intercept_lua_error, intercept_tex_error, kerning, ligaturing, linebreak_filter,

make_extensible, missing_character, mlist_to_hlist, open_data_file,

paragraph_context, post_linebreak_filter, pre_dump, pre_linebreak_filter,

pre_output_filter, process_jobname, register_extensible, show_error_message,

show_lua_call, show_warning_message, show_whatsit, start_file, start_run,

stop_file, stop_run, trace_memory, vpack_filter, vpack_quality, wrapup_run

As in LuaTEX font loading happens with the following callback. This time it really needs to be

set because there is no built-in font loader.

define_font

There are all kinds of subtle differences in the implementation, for instance we no longer inter

cept * and & as these were already replaced long ago in TEX engines by command line options.

Talking of options, only a few are left. All input goes via Lua, even the console. One can program

a terminal if needed.

We took our time for reaching a stable state in LuaTEX. Among the reasons is the fact that most

was experimented with in ConTEXt, which we can adapt to the engine as we go. It took many

years to decide what to keep and how to do things. Of course there are places when things can

be improved but that most likely only happens in LuaMetaTEX. Contrary to what is sometimes

suggested, the LuaTEX-ConTEXt MkIV combination (assuming matched versions) has been quite

stable. It made no sense otherwise. Most ConTEXt functionality didn't change much at the user

level. Of course there have been issues, as is natural with everything new and beta, but we have

a fast update cycle.

The same is true for LuaMetaTEX and ConTEXt LMTX: it can be used for production as usual and

in practice ConTEXt users tend to use the beta releases, which proves this. Of course, if you use

low level features that are experimental you're on your own. Also, as with LuaTEX it might take

many years before a long term stable is defined. The good news is that, when the source code

has become part of the ConTEXt distribution, there is always a properly working, more or less

long term stable, snapshot.

The error reporting subsystem has been redone quite a bit but is still fundamentally the same.

We don't really assume interactive usage but if someone uses it, it might be noticed that it is not

possible to backtrack or inject something. Of course it is no big deal to implement all that in Lua

if needed. It removes a system dependency and makes for a bit cleaner code. In ConTEXt we

quit on an error simply because one has to fix source anyway and runs are fast enough. Logging

provides more detail and new primitives can be used to prevent clutter in tracing (the more

complex a macro package becomes, the more extreme tracing becomes).

Differences with LuaTEX20

There are new primitives as well as some extensions to existing primitive functionality. These

are described in following chapters but there might be hidden treasures in the binary. If you

locate them, don't automatically assume them to stay, some might be part of experiments! There

are for instance a few csname related definers, we have integer and dimension constants, the

macro argument parser can be brought in tolerant mode, the repertoire of conditionals has been

extended, some internals can be controlled (think of normalization of lines, hyphenation etc.),

and macros can be protected against user overload. Not all is discussed in detail in this manual

but there are introductions in the ConTEXt distribution that explain them. But the TEX kernel is

of course omnipresent.

The following primitives are available in LuaTEX but not in LuaMetaTEX. Some of these are

emulated in ConTEXt.

automatichyphenmode

bodydir

bodydirection

boxdir

breakafterdirmode

closein

closeout

compoundhyphenmode

copyfont

discretionaryligaturemode

draftmode

dviextension

dvifeedback

dvivariable

eTeXVersion

eTeXglueshrinkorder

eTeXgluestretchorder

eTeXminorversion

eTeXrevision

eTeXversion

expandglyphsinfont

fixupboxesmode

glyphdimensionsmode

hoffset

hyphenationbounds

hyphenpenaltymode

ifeof

ifprimitive

ignoreligaturesinfont

immediateassigned

immediateassignment

insertht

lastsavedboxresourceindex

lastsavedimageresourceindex

lastsavedimageresourcepages

lastxpos

lastypos

latelua

lateluafunction

leftghost

letterspacefont

linedir

mag

mathdefaultsmode

mathdir

mathoption

nokerns

noligs

nolocaldirs

nolocalwhatsits

normaldeviate

openin

openout

outputmode

pagebottomoffset

pagedir

pagedirection

pageheight

pageleftoffset

pagerightoffset

pagetopoffset

pagewidth

pardir

pdfextension

pdffeedback

pdfvariable

primitive

randomseed

21Differences with LuaTEX

read

readline

rightghost

saveboxresource

saveimageresource

savepos

setrandomseed

shapemode

special

suppressfontnotfounderror

suppressifcsnameerror

suppresslongerror

suppressmathparerror

suppressoutererror

suppressprimitiveerror

synctex

tagcode

textdir

tracingscantokens

uniformdeviate

useboxresource

useimageresource

voffset

write

The following primitives are available in LuaMetaTEX only. At some point in time some might be

added to LuaTEX.

UUskewed

UUskewedwithdelims

Uabove

Uabovewithdelims

Uatop

Uatopwithdelims

Umathaccentbaseheight

Umathaccentvariant

Umathadapttoleft

Umathadapttoright

Umathbotaccentvariant

Umathclass

Umathdegreevariant

Umathdelimiterovervariant

Umathdelimiterundervariant

Umathdenominatorvariant

Umathextrasubpreshift

Umathextrasubshift

Umathextrasuppreshift

Umathextrasupshift

Umathfractionvariant

Umathhextensiblevariant

Umathlimits

Umathnoaxis

Umathnolimits

Umathnumeratorvariant

Umathopenupdepth

Umathopenupheight

Umathoverdelimitervariant

Umathoverlayaccentvariant

Umathoverlinevariant

Umathphantom

Umathradicalvariant

Umathspacebeforescript

Umathspacingmode

Umathstackvariant

Umathsubscriptvariant

Umathsuperscriptvariant

Umathtopaccentvariant

Umathunderdelimitervariant

Umathunderlinevariant

Umathvextensiblevariant

Umathvoid

Unosubprescript

Unosuperprescript

Uover

Uoverwithdelims

Ustyle

Usubprescript

Usuperprescript

adjustspacingshrink

adjustspacingstep

adjustspacingstretch

afterassigned

aftergrouped

aliased

atendofgroup

atendofgrouped

automigrationmode

beginlocalcontrol

Differences with LuaTEX22

beginsimplegroup

boxattribute

boxorientation

boxtotal

boxxmove

boxxoffset

boxymove

boxyoffset

defcsname

dimensiondef

dimexpression

edefcsname

endsimplegroup

enforced

everybeforepar

everytab

expand

expandafterpars

expandafterspaces

expandcstoken

expandtoken

fontmathcontrol

fontspecifiedname

fontspecifiedsize

fonttextcontrol

frozen

futurecsname

futuredef

futureexpand

futureexpandis

futureexpandisap

gdefcsname

gletcsname

glettonothing

gluespecdef

glyph

glyphdatafield

glyphoptions

glyphscale

glyphscriptfield

glyphscriptscale

glyphscriptscriptscale

glyphstatefield

glyphtextscale

glyphxoffset

glyphxscale

glyphyoffset

glyphyscale

hccode

hyphenationmode

ifarguments

ifboolean

ifchkdim

ifchknum

ifcmpdim

ifcmpnum

ifcstok

ifdimval

ifempty

ifexpression

ifflags

ifhastok

ifhastoks

ifhasxtoks

ifinsert

ifmathparameter

ifmathstyle

ifnumval

ifparameter

ifparameters

ifrelax

iftok

ignorearguments

ignorepars

immutable

insertbox

insertcopy

insertdepth

insertdistance

insertheight

insertheights

insertlimit

insertmode

insertmultiplier

insertprogress

insertunbox

insertuncopy

insertwidth

instance

integerdef

lastarguments

lastchkdim

23Differences with LuaTEX

lastchknum

lastnodesubtype

letcsname

letfrozen

letprotected

lettonothing

linepar

localcontrol

localcontrolled

mathcontrolmode

mathfontcontrol

mathscale

meaningfull

meaningless

mugluespecdef

mutable

noaligned

norelax

normalizelinemode

numericscale

numexpression

orelse

orunless

overloaded

overloadmode

overshoot

parametercount

parattribute

parfillleftskip

permanent

scaledfontdimen

shownodedetails

snapshotpar

supmarkmode

swapcsvalues

thewithoutunit

thewithproperty

todimension

tointeger

tokenized

tolerant

toscaled

tracingalignments

tracingexpressions

tracinghyphenation

tracinglevels

tracingmath

undent

unhpack

unletfrozen

unletprotected

untraced

unvpack

wrapuppar

xdefcsname

As part of a bit more consistency some function names also changed. Names with an _ got that

removed (as that was the minority). It's easy to provide a back mapping if needed (just alias the

functions).

Todo: only mention the LuaTEX ones.

LIBRARY OLD NAME NEW NAME COMMENT

language clear_patterns clearpatterns

clear_hyphenation clearhyphenation

mplib italcor italic

pen_info peninfo

solve_path solvepath

texio write_nl writenl old name stays

node protect_glyph protectglyph

protect_glyphs protectglyphs

unprotect_glyph unprotectglyph

unprotect_glyphs unprotectglyphs

end_of_math endofmath

Differences with LuaTEX24

mlist_to_hlist mlisttohlist

effective_glue effectiveglue

has_glyph hasglyph

first_glyph firstglyph

has_field hasfield

copy_list copylist

flush_node flushnode

flush_list flushlist

insert_before insertbefore

insert_after insertafter

last_node lastnode

is_zero_glue iszeroglue

make_extensible makeextensible

uses_font usesfont

is_char ischar

is_direct isdirect

is_glyph isglyph

is_node isnode

token scan_keyword scankeyword

scan_keywordcs scankeywordcs

scan_int scanint

scan_real scanreal

scan_float scanfloat

scan_dimen scandimen

scan_glue scanglue

scan_toks scantoks

scan_code scancode

scan_string scanstring

scan_argument scanargument

scan_word scanword

scan_csname scancsname

scan_list scanlist

scan_box scanbox

It's all part of trying to make the code base consistent but it is sometimes a bit annoying. How

ever, that's why we develop this engine independent of the LuaTEX code base. It's anyway a

change that has been on my todo list for quite a while because those inconsistencies annoyed

me.

25The original engines

3 The original engines

3.1 The merged engines

3.1.1 The rationale

The first version of LuaTEX, made by Hartmut after we discussed the possibility of an extension

language, only had a few extra primitives and it was largely the same as pdfTEX. It was pre

sented to the public in 2005. As part of the Oriental TEX project, Taco merged some parts of

Aleph into the code and some more primitives were added. Then we started more fundamental

experiments. After many years, when the engine had become more stable, the decision was

made to clean up the rather hybrid nature of the program. This means that some primitives

were promoted to core primitives, often with a different name, and that others were removed.

This also made it possible to start cleaning up the code base, which showed decades of stepwise

additions to original TEX. In chapter 5 we discuss some new primitives, here we will cover most

of the adapted ones.

During more than a decade stepwise new functionality was added and after 10 years the more of

less stable version 1.0 was presented. But we continued and after some 15 years the LuaMetaTEX

follow up entered its first testing stage. But before details about the engine are discussed in suc

cessive chapters, we first summarize where we started from. Keep in mind that in LuaMetaTEX

we have a bit less than in LuaTEX, so this section differs from the one in the LuaTEX manual.

Besides the expected changes caused by new functionality, there are a number of not-so-ex

pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often

than not, a change necessary to clean up the internal interfaces. These will also be mentioned.

Again we stress that this is not a TEX manual, nor a tutorial. If you are unfamiliar with TEX first

play a little with a macro package, take a look at the TEX book, make yourself familiar with the

concepts and macro language. That will likely take days and not hours. Also, many of the new

concepts introduced in LuaTEX and LuaMetaTEX are explained in documents that come with the

ConTEXt distribution, articles and presentations. It doesn't pay of to repeat that here, especially

not in a time when users often search instead of read from cover to cover.

3.1.2 Changes from TEX 3.1415926...

Of course it all starts with traditional TEX. Even if we started with pdfTEX, most still comes from

original Knuthian TEX. But we divert a bit.

‣ The current code base is written in C, not Pascal. The original web documentation is kept

when possible and not wrapped in tagged comments. As a consequence instead of one large

file plus change files, we now have multiple files organized in categories like tex, lua, lan

guages, fonts, libraries, etc. There are some artifacts of the conversion to C, but these

got (and get) removed stepwise. The documentation, which actually comes from the mix of

engines (via so called change files), is a mix of what authors of the engines wove into the

source, and most is of course from Don Knuths original. In LuaMetaTEX we try to stay as

The original engines26

close as possible to the original so that the documentation of the fundamentals behind TEX by

Don Knuth still applies. However, because we use C, some documentation is a bit off. Also,

most global variables are now collected in structures, but the original names and level of

abstraction were mostly kept. On the other hand, opening up had its impact on the code, so

that makes some documentation a bit off too. Adapting that all will take time.

‣ See chapter 7 for many small changes related to paragraph building, language handling and

hyphenation. The most important change is that adding a brace group in the middle of a

word (like in of{}fice) does not prevent ligature creation. Also, the hyphenation, ligature

building and kerning has been split so that we can hook in alternative or extra code wherever

we like. There are various options to control discretionary injection and related penalties are

now integrated in these nodes. Language information is now bound to glyphs. The number

of languages in LuaMetaTEX is smaller than in LuaTEX. Control over discretionaries is more

granular and now managed by less variables.

‣ There is no pool file, all strings are embedded during compilation. This also removed some

memory constraints. We kept token and node memory management because it is convenient

and efficient but parts were reimplemented in order to remove some constraints. Token

memory management is largely the same. All the other large memory structures, like those

related to nesting, the save stack, input levels, the hash table and table of equivalents, etc.

now all start out small and are enlarged when needed, where maxima are controlled in the

usual way. In principle the initial memory footprint is smaller while at the same time we can

go real large. Because we have widememory words some data (arrays) used for housekeeping

could be reorganized a bit.

‣ The specifier plus 1 fillll does not generate an error. The extra ‘l’ is simply typeset.

‣ The upper limit to \endlinechar and \newlinechar is 127.

‣ Because the backend is not built-in, the magnification (\mag) primitive is gone. A shipout just

discards the content of the given box. The write related primitives have to be implemented

in the used macro package using Lua. None of the pdfTEX derived primitives is present.

‣ Because there is no font loader, a Lua variant is free to either support or not the Omega ofm

file format. As there are hardly any such fonts it probably makes no sense. There is plenty of

control over the way glyphs get treated and scaling of fonts and glyphs is also more dynamic.

‣ There is more control over some (formerly hard-coded) math properties. In fact, there is a

whole extra bit of math related code because we need to deal with OpenType fonts. The math

processing has been adapted to the new (dynamic) font and glyph scaling features.

‣ The \outer and \long prefixed are silently ignored. It is permitted to use \par in math.

‣ The lack of a backend means that some primitives related to it are not implemented. This is

no big deal because it is possible to use the scanner library to implement them as needed,

which depends on the macro package and backend.

‣ The math style related primitives can use numbers as well as symbolic names. There is some

more (control over) math anyway, which is a side effect of supporting OpenType math.

3.1.3 Changes from 𝜀-TEX 2.2

Being the de-facto standard extension of course we provide the 𝜀-TEX features, but with a few
small adaptations.

‣ The 𝜀-TEX functionality is always present and enabled so the prepended asterisk or -etex

27The original engines

switch for iniTEX is not needed.

‣ The TEXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,

\endR and \endL are missing. Instead we used the Omega/Aleph approach to directionality

as starting point, albeit it has been changed quite a bit, so that we're probably not that far

from TEXXeT.

‣ Some of the tracing information that is output by 𝜀-TEX's \tracingassigns and \tracingre
stores is not there. Also keep in mind that tracing doesn't involve what Lua does.

‣ Register management in LuaMetaTEX uses the Omega/Aleph model, so the maximum value

is 65535 and the implementation uses a flat array instead of the mixed flat & sparse model

from 𝜀-TEX.
‣ Because we have more nodes, conditionals, etc. the 𝜀-TEX status related variables are adapted
to LuaMetaTEX: we use different ‘constants’, but that should be no problem because any sane

macro package uses abstraction.

‣ The \scantokens primitive is now using the same mechanism as Lua print-to-TEX uses, which

simplifies the code. There is a little performance hit but it will not be noticed in ConTEXt,

because we never use this primitive.

‣ Because we don't use change files on top of original TEX, the integration of 𝜀-TEX functionality
is bit more natural, code wise.

‣ The \readline primitive has to be implemented in Lua. This is a side effect of delegating all

file io.

‣ Most of the code is rewritten but the original primitives are still tagged as coming from 𝜀-TEX.

3.1.4 Changes from pdfTEX 1.40

Because wewant to produce pdf themost natural starting point was the popular pdfTEX program.

We inherit the stable features, dropped most of the experimental code and promoted some func

tionality to core LuaTEX functionality which in turn triggered renaming primitives. However, as

the backend was dropped, not that much from pdfTEX is present any more. Basically all we now

inherit from pdfTEX is expansion and protrusion but even that has been adapted. So don't expect

LuaMetaTEX to be compatible.

‣ The experimental primitives \ifabsnum and \ifabsdim have been promoted to core primi

tives.

‣ The primitives \ifincsname, \expanded and \quitvmode have become core primitives.

‣ As the hz (expansion) and protrusion mechanism are part of the core the related prim

itives \lpcode, \rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to

core primitives. The two commands \protrudechars and \adjustspacing control these

processes.

‣ In LuaMetaTEX three extra primitives can be used to overload the font specific settings: \ad

justspacingstep (max: 100), \adjustspacingstretch (max: 1000) and \adjustspacing

shrink (max: 500).

‣ The hz optimization code has been partially redone so that we no longer need to create extra

font instances. The front- and backend have been decoupled and the glyph and kern nodes

carry the used values. In LuaTEX that made a more efficient generation of pdf code possible.

It also resulted in much cleaner code. The backend code is gone, but of course the information

is still carried around.

The original engines28

‣ When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When

the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

‣ When \protrudechars has a value larger than zero characters at the edge of a line can

be made to hang out. A value of 2 will take the protrusion into account when breaking a

paragraph into lines. A value of 3 will try to deal with right-to-left rendering; this is a still

experimental feature.

‣ The pixel multiplier dimension \pxdimen has be inherited as core primitive.

‣ The primitive \tracingfonts is now a core primitive but doesn't relate to the backend.

3.1.5 Changes from Aleph RC4

In LuaTEX we took the 32 bit aspects and much of the directional mechanisms and merged it into

the pdfTEX code base as starting point for further development. Thenwe simplified directionality,

fixed it and opened it up. In LuaMetaTEX not that much of the later is left. We only have two

horizontal directions. Instead of vertical directions we introduce an orientation model bound to

boxes.

The already reduced-to-four set of directions now only has two members: left-to-right and right-

to-left. They don't do much as it is the backend that has to deal with them. When paragraphs

are constructed a change in horizontal direction is irrelevant for calculating the dimensions.

So, basically most that we do is registering state and passing that on till the backend can do

something with it.

Here is a summary of inherited functionality:

‣ The ^^ notation has been extended: after ^^^^ four hexadecimal characters are expected and

after ^^^^^^ six hexadecimal characters have to be given. The original TEX interpretation is

still valid for the ^^ case but the four and six variants do no backtracking, i.e. when they are

not followed by the right number of hexadecimal digits they issue an error message. Because

^^^ is a normal TEX case, we don't support the odd number of ^^^^^ either.

‣ Glues immediately after direction change commands are not legal breakpoints. There is a bit

more sanity testing for the direction state. This can be configured.

‣ The placement of math formula numbers is direction aware and adapts accordingly. Boxes

carry directional information but rules don't.

‣ There are no direction related primitives for page and body directions. The paragraph, text

and math directions are specified using primitives that take a number. The three letter codes

are dropped.

3.1.6 Changes from standard web2c

The LuaMetaTEX codebase is not dependent on the web2c framework. The interaction with the

file system and tds is up to Lua. There still might be traces but eventually the code base should

be lean and mean. The MetaPost library is coded in cweb and in order to be independent from

related tools, conversion to C is done with a Lua script ran by, surprise, LuaMetaTEX.

29The original engines

3.2 Implementation notes

3.2.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two

separate arrays. Each of these will grow dynamically when needed. Internally a token or node is

an index into these arrays. This permits for an efficient implementation and is also responsible

for the performance of the core. All other data structures are mostly the same but managed

dynamically too. Because we operate in a 64 bit world, the parallel table of equivalents needed

for managing levels, is gone. Anyhow, the original documentation in TEX The Program mostly

applies!

3.2.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)

tables are now sparse arrays that are implemented in C. They are no longer part of the TEX

‘equivalence table’ and because each had 1.1 million entries with a few memory words each,

this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don't show up when using

the 𝜀-TEX tracing routines \tracingassigns and \tracingrestores but we don't see that as a

real limitation. It also saves a lot of clutter.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up

to index 221 − 1 but these are never accessed directly so again users will not notice this.

3.2.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in

the hash just like the multiletter control sequences. This is a side effect of going Unicode and

utf. Where using 256 slots in an array add no burden supporting the whole Unicode range is a

waste of space. Therefore, also active characters are internally implemented as a special type

of multi-letter control sequences that uses a prefix that is otherwise impossible to obtain.

The code that displays control sequences explicitly checks if the length is one when it has to

decide whether or not to add a trailing space.

3.2.4 Binary file reading

All input now goes via Lua: files loaded with \input as well as files that are opened with \openin.

Actually the later has to be implemented in terms of macros and Lua calls. This also means that

compared to LuaTEX the internal handling of input has been changed but users won't notice that.

Setting a callback is expected now. Although reading input natively using getc calls is more

efficient, we now fetch lines from Lua, put them in a buffer and then pick successive bytes (keep

in mind that we read utf) from that. The performance is quite ok, also because Lua is fast, todays

The original engines30

operating systems cache, and storage media have become very fast. Also, TEX is spending more

time messing around with what it has input than actually reading input.

3.2.5 Tabs and spaces

We conform to the way other TEX engines handle trailing tabs and spaces. For decades trailing

tabs and spaces (before a newline) were removed from the input but this behaviour was changed

in September 2017 to only handle spaces. We are aware that this can introduce compatibility

issues in existing workflows but because we don't want too many differences with upstream

TEXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to

macro packages maintainers to deal with possible compatibility issues and in LuaMetaTEX they

can do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from

generated sources) it was normally dealt with by adding a comment token to the line in case the

spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts

some of our other choices but consistency with other engines. We still stick to our view that at

the log level we can (and might be) more incompatible. We already expose some more details

anyway.

3.2.6 Logging

When detailed logging is enabled more detail is output with respect to what nodes are involved.

This is a side effect of the core nodes having more detailed subtype information. The benefit

of more detail wins from any wish to be byte compatible in the logging. One can always write

additional logging in Lua.

The information that goes into the log file can be different from LuaTEX, and might even differ

a bit more in the future. The main reason is that inside the engine we have more granularity,

which for instance means that we output subtype and attribute related information when nodes

are printed. Of course we could have offered a compatibility mode but it serves no purpose. Over

time there have been many subtle changes to control logs in the TEX ecosystems so another one

is bearable.

In a similar fashion, there is a bit different behaviour when TEX expects input, which in turn is a

side effect of removing the interception of * and & which made for cleaner code (quite a bit had

accumulated as side effect of continuous adaptations in the TEX ecosystems). There was already

code that was never executed, simply as side effect of the way LuaTEX initializes itself (one needs

to enable classes of primitives for instance). Keep in mind that over time system dependencies

have been handles with TEX change files, the web2c infrastructure, kpse features, compilation

variables and flags, etc. In LuaMetaTEX we try to minimize all that.

When it became unavoidable that we output more detail, it also became clear that it made no

sense to stay log and trace compatible. Some is controlled by parameters in order to stay close

the original, but ConTEXt is configured such that we benefit from the new possibilities. Examples

are that in addition to \meaning we have \meaningfull that also exposes macro properties, and

\meaningless that only exposes the body. The \untraced prefix will suppress some in the log,

and we set \tracinglevels to 3 in order to get details about the input and grouping level. When

there's less shown than expected keep in mind that LuaMetaTEX has a somewhat optimized

31The original engines

saving and restoring of meanings so less can happen which is reflected in tracing. When node

lists are serialized (as with \showbox) some nodes, like discretionaries report more detail. The

compact serializer, used for instance to signal overfull boxes, also shows a bit more detail with

respect to non-content nodes. I math more is shown if only because we have more control and

additional mechanisms.

3.2.7 Parsing

Token parsers have been upgraded for the sake of Lua, \csname handling has been extended,

macro definitions can bemore flexible so there codewas adapted, more conditionals also brought

some changes. But we build upon the (reorganized) TEX foundation so the basics can definitely

be recognized.

Because of interfacing in Lua the internal token and node organization has been normalized

(read: we cannot cheat because all is kind of visible). On the one hand this can come with a

performance penalty but that is more than compensated by extensions, optimized parsers and

such. Still the fact that we are utf based (32 bit) makes the machinery slower than the 8 bit

original. The reworked LuaMetaTEX engine is substantially faster than the LuaTEX predecessor.

The handling of conditionals has been adapted so that we can have flatter branches (\orelse

cum suis). This again has some consequences for parsing. Because parsing alignments is rather

interwoven in general parsing and expansion the handling of related primitives has been slightly

adapted (also for the sake of Lua interfacing) and dealing with \noalign situations is a bit more

convenient.

This are just a few of the adaptations and most of this happened stepwise with testing in the Con

TEXt code base. It will be clear that LuaMetaTEX is a quite different extension to the original.

You're warned.

The original engines32

33Using LuaMetaTEX

4 Using LuaMetaTEX

4.1 Initialization

4.1.1 LuaMetaTEX as a Lua interpreter

Although LuaMetaTEX is primarily meant as a TEX engine, it can also serve as a stand alone Lua

interpreter. There are two ways to make LuaMetaTEX behave like a standalone Lua interpreter:

‣ if a --luaonly option is given on the commandline, or

‣ if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua's arg[0] to the found script name, pushing preceding options in neg

ative values and the rest of the command line in the positive values, just like the Lua interpreter

does.

LuaMetaTEX will exit immediately after executing the specified Lua script and is, in effect, a

somewhat bulky stand alone Lua interpreter with a bunch of extra preloaded libraries. But we

really want to keep the binary small, if possible below the 3MB which is okay for a script engine.

When no argument is given, LuaMetaTEX will look for a Lua file with the same name as the

binary and run that one when present. This makes it possible to use the engine as a stub. For

instance, in ConTEXt a symlink from mtxrun to type luametatex will run the mtxrun.lua script

when present in the same path as the binary itself

4.1.2 Other commandline processing

When the LuaMetaTEX executable starts, it looks for the --lua command line option. If there is

no --lua option, the command line is interpreted in a similar fashion as the other TEX engines.

All options are accepted but only some are understood by LuaMetaTEX itself:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--fmt=FORMAT load the format file FORMAT

--help display help and exit

--ini be iniluatex, for dumping formats

--jobname=STRING set the job name to STRING

--lua=FILE load and execute a Lua initialization script

--version display version and exit

There are less options than with LuaTEX, because one has to deal with them in Lua anyway.

There are no options to enter a safer mode or control executing programs. This can easily be

achieved with a startup Lua script.

Next the initialization script is loaded and executed. From within the script, the entire com

mand line is available in the Lua table arg, beginning with arg[0], containing the name of the

Using LuaMetaTEX34

executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX's initializa

tions have taken place yet. The Lua libraries that don't deal with TEX are initialized rather soon

so you have these available.

LuaMetaTEX allows some of the command line options to be overridden by reading values from

the texconfig table at the end of script execution (see the description of the texconfig table

later on in this document for more details on which ones exactly).

The value to use for \jobname is decided as follows:

‣ If --jobname is given on the command line, its argument will be the value for \jobname,

without any changes. The argument will not be used for actual input so it need not exist. The

--jobname switch only controls the \jobname setting.

‣ Otherwise, \jobname will be the name of the first file that is read from the file system, with

any path components and the last extension (the part following the last .) stripped off.

‣ There is an exception to the previous point: if the command line goes into interactive mode

(by starting with a command) and there are no files input via \everyjob either, then the

\jobname is set to texput as a last resort.

So let's summarize this. The handling of what is called jobname is a bit complex. There can be

explicit names set on the command line but when not set they can be taken from the texconfig

table.

startup filename --lua a Lua file

startup jobname --jobname a TEX tex texconfig.jobname

startup dumpname --fmt a format file texconfig.formatname

These names are initialized according to --luaonly or the first filename seen in the list of op

tions. Special treatment of & and * as well as interactive startup is gone but we still enter TEX

via an forced \input into the input buffer.1

When we are in TEX mode at some point the engine needs a filename, for instance for opening a

log file. At that moment the set jobname becomes the internal one and when it has not been set

which internalized to jobname but when not set becomes texput. When you see a texput.log

file someplace on your system it normally indicates a bad run.

When running on MS Windows the command line, filenames, environment variable access etc.

internally uses the current code page but to the user is exposed as utf8. Normally users won't

notice this.

There is an extra options --permitloadlib that needs to be given when you load external li

braries via Lua. Although you could manage this via Lua itself in a startup script, the reason for

having this as option is the wish for security (at some point that became a demand for LuaTEX),

so this might give an extra feeling of protection.

1 This might change at some point into an explicit loading triggered via Lua.

35Using LuaMetaTEX

4.2 Lua behaviour

4.2.1 The Lua version

We currently use Lua 5.4 and will follow developments of the language but normally with some

delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of

the language. Here is an example of one aspect.

Luas tostring function (and string.format) may return values in scientific notation, thereby

confusing the TEX end of things when it is used as the right-hand side of an assignment to a

\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua

5.3 you can get different output than from 5.2. It is best not to depend the automatic cast from

string to number and vise versa as this can change in future versions.

4.2.2 Locales

In stock Lua, many things depend on the current locale. In LuaMetaTEX, we can't do that,

because it makes documents unportable. While LuaMetaTEX is running if forces the following

locale settings:

LC_CTYPE=C

LC_COLLATE=C

LC_NUMERIC=C

There is no way to change that as it would interfere badly with the often language specific

conversions needed at the TEX end.

4.3 Lua modules

Of course the regular Lua modules are present. In addition we provide the lpeg library by

Roberto Ierusalimschy, This library is not Unicode-aware, but interprets strings on a byte-per-

byte basis. This mainly means that lpeg.S cannot be used with utf8 characters that need more

than one byte, and thus lpeg.S will look for one of those two bytes when matching, not the

combination of the two. The same is true for lpeg.R, although the latter will display an error

message if used with multibyte characters. Therefore lpeg.R('aä') results in the message bad

argument #1 to 'R' (range must have two characters), since to lpeg, ä is two 'characters'

(bytes), so aä totals three. In practice this is no real issue and with some care you can deal with

Unicode just fine.

There are some more libraries present. These are discussed on a later chapter. For instance we

embed luasocket but contrary to LuaTEX don't embed the related Lua code. The luafilesystem

module has been replaced by a more efficient one that also deals with the MS Windows file and

environment properties better (Unicode support in MS Windows dates from before utf8 became

dominant so we need to deal with wide Unicode16).

There are more extensive math libraries and there are libraries that deal with encryption and

compression. There are also some optional libraries that we do interface but that are loaded on

Using LuaMetaTEX36

demand. The interfaces are as minimal as can be because we so much in Lua, which also means

that one can tune behaviour to usage better.

4.4 Testing

For development reasons you can influence the used startup date and time. By setting the

start_time variable in the texconfig table; as with other variables we use the internal name

there. When Universal Time is needed, set the entry use_utc_time in the texconfig table.

In ConTEXt we provide the command line argument --nodates that does a bit more than disabling

dates; it avoids time dependent information in the output file for instance.

37Basic TEX enhancements

5 Basic TEX enhancements

5.1 Introduction

5.1.1 Primitive behaviour

From day one, LuaTEX has offered extra features compared to the superset of pdfTEX, which

includes 𝜀-TEX, and Aleph. This has not been limited to the possibility to execute Lua code via
\directlua, but LuaTEX also adds functionality via new TEX-side primitives or extensions to

existing ones. The same is true for LuaMetaTEX. Some primitives have luatex in their name and

there will be no luametatex variants. This is because we consider LuaMetaTEX to be LuaTEX2
+.

Contrary to the LuaTEX engine LuaMetaTEX enables all its primitives. You can clone (a selection

of) primitives with a different prefix, like this:

\directlua { tex.enableprimitives('normal',tex.extraprimitives()) }

The extraprimitives function returns the whole list or a subset, specified by one or more key

words core, tex, etex or luatex. When you clone all primitives you can also do this:

\directlua { tex.enableprimitives('normal',true) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this

early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before

the above line:

\catcode `\{ = 1

\catcode `\} = 2

More fine-grained primitives control is possible and you can look up the details in section 11.3.15.

There are only three kinds of primitives: tex, etex and luatex but a future version might drop

this and no longer make that distinction as it no longer serves a purpose apart from the fact that

it reveals some history.

5.1.2 Version information

5.1.2.1 \luatexbanner, \luatexversion and \luatexrevision

There are three primitives to test the version of LuaTEX (and LuaMetaTEX):

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaMetaTeX, Version 2.09.16 the banner reported on the console

\luatexversion 209 major and minor number combined

\luatexrevision 16 the revision number

A version is defined as follows:

Basic TEX enhancements38

‣ The major version is the integer result of \luatexversion divided by 100. The primitive is

an ‘internal variable’, so you may need to prefix its use with \the or \number depending on

the context.

‣ The minor version is a number running from 0 upto 99.

‣ The revision is reported by \luatexrevision. Contrary to other engines in LuaMetaTEX is

also a number so one needs to prefix it with \the or \number.2

‣ The full version number consists of the major version (X), minor version (YY) and revision (ZZ),

separated by dots, so X.YY.ZZ.

The LuaMetaTEX version number starts at 2 in order to prevent a clash with LuaTEX, and the

version commands are the same. This is a way to indicate that these projects are related.

The status library also provides some information including what we get with the three men

tioned primitives:

FIELD VALUE

filename E:/context/manuals/mkiv/external/luametatex/luametatex-enhancements.tex

banner This is LuaMetaTeX, Version 2.09.16

luatex_engine luametatex

luatex_version 209

luatex_revision 16

luatex_verbose 2.09.16

copyright Taco Hoekwater, Hans Hagen & Wolfgang Schuster

development_id 20210630

format_id 587

used_compiler gcc

5.2 Unicode text support

5.2.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the

full range of Unicode (220 + 216 − 1 = 0x10FFFF). Later chapters will talk of characters and

glyphs. Although these are not interchangeable, they are closely related. During typesetting, a

character is always converted to a suitable graphic representation of that character in a specific

font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as

a character. Inside the engine there is no clear separation between the two concepts. Because

the subtype of a glyph node can be changed in Lua it is up to the user. Subtypes larger than 255

indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate

for a larger range of acceptable numbers. For instance, \char now accepts values between 0

and 1,114,111. This should not be a problem for well-behaved input files, but it could create in

2 In the past it always was good to prefix the revision with \number anyway, just to play safe, although there have for

instance been times that pdfTEX had funny revision indicators that at some point ended up as letters due to the internal

conversions.

39Basic TEX enhancements

compatibilities for input that would have generated an error when processed by older TEX-based

engines. The affected commands with an altered initial (left of the equal sign) or secondary (right

of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efcode,

\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. In

put files can be pre-processed using the reader callback. This will be explained in section ??.

Normalization of the Unicode input is on purpose not built-in and can be handled by a macro

package during callback processing. We have made some practical choices and the user has to

live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode

range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
𝑐 >= 1,114,112, LuaTEX will actually print the single byte corresponding to 𝑐 minus 1,114,112.

Contrary to other TEX engines, the output to the terminal is as-is so there is no escaping with ^^.

We operate in a utf universe. Because we operate in a C universum, zero characters are special

but because we also live in a Unicode galaxy that is no real problem.

5.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

5.2.3 Extended tables

All traditional TEX and 𝜀-TEX registers can be 16-bit numbers. The affected commands are:

\count

\dimen

\skip

\muskip

\marks

\toks

\countdef

\dimendef

\skipdef

\muskipdef

\toksdef

\insert

\box

\unhbox

\unvbox

\copy

\unhcopy

\unvcopy

\wd

\ht

\dp

\setbox

\vsplit

Fonts are loaded via Lua and a minimal amount of information is kept at the TEX end. Sharing

resources is up to the loaders. The engine doesn't really care about what a character (or glyph)

number represents (a Unicode or index) as it only is interested in dimensions.

In TEX the number of registers is 256 and 𝜀-TEX bumped that to 32K. One reason for a fixed

number is that these registers are fast ways to store data and therefore are part of the main

lookup table (used for data and pointers to data as well as save and restore housekeeping). In

LuaTEX the number was bumped to 64K but one can argue that less would also do. In order to

keep the default memory footprint reasonable, in LuaMetaTEX the number of languages, fonts

andmarks is limited. The size of some tables can be limited by configuration settings, so they can

start out small and grow till configured maximum which is smaller than the absolute maximum.

The following table shows all kind of defaults as reported by status.getconstants().

Basic TEX enhancements40

awful_bad 1073741823

decent_criterium 12

default_catcode_table -1

default_deadcycles 25

default_eqno_gap_step 1000

default_hangafter 1

default_output_box 255

default_pre_display_gap 2000

default_rule 26214

default_space_factor 1000

default_tolerance 10000

deplorable 100000

eject_penalty -10000

ignore_depth -65536000

infinite_bad 10000

infinite_penalty 10000

infinity 2147483647

large_width_excess 7230584

loose_criterium 99

max_bytecode_index 65535

max_cardinal 4294967295

max_category_code 15

max_char_code 15

max_character_code 1114111

max_data_value 2097151

max_dimen 1073741823

max_function_reference 2097151

max_half_value 32767

max_halfword 1073741823

max_integer 2147483647

max_mark_index 9999

max_math_class_code 7

max_math_family_index 255

max_n_of_bytecodes 65536

max_n_of_catcode_tables 256

max_n_of_fonts 100000

max_n_of_languages 10000

max_n_of_marks 10000

max_n_of_math_families 256

max_n_of_registers 65536

max_newline_character 127

max_quarterword 65535

max_register_index 65535

max_size_of_word 1024

max_space_factor 32767

min_cardinal 0

41Basic TEX enhancements

min_data_value 0

min_dimen -1073741823

min_halfword -1073741823

min_infinity -2147483647

min_integer -2147483647

min_quarterword 0

min_space_factor 0

no_catcode_table -2

null 0

null_flag -1073741824

null_font 0

one_bp 65781

preset_rule_thickness 1073741824

small_stretchability 1663497

tex_eqtb_size 590036

tex_hash_prime 131041

tex_hash_size 131072

two 131072

unity 65536

unused_attribute_value -2147483647

unused_script_value 0

unused_state_value 0

zero_glue 0

Because we have additional ways to store integers, dimensions and glue, we might actually

decide to decrease the maximum of the registers: if 64K is not enough, and you work around it,

then likely 32K might do as well. Also, we have Lua to store massive amounts of data. One can

argue that saving some 1.5MB memory (when we go halfway) is not worth the effort in a time

when you have to close a browser in order to free the gigabytes it consumes, but there is no

reason not to be lean and mean: a more conservative approach to start with creates headroom

for going wild later.

5.3 Attributes

5.3.1 Nodes

When TEX reads input it will interpret the stream according to the properties of the characters.

Some signal a macro name and trigger expansion, others open and close groups, trigger math

mode, etc. What's left over becomes the typeset text. Internally we get a linked list of nodes.

Characters become glyph nodes that have for instance a font and char property and \kern

10pt becomes a kern node with a width property. Spaces are alien to TEX as they are turned

into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)

and glue nodes (spaces). A node can have a subtype so that it can be recognized as for instance

a space related glue.

The sequences of characters at some point are extended with disc nodes that relate to hy

Basic TEX enhancements42

phenation. After that font logic can be applied and we get a list where some characters can

be replaced, for instance multiple characters can become one ligature, and font kerns can be

injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes with width, height, depth and shift

properties and a pointer list to its actual content. Boxes can be constructed explicitly or can

be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines

are a linked list of hlist nodes, possibly with glue and penalties in between.

Internally nodes have a number. This number is actually an index in the memory used to store

nodes.

So, to summarize: all that you enter as content eventually becomes a node, often as part of a

(nested) list structure. They have a relative small memory footprint and carry only the minimal

amount of information needed. In traditional TEX a character node only held the font and slot

number, in LuaTEX we also store some language related information, the expansion factor, etc.

Now that we have access to these nodes from Lua it makes sense to be able to carry more

information with a node and this is where attributes kick in.

It is important to keep in mind that there are situations where nodes get created in the current

context. For instance, when TEX builds a paragraph or page or constructs math formulas, it does

add nodes and giving these the current attributes makes no sense and can even give weird side

effects. In these cases, the attributes are inherited from neighbouring nodes.

5.3.2 Attribute registers

Attributes are a completely new concept in LuaTEX. Syntactically, they behave a lot like counters:

attributes obey TEX's nesting stack and can be used after \the etc. just like the normal \count

registers.

\attribute ⟨16-bit number⟩ ⟨optional equals⟩ ⟨32-bit number⟩
\attributedef ⟨csname⟩ ⟨optional equals⟩ ⟨16-bit number⟩

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value

to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,

a.k.a. −2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in

this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact

that the numbers and values of all ‘set’ attributes are attached to all nodes created in their

scope. These can then be queried from any Lua code that deals with node processing. Further

information about how to use attributes for node list processing from Lua is given in chapter 9.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits

efficient testing and updating. You can define many thousands of attributes but normally such a

large number makes no sense and is also not that efficient because each node carries a (possibly

shared) link to a list of currently set attributes. But they are a convenient extension and one of

the first extensions we implemented in LuaTEX.

In LuaMetaTEX we try to minimize the memory footprint and creation of these attribute lists

more aggressive sharing them. This feature is still somewhat experimental.

43Basic TEX enhancements

5.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment

can be quite asynchronous. For example: in paragraph building, the individual line boxes are

created after the \par command has been processed, so they will receive the list of attributes

that is in effect then, not the attributes that were in effect in, say, the first or third line of the

paragraph.

Similar situations happen in LuaTEX regularly. A few of the more obvious problematic cases are

dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur

ing borrow their attributes from their surrounding glyphs, and it is possible to influence box

attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are

unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

same as characters that have been converted to references to glyphs in fonts. For instance,

when you use attributes to implement color support, each node carries information about its

eventual color. In that case, unless you implement mechanisms that deal with it, applying a color

to already boxed material will have no effect. Keep in mind that this incompatibility is mostly

due to the fact that separate specials and literals are a more unnatural approach to colors than

attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the

use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also

specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the

nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative

value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do

for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [a]))

tex.sprint("\\quad\\quad")

tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))

tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist

nodes that have a field list that points to the content. Because the attributes are a list them

selves you can access them by indexing the node (here we do that with [a]). Running this snippet

gives:

Basic TEX enhancements44

box 0 : attr 997 : 123 list 0 : attr 997 : 123

box 0 : attr 998 : 456 list 0 : attr 998 : 456

box 0 : attr 999 : nil list 0 : attr 999 : nil

box 2 : attr 997 : 123 list 2 : attr 997 : 123

box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the

word nil.

A special kind of box is \vcenter. This one also can have attributes. When one or more are

set these plus the currently set attributes are bound to the resulting box. In regular TEX these

centered boxes are only permitted in math mode, but in LuaMetaTEX there is no error message

and the box the height and depth are equally divided. Of course in text mode there is no math

axis related offset applied.

It is possible to change or add to the attributes assigned to a box with \boxattribute:

\boxattribute 0 123 456

You can set attributes of the current paragraph specification node with \parattribute:

\parattribute 123 456

5.4 Lua related primitives

5.4.1 \directlua

In order to merge Lua code with TEX input, a few new primitives are needed. The primitive

\directlua is used to execute Lua code immediately. The syntax is

\directlua ⟨general text⟩

The ⟨general text⟩ is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the ⟨general text⟩, the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a

separate chunk. In such a chunk you can use the local directive to keep your variables from

interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments

(starting with --) within the argument. As there typically will be only one ‘line’ the first line com

ment will run on until the end of the input. You will either need to use TEX-style line comments

(starting with %), or change the TEX category codes locally. Another possibility is to say:

\begingroup

\endlinechar=10

\directlua ...

\endgroup

45Basic TEX enhancements

Then Lua line comments can be used, since TEX does not replace line endings with spaces. Of

course such an approach depends on the macro package that you use.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its

expansion from the TEX viewpoint is usually empty. However, there are some Lua functions that

produce material to be read by TEX, the so called print functions. The most simple use of these

is tex.print(<string> s). The characters of the string s will be placed on the TEX input buffer,

that is, ‘before TEX's eyes’ to be read by TEX immediately. For example:

\count10=20

a\directlua{tex.print(tex.count[10]+5)}b

expands to

a25b

Here is another example:

$\pi = \directlua{tex.print(math.pi)}$

will result in

𝜋 = 3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all

TEX commands. So formally speaking its expansion is null, but it collects material in a new level

on the input stack to be immediately read by TEX after the Lua call as finished. It is a bit like

𝜀-TEX's \scantokens, which now uses the same mechanism. For a description of print functions

look at section 11.3.13.

Because the ⟨general text⟩ is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the con

textual information is often suboptimal because it can come from deep down, and TEX has no

knowledge about what you do in Lua. Often, you will only see the line number of the right brace

at the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up

LuaMetaTEX pretty bad. If you are not careful while working with the node list interface, you

may even end up with errors or even crashes from within the TEX portion of the executable.

5.4.2 \luaescapestring

This primitive converts a TEX token sequence so that it can be safely used as the contents of a

Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns

are escaped. This is done by prepending an extra token consisting of a backslash with category

code 12, and for the line endings, converting them to n and r respectively. The token sequence

is fully expanded.

\luaescapestring ⟨general text⟩

Most often, this command is not actually the best way to deal with the differences between TEX

and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua

code it is easier to keep the code in a separate file and load it using Lua's dofile:

Basic TEX enhancements46

\directlua { dofile("mysetups.lua") }

5.4.3 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optional

name or number specification). The tokenlist is then converted into a string and given to Lua to

turn into a function that is called. The overhead is rather small but when you have millions of

calls it can have some impact. For this reason there is a variant call available: \luafunction.

This command is used as follows:

\directlua {

local t = lua.get_functions_table()

t[1] = function() tex.print("!") end

t[2] = function() tex.print("?") end

}

\luafunction1

\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of

functions apart from normal Lua limitations. Of course there is the limitation of no arguments

but that would involve parsing and thereby give no gain. The function, when called in fact gets

one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get_functions_table()

t[8] = function(slot) tex.print(slot) end

}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.

In addition LuaTEX provides a definer:

\luadef\MyFunctionA 1

\global\luadef\MyFunctionB 2

\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens and

assume that the function is available when that token expands. On the other hand, as we have

tested this functionality in relative complex situations normal usage should not give problems.

It makes sense to delegate the implementation of the primitives to Lua.

5.4.4 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code callers.

Again the call variant is unexpandable.

\directlua {

47Basic TEX enhancements

lua.bytecode[9998] = function(s)

tex.sprint(s*token.scan_int())

end

lua.bytecode[5555] = function(s)

tex.sprint(s*token.scan_dimen())

end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp

\luabytecodecall9998 5 \luabytecodecall5555 5sp

The variable s in the code is the number of the byte code register that can be used for diagnostic

purposes. The advantage of bytecode registers over function calls is that they are stored in the

format (but without upvalues).

It makes sense to delegate the implementation of the primitives to Lua.

5.5 Catcode tables

5.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regime in a

single statement. You can have lots of different tables, but if you need a dozen you might wonder

what you're doing. This subsystem is backward compatible: if you never use the following

commands, your document will not notice any difference in behaviour compared to traditional

TEX. The contents of each catcode table is independent from any other catcode table, and its

contents is stored and retrieved from the format file.

5.5.2 \catcodetable

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ

ously created using one of the two primitives below, or it has to be zero. Table zero is initialized

by iniTEX.

\catcodetable ⟨15-bit number⟩

5.5.3 \initcatcodetable

\initcatcodetable ⟨15-bit number⟩

The primitive \initcatcodetable creates a new table with catcodes identical to those defined

by iniTEX. The new catcode table is allocated globally: it will not go away after the current group

has ended. If the supplied number is identical to the currently active table, an error is raised.

The initial values are:

Basic TEX enhancements48

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 ^^M return car_ret

9 ^^@ null ignore

10 <space> space spacer

11 a – z letter

11 A – Z letter

12 everything else other

14 % comment

15 ^^? delete invalid_char

5.5.4 \savecatcodetable

\savecatcodetable ⟨15-bit number⟩
\savecatcodetable copies the current set of catcodes to a new table with the requested number.

The definitions in this new table are all treated as if they weremade in the outermost level. Again,

the new table is allocated globally: it will not go away after the current group has ended. If the

supplied number is the currently active table, an error is raised.

5.6 Tokens, commands and strings

5.6.1 \scantextokens and \tokenized

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted

version of 𝜀-TEX's \scantokens. The differences are:

‣ The last (and usually only) line does not have a \endlinechar appended.

‣ \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

‣ There are no ‘. . . while end of file . . .’ error tests executed. This allows the expansion to end

on a different grouping level or while a conditional is still incomplete.

The implementation in LuaMetaTEX is different in the sense that it uses the same methods as

printing from Lua to TEX does. Therefore, in addition to the two commands we also have this

expandable command:

\tokenized ... \tokenized catcodetable ⟨number⟩ ...

The 𝜀-TEX command \tracingscantokens has been dropped in the process as that was interwo
ven with the old code.

5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\xtoksapp, \xtokspre

Instead of:

\toks0\expandafter{\the\toks0 foo}

49Basic TEX enhancements

you can use:

\etoksapp0{foo}

The pre variants prepend instead of append, and the e variants expand the passed general text.

The g and x variants are global.

5.6.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading

escape character. This can be somewhat more efficient than stripping it afterwards.

The \begincsname primitive is like \csname but doesn't create a relaxed equivalent when there

is no such name. It is equivalent to

\ifcsname foo\endcsname

\csname foo\endcsname

\fi

The advantage is that it saves a lookup (don't expect much speedup) but more important is that

it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above

example could be written as:

\ifcsname foo\endcsname

\lastnamedcs

\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTEX this also

involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can

make code a bit more readable.

5.6.4 \clearmarks

This primitive complements the 𝜀-TEX mark primitives and clears a mark class completely, reset
ting all three connected mark texts to empty. It is an immediate command (no synchronization

node is used).

\clearmarks ⟨16-bit number⟩

5.6.5 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while

\aligntab duplicates the functionality of &.

5.6.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

Basic TEX enhancements50

\def\foo{bar} \letcharcode123=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase that

it treats active characters special).

5.6.7 \lettonothing and \glettonothing

This primitive is equivalent to:

\protected\def\lettonothing#1{\def#1{}}

and although it might feel faster (only measurable with millions of calls) it's mostly there because

it is easier on tracing (less clutter). An advantage over letting to an empty predefined macro is

also that in tracing we keep seeing the name (relaxing would show the relax equivalent).

5.6.8 \glet

This primitive is similar to:

\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all we

also have \gdef).

5.6.9 \defcsname, \edefcsname, \edefcsname and \xdefcsname

Although we can implement these primitives easily using macros it makes sense, given the pop

ularity of \csname to have these as primitives. It also saves some \expandafter usage and it

looks a bit better in the source.

\def\gdefcsname foo\endcsname{oof}

5.6.10 \expanded

The \expanded primitive takes a token list and expands its content which can come in handy:

it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happens

inside the body of an \edef. The \immediateassignment and \immediateassigned commands

are gone because we have the more powerful local control commands. They are a tad slower

but this mechanism isn't used that much anyway. Inside an \edef you can use the \immediate

prefix anyway, so if you really want these primitives back you can say:

\let\immediateassignment\immediate

\let\immediateassigned \localcontrolled

51Basic TEX enhancements

5.6.11 \ignorepars

This primitive is like \ignorespaces but also skips paragraph ending commands (normally \par

and empty lines).

5.6.12 \futureexpand, \futureexpandis, \futureexpandisap

These commands are used as:

\futureexpand\sometoken\whenfound\whennotfound

When there is no match and a space was gobbled a space will be put back. The is variant

doesn't do that while the isap even skips \pars, These characters stand for ‘ignorespaces’ and

‘ignorespacesandpars’.

5.6.13 \aftergrouped

There is a new experimental feature that can inject multiple tokens to after the group ends. An

example demonstrate its use:

{

\aftergroup A \aftergroup B \aftergroup C

test 1 : }

{

\aftergrouped{What comes next 1}

\aftergrouped{What comes next 2}

\aftergrouped{What comes next 3}

test 2 : }

{

\aftergroup A \aftergrouped{What comes next 1}

\aftergroup B \aftergrouped{What comes next 2}

\aftergroup C \aftergrouped{What comes next 3}

test 3 : }

{

\aftergrouped{What comes next 1} \aftergroup A

\aftergrouped{What comes next 2} \aftergroup B

\aftergrouped{What comes next 3} \aftergroup C

test 4 : }

This gives:

test 1 : ABC

test 2 : What comes next 1What comes next 2What comes next 3

test 3 : AWhat comes next 1BWhat comes next 2CWhat comes next 3

Basic TEX enhancements52

test 4 : What comes next 1AWhat comes next 2BWhat comes next 3C

5.7 Conditions

5.7.1 \ifabsnum and \ifabsdim

There are two tests that we took from pdfTEX:

\ifabsnum -10 = 10

the same number

\fi

\ifabsdim -10pt = 10pt

the same dimension

\fi

This gives

the same number the same dimension

5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and

\ifchkdim

New are the ones that compare two numbers or dimensions:

\ifcmpnum 5 8 less \or equal \else more \fi

\ifcmpnum 5 5 less \or equal \else more \fi

\ifcmpnum 8 5 less \or equal \else more \fi

less equal more

and

\ifcmpdim 5pt 8pt less \or equal \else more \fi

\ifcmpdim 5pt 5pt less \or equal \else more \fi

\ifcmpdim 8pt 5pt less \or equal \else more \fi

less equal more

There are also some number and dimension tests. All four expose the \else branch when there

is an error, but two also report if the number is less, equal or more than zero.

\ifnumval -123 \or < \or = \or > \or ! \else ? \fi

\ifnumval 0 \or < \or = \or > \or ! \else ? \fi

\ifnumval 123 \or < \or = \or > \or ! \else ? \fi

\ifnumval abc \or < \or = \or > \or ! \else ? \fi

\ifdimval -123pt \or < \or = \or > \or ! \else ? \fi

53Basic TEX enhancements

\ifdimval 0pt \or < \or = \or > \or ! \else ? \fi

\ifdimval 123pt \or < \or = \or > \or ! \else ? \fi

\ifdimval abcpt \or < \or = \or > \or ! \else ? \fi

< = > !

< = > !

\ifchknum -123 \or okay \else bad \fi

\ifchknum 0 \or okay \else bad \fi

\ifchknum 123 \or okay \else bad \fi

\ifchknum abc \or okay \else bad \fi

\ifchkdim -123pt \or okay \else bad \fi

\ifchkdim 0pt \or okay \else bad \fi

\ifchkdim 123pt \or okay \else bad \fi

\ifchkdim abcpt \or okay \else bad \fi

okay okay okay bad

okay okay okay bad

The last checked values are available in \lastchknum and \lastchkdim. These don't obey group

ing.

5.7.3 \ifmathstyle and \ifmathparameter

These two are variants on \ifcase where the first one operates with values in ranging from zero

(display style) to seven (cramped script script style) and the second one can have three values:

a parameter is zero, has a value or is unset. The \ifmathparameter primitive takes a proper

parameter name and a valid style identifier (a primitive identifier or number). The \ifmathstyle

primitive is equivalent to \ifcase \mathstyle.

5.7.4 \ifempty

This primitive tests for the following token (control sequence) having no content. Assuming that

\empty is indeed empty, the following two are equivalent:

\ifempty\whatever

\ifx\whatever\empty

There is no real performance gain here, it's more one of these extensions that lead to less clutter

in tracing.

5.7.5 \ifrelax

This primitive complements \ifdefined, \ifempty and \ifcsname so that we have all reasonable

tests directly available.

Basic TEX enhancements54

5.7.6 \ifboolean

This primitive tests for non-zero, so the next variants are similar

\ifcase <integer>.F.\else .T.\fi

\unless\ifcase <integer>.T.\else .F.\fi

\ifboolean<integer>.T.\else .F.\fi

5.7.7 \iftok and \ifcstok

Comparing tokens and macros can be done with \ifx. Two extra test are provided in

LuaMetaTEX:

\def\ABC{abc} \def\DEF{def} \def\PQR{abc} \newtoks\XYZ \XYZ {abc}

\iftok{abc}{def}\relax (same) \else [different] \fi

\iftok{abc}{abc}\relax [same] \else (different) \fi

\iftok\XYZ {abc}\relax [same] \else (different) \fi

\ifcstok\ABC \DEF\relax (same) \else [different] \fi

\ifcstok\ABC \PQR\relax [same] \else (different) \fi

\ifcstok{abc}\ABC\relax [same] \else (different) \fi

[different][same][same]

[different][same][same]

You can check if a macro is defined as protected with \ifprotected while frozen macros can

be tested with \iffrozen. A provisional \ifusercmd tests will check if a command is defined at

the user level (and this one might evolve).

5.7.8 \ifarguments, \ifparameters and \ifparameter

These are part of the extended macro argument parsing features. The \ifarguments condition

is like an \ifcasewhere the number is the picked up number of arguments. The number reflects

the last count, so successive macro expansions will adapt the value. The \ifparameters counts

till the first empty parameter and the \ifparameter (singular) takes a parameter reference (like

#2) and again is an \ifcase where zero means a bad reference, one a non-empty argument and

two an empty one. A typical usage is:

\def\foo#1#2%

{\ifparameter#1\or one\fi

\ifparameter#2\or two\fi}

No expansion of arguments takes place here but you can use a test like this:

\def\foo#1#2%

{\iftok{#1}{}\else one\fi

\iftok{#2}{}\else two\fi}

55Basic TEX enhancements

5.7.9 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balanced

in order to let TEX's fast branch skipping work well. This new primitive is basically a no--op

flagged as a condition so that the scanner can recognize it as an if-test. However, when a real

test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%

{\edef\tempa{#1}%

\edef\tempb{#2}

\ifx\tempa\tempb}

\ifcondition\something{a}{b}%

\ifcondition\something{a}{a}%

true 1

\else

false 1

\fi

\else

\ifcondition\something{a}{a}%

true 2

\else

false 2

\fi

\fi

If you are familiar with MetaPost, this is a bit like vardef where the macro has a return value.

Here the return value is a test.

Experiments with something \ifdef actually worked ok but were rejected because in the end it

gave no advantage so this generic one has to do. The \ifcondition test is basically is a no-op

except when branches are skipped. However, when a test is expected, the scanner gobbles it

and the next test result is used. Here is an other example:

\def\mytest#1%

{\ifabsdim#1>0pt\else

\expandafter \unless

\fi

\iftrue}

\ifcondition\mytest{10pt}\relax non-zero \else zero \fi

\ifcondition\mytest {0pt}\relax non-zero \else zero \fi

non-zero zero

The last expansion in a macro like \mytest has to be a condition and here we use \unless to

negate the result.

Basic TEX enhancements56

5.7.10 \orelse and \orunless

Sometimes you have successive tests that, when laid out in the source lead to deep trees. The

\ifcase test is an exception. Experiments with \ifcasex worked out fine but eventually were

rejected because we have many tests so it would add a lot. As LuaMetaTEX permitted more

experiments, eventually an alternative was cooked up, one that has some restrictions but is

relative lightweight. It goes like this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\else

more

\fi

The \orelse has to be followed by one of the if test commands, except \ifcondition, and there

can be an \unless in front of such a command. These restrictions make it possible to stay in

the current condition (read: at the same level). If you need something more complex, using

\orelse is probably unwise anyway. In case you wonder about performance, there is a little

more checking needed when skipping branches but that can be neglected. There is some gain

due to staying at the same level but that is only measurable when you runs tens of millions of

complex tests and in that case it is very likely to drown in the real action. It's a convenience

mechanism, in the sense that it can make your code look a bit easier to follow.

There is a nice side effect of this mechanism. When you define:

\def\quitcondition{\orelse\iffalse}

you can do this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\quitcondition

indeed

\else

more

\fi

Of course it is only useful at the right level, so you might end up with cases like

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\ifnum\count2=30

\expandafter\quitcondition

57Basic TEX enhancements

\fi

indeed

\else

more

\fi

The \orunless variant negates the next test, just like \unless. In some cases these commands

look at the next token to see if it is an if-test so a following negation will not work (read: making

that work would complicate the code and hurt efficiency too). Side note: interesting is that in

ConTEXt we hardly use this kind of negation.

5.7.11 \ifprotected, \frozen, \iffrozen and \ifusercmd

These checkers deal with control sequences. You can check if a command is a protected one,

that is, defined with the \protected prefix. A command is frozen when it has been defined with

the \frozen prefix. Beware: only macros can be frozen. A user command is a command that is

not part of the predefined set of commands. This is an experimental command.

5.8 Boxes, rules and leaders

5.8.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the

page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to

65535.

\outputbox = 12345

5.8.2 \hrule, \vrule, \nohrule and \novrule

Both rule drawing commands take an optional xoffset and yoffset parameter. The displace

ment is virtual and not taken into account when the dimensions are calculated. A rule is specified

in the usual way:

There is however a catch. The keyword scanners in LuaMetaTEX are implemented slightly differ

ent. When TEX scans a keyword it will (case insensitive) scan for a whole keyword. So, it scans

for height and when it doesn't find it it will scan for depth etc. When it does find a keyword

in this case it expects a dimension next. When that criterium is not met it will issue an error

message.

In order to avoid look ahead failures like that it is recommended to end the specification with

\relax. A glue specification is an other example where a \relax makes sense when look ahead

issues are expected and actually there in traditional scanning the order of keywords can also

matter. In any case, when no valid keyword is seen the characters scanned so far are pushed

back in the input.

Basic TEX enhancements58

The main reason for using an adapted scanner is that we always permit repetition (consistency)

and accept an arbitrary order. Because we have more keywords to process the scanner quits at

a partial failure. This prevents some push back and also gives an earlier warning. Interesting

is that some ConTEXt users ran into error messages due to a missing \relax and found out that

their style has a potential flaw with respect to look ahead. One can be lucky for years.

Back to rules, there are some extra keywords, two deal with an offset, and four provide margins.

The margins are a bit special because left and top are the same as are right and bottom. They

influence the edges and these depend on it being a horizontal or vertical rule.

Two new primitives were introduced: \nohrule and \novrule. These can be used to reserve

space. This is often more efficient than creating an empty box with fake dimensions. Of course

this assumes that the backend implements them being invisible but still taking space.

5.8.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative

for the to keyword you can use upto to get a split of the given size but result has the natural

dimensions then.

\vsplit 123 to 10cm % final box has the required height

\vsplit 123 upto 10cm % final box has its natural height

5.8.4 Images and reused box objects

In original TEX image support is dealt with via specials. It's not a native feature of the engine. All

that TEX cares about is dimensions, so in practice that meant: using a box with known dimensions

that wraps a special that instructs the backend to include an image. The wrapping is needed

because a special itself is a whatsit and as such has no dimensions.

In pdfTEX a special whatsit for images was introduced and that one has dimensions. As a con

sequence, in several places where the engine deals with the dimensions of nodes, it now has

to check the details of whatsits. By inheriting code from pdfTEX, the LuaTEX engine also had

that property. However, at some point this approach was abandoned and a more natural trick

was used: images (and box resources) became a special kind of rules, and as rules already have

dimensions, the code could be simplified.

When direction nodes and (formerly local) par nodes also became first class nodes, whatsits

again became just that: nodes representing whatever you want, but without dimensions, and

therefore they could again be ignored when dimensions mattered. And, because images were

disguised as rules, as mentioned, their dimensions automatically were taken into account. This

separation between front and backend cleaned up the code base already quite a bit.

In LuaMetaTEX we still have the image specific subtypes for rules, but the engine never looks at

subtypes of rules. That was up to the backend. This means that image support is not present in

LuaMetaTEX. When an image specification was parsed the special properties, like the filename,

or additional attributes, were stored in the backend and all that LuaTEX does is registering a

59Basic TEX enhancements

reference to an image's specification in the rule node. But, having no backend means nothing is

stored, which in turn would make the image inclusion primitives kind of weird.

Therefore you need to realize that contrary to LuaTEX, in LuaMetaTEX support for images and

box reuse is not built in! However, we can assume that an implementation uses rules in a similar

fashion as LuaTEX does. So, you can still consider images and box reuse to be core concepts.

Here we just mention the primitives that LuaTEX provides. They are not available in the engine

but can of course be implemented in Lua.

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later

\saveimageresource save the image as an object to be included later

\useboxresource include the saved box object here (by index)

\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object

\lastsavedimageresourceindex the index of the last saved image object

\lastsavedimageresourcepages the number of pages in the last saved image object

An implementation probably should accept the usual optional dimension parameters for

\use...resource in the same format as for rules. With images, these dimensions are then used

instead of the ones given to \useimageresource but the original dimensions are not overwrit

ten, so that a \useimageresource without dimensions still provides the image with dimensions

defined by \saveimageresource. These optional parameters are not implemented for \save

boxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex

\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

Examples or optional entries are attr and resources that accept a token list, and the type key.

When set to non-zero the /Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or

3 will write a /Matrix. But, as said: this is entirely up to the backend. Generic macro packages

(like tikz) can use these assumed primitives so one can best provide them. It is probably, for

historic reasons, the only more or less standardized image inclusion interface one can expect to

work in all macro packages.

5.8.5 \hpack, \vpack and \tpack

These three primitives are the equivalents of \hbox, \vbox and \vtop but they don't trigger the

packaging related callbacks. Of course one never know if content needs a treatment so using

them should be done with care. Apart from accepting more keywords (and therefore options)

the normal box behave the same as before. The \vcenter builder also works in text mode.

5.8.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal

\leaders in that they align nicely, except that the alignment is based on the largest enclosing

box instead of the smallest. The g stresses this global nature.

Basic TEX enhancements60

5.9 Languages

5.9.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of

the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive

accepts a number and stores the value with the language.

5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary command is used to inject a whatsit node but now injects a normal node with

type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig

ature builder still sees this as a cancel boundary directive but at the Lua end you can implement

different behaviour. The added benefit of passing this value is a side effect of the generalization.

The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and

have related primitives.

5.10 Control and debugging

5.10.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the

nodes as well as set attributes (these can be made verbose by a callback). We have only a generic

whatsit but again a callback can be used to provide detail. So, when a box is shown in ConTEXt

you will see quite a lot more than in other engines. Because nodes have more fields, more is

shown anyway, and for nodes that have sublists (like discretionaries) these are also shown. All

that could have been delegated to Lua but it felt wrong to not made that a core engine feature.

When bit 1 of \tracinglevels is set the current level is prepended to tracing lines in the log

and when bit 2 is set the input level is prepended. You can set both bits and get both numbers

prepended. In ConTEXt we default to the value 3, so you get prefixes like 3:4: followed by a

space.

When \tracingcommands is larger than 3 the mode switch will be not be prefixed to the {com

mand} but get its own [line].

When \tracinglevels variable is set to 3 the group and input level are shown, a value of 1 or

2 shows only one of them (in ConTEXt we default to 3).

When \tracinghyphenation is set to 1 duplicate patterns are reported (in ConTEXt we default

to that) and higher values will also show details about the Lua hyphenation (exception) feedback

loop discussed elsewhere.

61Basic TEX enhancements

When set to 1 the \tracingmath variable triggers the reporting of the mode (inline or display)

an mlist is processed.

Because in LuaTEX the saving and restoring of locally redefined macros and set variables is

optimized a bit in order to prevent redundant stack usage, there will be less tracing visible.

Also, because we have a more extensive macro argument parser, a fast path (and less storage

demands) for macros with no arguments, and flags that can be set for macros the way macros

are traced can be different in details (we therefore have for instance \meaningfull and \mean

ingless as variants of \meaning).

5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype

The 𝜀-TEX command \lastnodetype returns the node codes as used in the engine. You can query
the numbers at the Lua end if you need the actual values. The parameter \internalcodesmode

is no longer provided as compatibility switch because LuaTEX has more cq. some different nodes

and it makes no sense to be incompatible with the Lua end of the engine. The same is true for

\currentiftype, as we have more conditionals and also use a different order. The \lastn

odesubtype is a bonus and again reports the codes used internally. During development these

might occasionally change, but eventually they will be stable.

5.11 Files

5.11.1 File syntax

LuaMetaTEX will accept a braced argument as a file name:

\input {plain}

\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument. Keep in mind that as side effect of delegating io to Lua the \openin

primitive is nor provided by the engine and has to be implemented by the macro package. This

also means that the limit on the number of open files is not enforced by the engine.

The \tracingfonts primitive that has been inherited from pdfTEX has been adapted to support

variants in reporting the font. The reason for this extension is that a csname not always makes

sense. The zero case is the default.

VALUE REPORTED

0 \foo xyz

1 \foo (bar)

2 <bar> xyz

3 <bar @ ..pt> xyz

4 <id>

5 <id: bar>

6 <id: bar @ ..pt> xyz

Basic TEX enhancements62

5.11.2 Writing to file

Writing to a file in TEX has two forms: delayed and immediate. Delayed writing means that the

to be written text is anchored in the node list and flushed by the backend. As all io is delegated

to Lua, this also means that it has to deal with distinction. In LuaTEX the number of open files

was already bumped to 127, but in LuaMetaTEX it depends on the macro package. The special

meaning of channel 18 was already dropped in LuaTEX because we have os.execute.

5.12 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac

ing model have been enhanced (thereby introducing many new primitives) but also because

some more control has been added to existing functionality. Much of this relates to the different

approaches of traditional TEX fonts and OpenType math.

5.13 Fonts

Like math, we will cover fonts extensions in its own chapter. Here we stick to mentioning that

loading fonts is different in LuaMetaTEX. As in LuaTEX we have the extra primitives \fontid and

\setfontid, \noligs and \nokerns, and \nospaces. The other new primitives in LuaTEX have

been dropped.

5.14 Directions

5.14.1 Two directions

The directional model in LuaMetaTEX is a simplified version the the model used in LuaTEX. In

fact, not much is happening at all: we only register a change in direction.

5.14.2 How it works

The approach is that we try to make node lists balanced but also try to avoid some side effects.

What happens is quite intuitive if we forget about spaces (turned into glue) but even there what

happens makes sense if you look at it in detail. However that logic makes in-group switching

kind of useless when no properly nested grouping is used: switching from right to left several

times nested, results in spacing ending up after each other due to nested mirroring. Of course

a sane macro package will manage this for the user but here we are discussing the low level

injection of directional information.

This is what happens:

\textdirection 1 nur {\textdirection 0 run \textdirection 1 NUR} nur

This becomes stepwise:

63Basic TEX enhancements

injected: [push 1]nur {[push 0]run [push 1]NUR} nur

balanced: [push 1]nur {[push 0]run [pop 0][push 1]NUR[pop 1]} nur[pop 0]

result : run {RUNrun } run

And this:

\textdirection 1 nur {nur \textdirection 0 run \textdirection 1 NUR} nur

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur

balanced: [+TRT]nur {nur [+TLT]run [-TLT][+TRT]NUR[-TRT]} nur[-TRT]

result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:

\textdirection 1 nur {{\textdirection 0 run} {\textdirection 1 NUR}} nur

This becomes:

nurrunNURnur

Compare this to:

\textdirection 1 nur {{\textdirection 0 run }{\textdirection 1 NUR}} nur

Which renders as:

nurrunNURnur

So how do we deal with the next?

\def\ltr{\textdirection 0\relax}

\def\rtl{\textdirection 1\relax}

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir

node. But that way we loose the subtype information that for some applications can be handy to

be kept as-is. This is why we now have a variant of \textdirection which injects the balanced

node before the skip. Instead of the previous definition we can use:

\def\ltr{\linedirection 0\relax}

\def\rtl{\linedirection 1\relax}

and this time:

Basic TEX enhancements64

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be

handled in the input or macro package because there is no way we can predict the expected

behaviour. In fact, the \linedir is just a convenience extra which could also have been imple

mented using node list parsing.

5.14.3 Normalizing lines

The original TEX machinery was never meant to be opened up. As a consequence a constructed

line can have different layouts. There can be left- and/or right skips and hanging indentation

or parshape can result in a shift and adapted width. In LuaTEX glue got subtypes so we can

recognize the left-, right and parfill skips, but still there is no hundred percent certainty about

the shape.

In LuaMetaTEX lines can be normalized. This is optional because wewant to preserve the original

(for comparison) and is controlled by \normalizelinemode. That variable actually drives some

more. An earlier version provided a few more granular options (for instance: does a leftskip

comes before or after a left hanging indentation) but in the end that was dropped. Because this

normalization only is seen at the Lua end there is no need to go into much detail here.

At this moment a line has this pattern: left parfill, left hang, left skip, indentation, content, right

hang, right skip, right parfill. Of course the indentation and fill skips are not present in every

line.

Control over normalization happens via thementionedmode variable and here is what the engine

provides right now. We use a bitmap:

VALUE REPORTED

0x0001 normalize line as described above

0x0002 use a skip for parindent instead of a box

0x0004 swap hangindent in l2r mode

0x0008 swap parshape in l2r mode

0x0010 put breaks after dir in l2r mode

0x0020 remove margin kerns (pdfTEX left-over)

0x0040 if needed clip width and use correction kern

Setting the bit enables the related normalization. More features might be added in future re

leases.

5.14.4 Orientations

As mentioned, the difference with LuaTEX is that we only have numeric directions and that there

65Basic TEX enhancements

are only two: left-to-right (0) and right-to-left (1). The direction of a box is set with direction.

In addition to that boxes can now have an orientation keyword followed by optional xoffset

and/or yoffset keywords. The offsets don't have consequences for the dimensions. The alter

natives xmove and ymove on the contrary are reflected in the dimensions. Just play with them.

The offsets and moves only are accepted when there is also an orientation, so no time is wasted

on testing for these rarely used keywords. There are related primitives \box... that set these

properties.

As these are experimental it will not be explained here (yet). They are covered in the descriptions

of the development of LuaMetaTEX: articles and/or documents in the ConTEXt distribution. For

now it is enough to know that the orientation can be up, down, left or right (rotated) and that it

has some anchoring variants. Combined with the offsets this permits macro writers to provide

solutions for top-down and bottom-up writing directions, something that is rather macro package

specific and used for scripts that need manipulations anyway. The ‘old’ vertical directions were

never okay and therefore not used.

There are a couple of properties in boxes that you can set and query but that only really take

effect when the backend supports them. When usage on ConTEXt shows that is't okay, they

will become official, so we just mention them: \boxdirection, \boxattr, \boxorientation,

\boxxoffset, \boxyoffset, \boxxmove, \boxymove and \boxtotal.

This is still somewhat experimental and will be documented in more detail when I've used it

more in ConTEXt and the specification is frozen. This might take some time (and user input).

5.15 Keywords

Some primitives accept one or more keywords and LuaMetaTEX adds some more. In order to

deal with this efficiently the keyword scanner has been optimized, where even the context was

taken into account. As a result the scanner was quite a bit faster. This kind of optimization was

a graduate process the eventually ended up in what we have now. In traditional TEX (and also

LuaTEX) the order of keywords is sometimes mixed and sometimes prescribed. In most cases

only one occurrence is permitted. So, for instance, this is valid in LuaTEX:

\hbox attr 123 456 attr 123 456 spread 10cm { }

\hrule width 10cm depth 3mm

\hskip 3pt plus 2pt minus 1pt

The attr comes before the spread, rules can have multiple mixed dimension specifiers, and in

glue the optional minus part always comes last. The last two commands are famous for look

ahead side effects which is why macro packages will end them with something not keyword, like

\relax, when needed.

In LuaMetaTEX the following is okay. Watch the few more keywords in box and rule specifica

tions.

\hbox reverse to 10cm attr 123 456 orientation 4 xoffset 10pt spread 10cm { }

\hrule xoffset 10pt width 10cm depth 3mm

\hskip 3pt minus 1pt plus 2pt

Basic TEX enhancements66

Here the order is not prescribed and, as demonstrated with the box specifier, for instance di

mensions (specified by to or spread can be overloaded by later settings. In case you wonder if

that breaks compatibility: in some way it does but bad or sloppy keyword usage breaks a run

anyway. For instance minuscule results in minus with no dimension being seen. So, in the end

the user should not noticed it and when a user does, the macro package already had an issue

that had to be fixed.

5.16 Expressions and \numericscale

The *expr parsers now accept : as operator for integer division (the / operators does rounding.

This can be used for division compatible with \divide. I'm still wondering if adding a couple of

bit operators makes sense (for integers).

The \numericscale parser is kind of special (and might evolve). For now it converts a following

number in a scale value as often used in TEX, where 1000 means scaling by 1.0. The trick is

in the presence of a digit (or comma): 1.234 becomes 1234 but 1234 stays 1234 and from this

you can deduce that 12.34 becomes 123400. Internally TEX calculates with integers, but this

permits the macro package to provide an efficient mix.

5.17 Macro arguments

Again this is experimental and (used and) discussed in document that come with the ConTEXt

distribution. When defining a macro you can do this:

\def\foo(#1)#2{...}

Here the first argument between parentheses is mandate. But themagic prefix \tolerantmakes

that limitation go away:

\tolerant\def\foo(#1)#2{...}

A variant is this:

\tolerant\def\foo(#1)#*(#2){...}

Here we have two optional arguments, possibly be separated by spaces. There are more parsing

options:

+ keep the braces

- discard and don't count the argument

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

67Basic TEX enhancements

. ignore pars and spaces

, push back space when no match

: pick up scanning here

; quit scanning

For the moment we leave it to your fantasy what these options do. Most probably only make

sense when you write a bit more complex macros. Just try to imagine what this does:

\permanent\tolerant\global\protected\def\foo(#1)#*#;[#2]#:#3{...}

Of course complex combinations can be confusing because after all TEX is parsing for (multi-

token) delimiters and will happily gobble the whole file if you are not careful. You can quit

scanning if you want:

\mymacro 123\ignorearguments

which of course only makes sense when used in a nested call where an already picked up argu

ments is processed further. A not (yet) discussed feature of the parser is that it will happily skip

tokens that have the (probably seldom used) ignored characters property.

When you use tracing or see error messages arguments defined using for instance #= will have

their usual number in the macro body, so you need to keep track of the numbers.

All this is rather easy on the engine and although it might have a little impact on performance

this has been compensated by some more efficiency in the macro parser and engine in general

and of course you can gain back some by using these features.

5.18 Overload protection

There is an experimental overload protection mechanism that we will test for a while before

declaring it stable. The reason for that is that we need to adapt the ConTEXt code base in

order to test its usefulness. Protection is achieved via prefixes. Depending on the value of the

\overloadmode variable warnings or errors will be triggered. Examples of usage can be found

in some documents that come with ConTEXt, so here we just stick to the basics.

\mutable \def\foo{...}

\immutable\def\foo{...}

\permanent\def\foo{...}

\frozen \def\foo{...}

\aliased \def\foo{...}

A \mutablemacro can always be changed contrary to an \immutable one. For instance a macro

that acts as a variable is normally \mutable, while a constant can best be immutable. It makes

sense to define a public core macro as \permanent. Primives start out a \permanent ones but

with a primitive property instead.

\let\relaxone \relax 1: \meaningfull\relaxone

\aliased \let\relaxtwo \relax 2: \meaningfull\relaxtwo

\permanent\let\relaxthree\relax 3: \meaningfull\relaxthree

Basic TEX enhancements68

The \meaningfull primitive is like \meaning but report the properties too. The \meaningless

companion reports the body of a macro. Anyway, this typesets:

1: macro\relax

2: primitive macro\relax

3: permanent macro\relax

So, the \aliased prefix copies the properties. Keep in mind that a macro package can redefine

primitives, but \relax is an unlikely candidate.

There is an extra prefix \noaligned that flags a macro as being valid for \noalign compatible

usage (which means that the body must contain that one. The idea is that we then can do this:

\permanent\protected\noaligned\def\foo{\noalign{...}} % \foo is unexpandable

that is: we can have protected macros that don't trigger an error in the parser where there is

a look ahead for \noalign which is why normally protection doesn't work well. So: we have

macro flagged as permanent (overload protection), being protected (that is, not expandable by

default) and a valid equivalent of the noalign primitive. Of course we can also apply the \global

and \tolerant prefixes here. The complete repertoire of extra prefixes is:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant

mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted

enforced all is permitted (but only in zero mode or ini mode)

aliased the macro gets the same flags as the original

untraced the macro gets a different treatment in tracing

The not yet discussed \instance is just a flag with no special meaning which can be used as

classifier. The \frozen also protects against overload which brings amount of blockers to four.

To what extent the engine will complain when a property is changed in a way that violates the

flags depends on the parameter \overloadmode. When this parameter is set to zero no checking

takes place. More interesting are values larger than zero. If that is the case, when a control

sequence is flagged as mutable, it is always permitted to change. When it is set to immutable

one can never change it. The other flags determine the kind of checking done. Currently the

following overload values are used:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆

69Basic TEX enhancements

5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. A value of 255 will freeze this parameter. At

level five and above the \instance flag is also checked but no drastic action takes place. We use

this to signal to the user that a specific instance is redefined (of course the definition macros

can check for that too).

The \overloaded prefix can be used to overload a frozenmacro. The \enforced is more powerful

and forces an overload but that prefix is only effective in ini mode or when it's embedded in the

body of a macro or token list at ini time unless of course at runtime the mode is zero.

So far for a short explanation. More details can be found in the ConTEXt documentation where

we can discuss it in a more relevant perspective. It must be noted that this feature only makes

sense a controlled situation, that is: usermodules ormacros of unpredictable origin will probably

suffer from warnings and errors when de mode is set to non zero. In ConTEXt we're okay unless

of course users redefine instances but there a warning or error is kind of welcome.

There is an extra prefix \untraced that will suppress the meaning when tracing so that the

macro looks more like a primitive. It is still somewhat experimental so what gets displayed

might change.

5.19 Constants with \integerdef and \dimendef

It is rather common to store constant values in a register or character definition.

\newcount\MyConstantA \MyConstantA 123

\newdimen\MyConstantB \MyConstantB 123pt

\chardef \MyConstantC \MyConstantC 123

But in LuaMetaTEX we also can do this:

\integerdef\MyConstantC 456

\dimendef \MyConstantD 456pt

These two are stored as efficient as a register but don't occupy a register slot. They can be set

as above, need \the for serializations and are seen as valid number or dimension when needed.

Experiments with constant strings made the engine source more complex than I wanted so that

features was rejected. Of course we can use the prefixes mentioned in a previous section.

5.20 Serialization with \todimension, \toscaled and

\tointeger

These three serializers take a verbose or symbolic quantity:

\todimension 10pt \todimension \scratchdimen % with unit

\toscaled 10pt \toscaled \scratchdimen % without unit

\tointeger 10 \tointeger \scratchcounter

Basic TEX enhancements70

This is particularly handy in cases where you don't know what you deal with, for instance when

a value is stored in a macro. Using \the could fail there while:

\the\dimexpr10pt\relax

is often overkill and gives more noise in a trace.

5.21 Nodes

The 𝜀-TEX primitive \lastnodetype is not honest in reporting the internal numbers as it uses its
own values. But you can set \internalcodesmode to a non-zero value to get the real id's instead.

In addition there is \lastnodesubtype.

Another last one is \lastnamedcs which holds the last match but this one should be used with

care because one never knows if in the meantime something else ‘last’ has been seen.

71Fonts

6 Fonts

6.1 Introduction

Only traditional font support is built in, anything more needs to be implemented in Lua. This

conforms to the LuaTEX philosophy. When you pass a font to the frontend only the dimensions

matter, as these are used in typesetting, and optionally ligatures and kerns when you rely on the

built-in font handler. For math some extra data is needed, like information about extensibles and

next in size glyphs. You can of course put more information in your Lua tables because when

such a table is passed to TEX only that what is needed is filtered from it.

Because there is no built-in backend, virtual font information is not used. If you want to be

compatible you'd better make sure that your tables are okay, and in that case you can best

consult the LuaTEX manual. For instance, parameters like extend are backend related and the

standard LuaTEX backend sets the standard here.

6.2 Defining fonts

All TEX fonts are represented to Lua code as tables, and internally as C structures. All keys in

the table below are saved in the internal font structure if they are present in the table passed to

font.define. When the callback is set, which is needed for \font to work, its function gets the

name and size passed, and it has to return a valid font identifier (a positive number).

For the engine to work well, the following information has to be present at the font level:

KEY VALUE TYPE DESCRIPTION

name string metric (file) name

original string the name used in logging and feedback

designsize number expected size (default: 655360 == 10pt)

size number the required scaling (by default the same as designsize)

characters table the defined glyphs of this font

fonts table locally used fonts

parameters hash default: 7 parameters, all zero

stretch number the ‘stretch’

shrink number the ‘shrink’

step number the ‘step’

textcontrol bitset this controls various code paths in the text engine

hyphenchar number default: TEX's \hyphenchar

skewchar number default: TEX's \skewchar

nomath boolean this key allows a minor speedup for text fonts; if it is

present and true, then LuaTEX will not check the charac

ter entries for math-specific keys

oldmath boolean this key flags a font as representing an old school TEX

math font and disables the OpenType code path

Fonts72

mathcontrol bitset this controls various code paths in the math engine, like

enforcing the traditional code path

compactmath boolean experimental: use the smaller chain to locate a character

textscale number scale applied to math text

scriptscale number scale applied to math script

scriptscriptscale number scale applied to math script script

The parameters is a hash with mixed key types. There are seven possible string keys, as well as

a number of integer indices (these start from 8 up). The seven strings are actually used instead

of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

NAME REMAPPING

slant 1

space 2

space_stretch 3

space_shrink 4

x_height 5

quad 6

extra_space 7

The characters table is a Lua hash table where the keys are integers. When a character in the

input is turned into a glyph node, it gets a character code that normally refers to an entry in that

table. For proper paragraph building and math rendering the following fields can be present

in an entry in the characters table. You can of course add all kind of extra fields. The engine

only uses those that it needs for typesetting a paragraph or formula. The subtables that define

ligatures and kerns are also hashes with integer keys, and these indices should point to entries

in the main characters table.

Providing ligatures and kerns this way permits TEX to construct ligatures and add inter-character

kerning. However, normally you will use an OpenType font in combination with Lua code that

does this. In ConTEXt we have base mode that uses the engine, and node mode that uses Lua. A

monospaced font normally has no ligatures and kerns and is normally not processed at all.

KEY TYPE DESCRIPTION

width number width in sp (default 0)

height number height in sp (default 0)

depth number depth in sp (default 0)

italic number italic correction in sp (default 0)

top_accent number top accent alignment place in sp (default zero)

bot_accent number bottom accent alignment place, in sp (default zero)

left_protruding number left protruding factor (\lpcode)

right_protruding number right protruding factor (\rpcode)

expansion_factor number expansion factor (\efcode)

next number ‘next larger’ character index

extensible table constituent parts of an extensible recipe

vert_variants table constituent parts of a vertical variant set

73Fonts

horiz_variants table constituent parts of a horizontal variant set

kerns table kerning information

ligatures table ligaturing information

mathkern table math cut-in specifications

For example, here is the character ‘f’ (decimal 102) in the font cmr10 at 10pt. The numbers

that represent dimensions are in scaled points.

[102] = {

["width"] = 200250,

["height"] = 455111,

["depth"] = 0,

["italic"] = 50973,

["kerns"] = {

[63] = 50973,

[93] = 50973,

[39] = 50973,

[33] = 50973,

[41] = 50973

},

["ligatures"] = {

[102] = { ["char"] = 11, ["type"] = 0 },

[108] = { ["char"] = 13, ["type"] = 0 },

[105] = { ["char"] = 12, ["type"] = 0 }

}

}

Two very special string indexes can be used also: left_boundary is a virtual character whose

ligatures and kerns are used to handle word boundary processing. right_boundary is similar

but not actually used for anything (yet).

The values of top_accent, bot_accent and mathkern are used only for math accent and super

script placement, see page 99 in this manual for details. The values of left_protruding and

right_protruding are used only when \protrudechars is non-zero. Whether or not expan

sion_factor is used depends on the font's global expansion settings, as well as on the value of

\adjustspacing.

A math character can have a next field that points to a next larger shape. However, the presence

of extensible will overrule next, if that is also present. The extensible field in turn can be

overruled by vert_variants, the OpenType version. The extensible table is very simple:

KEY TYPE DESCRIPTION

top number top character index

mid number middle character index

bot number bottom character index

rep number repeatable character index

The horiz_variants and vert_variants are arrays of components. Each of those components

Fonts74

is itself a hash of up to five keys:

KEY TYPE EXPLANATION

glyph number The character index. Note that this is an encoding number, not a name.

extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the

natural size of the glyph for character component is used.

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either

a non-negative integer or the string value right_boundary), with the values of the kerning to

be applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as

either a non-negative integer or the string value right_boundary), with the values being yet

another small hash, with two fields:

KEY TYPE DESCRIPTION

type number the type of this ligature command, default 0

char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or

string value of one of the eight possible ligature types supported by TEX. When TEX inserts a

new ligature, it puts the new glyph in the middle of the left and right glyphs. The original left

and right glyphs can optionally be retained, and when at least one of them is kept, it is also

possible to move the new ‘insertion point’ forward one or two places. The glyph that ends up to

the right of the insertion point will become the next ‘left’.

TEXTUAL (KNUTH) NUMBER STRING RESULT

l + r =: n 0 =: |n

l + r =:| n 1 =:| |nr

l + r |=: n 2 |=: |ln

l + r |=:| n 3 |=:| |lnr

l + r =:|> n 5 =:|> n|r

l + r |=:> n 6 |=:> l|n

l + r |=:|> n 7 |=:|> l|nr

l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature

replaces both original glyphs. In this table the | indicates the final insertion point.

The mathcontrol bitset is mostly there for experimental purposes. Because there is inconsis

tency in the OpenType math fonts with respect to for instance glyph dimensions, it is possible

to force the traditional code path. We just mention the possible flags:

VALUE EFFECT

0x0001 over_rule

75Fonts

0x0002 under_rule

0x0004 radical_rule

0x0008 fraction_rule

0x0010 accent_skew_half

0x0020 accent_skew_apply

0x0040 accent_italic_kern

0x0080 delimiter_italic_kern

0x0100 ord_italic_kern

0x0200 char_italic_width

0x0400 char_italic_no_rebox

0x0800 boxed_no_italic_kern

0x1000 no_staircase_kern

0x2000 text_italic_kern

Compact math is an experimental feature. The smaller field in a character definition of a text

character can point to a script character that itself can point to a scriptscript one. When set the

textscale, scriptscale and scriptscriptscale is applied to those.

The textcontrol field is used to control some aspects of text processing. More options might

be added in the future.

VALUE EFFECT

0x0001 collapse_hyphens

In ConTEXt these are interfaced via pseudo features. The math control flags of a font can be

overloaded by \mathcontrolmode on the spot and the set controls of a font can be queried by

\fontmathcontrol. The text control flags in a font always win over the ones set by other para

meters, like \hyphenationmode. They can be queried with \fonttextcontrol.

6.3 Virtual fonts

Virtual fonts have been introduced to overcome limitations of good old TEX. They were mostly

used for providing a direct mapping from for instance accented characters onto a glyph. The

backend was responsible for turning a reference to a character slot into a real glyph, possibly

constructed from other glyphs. In our case there is no backend so there is also no need to pass

this information through TEX. But it can of course be part of the font information and because it

is a kind of standard, we describe it here.

A character is virtual when it has a commands array as part of the data. A virtual character can

itself point to virtual characters but be careful with nesting as you can create loops and overflow

the stack (which often indicates an error anyway).

At the font level there can be a an (indexed) fonts table. The values are one- or two-key hashes

themselves, each entry indicating one of the base fonts in a virtual font. In case your font is

referring to itself in for instance a virtual font, you can use the slot command with a zero font

reference, which indicates that the font itself is used. So, a table looks like this:

fonts = {

Fonts76

{ name = "ptmr8a", size = 655360 },

{ name = "psyr", size = 600000 },

{ id = 38 }

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second

is psyr loaded at a little over 9pt. The third one is a previously defined font that is known to

LuaTEX as font id 38. The array index numbers are used by the character command definitions

that are part of each character.

The commands array is a hash where each item is another small array, with the first entry repre

senting a command and the extra items being the parameters to that command. The frontend

is only interested in the dimensions, ligatures and kerns of a font, which is the reason why the

TEX engine didn't have to be extended when virtual fonts showed up: dealing with it is up to the

driver that comes after the backend. In pdfTEX and LuaTEX that driver is integrated so there

the backend also deals with virtual fonts. The first block in the next table is what the standard

mentions. The special command is indeed special because it is an extension container. The

mentioned engines only support pseudo standards where the content starts with pdf:. The last

block is LuaTEX specific and will not be found in native fonts. These entries can be used in virtual

fonts that are constructed in Lua.

But . . . in LuaMetaTEX there is no backend built in but we might assume that the one provided

deals with these entries. However, a provided backend can provide more and that is indeed

what happens in ConTEXt. There, because we no longer have compacting (of passed tables) and

unpacking (when embedding) of these tables going on we stay in the Lua domain. None of the

virtual specification is ever seen in the engine.

COMMAND ARGUMENTS TYPE DESCRIPTION

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,

and move right by the character's width

push 0 save current position

pop 0 pop position

rule 2 2 numbers output a rule ℎ𝑡 ∗𝑤𝑑, and move right.
down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

nop 0 do nothing

slot 2 2 numbers a shortcut for the combination of a font and char com

mand

node 1 node output this node (list), and move right by the width

of this list

pdf 2 2 strings output a pdf literal, the first string is one of ori

gin, page, text, font, direct or raw; if you have one

string only origin is assumed

77Fonts

lua 1 string, function execute a Lua script when the glyph is embedded; in

case of a function it gets the font id and character

code passed

image 1 image output an image (the argument can be either an <im

age> variable or an image_spec table)

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This prevents

the need for hackery with future id's.

The pdf option also accepts a mode keyword in which case the third argument sets the mode.

That option will change the mode in an efficient way (passing an empty string would result in

an extra empty lines in the pdf file. This option only makes sense for virtual fonts. The font

mode only makes sense in virtual fonts. Modes are somewhat fuzzy and partially inherited from

pdfTEX.

MODE DESCRIPTION

origin enter page mode and set the position

page enter page mode

text enter text mode

font enter font mode (kind of text mode, only in virtual fonts)

always finish the current string and force a transform if needed

raw finish the current string

You always need to check what pdf code is generated because there can be all kind of inter

ferences with optimization in the backend and fonts are complicated anyway. Here is a rather

elaborate glyph commands example using such keys:

...

commands = {

{ "push" }, -- remember where we are

{ "right", 5000 }, -- move right about 0.08pt

{ "font", 3 }, -- select the fonts[3] entry

{ "char", 97 }, -- place character 97 (ASCII 'a')

-- { "slot", 2, 97 }, -- an alternative for the previous two

{ "pop" }, -- go all the way back

{ "down", -200000 }, -- move upwards by about 3pt

{ "special", "pdf: 1 0 0 rg" } -- switch to red color

-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)

{ "rule", 500000, 20000 } -- draw a bar

{ "special", "pdf: 0 g" } -- back to black

-- { "pdf", "origin", "0 g" } -- back to black (alternative)

}

...

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual

font is essentially only a re-encoding, then you do usually not have created an explicit ‘font’

command in the array.

Fonts78

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.

For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will

always move by exactly the width that was given in the width key of the character hash. Any

movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When

you have to concatenate strings using the pdf command might be more efficient.

6.4 Additional TEX commands

6.4.1 Font syntax

LuaTEX will accept a braced argument as a font name:

\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

6.4.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. The currently used font id is 14. Here are some more:3

STYLE COMMAND FONT ID

normal \tf 14

bold \bf 18

italic \it 23

bold italic \bi 24

These numbers depend on the macro package used because each one has its own way of dealing

with fonts. They can also differ per run, as they can depend on the order of loading fonts. For

instance, when in ConTEXt virtual math Unicode fonts are used, we can easily get over a hundred

ids in use. Not all ids have to be bound to a real font, after all it's just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs

to be a valid one.

6.4.3 \glyphoptions

In LuaTEX the \noligs and \nokerns primitives suppress these features but in LuaMetaTEX these

primitives are gone. They are replace by a more generic control primitive \glyphoptions. This

3 Contrary to LuaTEX this is now a number so you need to use \number or \the. The same is true for some other numbers

and dimensions that for some reason ended up in the serializer that produced a sequence of tokens.

79Fonts

numerical parameter is a bitset with the following fields:

VALUE EFFECT

0x01 prevent left ligature

0x02 prevent right ligature

0x04 block left kern

0x08 block right kern

0x10 don't apply expansion

0x20 don't apply protrusion

0x40 apply xoffset to width

0x80 apply yoffset to height and depth

The effects speak for themselves. They provide detailed control over individual glyph, this be

cause the current value of this option is stored with glyphs.

6.4.4 \glyphxscale, \glyphyscale and \scaledfontdimen

The two scale parameters control the current scaling. They are traditional TEX integer para

meters that operate independent of each other. The scaling is reflected in the dimensions of

glyphs as well as in the related font dimensions, which means that units like ex and em work

as expected. If you query a font dimensions with \fontdimen you get the raw value but with

\scaledfontdimen you get the useable value.

6.4.5 \glyphxoffset, \glyphyoffset

These two parameters control the horizontal and vertical shift of glyphs with, when applied to a

stretch of them, the horizontal offset probably being the least useful.

6.4.6 \glyph

This command is a variation in \char that takes keywords:

KEYWORD EFFECT type

xoffset (virtual) horizontal shift dimension

yoffset (virtual) vertical shift dimension

xscale horizontal scaling integer

yscale vertical scaling integer

options glyph options bitset

font font identifier

id font integer

The values default to the currently set values. Here is a ConTEXt example:

\ruledhbox{

\ruledhbox{\glyph yoffset 1ex options 0 123}

\ruledhbox{\glyph xoffset .5em yoffset 1ex options "C0 125}

Fonts80

\ruledhbox{baseline\glyphyoffset 1ex \glyphxscale 800 \glyphyscale\glyphxs

cale raised}

}

Visualized:
{ }

baseline
raised

6.4.7 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space

character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a

zero skip. In figure 6.1 we see the results for four characters separated by a space.

x x x x xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 6.1 The \nospaces options.

6.4.8 \protrusionboundary

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.

When protrusion characters are identified some nodes are skipped:

‣ zero glue

‣ penalties

‣ empty discretionaries

‣ normal zero kerns

‣ rules with zero dimensions

‣ math nodes with a surround of zero

‣ dir nodes

‣ empty horizontal lists

‣ local par nodes

‣ inserts, marks and adjusts

‣ boundaries

‣ whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next

node being ignored. When the value is 1 or 3, the next node will be ignored in the test when

locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored

when locating a right boundary condition (the search goes from right to left). This permits

protrusion combined with for instance content moved into the margin:

\protrusionboundary1\llap{!\quad}«Who needs protrusion?»

81Fonts

6.5 The Lua font library

6.5.1 Introduction

The Lua font library is reduced to a few commands. Contrary to LuaTEX there is no loading of

tfm or vf files. The explanation of the following commands is in the LuaTEX manual.

FUNCTION DESCRIPTION

current returns the id of the currently active font

max returns the last assigned font identifier

setfont enables a font setfont (sets the current font id)

addcharacters adds characters to a font

define defined a font

id returns the id that relates to a command name

For practical reasons the management of font identifiers is still done by TEX but it can become

an experiment to delegate that to Lua as well.

6.5.2 Defining a font with define, addcharacters and setfont

Normally you will use a callback to define a font but there's also a Lua function that does the

job.

id = font.define(<table> f)

Within reasonable bounds you can extend a font after it has been defined. Because some prop

erties are best left unchanged this is limited to adding characters.

font.addcharacters(<number n>, <table> f)

The table passed can have the fields characterswhich is a (sub)table like the one used in define,

and for virtual fonts a fonts table can be added. The characters defined in the characters table

are added (when not yet present) or replace an existing entry. Keep in mind that replacing can

have side effects because a character already can have been used. Instead of posing restrictions

we expect the user to be careful. The setfont helper is a more drastic replacer and only works

when a font has not been used yet.

6.5.3 Font ids: id, max and current

<number> i = font.id(<string> csname)

This returns the font id associated with csname, or −1 if csname is not defined.

<number> i = font.max()

This is the largest used index so far. The currently active font id can be queried or set with:

Fonts82

<number> i = font.current()

font.current(<number> i)

6.5.4 Glyph data: \glyphdata, \glyphscript, \glyphstate

These primitives can be used to set an additional glyph properties. Of course it's very macro

package dependant what is done with that. It started with just the first one as experiment, simply

because we had some room left in the glyph data structure. It's basically an single attribute.

Then, when we got rid of the ligature pointer we could either drop it or use that extra field for

some more, and because ConTEXt already used the data field, that is what happened. The script

and state fields are shorts, that is, they run from zero to 0xFFFF where we assume that zero

means ‘unset’. Although they can be used for whatever purpose their use in ConTEXt is fixed.

83Languages, characters, fonts and glyphs

7 Languages, characters, fonts and

glyphs

7.1 Introduction

LuaTEX's internal handling of the characters and glyphs that eventually become typeset is quite

different from the way TEX82 handles those same objects. The easiest way to explain the differ

ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later

on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char node records when they are encoun

tered by the main control loop. TEX attaches and processes the font information while creating

those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im

plicit kerning. This packaging is needed because we may want to get the effective width of for

instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time)

the char node records into a string by replacing ligatures with their components and ignoring

the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated

result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.

Keep in mind that the paragraph may contain unboxed horizontal material, which then already

contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,

and therefore not really ‘characters’ in the linguistic sense. There is no language information in

side the char node records at all. Instead, language information is passed along using language

whatsit nodes inside the horizontal list.

In LuaTEX, the situation is quite different. The characters you type are always converted into

glyph node records with a special subtype to identify them as being intended as linguistic char

acters. LuaTEX stores the needed language information in those records, but does not do any

font-related processing at the time of node creation. It only stores the index of the current font

and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points

right into thewhole node list. Next, it processes all the font information in thewhole list (creating

ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the

records are ‘glyph nodes’ from now on.

7.2 Characters, glyphs and discretionaries

TEX82 (including pdfTEX) differentiates between char nodes and lig nodes. The former are

simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the

same memory as tokens did. The latter also contained a list of components, and a subtype

indicating whether this ligature was the result of a word boundary, and it was stored in the

same place as other nodes like boxes and kerns and glues. In LuaMetaTEX we no longer keep

the list of components with the glyph node.

Languages, characters, fonts and glyphs84

In LuaTEX, these two types are merged into one, somewhat larger structure called a glyph node.

Besides having the old character, font, and component fields there are a few more, like ‘attr’ that

we will see in section 9.2.12, these nodes also contain a subtype, that codes four main types and

two additional ghost types. For ligatures, multiple bits can be set at the same time (in case of a

single-glyph word).

‣ character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

‣ glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

‣ ligature, for constructed ligatures bit 1 is set.

The glyph nodes also contain language data, split into four items that were current when the

node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin

(8 bits), and \uchyph (1 bit).

Incidentally, LuaTEX allows 16383 separate languages, and words can be 256 characters long.

The language is stored with each character. You can set \firstvalidlanguage to for instance 1

and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This

value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from

TEX82: changes to \uchyph become effective immediately, not at the end of the current partial

paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,

so there is no longer a possible dependency on the surrounding language settings. In TEX82, a

mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan

guage unless there was a \setlanguage issued inside the box. In LuaTEX, all language variables

are already frozen.

In traditional TEX the process of hyphenation is driven by lccodes. In LuaTEX we made this de

pendency less strong. There are several strategies possible. When you do nothing, the currently

used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of lccodes will be

saved with the language. In that case changing a lccode afterwards has no effect. However,

you can adapt the set with:

\hjcode`a=`a

This change is global which makes sense if you keep in mind that the moment that hyphenation

happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy

phcodes was zero when the language got initialized you start out with nothing, otherwise you

already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the

following example we map a character (x) onto another one in the patterns and tell the engine

that œ counts as two characters. Because traditionally zero itself is reserved for inhibiting hy

phenation, a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

85Languages, characters, fonts and glyphs

foobar foo-bar

\hjcode `x=`o fxxbar fxx-bar

\lefthyphenmin 3 œdipus œdi-pus

\lefthyphenmin 4 œdipus œdipus

\hjcode `œ=2 œdipus œdi-pus

\hjcode `i=32 \hjcode `d=32 œdipus œdipus

Carrying all this information with each glyph would give too much overhead and also make the

process of setting up these codes more complex. A solution with hjcode sets was considered but

rejected because in practice the current approach is sufficient and it would not be compatible

anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph

codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance

discretionary injection. For this you can use the \wordboundary as a trigger. Here are a few

examples of usage:

discrete---discrete

dis

crete—

dis

crete

discrete\discretionary{}{}{---}discrete

discrete

discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis

crete

discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis

crete

dis

crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis

crete—

dis

crete

Languages, characters, fonts and glyphs86

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of

explicit hyphens since that normally indicates a -- or --- ligature in which case we can in a

worse case usage get bad node lists later on due to messed up ligature building as these dashes

are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing and

kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary

node. But by default also a hlist, vlist, rule, dir, whatsit, insert, and adjust node indicate

a start or end. You can omit the last set from the test by setting flags in \hyphenationmode:

VALUE BEHAVIOUR

not strict

64 strict start

128 strict end

192 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when the start bit is set

vlist when the start bit is set

rule when the start bit is set

dir when the start bit is set

whatsit when the start bit is set

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no – —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language

glue yes

penalty yes

kern yes when not italic (for some historic reason)

hlist when the end bit is set

vlist when the end bit is set

rule when the end bit is set

dir when the end bit is set

whatsit when the end bit is set

ins when the end bit is set

adjust when the end bit is set

Figures 7.1 upto 7.5 show some examples. In all cases we set the min values to 1 and make sure

87Languages, characters, fonts and glyphs

that the words hyphenate at each character.

o

n

e

o

n

e

o

n

e

o

n

e

0 64 128 192

Figure 7.1 one

o

n

et

w

o

o

n

et

w

o

onet

w

o

onet

w

o

0 64 128 192

Figure 7.2 one\null two

o

n

et

w

o

o

n

et

w

o

onet

w

o

onet

w

o

0 64 128 192

Figure 7.3 \null one\null two

o

n

et

w

o

o

n

et

w

o

onetwo onetwo

0 64 128 192

Figure 7.4 one\null two\null

o

n

et

w

o

o

n

et

w

o

onetwo onetwo

0 64 128 192

Figure 7.5 \null one\null two\null

In traditional TEX ligature building and hyphenation are interwoven with the line break mech

anism. In LuaTEX these phases are isolated. As a consequence we deal differently with (a se

quence of) explicit hyphens. We already have added some control over aspects of the hyphen

ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

Hyphenation and discretionary injection is driven by a mode parameter which is a bitset made

Languages, characters, fonts and glyphs88

from the following values, some of which we saw in the previous examples.

1 honour (normal) \discretionary's

2 turn - into (automatic) discretionaries

4 turn \- into (explicit) discretionaries

8 hyphenate (syllable) according to language

16 hyphenate uppercase characters too (replaces \uchyph

32 permit break at an explicit hyphen (border cases)

64 traditional TEX compatibility wrt the start of a word

128 traditional TEX compatibility wrt the end of a word

256 use \automatichyphenpenalty

512 use \explicithyphenpenalty

1024 turn glue in discretionaries into kerns

2048 okay, let's be even more tolerant in discretionaries

4096 and again we're more permissive

16384 controls how successive explicit discretionaries are handled in base mode

8192 treat all discretionaries equal when breaking lines (in all three passes)

32768 kick in the handler (experiment)

65536 feedback compound snippets

Some of these options are still experimental, simply because not all aspects and side effects have

been explored. You can find some experimental use cases in ConTEXt.

7.3 The main control loop

In LuaTEX's main loop, almost all input characters that are to be typeset are converted into glyph

node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the

actual accent and one for the accentee. The primary reason for this is that \accent in TEX82

is explicitly dependent on the current font encoding, so it would not make much sense to

attach a new meaning to the primitive's name, as that would invalidate many old documents

and macro packages. A secondary reason is that in TEX82, \accent prohibits hyphenation of

the current word. Since in LuaTEX hyphenation only takes place on ‘character’ nodes, it is

possible to achieve the same effect. Of course, modern Unicode aware macro packages will

not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a

character subtype. In traditional TEX there was a strong relationship between the 8-bit input

encoding, hyphenation and glyphs taken from a font. In LuaTEX we have utf input, and in

most cases this maps directly to a character in a font, apart from glyph replacement in the

font engine. If you want to access arbitrary glyphs in a font directly you can always use Lua

to do so, because fonts are available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.

In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalties,

boxes etc.

3. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after

89Languages, characters, fonts and glyphs

sensing an input character that matches the \hyphenchar in the current font. This test is

wrong in our opinion: whether or not hyphenation takes place should not depend on the

current font, it is a language property.4

In LuaTEX, it works like this: if LuaTEX senses a string of input characters that matches the

value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary

after that series of nodes. Initially TEX sets the \exhyphenchar=`\-. Incidentally, this is a

global parameter instead of a language-specific one because it may be useful to change the

value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same

time as the other hyphenation processing, not inside the main control loop.

The only use LuaTEX has for \hyphenchar is at the check whether a word should be consid

ered for hyphenation at all. If the \hyphenchar of the font attached to the first character node

in a word is negative, then hyphenation of that word is abandoned immediately. This behav

iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of

preventing hyphenation should not be used in new LuaTEX documents.

4. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is

changed so that it is now an integer parameter like all others. That integer parameter is used

in \glyph_node creation to add language information to the glyph nodes. In conjunction, the

\language primitive is extended so that it always also updates the value of \setlanguage.

5. The \noboundary command (that prohibits word boundary processing where that would nor

mally take place) now does create nodes. These nodes are needed because the exact place

of the \noboundary command in the input stream has to be retained until after the ligature

and font processing stages.

6. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of

processing while adding char_nodes to the horizontal list? For speed reasons, it handled

that processing code outside of the ‘main control’ loop, and only the first character of any

‘word’ was handled by that ‘main control’ loop. In LuaTEX, there is no longer a need for that

(all hard work is done later), and the (now very small) bits of character-handling code have

been moved back inline. When \tracingcommands is on, this is visible because the full word

is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have been

added:

\hyphenpenaltymode

\automatichyphenpenalty

\explicithyphenpenalty

The usage of these penalties is controlled by the \hyphenationmode flags 256 and 512 and when

these are not set \exhyphenpenalty is used.

You can use the \tracinghyphenation variable to get a bit more information about what hap

pens.

4 When TEX showed up we didn't have Unicode yet and being limited to eight bits meant that one sometimes had to

compromise between supporting character input, glyph rendering, hyphenation.

Languages, characters, fonts and glyphs90

VALUE EFFECT

1 report redundant pattern (happens by default in LuaTEX)

2 report words that reach the hyphenator and got treated

3 show the result of a hyphenated word (a node list)

7.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the

implementation of the hyphenation algorithm in LuaTEX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep

arated by spaces, no \char or \chardefd commands are allowed. The current implementation

is quite strict and will reject all non-Unicode characters. Likewise, the expanded argument for

\hyphenation also has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary,

with arguments as in \discretionary's command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal

document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,

but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the

internal command names. This string is then converted into a dictionary by a routine that creates

key-value pairs by converting the other listed items. It is important to note that the keys in an

exception dictionary can always be generated from the values. Here are a few examples:

VALUE IMPLIED KEY (INPUT) EFFECT

ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)

ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is

the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the

command is optional in the TEX-based input syntax. The underlying reason for that is that it is

conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTEX

using one of the functions in the Lua language library. This loading method is quite a bit faster

than going through the TEX language primitives, but some (most?) of that speed gain would be

lost if it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the

explicit hyphen character (replace - by the actual explicit hyphen character if needed). For

example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween

‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

91Languages, characters, fonts and glyphs

The motivation behind the 𝜀-TEX extension \savinghyphcodes was that hyphenation heavily de
pended on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is

basically ignored. Because we now have \hjcode, the case related codes can be used exclusively

for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try

to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the

pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text

(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax now

also can take a penalty specification. The value between square brackets is a multiplier for

\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xxa

bxa

bxa

bxx

123

123

xa

bxa

bxa

bxa

bxx

123

123 xxxxxx

xxxxxx xxa

bxxxx xxa

bxxxx 123

x{a-}{-b}{}x{a-}{-b}{}[3]x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xa

bxxxa

bxx

123

123

xa

bxxxa

bxx

123

123 xxxxa

bxx xxxxxx

xxxxxx xa

bxxxxx 123

z{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za

bza

bza

b

123

123

za

bza

bza

b

a

b23

123 zzzzzz

zzzzzz zzza

bzz zzzzzz

123

Languages, characters, fonts and glyphs92

z{a-}{-b}{z}{a-}{-b}{z}[3]{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za

bzzzz

123

123

za

bzzzz

a

b23

123 zzzzzz

zzzzzz za

bzzzz a

bzzzzz 123

7.5 Applying hyphenation

The internal structures LuaTEX uses for the insertion of discretionaries in words is very different

from the ones in TEX82, and that means there are some noticeable differences in handling as

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still

reads pattern files generated by Patgen, but LuaTEX uses a finite state hash to match the pat

terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OpenOffice, which in turn is inspired by TEX.

There are a few differences between LuaTEX and TEX82 that are a direct result of the implemen

tation:

‣ LuaTEX happily hyphenates the full Unicode character range.

‣ Pattern and exception dictionary size is limited by the available memory only, all allocations

are done dynamically. The trie-related settings in texmf.cnf are ignored.

‣ Because there is no ‘trie preparation’ stage, language patterns never become frozen. This

means that the primitive \patterns (and its Lua counterpart language.patterns) can be

used at any time, not only in iniTEX.

‣ Only the string representation of \patterns and \hyphenation is stored in the format file.

At format load time, they are simply re-evaluated. It follows that there is no real reason to

preload languages in the format file. In fact, it is usually not a good idea to do so. It is much

smarter to load patterns no sooner than the first time they are actually needed.

‣ LuaTEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the

creation of implicit discretionaries, instead of TEX82's \hyphenchar, and the values of the

language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre

tionaries (instead of TEX82's empty discretionary).

‣ The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen

penalty, are now stored in the discretionary nodes. This permits a local overload for explicit

\discretionary commands. The value current when the hyphenation pass is applied is used.

When no callbacks are used this is compatible with traditional TEX. When you apply the Lua

language.hyphenate function the current values are used.

‣ The hyphenation exception dictionary is maintained as key-value hash, and that is also dy

namic, so the hyph_size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended

to accept an optional penalty specification, so you can do the following:

93Languages, characters, fonts and glyphs

\hsize1mm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par

2:foo\discretionary penalty 10000 {}{}{}bar\par

3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar

2:foobar

3:foo

bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu

ally the preceding one, but the following one for the items inserted at the left-hand side of a

word).

Word boundaries are no longer implied by font switches, but by language switches. One word

can have two separate fonts and still be hyphenated correctly (but it can not have two different

languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar=`\-, \posthyphenchar=0, \preexhyphenchar=0

and \postexhyphenchar=0. When you assign the values of one of these four parameters, you

are actually changing the settings for the current \language, this behaviour is compatible with

\patterns and \hyphenation.

LuaTEX also hyphenates the first word in a paragraph. Words can be up to 256 characters long

(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitation

will be removed or perhaps it will become possible to silently ignore the excess characters (this

is what happens in TEX82, but there the behaviour cannot be controlled).

If you are using the Lua function language.hyphenate, you should be aware that this function

expects to receive a list of ‘character’ nodes. It will not operate properly in the presence of

‘glyph’, ‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

7.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list

to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two

stages: first all ligatures are processed, then all kerning information is applied to the result list.

But those two stages are somewhat dependent on each other: If the used font makes it possible

to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.

While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those

word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,

at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This separation is worth mentioning because, if you overrule from Lua only one of the two call

backs related to font handling, then you have to make sure you perform the tasks normally

done by LuaTEX itself in order to make sure that the other, non-overruled, routine continues to

function properly.

Languages, characters, fonts and glyphs94

Although we could improve the situation the reality is that in modern OpenType fonts ligatures

can be constructed in many ways: by replacing a sequence of characters by one glyph, or by

selectively replacing individual glyphs, or by kerning, or any combination of this. Add to that

contextual analysis and it will be clear that we have to let Lua do that job instead. The generic

font handler that we provide (which is part of ConTEXt) distinguishes between base mode (which

essentially is what we describe here and which delegates the task to TEX) and node mode (which

deals with more complex fonts.

In so called base mode, where TEX does the work, the ligature construction (normally) goes

in small steps. An f followed by an f becomes an ff ligatures and that one followed by an i

can become a ffi ligature. The situation can be complicated by hyphenation points between

these characters. When there are several in a ligature collapsing happens. Flag "4000 in the

\hyphenationmode variable determines if this happens lazy or greedy, i.e. the first hyphen wins

or the last one does. In practice a ConTEXt user won't have to deal with this because most fonts

are processed in node mode.

7.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to

discretionaries and ligatures, line breaking will potentially be different from traditional TEX.

The actual line breaking code is still based on the TEX82 algorithms, and there can be no dis

cretionaries inside of discretionaries. But, as patterns evolve and font handling can influence

discretionaries, you need to be aware of the fact that long term consistency is not an engine

matter only.

But that situation is now fairly common in LuaTEX, due to the changes to the ligaturing mech

anism. And also, the LuaTEX discretionary nodes are implemented slightly different from the

TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these

nodes kept their place in the horizontal list. In traditional TEX the discretionary node contains

a counter indicating how many nodes to skip, but in LuaTEX we store the pre, post and replace

text in the discretionary node.

The combined effect of these two differences is that LuaTEX does not always use all of the poten

tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course

kerning also complicates matters here.

7.8 The language library

7.8.1 new and id

This library provides the interface to LuaTEX's structure representing a language, and the asso

ciated functions.

<language> l = language.new()

<language> l = language.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument

95Languages, characters, fonts and glyphs

to most of the other functions in the language library. These functions can also be used as if they

were object methods, using the colon syntax. Without an argument, the next available internal

id number will be assigned to this object. With argument, an object will be created that links to

the internal language with that id number.

<number> n = language.id(<language> l)

The number returned is the internal \language id number this object refers to.

7.8.2 hyphenation

You can load exceptions with:

<string> n = language.hyphenation(<language> l)

language.hyphenation(<language> l, <string> n)

When no string is given (the first example) a string with all exceptions is returned.

7.8.3 clearhyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones. The

syntax of the string is explained in section 7.4.

language.clearhyphenation(<language> l)

This call clears the exception dictionary (string) for this language.

<string> n = language.clean(<language> l, <string> o)

<string> n = language.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the

argument string is explained in section 7.4. This function is useful if you want to do something

else based on the words in a dictionary file, like spell-checking.

7.8.4 patterns and clearpatterns

<string> n = language.patterns(<language> l)

language.patterns(<language> l, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntax of

this string is explained in section 7.4.

language.clearpatterns(<language> l)

This can be used to clear the pattern dictionary for a language.

Languages, characters, fonts and glyphs96

7.8.5 hyphenationmin

This function sets (or gets) the value of the TEX parameter \hyphenationmin.

n = language.hyphenationmin(<language> l)

language.hyphenationmin(<language> l, <number> n)

7.8.6 [pre|post][ex|]hyphenchar

<number> n = language.prehyphenchar(<language> l)

language.prehyphenchar(<language> l, <number> n)

<number> n = language.posthyphenchar(<language> l)

language.posthyphenchar(<language> l, <number> n)

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit

hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal 0 (indicat

ing emptiness).

<number> n = language.preexhyphenchar(<language> l)

language.preexhyphenchar(<language> l, <number> n)

<number> n = language.postexhyphenchar(<language> l)

language.postexhyphenchar(<language> l, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in

this language. Both are initially decimal 0 (indicating emptiness).

7.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as

argument, processing stops on that node. Currently, success is always true if head (and tail,

if specified) are proper nodes, regardless of possible other errors.

<boolean> success = language.hyphenate(<node> head)

<boolean> success = language.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node

subtype having the value 1. Glyph modes with different subtypes are not processed. See sec

tion 7.2 for more details.

7.8.8 [set|get]hjcode

The following two commands can be used to set or query hj codes:

language.sethjcode(<language> l, <number> char, <number> usedchar)

<number> usedchar = language.gethjcode(<language> l, <number> char)

97Languages, characters, fonts and glyphs

When you set a hjcode the current sets get initialized unless the set was already initialized due

to \savinghyphcodes being larger than zero.

Languages, characters, fonts and glyphs98

99Math

8 Math

8.1 Traditional alongside OpenType

At this point there is no difference between LuaMetaTEX and LuaTEX with respect to math. The

handling of mathematics in LuaTEX differs quite a bit from how TEX82 (and therefore pdfTEX)

handles math. First, LuaTEX adds primitives and extends some others so that Unicode input can

be used easily. Second, all of TEX82's internal special values (for example for operator spacing)

have been made accessible and changeable via control sequences. Third, there are extensions

that make it easier to use OpenType math fonts. And finally, there are some extensions that have

been proposed or considered in the past that are now added to the engine.

8.2 Unicode math characters

Character handling is now extended up to the full Unicode range (the \U prefix), which is com

patible with XƎTEX.

The math primitives from TEX are kept as they are, except for the ones that convert from input to

math commands: mathcode, and delcode. These two now allow for a 21-bit character argument

on the left hand side of the equals sign.

Some of the new LuaTEX primitives read more than one separate value. This is shown in the

tables below by a plus sign.

The input for such primitives would look like this:

\def\overbrace{\Umathaccent 0 1 "23DE }

The altered TEX82 primitives are:

PRIMITIVE MIN MAX MIN MAX

\mathcode 0 10FFFF = 0 8000

\delcode 0 10FFFF = 0 FFFFFF

The unaltered ones are:

PRIMITIVE MIN MAX

\mathchardef 0 8000

\mathchar 0 7FFF

\mathaccent 0 7FFF

\delimiter 0 7FFFFFF

\radical 0 7FFFFFF

For practical reasons \mathchardef will silently accept values larger that 0x8000 and interpret

it as \Umathcharnumdef. This is needed to satisfy older macro packages.

The following new primitives are compatible with XƎTEX:

Math100

PRIMITIVE MIN MAX MIN MAX

\Umathchardef 0+0+0 7+FF+10FFFF

\Umathcharnumdef5 -80000000 7FFFFFFF

\Umathcode 0 10FFFF = 0+0+0 7+FF+10FFFF

\Udelcode 0 10FFFF = 0+0 FF+10FFFF

\Umathchar 0+0+0 7+FF+10FFFF

\Umathaccent 0+0+0 7+FF+10FFFF

\Udelimiter 0+0+0 7+FF+10FFFF

\Uradical 0+0 FF+10FFFF

\Umathcharnum -80000000 7FFFFFFF

\Umathcodenum 0 10FFFF = -80000000 7FFFFFFF

\Udelcodenum 0 10FFFF = -80000000 7FFFFFFF

Specifications typically look like:

\Umathchardef\xx="1"0"456

\Umathcode 123="1"0"789

The new primitives that deal with delimiter-style objects do not set up a ‘large family’. Selecting

a suitable size for display purposes is expected to be dealt with by the font via the \Umathoper

atorsize parameter.

For some of these primitives, all information is packed into a single signed integer. For the first

two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code, the 3 bits

above that represent the math class, and the family data is kept in the topmost bits. This means

that the values for math families 128–255 are actually negative. For \Udelcodenum there is no

math class. Themath family information is stored in the bits directly on top of the character code.

Using these three commands is not as natural as using the two- and three-value commands, so

unless you know exactly what you are doing and absolutely require the speedup resulting from

the faster input scanning, it is better to use the verbose commands instead.

The \Umathaccent command accepts optional keywords to control various details regarding

math accents. See section 8.6.2 below for details.

There are more new primitives and all of these will be explained in following sections:

PRIMITIVE VALUE RANGE (IN HEX)

\Uroot 0 + 0–FF + 10FFFF

\Uoverdelimiter 0 + 0–FF + 10FFFF

\Uunderdelimiter 0 + 0–FF + 10FFFF

\Udelimiterover 0 + 0–FF + 10FFFF

\Udelimiterunder 0 + 0–FF + 10FFFF

101Math

8.3 Math styles

8.3.1 \mathstyle

It is possible to discover the math style that will be used for a formula in an expandable fashion

(while the math list is still being read). To make this possible, LuaTEX adds the new primitive:

\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,

not set. Beware that contrary to LuaTEX this is now a proper number so you need to use \number

o r\the in order to serialize it.

The returned value is between 0 and 7 (in math mode), or −1 (all other modes). For easy testing,
the eight math style commands have been altered so that they can be used as numeric values,

so you can write code like this:

\ifnum\mathstyle=\textstyle

\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle

\message{cramped text style}

\fi \fi

Sometimes you won't get what you expect so a bit of explanation might help to understand what

happens. When math is parsed and expanded it gets turned into a linked list. In a second pass

the formula will be build. This has to do with the fact that in order to determine the automatically

chosen sizes (in for instance fractions) following content can influence preceding sizes. A side

effect of this is for instance that one cannot change the definition of a font family (and thereby

reusing numbers) because the number that got used is stored and used in the second pass (so

changing \fam 12 mid-formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are

frozen. The \mathchoice primitive results in four lists being constructed of which one is used

in the second pass. The fact that some automatic styles are not yet known also means that the

\mathstyle primitive expands to the current style which can of course be different from the one

really used. It's a snapshot of the first pass state. As a consequence in the following example

you get a style number (first pass) typeset that can actually differ from the used style (second

pass). In the case of a math choice used ungrouped, the chosen style is used after the choice

too, unless you group.

[a:\number\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (x:d :\number\mathstyle)}

{\bf \scriptscriptstyle (x:t :\number\mathstyle)}

{\bf \scriptscriptstyle (x:s :\number\mathstyle)}

{\bf \scriptscriptstyle (x:ss:\number\mathstyle)}

\egroup

\quad[b:\number\mathstyle]\quad

\mathchoice

{\bf \scriptstyle (y:d :\number\mathstyle)}

Math102

{\bf \scriptscriptstyle (y:t :\number\mathstyle)}

{\bf \scriptscriptstyle (y:s :\number\mathstyle)}

{\bf \scriptscriptstyle (y:ss:\number\mathstyle)}

\quad[c:\number\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (z:d :\number\mathstyle)}

{\bf \scriptscriptstyle (z:t :\number\mathstyle)}

{\bf \scriptscriptstyle (z:s :\number\mathstyle)}

{\bf \scriptscriptstyle (z:ss:\number\mathstyle)}

\egroup

\quad[d:\number\mathstyle]

This gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏 : 0] (𝐲:𝐝:𝟒) [𝑐:0] (𝐳:𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏 : 2] (𝐲:𝐭:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

Using \begingroup . . . \endgroup instead gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏:0] (𝐲:𝐬:𝟔) [𝑐:0] (𝐳:𝐬𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏:2] (𝐲:𝐬𝐬:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

This might look wrong but it's just a side effect of \mathstyle expanding to the current (first

pass) style and the number being injected in the list that gets converted in the second pass. It all

makes sense and it illustrates the importance of grouping. In fact, the math choice style being

effective afterwards has advantages. It would be hard to get it otherwise.

8.3.2 \Ustack

There are a few math commands in TEX where the style that will be used is not known straight

from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would

therefore normally return wrong values for \mathstyle. To fix this, LuaTEX introduces a special

prefix command: \Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct

(numerator) math style.

8.3.3 The new \cramped ...style commands

LuaTEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle

\crampedtextstyle

103Math

\crampedscriptstyle

\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as

arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TEX by Topic” the rules for handling styles in scripts are described as follows:

‣ In any style superscripts and subscripts are taken from the next smaller style. Exception: in

display style they are in script style.

‣ Subscripts are always in the cramped variant of the style; superscripts are only cramped if

the original style was cramped.

‣ In an ..\over.. formula in any style the numerator and denominator are taken from the next

smaller style.

‣ The denominator is always in cramped style; the numerator is only in cramped style if the

original style was cramped.

‣ Formulas under a \sqrt or \overline are in cramped style.

In LuaTEX one can set the styles in more detail which means that you sometimes have to set

both normal and cramped styles to get the effect you want. (Even) if we force styles in the script

using \scriptstyle and \crampedscriptstyle we get this:

STYLE EXAMPLE

default 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
script 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives a different result:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥 𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

Math104

STYLE EXAMPLE

default 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

8.4 Math parameter settings

8.4.1 Many new \Umath* primitives

In LuaTEX, the font dimension parameters that TEX used in math typesetting are now accessible

via primitive commands. In fact, refactoring of the math engine has resulted in turning some

hard codes properties into parameters.

PRIMITIVE NAME DESCRIPTION

\Umathquad the width of 18 mu's

\Umathaxis height of the vertical center axis of the math formula above the

baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

\Umathradicaldegreebefore the forward kern that takes place before placement of the rad

ical degree

\Umathradicaldegreeafter the backward kern that takes place after placement of the rad

ical degree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical

sign that the degree is raised by; it is expressed in percents,

so 60% is expressed as the integer 60
\Umathstackvgap vertical clearance between the two elements in an \atop stack

\Umathstacknumup numerator shift upward in \atop stack

\Umathstackdenomdown denominator shift downward in \atop stack

\Umathfractionrule the width of the rule in a \over

\Umathfractionnumvgap vertical clearance between the numerator and the rule

\Umathfractionnumup numerator shift upward in \over

\Umathfractiondenomvgap vertical clearance between the denominator and the rule

\Umathfractiondenomdown denominator shift downward in \over

\Umathfractiondelsize minimum delimiter size for \...withdelims

\Umathlimitabovevgap vertical clearance for limits above operators

105Math

\Umathlimitabovebgap vertical baseline clearance for limits above operators

\Umathlimitabovekern space reserved at the top of the limit

\Umathlimitbelowvgap vertical clearance for limits below operators

\Umathlimitbelowbgap vertical baseline clearance for limits below operators

\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters

\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters

\Umathunderdelimitervgap vertical clearance for limits below delimiters

\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas

\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas

\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

\Umathsubtopmax the top of standalone subscripts cannot be higher than this

above the baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this

above the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and sub

script be at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspacebeforescript additional space added before a super- or subprescript (bonus

setting)

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1em

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

8.4.2 Font-based math parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have

to set each of them by hand. For this reason, LuaTEX initializes a bunch of these parameters

whenever you assign a font identifier to a math family based on either the traditional math font

dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy

and cmex), or based on the named values in a potential MathConstants table when the font is

loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,

and in that case no attention is paid to which family is being assigned to: the MathConstants

tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names

match those used in the TEXbook. Assignments to \textfont set the values for the cramped and

uncramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont

sets the scriptscript styles, so we have eight parameters for three font sizes. In the tfm case,

Math106

assignments only happen in family 2 and family 3 (and of course only for the parameters for

which there are font dimensions).

Besides the parameters below, LuaTEX also looks at the ‘space’ font dimension parameter. For

math fonts, this should be set to zero.

VARIABLE / STYLE TFM / OPENTYPE

\Umathaxis axis_height

AxisHeight

6 \Umathoperatorsize —

D, D' DisplayOperatorMinHeight

9 \Umathfractiondelsize delim1

D, D' FractionDelimiterDisplayStyleSize

9 \Umathfractiondelsize delim2

T, T', S, S', SS, SS' FractionDelimiterSize

\Umathfractiondenomdown denom1

D, D' FractionDenominatorDisplayStyleShiftDown

\Umathfractiondenomdown denom2

T, T', S, S', SS, SS' FractionDenominatorShiftDown

\Umathfractiondenomvgap 3*default_rule_thickness

D, D' FractionDenominatorDisplayStyleGapMin

\Umathfractiondenomvgap default_rule_thickness

T, T', S, S', SS, SS' FractionDenominatorGapMin

\Umathfractionnumup num1

D, D' FractionNumeratorDisplayStyleShiftUp

\Umathfractionnumup num2

T, T', S, S', SS, SS' FractionNumeratorShiftUp

\Umathfractionnumvgap 3*default_rule_thickness

D, D' FractionNumeratorDisplayStyleGapMin

\Umathfractionnumvgap default_rule_thickness

T, T', S, S', SS, SS' FractionNumeratorGapMin

\Umathfractionrule default_rule_thickness

FractionRuleThickness

\Umathskewedfractionhgap math_quad/2

SkewedFractionHorizontalGap

\Umathskewedfractionvgap math_x_height

SkewedFractionVerticalGap

\Umathlimitabovebgap big_op_spacing3

UpperLimitBaselineRiseMin

1 \Umathlimitabovekern big_op_spacing5

0

\Umathlimitabovevgap big_op_spacing1

UpperLimitGapMin

\Umathlimitbelowbgap big_op_spacing4

107Math

LowerLimitBaselineDropMin

1 \Umathlimitbelowkern big_op_spacing5

0

\Umathlimitbelowvgap big_op_spacing2

LowerLimitGapMin

\Umathoverdelimitervgap big_op_spacing1

StretchStackGapBelowMin

\Umathoverdelimiterbgap big_op_spacing3

StretchStackTopShiftUp

\Umathunderdelimitervgap big_op_spacing2

StretchStackGapAboveMin

\Umathunderdelimiterbgap big_op_spacing4

StretchStackBottomShiftDown

\Umathoverbarkern default_rule_thickness

OverbarExtraAscender

\Umathoverbarrule default_rule_thickness

OverbarRuleThickness

\Umathoverbarvgap 3*default_rule_thickness

OverbarVerticalGap

1 \Umathquad math_quad

<font_size(f)>

\Umathradicalkern default_rule_thickness

RadicalExtraAscender

2 \Umathradicalrule <not set>

RadicalRuleThickness

3 \Umathradicalvgap default_rule_thickness+abs(math_x_height)/4

D, D' RadicalDisplayStyleVerticalGap

3 \Umathradicalvgap default_rule_thickness+abs(default_rule_thickness)/4

T, T', S, S', SS, SS' RadicalVerticalGap

2 \Umathradicaldegreebefore <not set>

RadicalKernBeforeDegree

2 \Umathradicaldegreeafter <not set>

RadicalKernAfterDegree

2,7 \Umathradicaldegreeraise <not set>

RadicalDegreeBottomRaisePercent

4 \Umathspaceafterscript script_space

SpaceAfterScript

\Umathstackdenomdown denom1

D, D' StackBottomDisplayStyleShiftDown

\Umathstackdenomdown denom2

T, T', S, S', SS, SS' StackBottomShiftDown

\Umathstacknumup num1

Math108

D, D' StackTopDisplayStyleShiftUp

\Umathstacknumup num3

T, T', S, S', SS, SS' StackTopShiftUp

\Umathstackvgap 7*default_rule_thickness

D, D' StackDisplayStyleGapMin

\Umathstackvgap 3*default_rule_thickness

T, T', S, S', SS, SS' StackGapMin

\Umathsubshiftdown sub1

SubscriptShiftDown

\Umathsubshiftdrop sub_drop

SubscriptBaselineDropMin

8 \Umathsubsupshiftdown —

SubscriptShiftDownWithSuperscript

\Umathsubtopmax abs(math_x_height*4)/5

SubscriptTopMax

\Umathsubsupvgap 4*default_rule_thickness

SubSuperscriptGapMin

\Umathsupbottommin abs(math_x_height/4)

SuperscriptBottomMin

\Umathsupshiftdrop sup_drop

SuperscriptBaselineDropMax

\Umathsupshiftup sup1

D SuperscriptShiftUp

\Umathsupshiftup sup2

T, S, SS, SuperscriptShiftUp

\Umathsupshiftup sup3

D', T', S', SS' SuperscriptShiftUpCramped

\Umathsupsubbottommax abs(math_x_height*4)/5

SuperscriptBottomMaxWithSubscript

\Umathunderbarkern default_rule_thickness

UnderbarExtraDescender

\Umathunderbarrule default_rule_thickness

UnderbarRuleThickness

\Umathunderbarvgap 3*default_rule_thickness

UnderbarVerticalGap

5 \Umathconnectoroverlapmin 0

MinConnectorOverlap

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set

\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: Traditional tfm fonts do not set \Umathradicalrule because TEX82 uses the height of

the radical instead. When this parameter is indeed not set when LuaTEX has to typeset a radi

cal, a backward compatibility mode will kick in that assumes that an oldstyle TEX font is used.

109Math

Also, they do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umath

radicaldegreeraise. These are then automatically initialized to 5/18quad, −10/18quad, and
60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTEX

has to typeset a formula because this needs parameters from both family 2 and family 3. This

provides a partial backward compatibility with TEX82, but that compatibility is only partial: once

the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When tfm fonts are used a similar situation arises with respect to \Umathspaceafter

script: it is not set until the first time LuaTEX has to typeset a formula. This provides some

backward compatibility with TEX82. But once the \Umathspaceafterscript is set, \script

space will never be looked at again.

Note 5: Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TEX82 always

stacks extensibles without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType

fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt's

size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that

is expressed in a percentage instead of a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open

Type math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex

ist in the ‘standard’ OpenType math font Cambria, but were useful enough to be added.

8.5 Math spacing

8.5.1 Setting inline surrounding space with

\mathsurround[skip]\mathsurround[skip]

Inline math is surrounded by (optional) \mathsurround spacing but that is a fixed dimension.

There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or zero

with some stretch or shrink) this parameter will replace \mathsurround. By using an additional

parameter instead of changing the nature of \mathsurround, we can remain compatible. In the

meantime a bit more control has been added via \mathsurroundmode. This directive can take 6

values with zero being the default behaviour.

\mathsurround 10pt

\mathsurroundskip20pt

MODE XXX X X X EFFECT

0 x 𝑥 x x 𝑥 x obey \mathsurround when \mathsurroundskip is 0pt

1 x 𝑥x x 𝑥 x only add skip to the left

2 x𝑥 x x 𝑥 x only add skip to the right

3 x 𝑥 x x 𝑥 x add skip to the left and right

Math110

4 x 𝑥 x x 𝑥 x ignore the skip setting, obey \mathsurround

5 x𝑥x x 𝑥 x disable all spacing around math

6 x 𝑥 x x 𝑥 x only apply \mathsurroundskip when also spacing

7 x 𝑥 x x 𝑥 x only apply \mathsurroundskip when no spacing

Anything more fancy, like checking the beginning or end of a paragraph (or edges of a box)

would not be robust anyway. If you want that you can write a callback that runs over a list and

analyzes a paragraph. Actually, in that case you could also inject glue (or set the properties of

a math node) explicitly. So, these modes are in practice mostly useful for special purposes and

experiments (they originate in a tracker item). Keep in mind that this glue is part of the math

node and not always treated as normal glue: it travels with the begin and end math nodes. Also,

method 6 and 7 will zero the skip related fields in a node when applicable in the first occasion

that checks them (linebreaking or packaging).

8.5.2 Pairwise spacing and \Umath...spacing commands

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to

control the math spacing table (as explained in Chapter 18 of the TEXbook). The primitive names

are a simple matter of combining two math atom types, but for completeness' sake, here is the

whole list:

\Umathordordspacing

\Umathordopspacing

\Umathordbinspacing

\Umathordrelspacing

\Umathordopenspacing

\Umathordclosespacing

\Umathordpunctspacing

\Umathordinnerspacing

\Umathopordspacing

\Umathopopspacing

\Umathopbinspacing

\Umathoprelspacing

\Umathopopenspacing

\Umathopclosespacing

\Umathoppunctspacing

\Umathopinnerspacing

\Umathbinordspacing

\Umathbinopspacing

\Umathbinbinspacing

\Umathbinrelspacing

\Umathbinopenspacing

\Umathbinclosespacing

\Umathbinpunctspacing

\Umathbininnerspacing

\Umathrelordspacing

\Umathrelopspacing

\Umathrelbinspacing

\Umathrelrelspacing

\Umathrelopenspacing

\Umathrelclosespacing

\Umathrelpunctspacing

\Umathrelinnerspacing

\Umathopenordspacing

\Umathopenopspacing

\Umathopenbinspacing

\Umathopenrelspacing

\Umathopenopenspacing

\Umathopenclosespacing

\Umathopenpunctspacing

\Umathopeninnerspacing

\Umathcloseordspacing

\Umathcloseopspacing

\Umathclosebinspacing

\Umathcloserelspacing

\Umathcloseopenspacing

\Umathcloseclosespacing

\Umathclosepunctspacing

\Umathcloseinnerspacing

\Umathpunctordspacing

\Umathpunctopspacing

111Math

\Umathpunctbinspacing

\Umathpunctrelspacing

\Umathpunctopenspacing

\Umathpunctclosespacing

\Umathpunctpunctspacing

\Umathpunctinnerspacing

\Umathinnerordspacing

\Umathinneropspacing

\Umathinnerbinspacing

\Umathinnerrelspacing

\Umathinneropenspacing

\Umathinnerclosespacing

\Umathinnerpunctspacing

\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:

\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the

TEXbook.

Note 1: For ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and

\thickmuskip are treated specially. In their case a pointer to the corresponding internal para

meter is saved, not the actual \muskip value. This means that any later changes to one of these

three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the

TEXbook. These will not actually be used as those combinations of atoms cannot actually happen,

but it seemed better not to break orthogonality. They are initialized to zero.

8.5.3 Local \frozen settings with

Math is processed in two passes. The first pass is needed to intercept for instance \over, one

of the few TEX commands that actually has a preceding argument. There are often lots of curly

braces used in math and these can result in a nested run of the math sub engine. However, you

need to be aware of the fact that some properties are kind of global to a formula and the last

setting (for instance a family switch) wins. This also means that a change (or again, the last one)

in math parameters affects the whole formula. In LuaMetaTEX we have changed this model a

bit. One can argue that this introduces an incompatibility but it's hard to imagine a reason for

setting the parameters at the end of a formula run and assume that they also influence what

goes in front.

$

x \Usubscript {-}

\frozen\Umathsubshiftdown\textstyle 0pt x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 5pt x \Usubscript {5}}

x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 15pt x \Usubscript {15}}

x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 20pt x \Usubscript {20}}

x \Usubscript {0}

\frozen\Umathsubshiftdown\textstyle 10pt x \Usubscript {10}

x \Usubscript {0}

$

Math112

The \frozen prefix does themagic: it injects information in themath list about the set parameter.

In LuaTEX 1.10+ the last setting, the 10pt drop wins, but in LuaMetaTEX you will see each local

setting taking effect. The implementation uses a new node type, parameters nodes, so you might

encounter these in an unprocessed math list. The result looks as follows:

𝑥−𝑥0𝑥5𝑥0𝑥
15

𝑥0𝑥

20

𝑥0𝑥
10
𝑥
0

8.5.4 Checking a state with \ifmathparameter

When you adapt math parameters it might make sense to see if they are set at all. When a para

meter is unset its value has the maximum dimension value and you might for instance mistakenly

multiply that value to open up things a bit, which gives unexpected side effects. For that reason

there is a convenient checker: \ifmathparameter. This test primitive behaves like an \ifcase,

with:

VALUE MEANING

0 the parameter value is zero

1 the parameter is set

2 the parameter is unset

8.5.5 Skips around display math and \mathdisplayskipmode

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one

is always inserted, also when zero, but the below is only inserted when larger than zero. Espe

cially the latter makes it sometimes hard to fully control spacing. Therefore LuaTEX comes with

a new directive: \mathdisplayskipmode. The following values apply:

VALUE MEANING

0 normal TEX behaviour

1 always (same as 0)

2 only when not zero

3 never, not even when not zero

8.5.6 Nolimit correction with \mathnolimitsmode

There are two extra math parameters \Umathnolimitsupfactor and \Umathnolimitsubfactor

that were added to provide some control over how limits are spaced (for example the position

of super and subscripts after integral operators). They relate to an extra parameter \mathno

limitsmode. The half corrections are what happens when scripts are placed above and below.

The problem with italic corrections is that officially that correction italic is used for above/be

low placement while advanced kerns are used for placement at the right end. The question is:

how often is this implemented, and if so, do the kerns assume correction too. Anyway, with this

parameter one can control it.

113Math

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0

1
mode 0 1 2 3 4 8000

superscript 0 font 0 0 +ic/2 0

subscript -ic font 0 -ic/2 -ic/2 8000ic/1000

When the mode is set to one, the math parameters are used. This way a macro package writer

can decide what looks best. Given the current state of fonts in ConTEXt we currently use mode

1 with factor 0 for the superscript and 750 for the subscripts. Positive values are used for both

parameters but the subscript shifts to the left. A \mathnolimitsmode larger that 15 is considered

to be a factor for the subscript correction. This feature can be handy when experimenting.

8.5.7 Controlling math italic mess with \mathitalicsmode

The \mathitalicsmode parameter can be set to 1 to force italic correction before noads that

represent some more complex structure (read: everything that is not an ord, bin, rel, open,

close, punct or inner). We show a Cambria example.

\mathitalicsmode = 0 �𝑇1� |𝑇| 𝑇 + 1 𝑇1
2 𝑇√1

\mathitalicsmode = 1 �𝑇1� |𝑇| 𝑇 + 1 𝑇1
2 𝑇√1

This kind of parameters relate to the fact that italic correction in OpenType math is bound to

fuzzy rules. So, control is the solution.

8.5.8 Influencing script kerning with \mathscriptboxmode

If you want to typeset text in math macro packages often provide something \text which obeys

the script sizes. As the definition can be anything there is a good chance that the kerning doesn't

come out well when used in a script. Given that the first glyph ends up in an \hbox we have

some control over this. And, as a bonus we also added control over the normal sublist kerning.

The \mathscriptboxmode parameter defaults to 1.

VALUE MEANING

0 forget about kerning

1 kern math sub lists with a valid glyph

2 also kern math sub boxes that have a valid glyph

3 only kern math sub boxes with a boundary node present

Here we show some examples. Of course this doesn't solve all our problems, if only because

some fonts have characters with bounding boxes that compensate for italics, while other fonts

can lack kerns.

$T_{\tf fluff}$ $T_{\tf fluff}$ T_{fluff} T_{fluff} $T_{\text{\boundary1 fluff}}$

mode 0 mode 1 mode 1 mode 2 mode 3

modern 𝑇f luf f 𝑇f luf f 𝑇fluff 𝑇fluff 𝑇fluff
lucidaot 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

pagella 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

Math114

cambria 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

dejavu 𝑇f luf f 𝑇f luf f 𝑇fluff 𝑇fluff 𝑇fluff

Kerning between a character subscript is controlled by \mathscriptcharmode which also de

faults to 1.

Here is another example. Internally we tag kerns as italic kerns or font kerns where font kerns

result from the staircase kern tables. In 2018 fonts like Latin Modern and Pagella rely on cheats

with the boundingbox, Cambria uses staircase kerns and Lucida a mixture. Depending on how

fonts evolve we might add some more control over what one can turn on and off.

normal modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.9560.956

l
0.0610.061

u
0.0850.085

f
0.9560.956

f
0.956

pagella 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.1660.166𝑒 0.166 𝑇f 0.4610.461l 0.1020.102u 0.0770.077f 0.4610.461f 0.461

cambria 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.2770.277

𝑒
0.277 𝑇fluff

lucidaot 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇fluff
bold modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 1.1001.100

l
0.0700.070

u
0.0970.097

f
1.1001.100

f
1.100

pagella 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.1910.191𝑒 0.191 𝑇f 0.5300.530l 0.1180.118u 0.0880.088f 0.5300.530f 0.530

cambria 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.3190.319

𝑒
0.319 𝑇fluff

lucidaot 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.3750.375𝑒 0.375 𝑇f 0.7500.750luf 0.7500.750f 0.750

8.5.9 Forcing fixed scripts with \mathscriptsmode

We have three parameters that are used for this fixed anchoring:

PARAMETER REGISTER

𝑑 \Umathsubshiftdown

𝑢 \Umathsupshiftup

𝑠 \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed

positions. This is something that is needed for instance for chemistry. You can manipulate the

mentioned variables to achieve different effects.

MODE DOWN UP EXAMPLE

0 dynamic dynamic CH2 +CH+
2 +CH2

2
1 𝑑 𝑢 CH2 +CH+

2 +CH2
2

2 𝑠 𝑢 CH2 +CH+
2 +CH2

2
3 𝑠 𝑢 + 𝑠 − 𝑑 CH2 +CH+

2 +CH2
2

4 𝑑+ (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 +CH+
2 +CH2

2
5 𝑑 𝑢+ 𝑠 − 𝑑 CH2 +CH+

2 +CH2
2

The value of this parameter obeys grouping but applies to the whole current formula.

115Math

8.5.10 Penalties: \mathpenaltiesmode

Only in inline math penalties will be added in a math list. You can force penalties (also in display

math) by setting:

\mathpenaltiesmode = 1

This primnitive is not really needed in LuaTEX because you can use the callback mlist_to_hlist

to force penalties by just calling the regular routine with forced penalties. However, as part

of opening up and control this primitive makes sense. As a bonus we also provide two extra

penalties:

\prebinoppenalty = -100 % example value

\prerelpenalty = 900 % example value

They default to inifinite which signals that they don't need to be inserted. When set they are

injected before a binop or rel noad. This is an experimental feature.

8.5.11 Equation spacing: \matheqnogapstep

By default TEX will add one quad between the equation and the number. This is hard coded. A

new primitive can control this:

\matheqnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to

control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the

usual way to mimmick floating point factors in TEX.

8.6 Math constructs

8.6.1 Unscaled fences and \mathdelimitersmode

The \mathdelimitersmode primitive is experimental and deals with the following (potential)

problems. Three bits can be set. The first bit prevents an unwanted shift when the fence symbol

is not scaled (a cambria side effect). The second bit forces italic correction between a preceding

character ordinal and the fenced subformula, while the third bit turns that subformula into an

ordinary so that the same spacing applies as with unfenced variants. Here we show Cambria

(with \mathitalicsmode enabled).

\mathdelimitersmode = 0 𝑓
0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 1 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 2 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 3 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 4 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 5 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 6 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 7 𝑓

0.2930.293

(𝑥
0.3030.303

) 𝑓
0.293

(𝑥
0.303

)

Math116

So, when set to 7 fenced subformulas with unscaled delimiters come out the same as unfenced

ones. This can be handy for cases where one is forced to use \left and \right always be

cause of unpredictable content. As said, it's an experimental feature (which somehow fits in the

exceptional way fences are dealt with in the engine). The full list of flags is given in the next

table:

VALUE MEANING

"01 don't apply the usual shift

"02 apply italic correction when possible

"04 force an ordinary subformula

"08 no shift when a base character

"10 only shift when an extensible

The effect can depend on the font (and for Cambria one can use for instance "16).

Sometimes you might want to act upon the size of a delimiter, something that is not really possi

ble because of the fact that they are calculated after most has been typeset already. For this we

have two keyword: phantom and void. In both cases the symbol is replaced by an empty rule,

in the first case all three dimensions are preserved in the last case only the height and depth.

\startformula

x\mathlimop{\Uvextensible \Udelimiter 5 0 "222B}_1^2 x

\stopformula

\vskip-9ex

\startformula \red

x\mathlimop{\Uvextensible phantom \Udelimiter 5 0 "222B}_1^2 x

\stopformula

\vskip-9ex

\startformula \blue

x\mathlimop{\Uvextensible void \Udelimiter 5 0 "222B}_1^2 x

\stopformula

In typeset form this looks like:

𝑥
2
∫
1
𝑥𝑥

2
∫
1
𝑥𝑥

2
∫
1
𝑥

8.6.2 Accent handling with \Umathaccent

LuaTEX supports both top accents and bottom accents in math mode, and math accents stretch

automatically (if this is supported by the font the accent comes from, of course). Bottom and

combined accents as well as fixed-width math accents are controlled by optional keywords fol

lowing \Umathaccent.

The keyword bottom after \Umathaccent signals that a bottom accent is needed, and the keyword

both signals that both a top and a bottom accent are needed (in this case two accents need to

be specified, of course).

Then the set of three integers defining the accent is read. This set of integers can be prefixed by

117Math

the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,

this step is repeated).

A simple example:

\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top_ac

cent value, then this value will be used to place the accent instead of the \skewchar kern used

by TEX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be

shifted horizontally such that its own top_accent line coincides with the one from the accentee.

If the top_accent value of the accent is zero, then half the width of the accent followed by its

italic correction is used instead.

The vertical placement of a top accent depends on the x_height of the font of the accentee (as

explained in the TEXbook), but if a value turns out to be zero and the font had a MathConstants

table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes

place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.

An additional parameter fraction can be specified followed by a number; a value of for instance

1200 means that the criterium is 1.2 times the width of the nucleus. The fraction only applies

to the stepwise selected shapes and is mostly meant for the overlay location. It also works for

the other locations but then it concerns the width.

8.6.3 Building radicals with \Uradical and \Uroot

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its

syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>

\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by themath parameters \Umathradicaldegreebefore,

\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in

\scriptscriptstyle.

8.6.4 Super- and subscripts

The character fields in a Lua-loaded OpenType math font can have a ‘mathkern’ table. The

format of this table is the same as the ‘mathkern’ table that is returned by the fontloader

library, except that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTEX checks whether the

super- or subscript and the nucleus are both simple character items. If they are, and if the

fonts of both character items are OpenType fonts (as opposed to legacy TEX fonts), then LuaTEX

Math118

will use the OpenType math algorithm for deciding on the horizontal placement of the super- or

subscript.

This works as follows:

‣ The vertical position of the script is calculated.

‣ The default horizontal position is flat next to the base character.

‣ For superscripts, the italic correction of the base character is added.

‣ For a superscript, two vertical values are calculated: the bottom of the script (after shifting

up), and the top of the base. For a subscript, the two values are the top of the (shifted down)

script, and the bottom of the base.

‣ For each of these two locations:

– find the math kern value at this height for the base (for a subscript placement, this is the

bottom_right corner, for a superscript placement the top_right corner)

– find the math kern value at this height for the script (for a subscript placement, this is the

top_left corner, for a superscript placement the bottom_left corner)

– add the found values together to get a preliminary result.

‣ The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher

height and kern pair, or the highest one in the character (if there is no value high enough in the

character), or simply zero (if the character has no math kern pairs at all).

8.6.5 Scripts on extensibles: \Uunderdelimiter, \Uoverdelimiter,

\Udelimiterover, \Udelimiterunder and \Uhextensible

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or

superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover

allow the placement of an automatically extensible item as a subscript or superscript on a nu

cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$

$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$

$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$

$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter

underdelimiter
delimiterover delimiterunder

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim

itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit

placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable

scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an optional width specification. When used the also optional keywords

left, middle and right will determine what happens when a requested size can't be met (which

can happen when we step to successive larger variants).

119Math

An extra primitive \Uhextensible is available that can be used like this:

$\Uhextensible width 10cm 0 "2194$

This will render this:

⟷

Here you can also pass options, like:

$\Uhextensible width 1pt middle 0 "2194$

This gives:

↔

LuaTEX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten

sible recipes’. In most cases where font metrics are involved we have a different code path for

traditional fonts end OpenType fonts.

8.6.6 Fractions and the new \Uskewed and \Uskewedwithdelims

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela

tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com

mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap

for skewed fractions. Of course some guessing is needed in order to implement something that

uses them. And so we now provide a primitive similar to the other fraction related ones but with

a few options so that one can influence the rendering. Of course a user can also mess around a

bit with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }

{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by

default we zero the width of the middle character. For Latin Modern the result looks as follows:

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑒𝑥𝑎𝑐𝑡𝑏 + 𝑥 𝑥 + 1/𝑒𝑥𝑎𝑐𝑡2 + 𝑥 𝑥 + (𝑎/𝑒𝑥𝑎𝑐𝑡𝑏) + 𝑥 𝑥 + (1/𝑒𝑥𝑎𝑐𝑡2) + 𝑥
noaxis 𝑥 + 𝑎/𝑛𝑜𝑎𝑥𝑖𝑠𝑏 + 𝑥 𝑥 + 1/𝑛𝑜𝑎𝑥𝑖𝑠2 + 𝑥 𝑥 + (𝑎/𝑛𝑜𝑎𝑥𝑖𝑠𝑏) + 𝑥 𝑥 + (1/𝑛𝑜𝑎𝑥𝑖𝑠2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑒𝑥𝑎𝑐𝑡𝑛𝑜𝑎𝑥𝑖𝑠𝑏 + 𝑥 𝑥 + 1/𝑒𝑥𝑎𝑐𝑡𝑛𝑜𝑎𝑥𝑖𝑠2 + 𝑥 𝑥 + (𝑎/𝑒𝑥𝑎𝑐𝑡𝑛𝑜𝑎𝑥𝑖𝑠𝑏) + 𝑥 𝑥 + (1/𝑒𝑥𝑎𝑐𝑡𝑛𝑜𝑎𝑥𝑖𝑠2) + 𝑥

The \over and related primitives have the form:

{{top}\over{bottom}}

For convenience, which also avoids some of the trickery that makes this ‘looking back’ possible,

Math120

the LuaMetaTEX also provides this variant:

\Uover{top}{bottom}

The optional arguments are also supported but we have one extra option: style. The style is

applied to the numerator and denominator.

\Uover style \scriptstyle {top} {bottom}

The complete list of these commands is: \Uabove, \Uatop, \Uover, \Uabovewithdelims, \Uatop

withdelims, \Uoverwithdelims, \UUskewed, \UUskewedwithdelims. As with other extensions

we use a leading U and because we already had extra skew related primitives we end up with a

UU there. This obscurity is not that big an issue because normally such primitives are wrapped

in a macro. Here are a few examples:

$\Uover { 1234} { 5678} $\quad

$\Uover {\textstyle 1234} {\textstyle 5678} $\quad

$\Uover {\scriptstyle 1234} {\scriptstyle 5678} $\quad

$\Uover {\scriptscriptstyle 1234} {\scriptscriptstyle 5678} $\blank

$\Uover {1234} {5678} $\quad

$\Uover style \textstyle {1234} {5678} $\quad

$\Uover style \scriptstyle {1234} {5678} $\quad

$\Uover style \scriptscriptstyle {1234} {5678} $\blank

These render as: 1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

8.6.7 Math styles: \Ustyle

This primitive accepts a style identifier:

\Ustyle \displaystyle

This in itself is not spectacular because it is equivalent to

\displaystyle

Both commands inject a style node and change the current style. However, as in other places

where LuaMetaTEX expects a style you can also pass a number in the range zero upto seven (like

the ones reported by the primitive \mathstyle). So, the next few lines give identical results:

Like: 07 07 07. Values outside the valid range are ignored.

There is an extra option norule that can be used to suppress the rule while keeping the spacing

compatible.

121Math

8.6.8 Delimiters: \Uleft, \Umiddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it.

The resulting delimiter will either be a character from the stepwise size range or an extensible.

The latter can be quite differently positioned than the characters as it depends on the fit as well

as the fact whether the used characters in the font have depth or height. Commands like (plain

TEXs) \big need to use this feature. In LuaTEX we provide a bit more control by three variants

that support optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

(

𝑥
∥

𝑥
)

(

𝑥
∥

𝑥
)

The keyword exact can be used as directive that the real dimensions should be applied when

the criteria can't be met which can happen when we're still stepping through the successively

larger variants. When no dimensions are given the noaxis command can be used to prevent

shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing. The

numbers are the same as for character classes.

8.6.9 Accents: \mathlimitsmode

When you use \limits or \nolimits without scripts spacing might get messed up. This can be

prevented by setting \mathlimitsmode to a non-zero value.

8.7 Extracting values

8.7.1 Codes and using \Umathcode, \Umathcharclass, \Umathcharfam and

\Umathcharslot

You can extract the components of a math character. Say that we have defined:

Math122

\Umathcode 1 2 3 4

then

[\Umathcharclass1] [\Umathcharfam1] [\Umathcharslot1]

will return:

[2] [3] [4]

These commands are provided as convenience. Before they come available you could do the

following:

\def\Umathcharclass{\numexpr

\directlua{tex.print(tex.getmathcode(token.scan_int())[1])}

\relax}

\def\Umathcharfam{\numexpr

\directlua{tex.print(tex.getmathcode(token.scan_int())[2])}

\relax}

\def\Umathcharslot{\numexpr

\directlua{tex.print(tex.getmathcode(token.scan_int())[3])}

\relax}

8.7.2 Last lines and \predisplaygapfactor

There is a new primitive to control the overshoot in the calculation of the previous line in mid-

paragraph display math. The default value is 2 times the em width of the current font:

\predisplaygapfactor=2000

If you want to have the length of the last line independent of math i.e. you don't want to revert

to a hack where you insert a fake display math formula in order to get the length of the last line,

the following will often work too:

\def\lastlinelength{\dimexpr

\directlua {tex.sprint (

(nodes.dimensions(node.tail(tex.lists.page_head).list))

)}sp

\relax}

8.8 Math mode

8.8.1 Verbose versions of single-character math commands like

\Usuperscript and \Usubscript

LuaTEX defines six new primitives that have the same function as ^, _, $, and $$:

123Math

PRIMITIVE EXPLANATION

\Usuperscript duplicates the functionality of ^

\Usubscript duplicates the functionality of _

\Ustartmath duplicates the functionality of $, when used in non-math mode.

\Ustopmath duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath duplicates the functionality of $$, when used in non-math mode.

\Ustopdisplaymath duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor

rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands

with explicit dollar sign(s).

8.8.2 Script commands \Unosuperscript and \Unosubscript

These two commands result in super- and subscripts but with the current style (at the time of

rendering). So,

$

x\Usuperscript {1}\Usubscript {2} =

x\Unosuperscript{1}\Unosubscript{2} =

x\Usuperscript {1}\Unosubscript{2} =

x\Unosuperscript{1}\Usubscript {2}

$

results in 𝑥12 = 𝑥12 = 𝑥12 = 𝑥12 .

8.8.3 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math

chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those

cases, the \textfont from the requested math family is used.

8.9 Goodies

8.9.1 Flattening: \mathflattenmode

The TEX math engine collapses ord noads without sub- and superscripts and a character as

nucleus, which has the side effect that in OpenType mode italic corrections are applied (given

that they are enabled).

\switchtobodyfont[modern]

$V \mathbin{\mathbin{v}} V$\par

$V \mathord{\mathord{v}} V$\par

This renders as:

Math124

𝑉 𝑣 𝑉
𝑉 𝑣𝑉

When we set \mathflattenmode to 31 we get:

𝑉 𝑣 𝑉
𝑉 𝑣𝑉

When you see no difference, then the font probably has the proper character dimensions and no

italic correction is needed. For Latin Modern (at least till 2018) there was a visual difference. In

that respect this parameter is not always needed unless of course you want efficient math lists

anyway.

You can influence flattening by adding the appropriate number to the value of the mode para

meter. The default value is 1.

MODE CLASS

1 ord

2 bin

4 rel

8 punct

16 inner

8.9.2 Less Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.

Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

8.10 Experiments

There are a couple of experimental features. They will stay but details might change, for instance

more control over spacing. We just show some examples and let your imagination work it out.

First we have prescripts:

8.10.1 Prescripts with \Usuperprescript and Usubprescript

\hbox{$

{\tf X}^1_2^^3__4 \quad

{\tf X}^1 ^^3 \quad

{\tf X} _1 __4 \quad

{\tf X} ^^3 \quad

{\tf X} __4 \quad

{\tf X}^^3 __4

$}

125Math

The question is: are these double super and subscript triggers the way to go? Anyway, you

need to have them either being active (which in ConTEXt then boils down to them being other

characters), or say \supmarkmode = 1 to disable the normal multiple ^ treatment (a value larger

than 1 will also disable that in text mode).

X3 1
4 2 X3 1 X4 1 X3 X4 X34

The more explicit commands are:

\hbox{$

{\tf X}\Usuperscript{1} \quad

{\tf X} \Usubscript{2} \quad

{\tf X}\Usuperscript{1}\Usubscript{2} \quad

{\tf X}\Usuperscript{1} \Usuperprescript{3} \quad

{\tf X} \Usubscript{2} \Usubprescript{4}\quad

{\tf X}\Usuperscript{1}\Usubscript{2}\Usuperprescript{3}\Usubprescript{4}\quad

{\tf X} \Usuperprescript{3} \quad

{\tf X} \Usubprescript{4}\quad

{\tf X} \Usuperprescript{3}\Usubprescript{4}

$}

These more verbose triggers can be used to build interfaces:

X1 X2 X12 X3 1 X4 2 X3 1
4 2 X3 X4 X34

8.10.2 Prescripts with \Usuperprescript and Usubprescript

You can change the class of a math character on the fly:

$x\mathopen {!}+123+\mathclose {!}x$

$x\Umathclass4 ! +123+\Umathclass5 ! x$

$x ! +123+ ! x$

$x\mathclose {!}+123+\mathopen {!}x$

$x\Umathclass5 ! +123+\Umathclass4 ! x$

Watch how the spacing changes:

𝑥!+123+!𝑥
𝑥!+123+!𝑥
𝑥! + 123+!𝑥
𝑥! + 123 + !𝑥
𝑥! + 123 + !𝑥

Math126

127Nodes

9 Nodes

9.1 Lua node representation

TEX's nodes are represented in Lua as userdata objects with a variable set of fields or by a

numeric identifier when requested. When you print a node userdata object you will see these

numbers. In the following syntax tables the type of such a userdata object is represented as

⟨node⟩.

The return values of node.types are: hlist (0), vlist (1), rule (2), insert (3), mark (4),

adjust (5), boundary (6), disc (7), whatsit (8), par (9), dir (10), math (11), glue (12), kern

(13), penalty (14), style (15), choice (16), parameter (17), noad (18), radical (19), fraction

(20), accent (21), fence (22), math_char (23), math_text_char (24), sub_box (25), sub_mlist

(26), delimiter (27), glyph (28), unset (29), attribute_list (32), attribute (33), glue_spec

(34), temp (35) and split (36)

In 𝜀-TEX the \lastnodetype primitive has been introduced. With this primitive the valid range of
numbers is still [−1, 15] and glyph nodes (formerly known as char nodes) have number 0. That
way macro packages can use the same symbolic names as in traditional 𝜀-TEX. But you need to
keep in mind that these 𝜀-TEX node numbers are different from the real internal ones. When

you set \internalcodesmode to a non-zero value, the internal codes will be used in the 𝜀-TEX
introspection commands \lastnodetype and \currentiftype.

You can ask for a list of fields with node.fields and for valid subtypes with node.subtypes.

The node.values function reports some used values. Valid arguments are glue, style and

math. Keep in mind that the setters normally expect a number, but this helper gives you a list

of what numbers matter. For practical reason the pagestate values are also reported with this

helper, but they are backend specific.

The return values of node.values("glue") are: normal (0), fi (1), fil (2), fill (3) and filll

(4)

The return values of node.values("style") are: display (0), crampeddisplay (1), text (2),

crampedtext (3), script (4), crampedscript (5), scriptscript (6) and crampedscriptscript

(7)

The return values of node.values("math") are: quad (0), axis (1), accentbaseheight

(2), spacingmode (3), operatorsize (4), overbarkern (5), overbarrule (6), overbarvgap (7),

underbarkern (8), underbarrule (9), underbarvgap (10), radicalkern (11), radicalrule

(12), radicalvgap (13), radicaldegreebefore (14), radicaldegreeafter (15), radicalde

greeraise (16), stackvgap (17), stacknumup (18), stackdenomdown (19), fractionrule (20),

fractionnumvgap (21), fractionnumup (22), fractiondenomvgap (23), fractiondenomdown (24),

fractiondelsize (25), skewedfractionhgap (26), skewedfractionvgap (27), limitabovev

gap (28), limitabovebgap (29), limitabovekern (30), limitbelowvgap (31), limitbelowbgap

(32), limitbelowkern (33), nolimitsubfactor (34), nolimitsupfactor (35), underdelimiter

vgap (36), underdelimiterbgap (37), overdelimitervgap (38), overdelimiterbgap (39), sub

Nodes128

shiftdrop (40), supshiftdrop (41), subshiftdown (42), subsupshiftdown (43), subtopmax

(44), supshiftup (45), supbottommin (46), supsubbottommax (47), subsupvgap (48), space

beforescript (49), spaceafterscript (50), connectoroverlapmin (51), extrasuperscript

shift (52), extrasubscriptshift (53), extrasuperprescriptshift (54), extrasubprescript

shift (55), ordordspacing (56), ordopspacing (57), ordbinspacing (58), ordrelspacing (59),

ordopenspacing (60), ordclosespacing (61), ordpunctspacing (62), ordinnerspacing (63),

opordspacing (64), opopspacing (65), opbinspacing (66), oprelspacing (67), opopenspacing

(68), opclosespacing (69), oppunctspacing (70), opinnerspacing (71), binordspacing (72),

binopspacing (73), binbinspacing (74), binrelspacing (75), binopenspacing (76), binclos

espacing (77), binpunctspacing (78), bininnerspacing (79), relordspacing (80), relopspac

ing (81), relbinspacing (82), relrelspacing (83), relopenspacing (84), relclosespacing

(85), relpunctspacing (86), relinnerspacing (87), openordspacing (88), openopspacing

(89), openbinspacing (90), openrelspacing (91), openopenspacing (92), openclosespacing

(93), openpunctspacing (94), openinnerspacing (95), closeordspacing (96), closeopspac

ing (97), closebinspacing (98), closerelspacing (99), closeopenspacing (100), close

closespacing (101), closepunctspacing (102), closeinnerspacing (103), punctordspac

ing (104), punctopspacing (105), punctbinspacing (106), punctrelspacing (107), punc

topenspacing (108), punctclosespacing (109), punctpunctspacing (110), punctinnerspacing

(111), innerordspacing (112), inneropspacing (113), innerbinspacing (114), innerrelspac

ing (115), inneropenspacing (116), innerclosespacing (117), innerpunctspacing (118), in

nerinnerspacing (119), overlinevariant (120), underlinevariant (121), overdelimiter

variant (122), underdelimitervariant (123), delimiterovervariant (124), delimiterun

dervariant (125), hextensiblevariant (126), vextensiblevariant (127), fractionvariant

(128), radicalvariant (129), accentvariant (130), degreevariant (131), topaccentvariant

(132), botaccentvariant (133), overlayaccentvariant (134), numeratorvariant (135), de

nominatorvariant (136), superscriptvariant (137), subscriptvariant (138) and stackvari

ant (139)

The return values of node.values("pagestate") are:

9.2 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all

nodes regardless of their type, these are:

FIELD TYPE EXPLANATION

next node the next node in a list, or nil

id number the node's type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a dummy entry because not all nodes actually use the subtype,

but this way you can be sure that all nodes accept it as a valid field name, and that is often handy

in node list traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field

called prev. That last field is always present, but only initialized on explicit request: when the

function node.slide is called, it will set up the prev fields to be a backwards pointer in the

129Nodes

argument node list. By now most of TEX's node processing makes sure that the prev nodes are

valid but there can be exceptions, especially when the internal magic uses a leading temp nodes

to temporarily store a state.

The LuaMetaTEX engine provides a lot of freedom and it is up to the user to make sure that the

node lists remain sane. There are some safeguards but there can be cases where the engine just

quits out of frustration. And, of course you can make the engine crash.

9.2.1 hlist and vlist nodes

These lists share fields and subtypes although some subtypes can only occur in horizontal lists

while others are unique for vertical lists. The possible fields are attr, depth, direction, doff

set, glue_order, glue_set, glue_sign, height, hoffset, list, orientation, shift, state,

width, woffset, xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number accent, alignment, box, cell, container, degree, denominator, equa

tion, equationnumber, fraction, hdelimiter, hextensible, indent,

line, math, mathchar, modifier, nucleus, numerator, over, overde

limiter, radical, scripts, sub, sup, under, underdelimiter, unknown,

vdelimiter and vextensible

attr node list of attributes

width number the width of the box

height number the height of the box

depth number the depth of the box

direction number the direction of this box, see 9.2.15

shift number a displacement perpendicular to the character (hlist) or line (vlist) pro

gression direction

glue_order number a number in the range [0, 4], indicating the glue order
glue_set number the calculated glue ratio

glue_sign number 0 = normal, 1 = stretching, 2 = shrinking

list node the first node of the body of this list

The orientation, woffset, hoffset, doffset, xoffset and yoffset fields are special. They can

be used to make the backend rotate and shift boxes which can be handy in for instance vertical

typesetting. Because they relate to (and depend on the) the backend they are not discussed here

(yet).

A warning: never assign a node list to the list field unless you are sure its internal link structure

is correct, otherwise an error may result.

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to

a list by head, sometimes list makes more sense.

9.2.2 rule nodes

Contrary to traditional TEX, LuaTEX has more \rule subtypes because we also use rules to store

reuseable objects and images. User nodes are invisible and can be intercepted by a callback.

Nodes130

The supported fields are attr, data, depth, height, left, right, width, xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number box, empty, fraction, image, normal, outline, over, radical, under

and user

attr node list of attributes

width number the width of the rule where the special value −1073741824 is used for
‘running’ glue dimensions

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

left number shift at the left end (also subtracted from width)

right number (subtracted from width)

dir string the direction of this rule, see 9.2.15

index number an optional index that can be referred to

transform number an private variable (also used to specify outline width)

The left and type right keys are somewhat special (and experimental). When rules are auto

adapting to the surrounding box width you can enforce a shift to the right by setting left. The

value is also subtracted from the width which can be a value set by the engine itself and is not

entirely under user control. The right is also subtracted from the width. It all happens in the

backend so these are not affecting the calculations in the frontend (actually the auto settings

also happen in the backend). For a vertical rule left affects the height and right affects the

depth. There is no matching interface at the TEX end (although we can have more keywords

for rules it would complicate matters and introduce a speed penalty.) However, you can just

construct a rule node with Lua and write it to the TEX input. The outline subtype is just a

convenient variant and the transform field specifies the width of the outline.

The xoffset and yoffset fields are special. They can be used to shift rules. Because they relate

to (and depend on the) the backend they are not discussed here (yet).

9.2.3 insert nodes

This node relates to the \insert primitive and support the fields: attr, cost, depth, height,

list and spec.

FIELD TYPE EXPLANATION

subtype number the insertion class

attr node list of attributes

cost number the penalty associated with this insert

height number height of the insert

depth number depth of the insert

list node the first node of the body of this insert

There is a set of extra fields that concern the associated glue: width, stretch, stretch_order,

shrink and shrink_order. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may result. You can use list instead (often in functions you want

131Nodes

to use local variable with similar names and both names are equally sensible).

9.2.4 mark nodes

This one relates to the \mark primitive and only has a few fields: attr, class and mark.

FIELD TYPE EXPLANATION

subtype number unused

attr node list of attributes

class number the mark class

mark table a table representing a token list

9.2.5 adjust nodes

This node comes from \vadjust primitive and has fields: attr and list.

FIELD TYPE EXPLANATION

subtype number normal and pre

attr node list of attributes

list node adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be the result.

9.2.6 disc nodes

The \discretionary and \-, the - character but also the hyphenation mechanism produces

these nodes. The available fields are: attr, options, penalty, post, pre and replace.

FIELD TYPE EXPLANATION

subtype number automatic, discretionary, explicit and regular

attr node list of attributes

pre node pointer to the pre-break text

post node pointer to the post-break text

replace node pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \ex

hyphenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere. These disc

nodes are kind of special as at some point they also keep information about breakpoints and

nested ligatures.

The pre, post and replace fields at the Lua end are in fact indirectly accessed and have a prev

pointer that is not nil. This means that when you mess around with the head of these (three)

lists, you also need to reassign them because that will restore the proper prev pointer, so:

Nodes132

pre = d.pre

-- change the list starting with pre

d.pre = pre

Otherwise you can end up with an invalid internal perception of reality and LuaMetaTEX might

even decide to crash on you. It also means that running forward over for instance pre is ok but

backward you need to stop at pre. And you definitely must not mess with the node that prev

points to, if only because it is not really a node but part of the disc data structure (so freeing it

again might crash LuaMetaTEX).

9.2.7 math nodes

Math nodes represent the boundaries of a math formula, normally wrapped into $ signs. The

following fields are available: attr, shrink, shrink_order, stretch, stretch_order, surround

and width.

FIELD TYPE EXPLANATION

subtype number beginmath and endmath

attr node list of attributes

surround number width of the \mathsurround kern

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

The glue fields only kick in when the surround fields is zero.

9.2.8 glue nodes

Skips are about the only type of data objects in traditional TEX that are not a simple value. They

are inserted when TEX sees a space in the text flow but also by \hskip and \vskip. The structure

that represents the glue components of a skip internally is called a glue_spec. In LuaMetaTEX

we don't use the spec itself but just its values. A glue node has the fields: attr, font, leader,

shrink, shrink_order, stretch, stretch_order and width.

FIELD TYPE EXPLANATION

subtype number abovedisplayshortskip, abovedisplayskip, baselineskip,

belowdisplayshortskip, belowdisplayskip, cleaders, con

ditionalmathskip, correctionskip, gleaders, indentskip,

intermathskip, leaders, lefthangskip, leftskip, lineskip,

mathskip, medmuskip, muglue, parfillleftskip, parfillskip,

parskip, righthangskip, rightskip, spaceskip, splittopskip,

tabskip, thickmuskip, thinmuskip, topskip, userskip, xlead

ers, xspaceskip and zerospaceskip

attr node list of attributes

133Nodes

leader node pointer to a box or rule for leaders

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

Note that we use the key width in both horizontal and vertical glue. This suits the TEX internals

well so we decided to stick to that naming.

The effective width of some glue subtypes depends on the stretch or shrink needed to make

the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue

representing spaces and these stretch or shrink to make the content fit in the available space.

The effectiveglue function that takes a glue node and a parent (hlist or vlist) returns the

effective width of that glue item. When you pass true as third argument the value will be

rounded.

9.2.9 glue_spec nodes

Internally LuaMetaTEX (like its ancestors) also uses nodes to store data that is not seen in node

lists. For instance the state of expression scanning (\dimexpr etc.) and conditionals (\ifcase

etc.) is also kept in lists of nodes. A glue, which has five components, is stored in a node as

well, so, where most registers store just a number, a skip register (of internal quantity) uses a

pointer to a glue spec node. It has similar fields as glue nodes: shrink, shrink_order, stretch,

stretch_order and width, which is not surprising because in the past (and other engines than

LuaTEX) a glue node also has its values stored in a glue spec. This has some advantages because

often the values are the same, so for instance spacing related skips were not resolved immedi

ately but pointed to the current value of a space related internal register (like \spaceskip). But,

in LuaTEX we do resolve these quantities immediately and we put the current values in the glue

nodes.

FIELD TYPE EXPLANATION

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

You will only find these nodes in a few places, for instance when you query an internal quantity.

In principle we could do without them as we have interfaces that use the five numbers instead.

For compatibility reasons we keep glue spec nodes exposed but this might change in the future.

9.2.10 kern nodes

The \kern command creates such nodes but for instance the font and math machinery can also

add them. There are not that many fields: attr, expansion_factor and kern.

Nodes134

FIELD TYPE EXPLANATION

subtype number accentkern, fontkern, italiccorrection, leftmarginkern, math

listkern, rightmarginkern and userkern

attr node list of attributes

kern number fixed horizontal or vertical advance

expansion_factor number multiplier related to hz for font kerns

9.2.11 penalty nodes

The \penalty command is one that generates these nodes. It is one of the type of nodes often

found in vertical lists. It has the fields: attr and penalty.

FIELD TYPE EXPLANATION

subtype number afterdisplaypenalty, beforedisplaypenalty, equationnumberpenalty,

finalpenalty, linebreakpenalty, linepenalty, noadpenalty, userpenalty

and wordpenalty

attr node list of attributes

penalty number the penalty value

The subtypes are just informative and TEX itself doesn't use them. When you run into an line

breakpenalty you need to keep inmind that it's a accumulation of club, widow and other relevant

penalties.

9.2.12 glyph nodes

These are probably themostly used nodes and although you can push them in the current list with

for instance \char TEX will normally do it for you when it considers some input to be text. Glyph

nodes are relatively large and have many fields: attr, char, data, depth, expansion_factor,

font, height, hyphenate, language, left, lhmin, options, rhmin, right, script, state, total,

uchyph, width, xoffset, xscale, yoffset and yscale.

FIELD TYPE EXPLANATION

subtype number bit field

attr node list of attributes

char number the character index in the font

font number the font identifier

language number the language identifier

left number the frozen \lefthyphenmnin value

right number the frozen \righthyphenmnin value

uchyph boolean the frozen \uchyph value

state number a user field (replaces the component list)

xoffset number a virtual displacement in horizontal direction

yoffset number a virtual displacement in vertical direction

width number the (original) width of the character

height number the (original) height of the character

135Nodes

depth number the (original) depth of the character

expansion_factor number the to be applied expansion_factor

data number a general purpose field for users (we had room for it)

The width, height and depth values are read-only. The expansion_factor is assigned in the

par builder and used in the backend. Valid bits for the subtype field are:

BIT MEANING

0 character

1 ligature

2 ghost

3 left

4 right

The expansion_factor has been introduced as part of the separation between front- and back

end. It is the result of extensive experiments with a more efficient implementation of expansion.

Early versions of LuaTEX already replaced multiple instances of fonts in the backend by scaling

but contrary to pdfTEX in LuaTEX we now also got rid of font copies in the frontend and replaced

them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is

also a step towards a better separation between front- and backend.

The is_char function checks if a node is a glyph node with a subtype still less than 256. This

function can be used to determine if applying font logic to a glyph node makes sense. The value

nil gets returned when the node is not a glyph, a character number is returned if the node is

still tagged as character and false gets returned otherwise. When nil is returned, the id is also

returned. The is_glyph variant doesn't check for a subtype being less than 256, so it returns

either the character value or nil plus the id. These helpers are not always faster than separate

calls but they sometimes permit making more readable tests. The uses_font helpers takes a

node and font id and returns true when a glyph or disc node references that font.

9.2.13 boundary nodes

This node relates to the \noboundary, \boundary, \protrusionboundary and \wordboundary

primitives. These are small nodes: attr and data are the only fields.

FIELD TYPE EXPLANATION

subtype number cancel, protrusion, user and word

attr node list of attributes

data number values 0–255 are reserved

9.2.14 par nodes

This node is inserted at the start of a paragraph. You should not mess too much with this

one. Valid fields are: attr, box_left, box_left_width, box_right, box_right_width, bro

kenpenalty, dir and interlinepenalty.

Nodes136

FIELD TYPE EXPLANATION

attr node list of attributes

pen_inter number local interline penalty (from \localinterlinepenalty)

pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 9.2.15

box_left node the \localleftbox

box_left_width number width of the \localleftbox

box_right node the \localrightbox

box_right_width number width of the \localrightbox

A warning: never assign a node list to the box_left or box_right field unless you are sure its

internal link structure is correct, otherwise an error may result.

9.2.15 dir nodes

Direction nodes mark parts of the running text that need a change of direction and the \textdir

command generates them. Again this is a small node, we just have attr, dir and level.

FIELD TYPE EXPLANATION

subtype number cancel and normal

attr node list of attributes

dir string the direction (0 = l2r, 1 = r2l)

level number nesting level of this direction

There are only two directions: left-to-right (0) and right-to-left (1). This is different from LuaTEX

that has four directions.

9.2.16 Whatsits

A whatsit node is a real simple one and it only has a subtype. It is even less than a user node

(which it actually could be) and uses hardly any memory. What you do with it it entirely up to

you: it's is real minimalistic. You can assign a subtype and it has attributes. It is all up to the

user how they are handled.

9.2.17 Math noads

9.2.17.1 The concept

These are the so--called ‘noad’s and the nodes that are specifically associated with math pro

cessing. When you enter a formula, TEX creates a node list with regular nodes and noads. Then

it hands over the list the math processing engine. The result of that is a nodelist without noads.

Most of the noads contain subnodes so that the list of possible fields is actually quite small. Math

formulas are both a linked list and a tree. For instance in 𝑒 = 𝑚𝑐2 there is a linked list e = m c

but the c has a superscript branch that itself can be a list with branches.

First, there are the objects (the TEXbook calls them ‘atoms’) that are associated with the sim

137Nodes

ple math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcenter. These all

have the same fields, and they are combined into a single node type with separate subtypes for

differentiation: attr, nucleus, options, sub and sup.

Many object fields in math mode are either simple characters in a specific family or math lists

or node lists: math_char, math_text_char, sub_box and sub_mlist and delimiter. These are

endpoints and therefore the next and prev fields of these these subnodes are unused.

Some of the more elaborate noads have an option field. The values in this bitset are common:

MEANING BITS

set 0x08

internal 0x00 + 0x08

internal 0x01 + 0x08

axis 0x02 + 0x08

no axis 0x04 + 0x08

exact 0x10 + 0x08

left 0x11 + 0x08

middle 0x12 + 0x08

right 0x14 + 0x08

no subscript 0x21 + 0x08

no superscript 0x22 + 0x08

no script 0x23 + 0x08

9.2.17.2 math_char and math_text_char subnodes

These are the most common ones, as they represent characters, and they both have the same

fields: attr, char, fam and options.

FIELD TYPE EXPLANATION

attr node list of attributes

char number the character index

fam number the family number

The math_char is the simplest subnode field, it contains the character and family for a single

glyph object. The family eventually resolves on a reference to a font. The math_text_char

is a special case that you will not normally encounter, it arises temporarily during math list

conversion (its sole function is to suppress a following italic correction).

9.2.17.3 sub_box and sub_mlist subnodes

These two subnode types are used for subsidiary list items. For sub_box, the list points to a

‘normal’ vbox or hbox. For sub_mlist, the list points to a math list that is yet to be converted.

Their fields are: attr and list.

FIELD TYPE EXPLANATION

attr node list of attributes

list node list of nodes

Nodes138

Awarning: never assign a node list to the list field unless you are sure its internal link structure

is correct, otherwise an error is triggered.

9.2.17.4 delimiter subnodes

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next

and prev fields are unused, but we do have: attr, large_char, large_fam, small_char and

small_fam.

FIELD TYPE EXPLANATION

attr node list of attributes

small_char number character index of base character

small_fam number family number of base character

large_char number character index of next larger character

large_fam number family number of next larger character

The fields large_char and large_fam can be zero, in that case the font that is set for the

small_fam is expected to provide the large version as an extension to the small_char.

9.2.17.5 simple noad nodes

In these noads, the nucleus, sub and sup fields can branch of. Its fields are: attr, nucleus,

options, sub and sup.

FIELD TYPE EXPLANATION

subtype number bin, close, inner, op, open, ord, over, punct, rel, under and vcenter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

options number bitset of rendering options

9.2.17.6 accent nodes

Accent nodes deal with stuff on top or below a math constructs. They support: accent, attr,

bot_accent, fraction, nucleus, overlay_accent, sub, sup and top_accent.

FIELD TYPE EXPLANATION

subtype number bothflexible, fixedboth, fixedbottom and fixedtop

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

accent kernel node top accent

bot_accent kernel node bottom accent

fraction number larger step criterium (divided by 1000)

139Nodes

9.2.17.7 style nodes

These nodes are signals to switch to another math style. They are quite simple: attr and style.

Currently the subtype is actually used to store the style but don't rely on that for the future.

Fields are: attr and style.

FIELD TYPE EXPLANATION

style string contains the style

Valid styles are: display (0), crampeddisplay (1), text (2), crampedtext (3), script (4),

crampedscript (5), scriptscript (6) and crampedscriptscript (7).

9.2.17.8 parameter nodes

These nodes are used to (locally) set math parameters: list, name, style and value. Fields are:

list, name, style and value.

FIELD TYPE EXPLANATION

style string contains the style

name string defines the parameter

value number holds the value, in case of a muglue multiple

9.2.17.9 choice nodes

Of its fields attr, display, script, scriptscript and text most are lists. Warning: never

assign a node list unless you are sure its internal link structure is correct, otherwise an error

can occur.

FIELD TYPE EXPLANATION

attr node list of attributes

display node list of display size alternatives

text node list of text size alternatives

script node list of scriptsize alternatives

scriptscript node list of scriptscriptsize alternatives

9.2.17.10 radical nodes

Radical nodes are the most complex as they deal with scripts as well as constructed large sym

bols. Many fields: attr, degree, left, nucleus, options, sub, sup and width. Warning: never

assign a node list to the nucleus, sub, sup, left, or degree field unless you are sure its internal

link structure is correct, otherwise an error can be triggered.

FIELD TYPE EXPLANATION

subtype number radical, udelimiterover, udelimiterunder, uhextensible, uoverde

limiter, uradical, uroot and uunderdelimiter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

Nodes140

sup kernel node superscript

left delimiter node

degree kernel node only set by \Uroot

width number required width

options number bitset of rendering options

9.2.17.11 fraction nodes

Fraction nodes are also used for delimited cases, hence the left and right fields among: attr,

denom, fam, left, middle, num, options, right and width.

FIELD TYPE EXPLANATION

attr node list of attributes

width number (optional) width of the fraction

num kernel node numerator

denom kernel node denominator

left delimiter node left side symbol

right delimiter node right side symbol

middle delimiter node middle symbol

options number bitset of rendering options

Warning: never assign a node list to the num, or denom field unless you are sure its internal link

structure is correct, otherwise an error can result.

9.2.17.12 fence nodes

Fence nodes come in pairs but either one can be a dummy (this period driven empty fence).

Fields are: attr, class, delimiter, depth, height, italic and options. Some of these fields

are used by the renderer and might get adapted in the process.

FIELD TYPE EXPLANATION

subtype number left, middle, no, right and unset

attr node list of attributes

delimiter delimiter node delimiter specification

italic number italic correction

height number required height

depth number required depth

options number bitset of rendering options

class number spacing related class

9.3 The node library

9.3.1 Introduction

The node library provides methods that facilitate dealing with (lists of) nodes and their values.

141Nodes

They allow you to create, alter, copy, delete, and insert node, the core objects within the typeset

ter. Nodes are represented in Lua as userdata. The various parts within a node can be accessed

using named fields.

Each node has at least the three fields next, id, and subtype. The other available fields depend

on the id.

‣ The next field returns the userdata object for the next node in a linked list of nodes, or nil,

if there is no next node.

‣ The id indicates TEX's ‘node type’. The field id has a numeric value for efficiency reasons,

but some of the library functions also accept a string value instead of id.

‣ The subtype is another number. It often gives further information about a node of a particular

id.

Nodes can be compared to each other, but: you are actually comparing indices into the node

memory. This means that equality tests can only be trusted under very limited conditions. It will

not work correctly in any situation where one of the two nodes has been freed and/or reallocated:

in that case, there will be false positives. The general approach to a node related callback is as

follows:

‣ Assume that the node list that you get is okay and properly double linked. If for some reason

the links are not right, you can apply node.slide to the list.

‣ When you insert a node, make sure you use a previously removed one, a new one or a copy.

Don't simply inject the same node twice.

‣ When you remove a node, make sure that when this is permanent, you also free the node or

list.

‣ Although you can fool the system, normally you will trigger an error when you try to copy

a nonexisting node, or free an already freed node. There is some overhead involved in this

checking but the current compromise is acceptable.

‣ When you're done, pass back (if needed) the result. It's your responsibility to make sure that

the list is properly linked (you can play safe and again apply node.slide. In principle you

can put nodes in a list that are not acceptable in the following up actions. Some nodes get

ignored, others will trigger an error, and sometimes the engine will just crash.

So, from the above it will be clear thenmemory management of nodes has to be done explicitly by

the user. Nodes are not ‘seen’ by the Lua garbage collector, so you have to call the node freeing

functions yourself when you are no longer in need of a node (list). Nodes form linked lists without

reference counting, so you have to be careful that when control returns back to LuaTEX itself,

you have not deleted nodes that are still referenced from a next pointer elsewhere, and that

you did not create nodes that are referenced more than once. Normally the setters and getters

handle this for you.

A good example are discretionary nodes that themselves have three sublists. Internally they use

special pointers, but the user never sees them because when you query them or set fields, this

property is hidden and taken care of. You just see a list. But, when you mess with these sub lists

it is your responsibility that it only contains nodes that are permitted in a discretionary.

There are statistics available with regards to the allocated node memory, which can be handy

for tracing. Normally the amount of used nodes is not that large. Typesetting a page can involve

Nodes142

thousands of them but most are freed when the page has been shipped out. Compared to other

programs, node memory usage is not that excessive. So, if for some reason your application

leaks nodes, if at the end of your run you lost as few hundred it's not a real problem. In fact, if

you created boxes and made copies but not flushed them for good reason, your run will for sure

end with used nodes and the statistics will mention that. The same is true for attributes and

skips (glue spec nodes): keeping the current state involves using nodes.

9.3.2 Housekeeping

9.3.2.1 types

This function returns an array that maps node id numbers to node type strings, providing an

overview of the possible top-level id types.

<table> t = node.types()

When we issue this command, we get a table. The currently visible types are { [0] = "hlist",

"vlist", "rule", "insert", "mark", "adjust", "boundary", "disc", "whatsit", "par",

"dir", "math", "glue", "kern", "penalty", "style", "choice", "parameter", "noad",

"radical", "fraction", "accent", "fence", "math_char", "math_text_char", "sub_box",

"sub_mlist", "delimiter", "glyph", "unset", [32] = "attribute_list", [33] = "at

tribute", [34] = "glue_spec", [35] = "temp", [36] = "split", } where the numbers are

the internal identifiers. Only those nodes are reported that make sense to users so there can be

gaps in the range of numbers.

9.3.2.2 id and type

This converts a single type name to its internal numeric representation.

<number> id = node.id(<string> type)

The node.id("glyph") command returns the number 28 and node.id("hlist") returns 0

where the numbers don't relate to importance or some ordering; they just appear in the order

that is handy for the engine. Commands like this are rather optimized so performance should

be ok but you can of course always store the id in a Lua number.

The reverse operation is: node.type If the argument is a number, then the next function converts

an internal numeric representation to an external string representation. Otherwise, it will return

the string node if the object represents a node, and nil otherwise.

<string> type = node.type(<any> n)

The node.type(4) command returns the string mark and node.id(99) returns nil because there

is no node with that id.

9.3.2.3 fields and hasfield

This function returns an indexed table with valid field names for a particular type of node.

143Nodes

<table> t = node.fields(<number|string> id)

The function accepts a string or number, so node.fields ("glyph") returns { [-1] = "prev",

[0] = "next", "id", "subtype", "attr", "char", "font", "language", "lhmin", "rhmin",

"uchyph", "state", "left", "right", "xoffset", "yoffset", "xscale", "yscale",

"width", "height", "depth", "total", "expansion_factor", "data", "script", "hyphen

ate", "options", } and node.fields (12) gives { [-1] = "prev", [0] = "next", "id", "sub

type", "attr", "leader", "width", "stretch", "shrink", "stretch_order", "shrink_or

der", "font", }.

The hasfield function returns a boolean that is only true if n is actually a node, and it has the

field.

<boolean> t = node.hasfield(<node> n, <string> field)

This function probably is not that useful but some nodes don't have a subtype, attr or prev field

and this is a way to test for that.

9.3.2.4 is_node

<boolean|integer> t = node.is_node(<any> item)

This function returns a number (the internal index of the node) if the argument is a userdata

object of type <node> and false when no node is passed.

9.3.2.5 new

The new function creates a new node. All its fields are initialized to either zero or nil except

for id and subtype. Instead of numbers you can also use strings (names). If you pass a second

argument the subtype will be set too.

<node> n = node.new(<number|string> id)

<node> n = node.new(<number|string> id, <number|string> subtype)

As already has been mentioned, you are responsible for making sure that nodes created this way

are used only once, and are freed when you don't pass them back somehow.

9.3.2.6 free, flushnode and flushlist

The next one frees node n from TEX's memory. Be careful: no checks are done on whether this

node is still pointed to from a register or some next field: it is up to you to make sure that the

internal data structures remain correct. Fields that point to nodes or lists are flushed too. So,

when you used their content for something else you need to set them to nil first.

<node> next = node.free(<node> n)

flushnode(<node> n)

The free function returns the next field of the freed node, while the flushnode alternative

returns nothing.

A list starting with node n can be flushed from TEX's memory too. Be careful: no checks are done

Nodes144

on whether any of these nodes is still pointed to from a register or some next field: it is up to

you to make sure that the internal data structures remain correct.

node.flushlist(<node> n)

When you free for instance a discretionary node, flushlist is applied to the pre, post, replace

so you don't need to do that yourself. Assigning them nil won't free those lists!

9.3.2.7 copy and copylist

This creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.

Only the next field is not copied.

<node> m = node.copy(<node> n)

A deep copy of the node list that starts at n can be created too. If m is also given, the copy stops

just before node m.

<node> m = node.copylist(<node> n)

<node> m = node.copylist(<node> n, <node> m)

Note that you cannot copy attribute lists this way. However, there is normally no need to copy

attribute lists as when you do assignments to the attr field or make changes to specific attrib

utes, the needed copying and freeing takes place automatically. When you change a value of an

attribute in a list, it will affect all the nodes that share that list.

9.3.2.8 write

node.write(<node> n)

This function will append a node list to TEX's ‘current list’. The node list is not deep-copied!

There is no error checking either! You might need to enforce horizontal mode in order for this

to work as expected.

9.3.3 Manipulating lists

9.3.3.1 slide

This helper makes sure that the node list is double linked and returns the found tail node.

<node> tail = node.slide(<node> n)

In most cases TEX itself only uses next pointers but your other callbacks might expect proper

prev pointers too. So, when you run into issues or are in doubt, apply the slide function before

you return the list.

9.3.3.2 tail

<node> m = node.tail(<node> n)

145Nodes

Returns the last node of the node list that starts at n.

9.3.3.3 length and count

<number> i = node.length(<node> n)

<number> i = node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it

stops at m instead of at the end of the list. The node m is not counted.

<number> i = node.count(<number> id, <node> n)

<number> i = node.count(<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have a matching id

field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not

counted. This function also accept string id's.

9.3.3.4 remove

<node> head, current, removed =

node.remove(<node> head, <node> current)

<node> head, current =

node.remove(<node> head, <node> current, <boolean> true)

This function removes the node current from the list following head. It is your responsibility

to make sure it is really part of that list. The return values are the new head and current

nodes. The returned current is the node following the current in the calling argument, and

is only passed back as a convenience (or nil, if there is no such node). The returned head is

more important, because if the function is called with current equal to head, it will be changed.

When the third argument is passed, the node is freed.

9.3.3.5 insertbefore

<node> head, new = node.insertbefore(<node> head, <node> current, <node> new)

This function inserts the node new before current into the list following head. It is your respon

sibility to make sure that current is really part of that list. The return values are the (potentially

mutated) head and the node new, set up to be part of the list (with correct next field). If head is

initially nil, it will become new.

9.3.3.6 insertafter

<node> head, new = node.insertafter(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon

sibility to make sure that current is really part of that list. The return values are the head and

the node new, set up to be part of the list (with correct next field). If head is initially nil, it will

become new.

Nodes146

9.3.3.7 lastnode

<node> n = node.lastnode()

This function pops the last node from TEX's ‘current list’. It returns that node, or nil if the

current list is empty.

9.3.3.8 traverse

<node> t, id, subtype = node.traverse(<node> n)

This is a Lua iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

...

end

is functionally equivalent to:

do

local n

local function f (head,var)

local t

if var == nil then

t = head

else

t = var.next

end

return t

end

while true do

n = f (head, n)

if n == nil then break end

...

end

end

It should be clear from the definition of the function f that even though it is possible to add or

remove nodes from the node list while traversing, you have to take great care to make sure all

the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

9.3.3.9 traverse_id

<node> t, subtype = node.traverse_id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching

id field.

See the previous section for details. The change is in the local function f, which now does an

147Nodes

extra while loop checking against the upvalue id:

local function f(head,var)

local t

if var == nil then

t = head

else

t = var.next

end

while not t.id == id do

t = t.next

end

return t

end

9.3.3.10 traverse_char and traverse_glyph

The traverse_char iterator loops over the glyph nodes in a list. Only nodes with a subtype less

than 256 are seen.

<direct> n, font, char = node.direct.traverse_char(<direct> n)

The traverse_glyph iterator loops over a list and returns the list and filters all glyphs:

<direct> n, font, char = node.traverse_glyph(<direct> n)

These functions are only available for direct nodes.

9.3.3.11 traverse_list

This iterator loops over the hlist and vlist nodes in a list.

<direct> n, id, subtype, list = node.traverse_list(<direct> n)

The four return values can save some time compared to fetching these fields but in practice you

seldom need them all. This function is only available for direct nodes.

9.3.3.12 traverse_content

This iterator loops over nodes that have content: hlist, vlist, glue with leaders, glyphs, disc

and rules nodes.

<direct> n, id, subtype[, list|leader] = node.traverse_list(<direct> n)

The four return values can save some time compared to fetching these fields but in practice you

seldom need them all. This function is only available for direct nodes.

9.3.3.13 Reverse traversing

The traversers also support backward traversal. An optional extra boolean triggers this. Yet

Nodes148

another optional boolean will automatically start at the end of the given list.

\setbox0\hbox{1 2 3 4 5}

local l = tex.box[0].list

for n in node.traverse(l) do

print("1>",n)

end

for n in node.traverse(l,true) do

print("2>",n)

end

for n in node.traverse(l,true,true) do

print("3>",n)

end

for n in node.traverse_id(nodes.nodecodes.glyph,l) do

print("4>",n)

end

for n in node.traverse_id(nodes.nodecodes.glyph,l,true) do

print("5>",n)

end

for n in node.traverse_id(nodes.nodecodes.glyph,l,true,true) do

print("6>",n)

end

This produces something similar to this (the glyph subtype indicates that it has been processed

by the font handlers):

1> <node : nil <= 1112 => 590 : glyph 32768>

1> <node : 1112 <= 590 => 1120 : glue spaceskip>

1> <node : 590 <= 1120 => 849 : glyph 32768>

1> <node : 1120 <= 849 => 1128 : glue spaceskip>

1> <node : 849 <= 1128 => 880 : glyph 32768>

1> <node : 1128 <= 880 => 1136 : glue spaceskip>

1> <node : 880 <= 1136 => 1020 : glyph 32768>

1> <node : 1136 <= 1020 => 1144 : glue spaceskip>

1> <node : 1020 <= 1144 => nil : glyph 32768>

2> <node : nil <= 1112 => 590 : glyph 32768>

3> <node : 1020 <= 1144 => nil : glyph 32768>

3> <node : 1136 <= 1020 => 1144 : glue spaceskip>

3> <node : 880 <= 1136 => 1020 : glyph 32768>

3> <node : 1128 <= 880 => 1136 : glue spaceskip>

3> <node : 849 <= 1128 => 880 : glyph 32768>

3> <node : 1120 <= 849 => 1128 : glue spaceskip>

3> <node : 590 <= 1120 => 849 : glyph 32768>

3> <node : 1112 <= 590 => 1120 : glue spaceskip>

3> <node : nil <= 1112 => 590 : glyph 32768>

4> <node : nil <= 1112 => 590 : glyph 32768>

149Nodes

4> <node : 590 <= 1120 => 849 : glyph 32768>

4> <node : 849 <= 1128 => 880 : glyph 32768>

4> <node : 880 <= 1136 => 1020 : glyph 32768>

4> <node : 1020 <= 1144 => nil : glyph 32768>

5> <node : nil <= 1112 => 590 : glyph 32768>

6> <node : 1020 <= 1144 => nil : glyph 32768>

6> <node : 880 <= 1136 => 1020 : glyph 32768>

6> <node : 849 <= 1128 => 880 : glyph 32768>

6> <node : 590 <= 1120 => 849 : glyph 32768>

6> <node : nil <= 1112 => 590 : glyph 32768>

9.3.3.14 find_node

This helper returns the location of the first match at or after node n:

<node> n = node.find_node(<node> n, <integer> subtype)

<node> n, subtype = node.find_node(<node> n)

9.3.4 Glue handling

9.3.4.1 setglue

You can set the five properties of a glue in one go. If a non-numeric value is passed the property

becomes zero.

node.setglue(<node> n)

node.setglue(<node> n,width,stretch,shrink,stretch_order,shrink_order)

When you pass values, only arguments that are numbers are assigned so

node.setglue(n,655360,false,65536)

will only adapt the width and shrink.

When a list node is passed, you set the glue, order and sign instead.

9.3.4.2 getglue

The next call will return 5 values or nothing when no glue is passed.

<integer> width, <integer> stretch, <integer> shrink, <integer> stretch_order,

<integer> shrink_order = node.getglue(<node> n)

When the second argument is false, only the width is returned (this is consistent with tex.get).

When a list node is passed, you get back the glue that is set, the order of that glue and the sign.

9.3.4.3 iszeroglue

This function returns true when the width, stretch and shrink properties are zero.

Nodes150

<boolean> isglue = node.iszeroglue(<node> n)

9.3.5 Attribute handling

9.3.5.1 Attributes

Assignments to attributes registers result in assigning lists with set attributes to nodes and the

implementation is non-trivial because the value that is attached to a node is essentially a (sorted)

sparse array of key-value pairs. It is generally easiest to deal with attribute lists and attributes

by using the dedicated functions in the node library.

9.3.5.2 attribute_list nodes

An attribute_list item is used as a head pointer for a list of attribute items. It has only one

user-visible field:

FIELD TYPE EXPLANATION

next node pointer to the first attribute

9.3.5.3 attr nodes

A normal node's attribute field will point to an item of type attribute_list, and the next field

in that item will point to the first defined ‘attribute’ item, whose next will point to the second

‘attribute’ item, etc.

FIELD TYPE EXPLANATION

next node pointer to the next attribute

number number the attribute type id

value number the attribute value

As mentioned it's better to use the official helpers rather than edit these fields directly. For

instance the prev field is used for other purposes and there is no double linked list.

9.3.5.4 currentattr

This returns the currently active list of attributes, if there is one.

<node> m = node.currentattr()

The intended usage of currentattr is as follows:

local x1 = node.new("glyph")

x1.attr = node.currentattr()

local x2 = node.new("glyph")

x2.attr = node.currentattr()

or:

local x1 = node.new("glyph")

151Nodes

local x2 = node.new("glyph")

local ca = node.currentattr()

x1.attr = ca

x2.attr = ca

The attribute lists are ref counted and the assignment takes care of incrementing the refcount.

You cannot expect the value ca to be valid any more when you assign attributes (using tex.se

tattribute) or when control has been passed back to TEX.

9.3.5.5 hasattribute

<number> v = node.hasattribute(<node> n, <number> id)

<number> v = node.hasattribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value

matches val. It returns the value, or, if no match is found, nil.

9.3.5.6 getattribute

<number> v = node.getattribute(<node> n, <number> id)

Tests if a node has an attribute with number id set. It returns the value, or, if no match is found,

nil. If no id is given then the zero attributes is assumed.

9.3.5.7 findattribute

<number> v, <node> n = node.findattribute(<node> n, <number> id)

Finds the first node that has attribute with number id set. It returns the value and the node if

there is a match and otherwise nothing.

9.3.5.8 setattribute

node.setattribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

9.3.5.9 unsetattribute

<number> v =

node.unsetattribute(<node> n, <number> id)

<number> v =

node.unsetattribute(<node> n, <number> id, <number> val)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation

if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

Nodes152

9.3.6 Glyph handling

9.3.6.1 firstglyph

<node> n = node.firstglyph(<node> n)

<node> n = node.firstglyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is

a glyph, or nil. If m is given, processing stops at (but including) that node, otherwise processing

stops at the end of the list.

9.3.6.2 is_char and is_glyph

The subtype of a glyph node signals if the glyph is already turned into a character reference or

not.

<boolean> b = node.is_char(<node> n)

<boolean> b = node.is_glyph(<node> n)

9.3.6.3 hasglyph

This function returns the first glyph or disc node in the given list:

<node> n = node.hasglyph(<node> n)

9.3.6.4 ligaturing

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n, <node> m)

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned

nodes h and t are the new head and tail (both n and m can change into a new ligature).

9.3.6.5 kerning

<node> h, <node> t, <boolean> success = node.kerning(<node> n)

<node> h, <node> t, <boolean> success = node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified node list. The tail node m is optional. The two returned

nodes h and t are the head and tail (either one of these can be an inserted kern node, because

special kernings with word boundaries are possible).

9.3.6.6 unprotectglyph[s]

node.unprotectglyph(<node> n)

node.unprotectglyphs(<node> n,[<node> n])

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to con

vert from characters to glyphs during node processing. The second argument is optional and

indicates the end of a range.

153Nodes

9.3.6.7 protectglyph[s]

node.protectglyph(<node> n)

node.protectglyphs(<node> n,[<node> n])

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,

it adds only 255. The special handling of 1 means that characters will become glyphs after

subtraction of 256. A single character can be marked by the singular call. The second argument

is optional and indicates the end of a range.

9.3.6.8 protrusionskippable

<boolean> skippable = node.protrusionskippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,

this node can be skipped.

9.3.6.9 checkdiscretionary, checkdiscretionaries

When you fool around with disc nodes you need to be aware of the fact that they have a special

internal data structure. As long as you reassign the fields when you have extended the lists it's

ok because then the tail pointers get updated, but when you add to list without reassigning you

might end up in trouble when the linebreak routine kicks in. You can call this function to check

the list for issues with disc nodes.

node.checkdiscretionary(<node> n)

node.checkdiscretionaries(<node> head)

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it

also checks if the node is a disc node).

9.3.6.10 flattendiscretionaries

This function will remove the discretionaries in the list and inject the replace field when set.

<node> head, count = node.flattendiscretionaries(<node> n)

9.3.7 Packaging

9.3.7.1 hpack

This function creates a new hlist by packaging the list that begins at node n into a horizontal

box. With only a single argument, this box is created using the natural width of its components.

In the three argument form, infomust be either additional or exactly, and w is the additional

(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness

of the generated box.

<node> h, <number> b =

node.hpack(<node> n)

Nodes154

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info, <string> dir)

Caveat: there can be unexpected side-effects to this function, like updating some of the \marks

and \inserts. Also note that the content of h is the original node list n: if you call node.free(h)

you will also free the node list itself, unless you explicitly set the list field to nil beforehand.

And in a similar way, calling node.free(n) will invalidate h as well!

9.3.7.2 vpack

This function creates a new vlist by packaging the list that begins at node n into a vertical box.

With only a single argument, this box is created using the natural height of its components. In

the three argument form, info must be either additional or exactly, and w is the additional

(\vbox spread) or exact (\vbox to) height to be used.

<node> h, <number> b =

node.vpack(<node> n)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info, <string> dir)

The second return value is the badness of the generated box. See the description of hpack for a

few memory allocation caveats.

9.3.7.3 prepend_prevdepth

This function is somewhat special in the sense that it is an experimental helper that adds the

interlinespace to a line keeping the baselineskip and lineskip into account.

<node> n, <number> delta =

node.prepend_prevdepth(<node> n,<number> prevdepth)

9.3.7.4 dimensions, rangedimensions, naturalwidth

<number> w, <number> h, <number> d =

node.dimensions(<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<node> n, <node> t)

This function calculates the natural in-line dimensions of the node list starting at node n and

terminating just before node t (or the end of the list, if there is no second argument). The

return values are scaled points. An alternative format that starts with glue parameters as the

first three arguments is also possible:

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

155Nodes

<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n, <node> t)

This calling method takes glue settings into account and is especially useful for finding the actual

width of a sublist of nodes that are already boxed, for example in code like this, which prints the

width of the space in between the a and b as it would be if \box0 was used as-is:

\setbox0 = \hbox to 20pt {a b}

\directlua{print (node.dimensions(

tex.box[0].glue_set,

tex.box[0].glue_sign,

tex.box[0].glue_order,

tex.box[0].head.next,

node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TEX where floats are used, which

means that you can get small differences in rounding when you compare the width reported by

hpack with dimensions.

The second alternative saves a few lookups and can be more convenient in some cases:

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first)

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first, <node> last)

A simple and somewhat more efficient variant is this:

<number> w =

node.naturalwidth(<node> start, <node> stop)

9.3.8 Math

9.3.8.1 mlisttohlist

<node> h =

node.mlisttohlist(<node> n, <string> display_type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal

list h. The interface is exactly the same as for the callback mlisttohlist.

9.3.8.2 end_of_math

<node> t = node.end_of_math(<node> start)

Nodes156

Looks for and returns the next math_node following the start. If the given node is a math end

node this helper returns that node, else it follows the list and returns the next math endnote. If

no such node is found nil is returned.

9.4 Two access models

Deep down in TEX a node has a number which is a numeric entry in a memory table. In fact, this

model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks

that operate on nodes is quite fast too. Each node gets a number that is in fact an index in the

memory table and that number often is reported when you print node related information. You

go from userdata nodes and there numeric references and back with:

<integer> d = node.todirect(<node> n))

<node> n = node.tonode(<integer> d))

The userdata model is rather robust as it is a virtual interface with some additional checking

while themore direct access which uses the node numbers directly. However, even with userdata

you can get into troubles when you free nodes that are no longer allocated or mess up lists. if

you apply tostring to a node you see its internal (direct) number and id.

The first model provides key based access while the second always accesses fields via functions:

nodeobject.char

getfield(nodenumber,"char")

If you use the direct model, even if you know that you deal with numbers, you should not depend

on that property but treat it as an abstraction just like traditional nodes. In fact, the fact that we

use a simple basic datatype has the penalty that less checking can be done, but less checking

is also the reason why it's somewhat faster. An important aspect is that one cannot mix both

methods, but you can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct

one when speed might be a real issue. For that reason LuaTEX also provide the get* and set*

functions in the top level node namespace. There is a limited set of getters. When implementing

this direct approach the regular index by key variant was also optimized, so direct access only

makes sense when nodes are accessed millions of times (which happens in some font processing

for instance).

We're talking mostly of getters because setters are less important. Documents have not that

many content related nodes and setting many thousands of properties is hardly a burden con

trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next

if next then

-- do something

end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being

157Nodes

called. In practice it boils down to looking up the node type and based on the node type checking

for the field name. In a worst case you have a node type that sits at the end of the lookup list and

a field that is last in the lookup chain. However, in successive versions of LuaTEX these lookups

have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.

The next code does the same and performs a tiny bit faster (but not that much because it is still

a function call but one that knows what to look up).

local next = node.next(current)

if next then

-- do something

end

In the direct namespace there are more helpers and most of them are accompanied by setters.

The getters and setters are clever enough to see what node is meant. We don't deal with whatsit

nodes: their fields are always accessed by name. It doesn't make sense to add getters for all

fields, we just identifier the most likely candidates. In complex documents, many node and fields

types never get seen, or seen only a few times, but for instance glyphs are candidates for such

optimization. The node.direct interface has some more helpers.5

The setdisc helper takes three (optional) arguments plus an optional fourth indicating the sub

type. Its getdisc takes an optional boolean; when its value is true the tail nodes will also be

returned. The setfont helper takes an optional second argument, it being the character. The

directmode setter setlink takes a list of nodes and will link them, thereby ignoring nil entries.

The first valid node is returned (beware: for good reason it assumes single nodes). For rarely

used fields no helpers are provided and there are a few that probably are used seldom too but

were added for consistency. You can of course always define additional accessors using get

field and setfield with little overhead. When the second argument of setattributelist is

true the current attribute list is assumed.

The reverse function reverses a given list. The exchange function swaps two nodes; it takes

upto three arguments: a head node, and one or two to be swapped nodes. When there is no

third argument, it will assume that the node following node is to be used. So we have:

head = node.direct.reverse(head)

head = node.direct.exchange(head,first,[second])

In ConTEXt some of the not performance-critical userdata variants are emulated in Lua and not

in the engine, so we retain downward compatibility.

FUNCTION NODE DIRECTemulated

checkdiscretionaries − + +
checkdiscretionary − + +
copylist + +
copy + +
count − + +

5 We can define the helpers in the node namespace with getfield which is about as efficient, so at some point we might

provide that as module.

Nodes158

currentattributes + +
dimensions − + +
effectiveglue − + +
endofmath − + +
findattributerange − +
findattribute − + +
findnode − +
firstglyph − + +
flattendiscretionaries − + +
flushlist + +
flushnode + +
free + +
getattributes − +
getattribute + +
getpropertiestable + +
getsynctexfields − +
getattributelist − +
getboth − +
getbox − +
getchar − +
getdata − +
getdepth − +
getdirection − +
getdisc − +
getexpansion − +
getfam − +
getfield + +
getfont − +
getglue − + +
getglyphdata − +
getglyphdimensions − + +
getglyphscript − +
getglyphstate − +
getheight − +
getid − +
getindex − +
getkerndimension − + +
getkern − +
getlanguage − +
getleader − +
getlist − +
getnext − +
getnormalizedline − +
getnucleus − +
getoffsets − +
getoptions − +

159Nodes

getorientation − +
getparstate − +
getpenalty − +
getpost − +
getprev − +
getpre − +
getproperty + +
getreplace − +
getscales − +
getscript − +
getshift − +
getstate − +
getsubpre − +
getsubtype − +
getsub − +
getsuppre − +
getsup − +
gettotal + +
getwhd − +
getwidth − +
getxscale − +
getxyscale − +
getyscale − +
hasattribute + +
hasdimensions − +
hasfield + +
hasglyphoption − + +
hasglyph − + +
hpack − + +
hyphenating − + +
ignoremathskip − +
insertafter + +
insertbefore + +
ischar − +
isdirect − +
isglyph − +
isnextchar − +
isnextglyph − +
isnode + +
isprevchar − +
isprevglyph − +
isvalid − +
iszeroglue − + +
kerning − + +
lastnode − + +
length − + +

Nodes160

ligaturing − + +
makeextensible − + +
migrate − +
mlisttohlist − + +
naturalwidth − + +
new + +
protectglyphs − + +
protectglyph − + +
protrusionskippable − + +
rangedimensions − + +
remove + +
setattributes − +
setattribute + +
setsynctexfields − +
setattributelist − +
setboth − +
setbox − +
setchar − +
setdata − +
setdepth − +
setdirection − +
setdisc − +
setexpansion − +
setfam − +
setfield + +
setfont − +
setglue + +
setglyphdata − +
setglyphscript − +
setglyphstate − +
setheight − +
setindex − +
setkern − +
setlanguage − +
setleader − +
setlink − +
setlist − +
setnext − +
setnucleus − +
setoffsets − +
setoptions − +
setorientation − +
setpenalty − +
setpost − +
setprev − +
setpre − +

161Nodes

setproperty + +
setreplace − +
setscales − +
setscript − +
setshift − +
setsplit − +
setstate − +
setsubpre − +
setsubtype − +
setsub − +
setsuppre − +
setsup − +
setwhd − +
setwidth − +
slide − + +
startofpar − +
subtype − −
tail + +
todirect − +
tonode − +
tostring + −
total − +
tovaliddirect − +
traverse_char + +
traverse_content + +
traverse_glyph + +
traverse_id + +
traverse_list + +
traverse + +
type + −
unprotectglyphs − + +
unprotectglyph − + +
unsetattributes − +
unsetattribute + +
usedlist − + +
usesfont − + +
verticalbreak − +
vpack − + +
write + +

The node.next and node.prev functions will stay but for consistency there are variants called

getnext and getprev. We had to use get because node.id and node.subtype are already taken

for providing meta information about nodes. Note: The getters do only basic checking for valid

keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some of the getters and setters handle multiple node types, given that the field is relevant. In

that case, some field names are considered similar (like kern and width, or data and value). In

Nodes162

retrospect we could have normalized field names better but we decided to stick to the original

(internal) names as much as possible. After all, at the Lua end one can easily create synonyms.

Some nodes have indirect references. For instance a math character refers to a family instead

of a font. In that case we provide a virtual font field as accessor. So, getfont and .font can be

used on them. The same is true for the width, height and depth of glue nodes. These actually

access the spec node properties, and here we can set as well as get the values.

In some places LuaTEX can do a bit of extra checking for valid node lists and you can enable that

with:

node.fix_node_lists(<boolean> b)

You can set and query the SyncTEX fields, a file number aka tag and a line number, for a glue,

kern, hlist, vlist, rule and math nodes as well as glyph nodes (although this last one is not used

in native SyncTEX).

node.setsynctexfields(<integer> f, <integer> l)

<integer> f, <integer> l =

node.getsynctexfields(<node> n)

Of course you need to know what you're doing as no checking on sane values takes place. Also,

the synctex interpreter used in editors is rather peculiar and has some assumptions (heuristics).

9.5 Normalization

As an experiment the lines resulting from paragraph construction can be normalized. There are

several modes, that can be set and queried with:

node.direct.setnormalize(<integer> n)

<integer> n = node.direct.getnormalize()

The state of a line (a hlist) can be queried with:

<integer> leftskip, <integer> rightskip,

<integer> lefthangskip, <integer> righthangskip,

<node> head, <node> tail,

<integer> parindent, <integer> parfillskip = node.direct.getnormalized()

The modes accumulate, so mode 4 includes 1 upto 3:

VALUE EXPLANATION

1 left and right skips and directions

2 indentation and parfill skip

3 hanging indentation and par shapes

4 idem but before left and right skips

5 inject compensation for overflow

This is experimental code and might take a while to become frozen.

163Nodes

9.6 Properties

Attributes are a convenient way to relate extra information to a node. You can assign them at

the TEX end as well as at the Lua end and consult them at the Lua end. One big advantage is that

they obey grouping. They are linked lists and normally checking for them is pretty efficient, even

if you use a lot of them. A macro package has to provide some way to manage these attributes

at the TEX end because otherwise clashes in their usage can occur.

Each node also can have a properties table and you can assign values to this table using the

setproperty function and get properties using the getproperty function. Managing properties

is way more demanding than managing attributes.

Take the following example:

\directlua {

local n = node.new("glyph")

node.setproperty(n,"foo")

print(node.getproperty(n))

node.setproperty(n,"bar")

print(node.getproperty(n))

node.free(n)

}

This will print foo and bar which in itself is not that useful when multiple mechanisms want to

use this feature. A variant is:

\directlua {

local n = node.new("glyph")

node.setproperty(n,{ one = "foo", two = "bar" })

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

This time we store two properties with the node. It really makes sense to have a table as property

because that way we can store more. But in order for that to work well you need to do it this

way:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

Nodes164

t = { }

node.setproperty(n,t)

end

t.one = "foo"

t.two = "bar"

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

Here our own properties will not overwrite other users properties unless of course they use the

same keys. So, eventually you will end up with something:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.myself = { one = "foo", two = "bar" }

print(node.getproperty(n).myself.one)

print(node.getproperty(n).myself.two)

node.free(n)

}

This assumes that only you use myself as subtable. The possibilities are endless but care is

needed. For instance, the generic font handler that ships with ConTEXt uses the injections

subtable and you should not mess with that one!

There are a few helper functions that you normally should not touch as user: getproperti

estable and will give the table that stores properties (using direct entries) and you can best not

mess too much with that one either because LuaTEX itself will make sure that entries related to

nodes will get wiped when nodes get freed, so that the Lua garbage collector can do its job. In

fact, the main reason why we have this mechanism is that it saves the user (or macro package)

some work. One can easily write a property mechanism in Lua where after a shipout properties

gets cleaned up but it's not entirely trivial to make sure that with each freed node also its prop

erties get freed, due to the fact that there can be nodes left over for a next page. And having a

callback bound to the node deallocator would add way to much overhead.

When we copy a node list that has a table as property, there are several possibilities: we do the

same as a new node, we copy the entry to the table in properties (a reference), we do a deep copy

165Nodes

of a table in the properties, we create a new table and give it the original one as a metatable.

After some experiments (that also included timing) with these scenarios we decided that a deep

copy made no sense, nor did nilling. In the end both the shallow copy and the metatable variant

were both ok, although the second one is slower. The most important aspect to keep in mind is

that references to other nodes in properties no longer can be valid for that copy. We could use

two tables (one unique and one shared) or metatables but that only complicates matters.

When defining a new node, we could already allocate a table but it is rather easy to do that at

the lua end e.g. using a metatable __indexmethod. That way it is under macro package control.

When deleting a node, we could keep the slot (e.g. setting it to false) but it could make memory

consumption raise unneeded when we have temporary large node lists and after that only small

lists. Both are not done.

So in the end this is what happens now: when a node is copied, and it has a table as property, the

new node will share that table. If the second argument of set_properties_mode is true then a

metatable approach is chosen: the copy gets its own table with the original table as metatable.

If you use the generic font loader the mode is enabled that way.

A few more experiments were done. For instance: copy attributes to the properties so that we

have fast access at the Lua end. In the end the overhead is not compensated by speed and

convenience, in fact, attributes are not that slow when it comes to accessing them. So this was

rejected.

Another experiment concerned a bitset in the node but again the gain compared to attributes

was neglectable and given the small amount of available bits it also demands a pretty strong

agreement over what bit represents what, and this is unlikely to succeed in the TEX community.

It doesn't pay off.

Just in case one wonders why properties make sense: it is not so much speed that we gain,

but more convenience: storing all kinds of (temporary) data in attributes is no fun and this

mechanismmakes sure that properties are cleaned up when a node is freed. Also, the advantage

of a more or less global properties table is that we stay at the Lua end. An alternative is to store

a reference in the node itself but that is complicated by the fact that the register has some

limitations (no numeric keys) and we also don't want to mess with it too much.

Nodes166

167Lua callbacks

10 Lua callbacks

10.1 Registering callbacks

The callbacks are a moving target. Don't bother me with questions about them.

This library has functions that register, find and list callbacks. Callbacks are Lua functions

that are called in well defined places. There are two kinds of callbacks: those that mix with

existing functionality, and those that (when enabled) replace functionality. In mosty cases the

second category is expected to behave similar to the built in functionality because in a next step

specific data is expected. For instance, you can replace the hyphenation routine. The function

gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used

for constructing a paragraph. Another function can replace the ligature builder and/or kerner.

Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id = callback.register(<string> callback_name, <function> func)

id = callback.register(<string> callback_name, nil)

id = callback.register(<string> callback_name, false)

Here the callback_name is a predefined callback name, see below. The function returns the

internal id of the callback or nil, if the callback could not be registered.

LuaTEX internalizes the callback function in such a way that it does not matter if you redefine a

function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function

for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,

doing so will prevent LuaTEX from executing whatever it would execute by default (when no

callback function is registered at all). Be warned: this may cause all sorts of grief unless you

know exactly what you are doing!

<table> info =

callback.list()

The keys in the table are the known callback names, the value is a boolean where true means

that the callback is currently set (active).

<function> f = callback.find(callback_name)

If the callback is not set, find returns nil. The known function can be used to check if a callback

is supported.

if callback.known("foo") then ... end

Lua callbacks168

10.2 File related callbacks

10.2.1 find_format_file and find_log_file

These callbacks are called as:

<string> actualname =

function (<string> askedname)

The askedname is a format file for reading (the format file for writing is always opened in the

current directory) or a log file for writing.

10.2.2 open_data_file

This callback function gets a filename passed:

<table> env = function (<string> filename)

The return value is either the boolean value false or a table with two functions. A mandate

reader function fill be called once for each new line to be read, the optional close function will

be called once LuaTEX is done with the file.

LuaTEX never looks at the rest of the table, so you can use it to store your private per-file data.

Both the callback functions will receive the table as their only argument.

10.3 Data processing callbacks

10.3.1 process_jobname

This callback allows you to change the jobname given by \jobname in TEX and tex.jobname in

Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)

return <string> adjusted_jobname

end

The only argument is the actual job name; you should not use tex.jobname inside this function

or infinite recursion may occur. If you return nil, LuaTEX will pretend your callback never

happened. This callback does not replace any internal code.

169Lua callbacks

10.4 Node list processing callbacks

The description of nodes and node lists is in chapter 9.

10.4.1 contribute_filter

This callback is called when LuaTEX adds contents to list:

function(<string> extrainfo)

end

The string reports the group code. From this you can deduce from what list you can give a treat.

VALUE EXPLANATION

pre_box interline material is being added

pre_adjust \vadjust material is being added

box a typeset box is being added (always called)

adjust \vadjust material is being added

10.4.2 buildpage_filter

This callback is called whenever LuaTEX is ready to move stuff to the main vertical list. You can

use this callback to do specialized manipulation of the page building stage like imposition or

column balancing.

function(<string> extrainfo)

end

The string extrainfo gives some additional information about what TEX's state is with respect

to the ‘current page’. The possible values for the buildpage_filter callback are:

VALUE EXPLANATION

alignment a (partial) alignment is being added

after_output an output routine has just finished

new_graf the beginning of a new paragraph

vmode_par \par was found in vertical mode

hmode_par \par was found in horizontal mode

insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts

after_display a display is finished

end LuaTEX is terminating (it's all over)

10.4.3 build_page_insert

This callback is called when the pagebuilder adds an insert. There is not much control over this

Lua callbacks170

mechanism but this callback permits some last minute manipulations of the spacing before an

insert, something that might be handy when for instance multiple inserts (types) are appended

in a row.

function(<number> n, <number> i)

return <number> register

end

with

VALUE EXPLANATION

n the insert class

i the order of the insert

The return value is a number indicating the skip register to use for the prepended spacing. This

permits for instance a different top space (when i equals one) and intermediate space (when i

is larger than one). Of course you can mess with the insert box but you need to make sure that

LuaTEX is happy afterwards.

10.4.4 pre_linebreak_filter

This callback is called just before LuaTEX starts converting a list of nodes into a stack of \hboxes,

after the addition of \parfillskip.

function(<node> head, <string> groupcode)

return <node> newhead

end

The string called groupcode identifies the nodelist's context within TEX's processing. The range

of possibilities is given in the table below, but not all of those can actually appear in pre_line

break_filter, some are for the hpack_filter and vpack_filter callbacks that will be ex

plained in the next two paragraphs.

VALUE EXPLANATION

<empty> main vertical list

hbox \hbox in horizontal mode

adjusted_hbox \hbox in vertical mode

vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox

split_off top of a \vsplit

split_keep remainder of a \vsplit

171Lua callbacks

align_set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

‣ boolean true signals successful processing

‣ <node> signals that the ‘head’ node should be replaced by the returned node

‣ boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

10.4.5 linebreak_filter

This callback replaces LuaTEX's line breaking algorithm.

function(<node> head, <boolean> is_display)

return <node> newhead

end

The returned node is the head of the list that will be added to the main vertical list, the boolean

argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTEX will apply the internal linebreak algorithm

on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head

of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent

an \hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up

in an unfixable ‘deadcycles loop’.

10.4.6 append_to_vlist_filter

This callback is called whenever LuaTEX adds a box to a vertical list (the mirrored argument is

obsolete):

function(<node> box, <string> locationcode, <number> prevdepth)

return list [, prevdepth [, checkdepth]]

end

It is ok to return nothing or nil in which case you also need to flush the box or deal with it your

self. The prevdepth is also optional. Locations are box, alignment, equation, equation_number

and post_linebreak. When the third argument returned is true the normal prevdepth correc

tion will be applied, based on the first node.

10.4.7 post_linebreak_filter

This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

Lua callbacks172

function(<node> head, <string> groupcode)

return <node> newhead

end

This callback does not replace any internal code.

10.4.8 glyph_run

When set this callback is triggered when TEX normally handles the ligaturing and kerning. In

LuaTEX you use the hpack_filter and per_linebreak_filter callbacks for that (where each

passes different arguments). This callback doesn't get triggered when there are no glyphs (in

LuaTEX this optimization is controlled by a a variable).

function(<node> head, <string> groupcode, <number> direction])

return <node> newhead

end

The traditional TEX font processing is bypassed so you need to take care of that with the helpers.

(For the moment we keep the ligaturing and kerning callbacks but they are kind of obsolete.)

10.4.9 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math

items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,

<string> packtype [, <number> direction] [, <node> attributelist])

return <node> newhead

end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread

... argument. If exactly, then the size is a \hbox to In both cases, the number is in

scaled points.

This callback does not replace any internal code.

10.4.10 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math

displays are ignored at the moment.

This function is very similar to the hpack_filter. Besides the fact that it is called at different

moments, there is an extra variable that matches TEX's \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <number> direction] [, <node> attributelist]))

return <node> newhead

end

173Lua callbacks

This callback does not replace any internal code.

10.4.11 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

return <node> whatever

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed

(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return

a node, for instance an overfull rule indicator. That node will be appended to the list (just like

TEX's own rule would).

10.4.12 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

10.4.13 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets

three arguments: the node, the width and the height. The callback can use pdf.print to write

code to the pdf file but beware of not messing up the final result. No checking is done.

10.4.14 pre_output_filter

This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <number> direction])

return <node> newhead

end

This callback does not replace any internal code.

Lua callbacks174

10.4.15 hyphenate

function(<node> head, <node> tail)

end

No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

10.4.16 ligaturing

function(<node> head, <node> tail)

end

No return values. This callback has to apply ligaturing to the node list it receives.

You don't have to worry about return values because the head node that is passed on to the

callback is guaranteed not to be a glyph_node (if need be, a temporary node will be prepended),

and therefore it cannot be affected by the mutations that take place. After the callback, the

internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often

be ignored. It is provided for orthogonality, and because it can sometimes be handy when special

processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

10.4.17 kerning

function(<node> head, <node> tail)

end

No return values. This callback has to apply kerning between the nodes in the node list it

receives. See ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

10.4.18 insert_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You

can hook a callback into the creator:

function(<node> par, <string> location)

175Lua callbacks

end

There is no return value and you should make sure that the node stays valid as otherwise TEX

can get confused.

10.4.19 mlist_to_hlist

This callback replaces LuaTEX's math list to node list conversion algorithm.

function(<node> head, <string> display_type, <boolean> need_penalties)

return <node> newhead

end

The returned node is the head of the list that will be added to the vertical or horizontal list, the

string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean

argument is true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

10.5 Information reporting callbacks

10.5.1 pre_dump

function()

end

This function is called just before dumping to a format file starts. It does not replace any code

and there are neither arguments nor return values.

10.5.2 start_run

function()

end

This callback replaces the code that prints LuaTEX's banner. Note that for successful use, this

callback has to be set in the Lua initialization script, otherwise it will be seen only after the run

has already started.

10.5.3 stop_run

function()

end

This callback replaces the code that prints LuaTEX's statistics and ‘output written to’ messages.

The engine can still do housekeeping and therefore you should not rely on this hook for postpro

cessing the pdf or log file.

Lua callbacks176

10.5.4 intercept_tex_error, intercept_lua_error

function()

end

This callback is run from inside the TEX error function, and the idea is to allow you to do some

extra reporting on top of what TEX already does (none of the normal actions are removed).

You may find some of the values in the status table useful. The TEX related callback gets two

arguments: the current processing mode and a boolean indicating if there was a runaway.

10.5.5 show_error_message and show_warning_message

function()

end

These callback replaces the code that prints the error message. The usual interaction after the

message is not affected.

10.5.6 start_file

function(category,filename)

end

This callback replaces the code that LuaTEX prints when a file is opened like (filename for

regular files. The category is a number:

VALUE MEANING

1 a normal data file, like a TEX source

2 a font map coupling font names to resources

3 an image file (png, pdf, etc)

4 an embedded font subset

5 a fully embedded font

10.5.7 stop_file

function(category)

end

This callback replaces the code that LuaTEX prints when a file is closed like the) for regular

files.

10.5.8 wrapup_run

This callback is called after the pdf and log files are closed. Use it at your own risk.

177Lua callbacks

10.6 Font-related callbacks

10.6.1 define_font

function(<string> name, <number> size)

return <number> id

end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

‣ If it is positive, it specifies an ‘at size’ in scaled points.

‣ If it is negative, its absolute value represents a ‘scaled’ setting relative to the design size of

the font.

The font can be defined with font.define which returns a font identifier that can be returned

in the callback. So, contrary to LuaTEX, in LuaMetaTEX we only accept a number.

The internal structure of the font table that is passed to font.define is explained in chapter 6.

That table is saved internally, so you can put extra fields in the table for your later Lua code

to use. In alternative, retval can be a previously defined fontid. This is useful if a previous

definition can be reused instead of creating a whole new font structure.

Setting this callback to false is pointless as it will prevent font loading completely but will

nevertheless generate errors.

10.6.2 show_whatsit

Because we only have a generic whatsit it is up to the macro package to provide details when

tracing them.

function(<node> whatsit, <number> indentation,

<number> tracinglevel, <number> currentlevel, <number> inputlevel)

-- no return value

end

The indentation tells how many periods are to be typeset if you want to be compatible with the

rest of tracing. The tracinglevels indicates if the current level and|/or input level are shown cf.

\tracinglevels. Of course one is free to show whatever in whatever way suits the whatsit best.

Lua callbacks178

179The TEX related libraries

11 The TEX related libraries

11.1 The lua library

11.1.1 Version information

This version of the used Lua interpreter (currently Lua 5.4) can be queried with:

<string> v = lua.getversion()

The name of used startup file, if at all, is returned by:

<string> s = lua.getstartupfile()

For this document the reported value is:

c:/data/develop/tex-context/tex/texmf-cache/luatex-cache/context/764bd4e1ce0f004ab3cec90018f8b80a/for

mats/luametatex/cont-en.lui

11.1.2 Table allocators

Sometimes performance (and memory usage) can benefit a little from it preallocating a table

with newtable:

<table> t = lua.newtable(100,5000)

This preallocates 100 hash entries and 5000 index entries. The newindex function create an

indexed table with preset values:

<table> t = lua.newindex(2500,true)

11.1.3 Bytecode registers

Lua registers can be used to store Lua code chunks. The accepted values for assignments are

functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f

<function> f = lua.bytecode[<number> n] % -- f()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode,

so it can also be used to preload Lua code. The function must not contain any upvalues. The

associated function calls are:

lua.setbytecode(<number> n, <function> f)

<function> f = lua.getbytecode(<number> n)

The TEX related libraries180

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function,

a complete file can be stored in a bytecode register like this:

lua.setbytecode(n,loadfile(filename))

Now all definitions (functions, variables) contained in the file can be created by executing this

bytecode register:

lua.callbytecode(n)

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and

therefore dumped into the format file if the above code is used in iniTEX. If it contains private

information, i.e. the user name, this information is then contained in the format file as well. This

should be kept in mind when preloading files into a bytecode register in iniTEX.

11.1.4 Introspection

The getstacktop function return a number indicating how full the Lua stack is. This function

only makes sense as breakpoint when checking some mechanism going haywire.

There are four time related helpers. The getruntime function returns the time passed since

startup. The getcurrenttime does what its name says. Just play with them to see how it pays

off. The getpreciseticks returns a number that can be used later, after a similar call, to get a

difference. The getpreciseseconds function gets such a tick (delta) as argument and returns

the number of seconds. Ticks can differ per operating system, but one always creates a reference

first and then deltas to this reference.

11.2 The status library

This contains a number of run-time configuration items that you may find useful in message

reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. There are toplevel

items and items that are tables with subentries. The current list is:

TOPLEVEL STATISTICS

banner This is LuaMetaTeX, Version 2.09.16

copyright Taco Hoekwater, Hans Hagen & Wolfgang Schuster

development_id 20210630

filename E:/context/manuals/mkiv/external/luametatex/luametatex-tex.tex

format_id 587

logfilename luametatex.log

luatex_engine luametatex

luatex_revision 16

luatex_verbose 2.09.16

luatex_version 209

181The TEX related libraries

permit_loadlib false

run_state 1

used_compiler gcc

BUFFERSTATE.*

all 1000000

ini -1

max 100000000

mem 1000000

min 1000000

ptr 0

set 10000000

stp 1000000

top 810

CALLBACKSTATE.*

bytecode 597

count 197862

direct 115

file 13940

function 53573

local 0

message 0

saved 125841

value 3796

ENGINESTATE.*

banner This is LuaMetaTeX, Version 2.09.16

copyright Taco Hoekwater, Hans Hagen & Wolfgang Schuster

development_id 20210630

format_id 587

logfilename luametatex.log

luatex_engine luametatex

luatex_revision 16

luatex_verbose 2.09.16

luatex_version 209

permit_loadlib false

run_state 1

tex_hash_size 131072

used_compiler gcc

ERRORLINESTATE.*

max 255

min 132

The TEX related libraries182

set 250

top 0

ERRORSTATE.*

error unset

errorcontext unset

luaerror unset

EXPANDSTATE.*

max 1000000

min 10000

set 10000

top 10

EXTRASTATE.*

all 0

ini -1

max -1

mem 0

min -1

ptr 0

set -1

stp -1

top 0

FILESTATE.*

all 16000

ini -1

max 2000

mem 500

min 500

ptr 7

set 2000

stp 250

top 13

FONTSTATE.*

all 8597424

ini -1

max 100000

mem 8597424

min 250

ptr 27

set 100000

183The TEX related libraries

stp 250

top 250

HALFERRORLINESTATE.*

max 255

min 80

set 234

top 0

HASHSTATE.*

all 2400000

ini 0

max 2097152

mem 150000

min 150000

ptr 11579

set 250000

stp 100000

top 740036

INPUTSTATE.*

all 320000

ini -1

max 100000

mem 10000

min 10000

ptr 8

set 100000

stp 10000

top 49

INSERTSTATE.*

all 5760

ini -1

max 500

mem 240

min 10

ptr 7

set 250

stp 25

top 10

LANGUAGESTATE.*

all 96

ini 0

The TEX related libraries184

max 10000

mem 96

min 250

ptr 0

set 250

stp 250

top 250

LOOKUPSTATE.*

all -1

ini 44418

max 2097152

mem -1

min 150000

ptr 54012

set 250000

stp 100000

top 131074

LUASTATE.*

bytecodebytes 15968

bytecodes 997

functionsize 32768

propertiessize 10000

statebytes 146365839

statebytesmax 151415680

MARKSTATE.*

all 28800

ini -1

max 10000

mem 1200

min 50

ptr 0

set 250

stp 50

top 50

NESTSTATE.*

all 48000

ini -1

max 10000

mem 1000

min 1000

ptr 0

set 10000

185The TEX related libraries

stp 1000

top 19

NODESTATE.*

all 9000000

ini 0

max 50000000

mem 1000000

min 1000000

ptr -178659

set 50000000

stp 500000

top 224862

PARAMETERSTATE.*

all 80000

ini -1

max 100000

mem 20000

min 20000

ptr 1

set 100000

stp 10000

top 53

POOLSTATE.*

all 1052277

ini 838105

max 100000000

mem 1052277

min 10000000

ptr -1

set 10000000

stp 1000000

top -1

READSTATE.*

filename E:/context/manuals/mkiv/external/luametatex/luametatex-tex.tex

iocode 5

linenumber 210

skiplinenumber 163

SAVESTATE.*

all 160000

ini -1

The TEX related libraries186

max 500000

mem 10000

min 100000

ptr 154

set 500000

stp 10000

top 732

SPARSESTATE.*

all 1661656

ini -1

max -1

mem 1661656

min -1

ptr -1

set -1

stp -1

top -1

STRINGSTATE.*

all 3600000

ini 2141584

max 2097152

mem 150000

min 150000

ptr 54026

set 500000

stp 100000

top 54026

TEXSTATE.*

approximate 36970013

TOKENSTATE.*

all 8000000

ini 489137

max 10000000

mem 1000000

min 1000000

ptr 1233170

set 10000000

stp 250000

top 679647

187The TEX related libraries

WARNINGSTATE.*

warning unset

warningtag unset

There are also getters for the subtables. The whole repertoire of functions in the sta

tus table is: getbufferstate, getcallbackstate, getconstants, geterrorlinestate,

geterrorstate, getexpandstate, getextrastate, getfilestate, getfontstate, geth

alferrorlinestate, gethashstate, getinputstate, getinsertstate, getlanguages

tate, getlookupstate, getluastate, getmarkstate, getneststate, getnodestate,

getparameterstate, getpoolstate, getreadstate, getsavestate, getsparsestate,

getstringstate, gettexstate, gettokenstate, getwarningstate, iocodes, list, re

setmessages. The error and warning messages can be wiped with the resetmessages function.

The states in subtables relate to memory management and are mostly there for development

purposes.

The getconstants query gives back a table with all kind of internal quantities and again

these are only relevant for diagnostic and development purposes. Many are good old TEX con

stants that are describes in the original documentation of the source but some are definitely

LuaMetaTEX specific.

CONSTANTS.*

awful_bad 1073741823

decent_criterium 12

default_catcode_table -1

default_deadcycles 25

default_eqno_gap_step 1000

default_hangafter 1

default_output_box 255

default_pre_display_gap 2000

default_rule 26214

default_space_factor 1000

default_tolerance 10000

deplorable 100000

eject_penalty -10000

ignore_depth -65536000

infinite_bad 10000

infinite_penalty 10000

infinity 2147483647

large_width_excess 7230584

loose_criterium 99

max_bytecode_index 65535

max_cardinal 4294967295

max_category_code 15

max_char_code 15

max_character_code 1114111

max_data_value 2097151

max_dimen 1073741823

The TEX related libraries188

max_function_reference 2097151

max_half_value 32767

max_halfword 1073741823

max_integer 2147483647

max_mark_index 9999

max_math_class_code 7

max_math_family_index 255

max_n_of_bytecodes 65536

max_n_of_catcode_tables 256

max_n_of_fonts 100000

max_n_of_languages 10000

max_n_of_marks 10000

max_n_of_math_families 256

max_n_of_registers 65536

max_newline_character 127

max_quarterword 65535

max_register_index 65535

max_size_of_word 1024

max_space_factor 32767

min_cardinal 0

min_data_value 0

min_dimen -1073741823

min_halfword -1073741823

min_infinity -2147483647

min_integer -2147483647

min_quarterword 0

min_space_factor 0

no_catcode_table -2

null 0

null_flag -1073741824

null_font 0

one_bp 65781

preset_rule_thickness 1073741824

small_stretchability 1663497

tex_eqtb_size 590036

tex_hash_prime 131041

tex_hash_size 131072

two 131072

unity 65536

unused_attribute_value -2147483647

unused_script_value 0

unused_state_value 0

zero_glue 0

Most variables speak for themselves, some are more obscure. For instance the run_state vari

able indicates what the engine is doing:

189The TEX related libraries

N meaning explanation

0 initializing --ini mnode

1 updating relates to \overloadmode

2 production a regular (format driven) run

11.3 The tex library

11.3.1 Introduction

The tex table contains a large list of virtual internal TEX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in Lua, but are only

frontends that are handled by a metatable that operates on the actual TEX values. As a result,

most of the Lua table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that you can use after \the, is a

single token or is sort of special in TEX. This excludes parameters that need extra arguments, like

\the\scriptfont. The subset comprising simple integer and dimension registers are writable

as well as readable (like \tracingcommands and \parindent).

11.3.2 Internal parameter values, set and get

For all the parameters in this section, it is possible to access them directly using their names as

index in the tex table, or by using one of the functions tex.get and tex.set.

The exact parameters and return values differ depending on the actual parameter, and so does

whether tex.set has any effect. For the parameters that can be set, it is possible to use global

as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (["global",] <string> n, ...)

... = tex.get (<string> n)

Glue is kind of special because there are five values involved. The return value is a glue_spec

node but when you pass false as last argument to tex.get you get the width of the glue and

when you pass true you get all five values. Otherwise you get a node which is a copy of the

internal value so you are responsible for its freeing at the Lua end. When you set a glue quantity

you can either pass a glue_spec or upto five numbers.

Beware: as with regular Lua tables you can add values to the tex table. So, the following is

valid:

tex.foo = 123

When you access a TEX parameter a look up takes place. For read--only variables that means

that you will get something back, but when you set them you create a new entry in the table

thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space

factor. These normally are accessed via the tex.nest table:

The TEX related libraries190

tex.nest[tex.nest.ptr].prevdepth = p

tex.nest[tex.nest.ptr].spacefactor = s

However, the following also works:

tex.prevdepth = p

tex.spacefactor = s

Keep in mind that when you mess with node lists directly at the Lua end you might need to

update the top of the nesting stack's prevdepth explicitly as there is no way LuaTEX can guess

your intentions. By using the accessor in the tex tables, you get and set the values at the top of

the nesting stack.

11.3.2.1 Integer parameters

The integer parameters accept and return Lua integers. In some cases the values are

checked, trigger other settings or result in some immediate change of behaviour: adjdemer

its, adjustspacing, adjustspacingshrink, adjustspacingstep, adjustspacingstretch, au

tomatichyphenpenalty, automigrationmode, binoppenalty, brokenpenalty, catcodetable,

clubpenalty, day, defaulthyphenchar, defaultskewchar, delimiterfactor, displaywid

owpenalty, doublehyphendemerits, endlinechar, errorcontextlines, escapechar, excep

tionpenalty, exhyphenchar, exhyphenpenalty, explicithyphenpenalty, fam, finalhyphen

demerits, firstvalidlanguage, floatingpenalty, globaldefs, glyphdatafield, glyphop

tions, glyphscale, glyphscriptfield, glyphscriptscale, glyphscriptscriptscale, glyph

statefield, glyphtextscale, glyphxscale, glyphyscale, hangafter, hbadness, holdin

ginserts, hyphenationmode, hyphenpenalty, interlinepenalty, language, lastlinefit,

lefthyphenmin, linedirection, linepenalty, localbrokenpenalty, localinterlinepenalty,

looseness, luacopyinputnodes, mathcontrolmode, mathdelimitersmode, mathdirection,

mathdisplayskipmode, matheqnogapstep, mathflattenmode, mathfontcontrol, mathital

icsmode, mathnolimitsmode, mathpenaltiesmode, mathrulesfam, mathrulesmode, math

rulethicknessmode, mathscriptboxmode, mathscriptcharmode, mathscriptsmode, mathsur

roundmode, maxdeadcycles, month, newlinechar, normalizelinemode, nospaces, output

box, outputpenalty, overloadmode, pardirection, pausing, postdisplaypenalty, prebinop

penalty, predisplaydirection, predisplaygapfactor, predisplaypenalty, prerelpenalty,

pretolerance, protrudechars, relpenalty, righthyphenmin, savinghyphcodes, savingvdis

cards, setfontid, setlanguage, showboxbreadth, showboxdepth, shownodedetails, sup

markmode, textdirection, time, tolerance, tracingalignments, tracingassigns, trac

ingcommands, tracingexpressions, tracingfonts, tracinggroups, tracinghyphenation,

tracingifs, tracinglevels, tracinglostchars, tracingmacros, tracingmath, tracingnest

ing, tracingonline, tracingoutput, tracingpages, tracingparagraphs, tracingrestores,

tracingstats, uchyph, vbadness, widowpenalty, year.

Some integer parameters are read only, because they are actually referring not to some inter

nal integer register but to an engine property: deadcycles, insertpenalties, parshape, in

terlinepenalties, clubpenalties, widowpenalties, displaywidowpenalties, prevgraf and

spacefactor.

191The TEX related libraries

11.3.2.2 Dimension parameters

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with in

cluded dimension). The result is always a number in scaled points. These are read-write: box

maxdepth, delimitershortfall, displayindent, displaywidth, emergencystretch, glyphx

offset, glyphyoffset, hangindent, hfuzz, hsize, lineskiplimit, mathsurround, maxdepth,

nulldelimiterspace, overfullrule, parindent, predisplaysize, pxdimen, scriptspace,

splitmaxdepth, vfuzz, vsize.

These are read-only: pagedepth, pagefilllstretch, pagefillstretch, pagefilstretch, page

goal, pageshrink, pagestretch and pagetotal.

11.3.2.3 Direction parameters

The direction states can be queried with: gettextdir, getlinedir, getmathdir and getpar

dir. You can set them with settextdir, setlinedir, setmathdir and setpardir, commands

that accept a number. You can also set these parameters as table key/values: textdirection,

linedirection, mathdirection and pardirection, so the next code sets the text direction to

r2l:

tex.textdirection = 1

11.3.2.4 Glue parameters

The internal glue parameters accept and return a userdata object that represents a glue_spec

node: abovedisplayshortskip, abovedisplayskip, baselineskip, belowdisplayshortskip,

belowdisplayskip, leftskip, lineskip, mathsurroundskip, parfillleftskip, parfillskip,

parskip, rightskip, spaceskip, splittopskip, tabskip, topskip, xspaceskip.

11.3.2.5 Muglue parameters

All muglue parameters are to be used read-only and return a Lua string medmuskip, thickmuskip,

thinmuskip.

11.3.2.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or other

(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it

feels bad to make exceptions in view of a coming extension that will accept full-blown token

strings. Here is the lot: errhelp, everybeforepar, everycr, everydisplay, everyeof, every

hbox, everyjob, everymath, everypar, everytab, everyvbox, output.

11.3.3 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands at this

moment are: Uchar, csstring, directlua, expanded, fontname, fontspecifiedname, format

name, jobname, luabytecode, luaescapestring, luafunction, luatexbanner, meaning, mean

ingfull, meaningless, number, romannumeral, string, todimension, tointeger, toscaled.

The TEX related libraries192

You will get an error message if an operation is not (yet) permitted. Some take an string or

number argument, just like at the TEX end some extra input is expected.

11.3.4 Item commands

All so called ‘item’ commands are read-only and return a number. The complete list of

these commands is: Umathcharclass, Umathcharfam, Umathcharslot, badness, current

grouplevel, currentgrouptype, currentifbranch, currentiflevel, currentiftype, dim

expr, dimexpression, fontchardp, fontcharht, fontcharic, fontcharwd, fontid, fontmath

control, fontspecifiedsize, fonttextcontrol, glueexpr, glueshrink, glueshrinkorder,

gluestretch, gluestretchorder, gluetomu, inputlineno, insertprogress, lastarguments,

lastchkdim, lastchknum, lastkern, lastnodesubtype, lastnodetype, lastpenalty, lastskip,

leftmarginkern, luatexrevision, luatexversion, mathscale, mathstyle, muexpr, mutoglue,

numericscale, numexpr, numexpression, overshoot, parametercount, parshapedimen, par

shapeindent, parshapelength, rightmarginkern. No all are currently supported but even

tually that might be the case. Like the lists in previous sections, there are differences between

LuaTEX and LuaMetaTEX, where some commands are organized differently in order to provide

a consistent Lua interface.

11.3.5 Accessing registers: set*, get* and is*

TEX's attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip, \muskip)

and token (\toks) registers can be accessed and written to using two times five virtual sub-tables

of the tex table:

tex.attribute

tex.count

tex.dimen

tex.skip

tex.glue

tex.muskip

tex.muglue

tex.toks

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or

\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0

enormous = tex.dimen['maxdimen']

In this case, LuaTEX looks up the value for you on the fly. You have to use a valid \countdef (or

\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error

(the intent is to eventually also allow <chardef tokens> and even macros that expand into a

number).

‣ The count registers accept and return Lua numbers.

‣ The dimension registers accept Lua numbers (in scaled points) or strings (with an included

absolute dimension; em and ex and px are forbidden). The result is always a number in scaled

points.

‣ The token registers accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or

193The TEX related libraries

other (12).

‣ The skip registers accept and return glue_spec userdata node objects (see the description

of the node interface elsewhere in this manual).

‣ The glue registers are just skip registers but instead of userdata are verbose.

‣ Like the counts, the attribute registers accept and return Lua numbers.

As an alternative to array addressing, there are also accessor functions defined for all cases, for

example, here is the set of possibilities for \skip registers:

tex.setskip (["global",] <number> n, <node> s)

tex.setskip (["global",] <string> s, <node> s)

<node> s = tex.getskip (<number> n)

<node> s = tex.getskip (<string> s)

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented

by numbers, skips and muskips by nodes, and toks by strings.

Again the glue variants are not using the glue-spec userdata nodes. The setglue function ac

cepts upto five arguments: width, stretch, shrink, stretch order and shrink order. Non-numeric

values set the property to zero. The getglue function reports all five properties, unless the

second argument is false in which case only the width is returned.

Here is an example using a threesome:

local d = tex.getdimen("foo")

if tex.isdimen("oof") then

tex.setdimen("oof",d)

end

There are six extra skip (glue) related helpers:

tex.setglue (["global"], <number> n,

width, stretch, shrink, stretch_order, shrink_order)

tex.setglue (["global"], <string> s,

width, stretch, shrink, stretch_order, shrink_order)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<number> n)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<string> s)

The other two are tex.setmuglue and tex.getmuglue.

There are such helpers for dimen, count, skip, muskip, box and attribute registers but the

glue ones are special because they have to deal with more properties.

As with the general get and set function discussed before, for the skip registers getskip returns

a node and getglue returns numbers, while setskip accepts a node and setglue expects upto

5 numbers. Again, when you pass false as second argument to getglue you only get the width

returned. The same is true for the mu variants getmuskip, setmuskip, getmuskip andsetmuskip.

For tokens registers we have an alternative where a catcode table is specified:

The TEX related libraries194

tex.scantoks(0,3,"$e=mc^2$")

tex.scantoks("global",0,3,"$\int\limits^1_2$")

In the function-based interface, it is possible to define values globally by using the string global

as the first function argument.

There is a dedicated getter for marks: getmark that takes two arguments. The first argument

is one of top, bottom, first, splitbottom or splitfirst, and the second argument is a marks

class number. When no arguments are given the current maximum number of classes is re

turned.

When tex.gettoks gets an extra argument true it will return a table with userdata tokens.

11.3.6 Character code registers: [get|set]*code[s]

TEX's character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can

be accessed and written to using six virtual subtables of the tex table

tex.lccode

tex.uccode

tex.sfcode

tex.catcode

tex.mathcode

tex.delcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the

simple ones:

tex.setsfcode (["global",] <number> n, <number> s)

<number> s = tex.getsfcode (<number> n)

The function call interface for lccode and uccode additionally allows you to set the associated

sibling at the same time:

tex.setlccode (["global"], <number> n, <number> lc)

tex.setlccode (["global"], <number> n, <number> lc, <number> uc)

<number> lc = tex.getlccode (<number> n)

tex.setuccode (["global"], <number> n, <number> uc)

tex.setuccode (["global"], <number> n, <number> uc, <number> lc)

<number> uc = tex.getuccode (<number> n)

The function call interface for catcode also allows you to specify a category table to use on

assignment or on query (default in both cases is the current one):

tex.setcatcode (["global"], <number> n, <number> c)

tex.setcatcode (["global"], <number> cattable, <number> n, <number> c)

<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

tex.setmathcode (["global"], <number> n, <table> mval)

<table> mval = tex.getmathcode (<number> n)

195The TEX related libraries

tex.setdelcode (["global"], <number> n, <table> dval)

<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{

<number> class,

<number> family,

<number> character

}

And the table for delcode is an array with 4 numbers, like this:

{

<number> small_fam,

<number> small_char,

<number> large_fam,

<number> large_char

}

You can also avoid the table:

tex.setmathcode (["global"], <number> n, <number> class,

<number> family, <number> character)

class, family, char =

tex.getmathcodes (<number> n)

tex.setdelcode (["global"], <number> n, <number> smallfam,

<number> smallchar, <number> largefam, <number> largechar)

smallfam, smallchar, largefam, largechar =

tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to

\Udelcode usage, but the returned table can have values there (if the delimiter code was set

using \delcode, for example). Unset delcode's can be recognized because dval[1] is −1.

11.3.7 Box registers: [get|set]box

It is possible to set and query actual boxes, coming for instance from \hbox, \vbox or \vtop,

using the node interface as defined in the node library:

tex.box

for array access, or

tex.setbox(["global",] <number> n, <node> s)

tex.setbox(["global",] <string> cs, <node> s)

<node> n = tex.getbox(<number> n)

<node> n = tex.getbox(<string> cs)

The TEX related libraries196

for function-based access. In the function-based interface, it is possible to define values globally

by using the string global as the first function argument.

Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com

mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,

always use node.copy_list unless you are assigning to a temporary variable:

tex.box[0] = node.copy_list(tex.box[2])

11.3.8 triggerbuildpage

You should not expect to much from the triggerbuildpage helpers because often TEX doesn't

do much if it thinks nothing has to be done, but it might be useful for some applications. It just

does as it says it calls the internal function that build a page, given that there is something to

build.

11.3.9 splitbox

You can split a box:

local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is

comparable to the \vsplit operation. The mode can be additional or exactly and concerns

the split off box.

11.3.10 Accessing math parameters: [get|set]math

It is possible to set and query the internal math parameters using:

tex.setmath(["global",] <string> n, <string> t, <number> n)

<number> n = tex.getmath(<string> n, <string> t)

As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the

style name minus the trailing ‘style’. Just to be complete, the values for the math parameter

name are:

quad axis operatorsize

overbarkern overbarrule overbarvgap

underbarkern underbarrule underbarvgap

radicalkern radicalrule radicalvgap

radicaldegreebefore radicaldegreeafter radicaldegreeraise

stackvgap stacknumup stackdenomdown

197The TEX related libraries

fractionrule fractionnumvgap fractionnumup

fractiondenomvgap fractiondenomdown fractiondelsize

limitabovevgap limitabovebgap limitabovekern

limitbelowvgap limitbelowbgap limitbelowkern

underdelimitervgap underdelimiterbgap

overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown

subsupshiftdown subtopmax supshiftup

supbottommin supsubbottommax subsupvgap

spaceafterscript connectoroverlapmin

ordordspacing ordopspacing ordbinspacing ordrelspacing

ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing

opordspacing opopspacing opbinspacing oprelspacing

opopenspacing opclosespacing oppunctspacing opinnerspacing

binordspacing binopspacing binbinspacing binrelspacing

binopenspacing binclosespacing binpunctspacing bininnerspacing

relordspacing relopspacing relbinspacing relrelspacing

relopenspacing relclosespacing relpunctspacing relinnerspacing

openordspacing openopspacing openbinspacing openrelspacing

openopenspacing openclosespacing openpunctspacing openinnerspacing

closeordspacing closeopspacing closebinspacing closerelspacing

closeopenspacing closeclosespacing closepunctspacing closeinnerspacing

punctordspacing punctopspacing punctbinspacing punctrelspacing

punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing

innerordspacing inneropspacing innerbinspacing innerrelspacing

inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter are:

display crampeddisplay

text crampedtext

script crampedscript

scriptscript crampedscriptscript

The value is either a number (representing a dimension or number) or a glue spec node repre

senting a muskip for ordordspacing and similar spacing parameters.

11.3.11 Special list heads: [get|set]list

The virtual table tex.lists contains the set of internal registers that keep track of building

page lists.

FIELD EXPLANATION

page_ins_head circular list of pending insertions

contribute_head the recent contributions

page_head the current page content

hold_head used for held-over items for next page

The TEX related libraries198

adjust_head head of the current \vadjust list

pre_adjust_head head of the current \vadjust pre list

page_discards_head head of the discarded items of a page break

split_discards_head head of the discarded items in a vsplit

The getter and setter functions are getlist and setlist. You have to be careful with what you

set as TEX can have expectations with regards to how a list is constructed or in what state it is.

11.3.12 Semantic nest levels: getnest and ptr

The virtual table nest contains the currently active semantic nesting state. It has twomain parts:

a zero-based array of userdata for the semantic nest itself, and the numerical value ptr, which

gives the highest available index. Neither the array items in nest[] nor ptr can be assigned to

(as this would confuse the typesetting engine beyond repair), but you can assign to the individual

values inside the array items, e.g. tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, nest[0] the outermost (main vertical list)

level. The getter function is getnest. You can pass a number (which gives you a list), nothing or

top, which returns the topmost list, or the string ptr which gives you the index of the topmost

list.

The known fields are:

KEY TYPE MODES EXPLANATION

mode number all the meaning of these numbers depends on the engine and

sometimes even the version; you can use tex.getmodeval

ues() to get the mapping: positive values signal vertical,

horizontal and math mode, while negative values indicate in

ner and inline variants

modeline number all source input line where this mode was entered in, negative

inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

prevdepth number vmode depth of the previous paragraph

spacefactor number hmode the current space factor

direction node hmode stack used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,

for \over etc.

delimptr node mmode used for temporary storage of the previous math delimiter,

for \middle

mathdir boolean mmode true when during math processing the \mathdir is not the

same as the surrounding \textdir

mathstyle number mmode the current \mathstyle

When a second string argument is given to the getnest, the value with that name is returned.

Of course the level must be valid. When setnest gets a third argument that value is assigned

199The TEX related libraries

to the field given as second argument.

11.3.13 Print functions

The tex table also contains the three print functions that are the major interface from Lua

scripting to TEX. The arguments to these three functions are all stored in an in-memory virtual

file that is fed to the TEX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available

system ram. However, each separate printed string has to fit completely in TEX's input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

11.3.13.1 print

tex.print(<string> s, ...)

tex.print(<number> n, <string> s, ...)

tex.print(<table> t)

tex.print(<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument

instead of a list of strings, this has to be a consecutive array of strings to print (the first non-string

value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by

\catcodetable n. If n is −1, the currently active catcode regime is used. If n is −2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space

character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it

is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print command in a \directlua will not have the

\endlinechar appended, all others do.

11.3.13.2 sprint

tex.sprint(<string> s, ...)

tex.sprint(<number> n, <string> s, ...)

tex.sprint(<table> t)

tex.sprint(<number> n, <table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a partial line input mechanism:

‣ TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

‣ No \endlinechar is inserted.

‣ Trailing spaces are not removed. Note that this does not prevent TEX itself from eating spaces

as result of interpreting the line. For example, in

before\directlua{tex.sprint("\\relax")tex.sprint(" in between")}after

the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

The TEX related libraries200

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

The optional argument sets the catcode regime, as with tex.print. This influences the string

arguments (or numbers turned into strings).

Although this needs to be used with care, you can also pass token or node userdata objects.

These get injected into the stream. Tokens had best be valid tokens, while nodes need to be

around when they get injected. Therefore it is important to realize the following:

‣ When you inject a token, you need to pass a valid token userdata object. This object will

be collected by Lua when it no longer is referenced. When it gets printed to TEX the token

itself gets copied so there is no interference with the Lua garbage collection. You manage the

object yourself. Because tokens are actually just numbers, there is no real extra overhead at

the TEX end.

‣ When you inject a node, you need to pass a valid node userdata object. The node related

to the object will not be collected by Lua when it no longer is referenced. It lives on at the

TEX end in its own memory space. When it gets printed to TEX the node reference is used

assuming that node stays around. There is no Lua garbage collection involved. Again, you

manage the object yourself. The node itself is freed when TEX is done with it.

If you consider the last remark you might realize that we have a problem when a printed mix

of strings, tokens and nodes is reused. Inside TEX the sequence becomes a linked list of input

buffers. So, "123" or "\foo{123}" gets read and parsed on the fly, while <token userdata>

already is tokenized and effectively is a token list now. A <node userdata> is also tokenized into

a token list but it has a reference to a real node. Normally this goes fine. But now assume that

you store the whole lot in a macro: in that case the tokenized node can be flushed many times.

But, after the first such flush the node is used and its memory freed. You can prevent this by

using copies which is controlled by setting \luacopyinputnodes to a non-zero value. This is one

of these fuzzy areas you have to live with if you really mess with these low level issues.

11.3.13.3 tprint

tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>

s, ...), once for each of the supplied argument tables.

11.3.13.4 cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or

an argument list of strings that will be pushed into the input stream.

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters

tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

201The TEX related libraries

11.3.13.5 write

tex.write(<string> s, ...)

tex.write(<table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a quick way to dump information:

‣ All catcodes on that line are either ‘space’ (for ' ') or ‘character’ (for all others).

‣ There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

11.3.14 Helper functions

11.3.14.1 round

<number> n = tex.round(<number> o)

Rounds Lua number o, and returns a number that is in the range of a valid TEX register value.

If the number starts out of range, it generates a ‘number too big’ error as well.

11.3.14.2 scale

<number> n = tex.scale(<number> o, <number> delta)

<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o and delta, and returns a rounded number that is in the range of

a valid TEX register value. In the table version, it creates a copy of the table with all numeric

top--level values scaled in that manner. If the multiplied number(s) are of range, it generates

‘number too big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer's architecture

and operating system, so use with care! An interface to LuaTEX's internal, 100% portable scale

function will be added at a later date.

11.3.14.3 number and romannumeral

These are the companions to the primitives \number and \romannumeral. They can be used like:

tex.print(tex.romannumeral(123))

11.3.14.4 fontidentifier and fontname

The first one returns the name only, the second one reports the size too.

tex.print(tex.fontname(tex.fontname))

tex.print(tex.fontname(tex.fontidentidier))

The TEX related libraries202

11.3.14.5 sp

<number> n = tex.sp(<number> o)

<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number

of scaled points.

For parsing the string, the same scanning and conversion rules are used that LuaTEX would use

if it was scanning a dimension specifier in its TEX-like input language (this includes generating

errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled

2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)

11.3.14.6 tex.getlinenumber and tex.setlinenumber

You can mess with the current line number:

local n = tex.getlinenumber()

tex.setlinenumber(n+10)

which can be shortcut to:

tex.setlinenumber(10,true)

This might be handy when you have a callback that reads numbers from a file and combines

them in one line (in which case an error message probably has to refer to the original line).

Interference with TEX's internal handling of numbers is of course possible.

11.3.14.7 error, show_context and gethelptext

tex.error(<string> s)

tex.error(<string> s, <table> help)

<string> s = tex.gethelptext()

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur

ing this error, deletions are disabled.

The array part of the help table has to contain strings, one for each line of error help.

In case of an error the show_context function will show the current context where we're at (in

the expansion).

11.3.14.8 getfamilyoffont

When you pass a proper family identifier the next helper will return the font currently associated

with it.

<integer> id = font.getfamilyoffont(<integer> fam)

203The TEX related libraries

11.3.14.9 [set|get]interaction

The engine can be in one of four modes:

VALUE mode MEANING

0 batch omits all stops and omits terminal output

1 nonstop omits all stops

2 scroll omits error stops

3 errorstop stops at every opportunity to interact

The mode can be queried and set with:

<integer> i = tex.getinteraction()

tex.setinteraction(<integer> i)

11.3.14.10 runtoks and quittoks

Because of the fact that TEX is in a complex dance of expanding, dealing with fonts, typesetting

paragraphs, messing around with boxes, building pages, and so on, you cannot easily run a

nested TEX run (read nested main loop). However, there is an option to force a local run with

runtoks. The content of the given token list register gets expanded locally after which we return

to where we triggered this expansion, at the Lua end. Instead a function can get passed that

does some work. You have to make sure that at the end TEX is in a sane state and this is not

always trivial. A more complex mechanism would complicate TEX itself (and probably also harm

performance) so this simple local expansion loop has to do.

tex.runtoks(<token register>)

tex.runtoks(<lua function>)

tex.runtoks(<macro name>)

tex.runtoks(<register name>)

When the \tracingnesting parameter is set to a value larger than 2 some information is re

ported about the state of the local loop. The return value indicates an error:

VALUE meaning

0 no error

1 bad register number

2 unknown macro or register name

3 macro is unsuitable for runtoks (has arguments)

This function has two optional arguments in case a token register is passed:

tex.runtoks(<token register>,force,grouped,obeymode)

Inside for instance an \edef the runtoks function behaves (at least tries to) like it were an \the.

This prevents unwanted side effects: normally in such an definition tokens remain tokens and

(for instance) characters don't become nodes. With the second argument you can force the local

main loop, no matter what. The third argument adds a level of grouping. The last argument

The TEX related libraries204

tells the scanner to stay in the current mode.

You can quit the local loop with \endlocalcontrol or from the Lua end with tex.quittoks. In

that case you end one level up! Of course in the end that can mean that you arrive at the main

level in which case an extra end will trigger a redundancy warning (not an abort!).

11.3.14.11 forcehmode

An example of a (possible error triggering) complication is that TEX expects to be in some state,

say horizontal mode, and you have to make sure it is when you start feeding back something

from Lua into TEX. Normally a user will not run into issues but when you start writing tokens or

nodes or have a nested run there can be situations that you need to run forcehmode. There is

no recipe for this and intercepting possible cases would weaken LuaTEX's flexibility.

11.3.14.12 hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

Returns a list of names. This can be useful for debugging, but note that this also reports control

sequences that may be unreachable at this moment due to local redefinitions: it is strictly a

dump of the hash table. You can use token.create to inspect properties, for instance when the

command key in a created table equals 123, you have the cmdname value undefined_cs.

11.3.14.13 definefont

tex.definefont(<string> csname, <number> fontid)

tex.definefont(<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)

global is specified and true (the setting of globaldefs is not taken into account).

11.3.15 Functions for dealing with primitives

11.3.15.1 enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names. For each combination of

‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’ is an actual primitive

(it must be returned by one of the tex.extraprimitives calls explained below, or part of TEX82,

or \directlua). If it is not, tex.enableprimitives does nothing and skips to the next pair.

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,

unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the

‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un

defined (note: that is not the same as \relax), it will globally define the csname to have the

meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already

defined, it does nothing and tries the next pair.

205The TEX related libraries

An example:

tex.enableprimitives('LuaTeX', {'formatname'})

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive

\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LuaTEX is run with --ini only the TEX82 primitives and \directlua are available, so no

extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,

you will have to add

\ifx\directlua\undefined \else

\directlua {tex.enableprimitives('',tex.extraprimitives ())}

\fi

near the beginning of your format generation file. Or you can choose different prefixes for

different subsets, as you see fit.

Calling some form of tex.enableprimitives is highly important though, because if you do not,

you will end up with a TEX82-lookalike that can run Lua code but not do much else. The defined

csnames are (of course) saved in the format and will be available at runtime.

11.3.15.2 extraprimitives

<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the re

quested string value(s). The possible values and their (current) return values are given in the

following table. In addition the somewhat special primitives ‘\ ’, ‘\/’ and ‘-’ are defined.

NAME VALUES

tex above abovedisplayshortskip abovedisplayskip abovewithdelims accent ad

jdemerits advance afterassignment aftergroup atop atopwithdelims badness

baselineskip batchmode begingroup beginsimplegroup belowdisplayshortskip

belowdisplayskip binoppenalty botmark box boxmaxdepth brokenpenalty cat

code char chardef cleaders clubpenalty copy count countdef cr crcr csname

day deadcycles def defaulthyphenchar defaultskewchar delcode delimiter de

limiterfactor delimitershortfall dimen dimendef discretionary displayin

dent displaylimits displaystyle displaywidowpenalty displaywidth divide

doublehyphendemerits dp dump edef else emergencystretch end endcsname end

group endinput endlinechar endsimplegroup eqno errhelp errmessage errorcon

textlines errorstopmode escapechar everycr everydisplay everyhbox everyjob

everymath everypar everyvbox exhyphenchar exhyphenpenalty expandafter fam

fi finalhyphendemerits firstmark floatingpenalty font fontdimen fontname

fontspecifiedname futurelet gdef global globaldefs glyph halign hangafter

hangindent hbadness hbox hfil hfill hfilneg hfuzz holdinginserts hrule hsize

hskip hss ht hyphenation hyphenchar hyphenpenalty if ifcase ifcat ifdim if

false ifhbox ifhmode ifinner ifmmode ifnum ifodd iftrue ifvbox ifvmode ifvoid

The TEX related libraries206

ifx ignorespaces indent input inputlineno insert insertpenalties inter

linepenalty jobname kern language lastbox lastkern lastpenalty lastskip lc

code leaders left lefthyphenmin leftskip leqno let limits linepenalty line

skip lineskiplimit long looseness lower lowercase mark mathaccent mathbin

mathchar mathchardef mathchoice mathclose mathcode mathinner mathop math

open mathord mathpunct mathrel mathsurround maxdeadcycles maxdepth mean

ing meaningfull meaningless medmuskip message middle mkern month moveleft

moveright mskip multiply muskip muskipdef newlinechar noalign noexpand

noindent nolimits nonscript nonstopmode nulldelimiterspace nullfont num

ber omit or outer output outputpenalty over overfullrule overline overshoot

overwithdelims pagedepth pagefilllstretch pagefillstretch pagefilstretch

pagegoal pageshrink pagestretch pagetotal par parfillleftskip parfillskip

parindent parshape parskip patterns pausing penalty postdisplaypenalty pre

displaypenalty predisplaysize pretolerance prevdepth prevgraf radical raise

relax relpenalty right righthyphenmin rightskip romannumeral scaledfontdi

men scriptfont scriptscriptfont scriptscriptstyle scriptspace scriptstyle

scrollmode setbox setlanguage sfcode shipout show showbox showboxbreadth

showboxdepth showlists shownodedetails showthe skewchar skip skipdef space

factor spaceskip span splitbotmark splitfirstmark splitmaxdepth splittop

skip string tabskip textfont textstyle the thickmuskip thinmuskip time todi

mension tointeger toks toksdef tolerance topmark topskip toscaled tracing

commands tracinglostchars tracingmacros tracingonline tracingoutput trac

ingpages tracingparagraphs tracingrestores tracingstats uccode uchyph un

derline unhbox unhcopy unhpack unkern unpenalty unskip unvbox unvcopy un

vpack uppercase vadjust valign vbadness vbox vcenter vfil vfill vfilneg vfuzz

vrule vsize vskip vsplit vss vtop wd widowpenalty xdef xleaders xspaceskip

year

core

etex botmarks clubpenalties currentgrouplevel currentgrouptype currentifbranch

currentiflevel currentiftype detokenize dimexpr displaywidowpenalties

everyeof firstmarks fontchardp fontcharht fontcharic fontcharwd glueexpr

glueshrink glueshrinkorder gluestretch gluestretchorder gluetomu ifc

sname ifdefined iffontchar interactionmode interlinepenalties lastline

fit lastnodetype marks muexpr mutoglue numexpr pagediscards parshapedimen

parshapeindent parshapelength predisplaydirection protected savinghyph

codes savingvdiscards scantokens showgroups showifs showtokens splitbot

marks splitdiscards splitfirstmarks topmarks tracingalignments tracingas

signs tracinggroups tracingifs tracinglevels tracingnesting unexpanded un

less widowpenalties

luatex UUskewed UUskewedwithdelims Uabove Uabovewithdelims Uatop Uatopwithdelims

Uchar Udelcode Udelcodenum Udelimiter Udelimiterover Udelimiterunder Uhex

tensible Uleft Umathaccent Umathaccentbaseheight Umathaccentvariant Umath

adapttoleft Umathadapttoright Umathaxis Umathbinbinspacing Umathbinclos

espacing Umathbininnerspacing Umathbinopenspacing Umathbinopspacing Umath

binordspacing Umathbinpunctspacing Umathbinrelspacing Umathbotaccentvari

ant Umathchar Umathcharclass Umathchardef Umathcharfam Umathcharnum Umath

207The TEX related libraries

charnumdef Umathcharslot Umathclass Umathclosebinspacing Umathcloseclos

espacing Umathcloseinnerspacing Umathcloseopenspacing Umathcloseopspacing

Umathcloseordspacing Umathclosepunctspacing Umathcloserelspacing Umath

code Umathcodenum Umathconnectoroverlapmin Umathdegreevariant Umathdelim

iterovervariant Umathdelimiterundervariant Umathdenominatorvariant Umath

extrasubpreshift Umathextrasubshift Umathextrasuppreshift Umathextrasup

shift Umathfractiondelsize Umathfractiondenomdown Umathfractiondenomvgap

Umathfractionnumup Umathfractionnumvgap Umathfractionrule Umathfractionva

riant Umathhextensiblevariant Umathinnerbinspacing Umathinnerclosespacing

Umathinnerinnerspacing Umathinneropenspacing Umathinneropspacing Umathin

nerordspacing Umathinnerpunctspacing Umathinnerrelspacing Umathlimitabove

bgap Umathlimitabovekern Umathlimitabovevgap Umathlimitbelowbgap Umath

limitbelowkern Umathlimitbelowvgap Umathlimits Umathnoaxis Umathnolimits

Umathnolimitsubfactor Umathnolimitsupfactor Umathnumeratorvariant Umathop

binspacing Umathopclosespacing Umathopenbinspacing Umathopenclosespacing

Umathopeninnerspacing Umathopenopenspacing Umathopenopspacing Umath

openordspacing Umathopenpunctspacing Umathopenrelspacing Umathopenupdepth

Umathopenupheight Umathoperatorsize Umathopinnerspacing Umathopopenspac

ing Umathopopspacing Umathopordspacing Umathoppunctspacing Umathoprelspac

ing Umathordbinspacing Umathordclosespacing Umathordinnerspacing Umath

ordopenspacing Umathordopspacing Umathordordspacing Umathordpunctspac

ing Umathordrelspacing Umathoverbarkern Umathoverbarrule Umathoverbarv

gap Umathoverdelimiterbgap Umathoverdelimitervariant Umathoverdelimiter

vgap Umathoverlayaccentvariant Umathoverlinevariant Umathphantom Umath

punctbinspacing Umathpunctclosespacing Umathpunctinnerspacing Umathpunc

topenspacing Umathpunctopspacing Umathpunctordspacing Umathpunctpunctspac

ing Umathpunctrelspacing Umathquad Umathradicaldegreeafter Umathradi

caldegreebefore Umathradicaldegreeraise Umathradicalkern Umathradical

rule Umathradicalvariant Umathradicalvgap Umathrelbinspacing Umathrelclos

espacing Umathrelinnerspacing Umathrelopenspacing Umathrelopspacing Umath

relordspacing Umathrelpunctspacing Umathrelrelspacing Umathskewedfraction

hgap Umathskewedfractionvgap Umathspaceafterscript Umathspacebeforescript

Umathspacingmode Umathstackdenomdown Umathstacknumup Umathstackvariant

Umathstackvgap Umathsubscriptvariant Umathsubshiftdown Umathsubshift

drop Umathsubsupshiftdown Umathsubsupvgap Umathsubtopmax Umathsupbottom

min Umathsuperscriptvariant Umathsupshiftdrop Umathsupshiftup Umathsupsub

bottommax Umathtopaccentvariant Umathunderbarkern Umathunderbarrule Umath

underbarvgap Umathunderdelimiterbgap Umathunderdelimitervariant Umathun

derdelimitervgap Umathunderlinevariant Umathvextensiblevariant Umathvoid

Umiddle Unosubprescript Unosubscript Unosuperprescript Unosuperscript Uover

Uoverdelimiter Uoverwithdelims Uradical Uright Uroot Uskewed Uskewedwithde

lims Ustack Ustartdisplaymath Ustartmath Ustopdisplaymath Ustopmath Ustyle

Usubprescript Usubscript Usuperprescript Usuperscript Uunderdelimiter Uvex

tensible adjustspacing adjustspacingshrink adjustspacingstep adjustspac

ingstretch afterassigned aftergrouped aliased alignmark aligntab atendof

group atendofgrouped attribute attributedef automaticdiscretionary auto

The TEX related libraries208

matichyphenpenalty automigrationmode begincsname beginlocalcontrol bound

ary boxattribute boxdirection boxorientation boxtotal boxxmove boxxoffset

boxymove boxyoffset catcodetable clearmarks crampeddisplaystyle cramped

scriptscriptstyle crampedscriptstyle crampedtextstyle csstring defcsname

dimensiondef dimexpression directlua edefcsname efcode endlocalcontrol en

forced etoksapp etokspre everybeforepar everytab exceptionpenalty expand

expandafterpars expandafterspaces expandcstoken expanded expandtoken ex

plicitdiscretionary explicithyphenpenalty firstvalidlanguage fontid font

mathcontrol fontspecifiedsize fonttextcontrol formatname frozen futurec

sname futuredef futureexpand futureexpandis futureexpandisap gdefcsname

gleaders glet gletcsname glettonothing gluespecdef glyphdatafield glyphop

tions glyphscale glyphscriptfield glyphscriptscale glyphscriptscriptscale

glyphstatefield glyphtextscale glyphxoffset glyphxscale glyphyoffset gly

physcale gtoksapp gtokspre hccode hjcode hpack hyphenationmin hyphenation

mode ifabsdim ifabsnum ifarguments ifboolean ifchkdim ifchknum ifcmpdim

ifcmpnum ifcondition ifcstok ifdimval ifempty ifexpression ifflags ifhas

tok ifhastoks ifhasxtoks ifincsname ifinsert ifmathparameter ifmathstyle

ifnumval ifparameter ifparameters ifrelax iftok ignorearguments ignorepars

immediate immutable initcatcodetable insertbox insertcopy insertdepth in

sertdistance insertheight insertheights insertlimit insertmode insertmul

tiplier insertprogress insertunbox insertuncopy insertwidth instance in

tegerdef lastarguments lastchkdim lastchknum lastnamedcs lastnodesubtype

leftmarginkern letcharcode letcsname letfrozen letprotected lettonothing

linedirection linepar localbrokenpenalty localcontrol localcontrolled lo

calinterlinepenalty localleftbox localrightbox lpcode luabytecode luabyte

codecall luacopyinputnodes luadef luaescapestring luafunction luafunction

call luatexbanner luatexrevision luatexversion mathcontrolmode mathdelim

itersmode mathdirection mathdisplayskipmode matheqnogapstep mathflatten

mode mathfontcontrol mathitalicsmode mathnolimitsmode mathpenaltiesmode

mathrulesfam mathrulesmode mathrulethicknessmode mathscale mathscriptbox

mode mathscriptcharmode mathscriptsmode mathstyle mathsurroundmode mathsur

roundskip mugluespecdef mutable noaligned noboundary nohrule norelax nor

malizelinemode nospaces novrule numericscale numexpression orelse orunless

outputbox overloaded overloadmode parametercount parattribute pardirec

tion permanent postexhyphenchar posthyphenchar prebinoppenalty predisplay

gapfactor preexhyphenchar prehyphenchar prerelpenalty protrudechars pro

trusionboundary pxdimen quitvmode rightmarginkern rpcode savecatcodetable

scantextokens setfontid snapshotpar supmarkmode swapcsvalues textdirection

thewithoutunit thewithproperty tokenized toksapp tokspre tolerant tpack

tracingexpressions tracingfonts tracinghyphenation tracingmath undent un

letfrozen unletprotected untraced vpack wordboundary wrapuppar xdefcsname

xtoksapp xtokspre

Note that luatex does not contain directlua, as that is considered to be a core primitive, along

with all the TEX82 primitives, so it is part of the list that is returned from 'core'.

Running tex.extraprimitives will give you the complete list of primitives -ini startup. It is

209The TEX related libraries

exactly equivalent to tex.extraprimitives("etex","luatex").

11.3.15.3 primitives

<table> t = tex.primitives()

This function returns a list of all primitives that LuaTEX knows about.

11.3.16 Core functionality interfaces

11.3.16.1 badness

<number> b = tex.badness(<number> t, <number> s)

This helper function is useful during linebreak calculations. t and s are scaled values; the

function returns the badness for when total t is supposed to be made from amounts that sum to

s. The returned number is a reasonable approximation of 100(𝑡/𝑠)3;

11.3.16.2 tex.resetparagraph

This function resets the parameters that TEX normally resets when a new paragraph is seen.

11.3.16.3 linebreak

local <node> nodelist, <table> info =

tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

NAME TYPE EXPLANATION

pardir string

pretolerance number

tracingparagraphs number

tolerance number

looseness number

hyphenpenalty number

exhyphenpenalty number

pdfadjustspacing number

adjdemerits number

protrudechars number

linepenalty number

lastlinefit number

doublehyphendemerits number

finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal

ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

The TEX related libraries210

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue_spec node

rightskip glue_spec node

parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice

for widowpenalties yourself.

It is your own job to make sure that listhead is a proper paragraph list: this function does

not add any nodes to it. To be exact, if you want to replace the core line breaking, you may

have to do the following (when you are not actually working in the pre_linebreak_filter or

linebreak_filter callbacks, or when the original list starting at listhead was generated in

horizontal mode):

‣ add an ‘indent box’ and perhaps a par node at the start (only if you need them)

‣ replace any found final glue by an infinite penalty (or add such a penalty, if the last node is

not a glue)

‣ add a glue node for the \parfillskip after that penalty node

‣ make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox. The

returned info table contains four values that are all numbers:

NAME EXPLANATION

prevdepth depth of the last line in the broken paragraph

prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph

demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font

expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.

The same is true for hbadness and hfuzz etc. All these are in the hpack routine, and that fetches

its own variables via globals.

11.3.16.4 shipout

tex.shipout(<number> n)

Ships out box number n to the output file, and clears the box register.

11.3.16.5 getpagestate

This helper reports the current page state: empty, box_there or inserts_only as integer value.

211The TEX related libraries

11.3.16.6 getlocallevel

This integer reports the current level of the local loop. It's only useful for debugging and the

(relative state) numbers can change with the implementation.

11.3.17 Functions related to synctex

The next helpers only make sense when you implement your own synctex logic. Keep in mind

that the library used in editors assumes a certain logic and is geared for plain and LATEX, so after

a decade users expect a certain behaviour.

NAME EXPLANATION

setsynctexmode 0 is the default and used normal synctex logic, 1 uses the values set by

the next helpers while 2 also sets these for glyph nodes; 3 sets glyphs

and glue and 4 sets only glyphs

setsynctextag set the current tag (file) value (obeys save stack)

setsynctexline set the current line value (obeys save stack)

setsynctexnofiles disable synctex file logging

getsynctexmode returns the current mode (for values see above)

getsynctextag get the currently set value of tag (file)

getsynctexline get the currently set value of line

forcesynctextag overload the tag (file) value (0 resets)

forcesynctexline overload the line value (0 resets)

The last one is somewhat special. Due to the way files are registered in SyncTEX we need to

explicitly disable that feature if we provide our own alternative if we want to avoid that overhead.

Passing a value of 1 disables registering.

11.4 The texconfig table

This is a table that is created empty. A startup Lua script could fill this table with a number of

settings that are read out by the executable after loading and executing the startup file. Watch

out: some keys are different from LuaTEX, which is a side effect of a more granular and dynamic

memory management.

KEY TYPE DEFAULT COMMENT

buffersize number/table 1000000 input buffer bytes

filesize number/table 1000 max number of open files

fontsize number/table 250 number of permitted fonts

hashsize number/table 150000 number of hash entries

inputsize number/table 10000 maximum input stack

languagesize number/table 250 number of permitted languages

marksize number/table 50 number of mark classes

nestsize number/table 1000 max depth of nesting

nodesize number/table 1000000 max node memory (various size)

parametersize number/table 20000 max size of parameter stack

The TEX related libraries212

poolsize number/table 10000000 max number of string bytes

savesize number/table 100000 mas size of save stack

stringsize number/table 150000 max number of strings

tokensize number/table 1000000 max token memory

expandsize number/table 10000 max expansion nesting

propertiessize number 0 initial size of node properties table

functionsize number 0 initial size of Lua functions table

errorlinesize number 79 how much or an error is shown

halferrorlinesize number 50 idem

formatname string

jobname string

If no format name or jobname is given on the command line, the related keys will be tested

first instead of simply quitting. The statistics library has methods for tracking down how much

memory is available and has been configured. The size parameters take a number (for the

maximum allocated size) or a table with three possible keys: size, plus (for extra size) and step

for the increment when more memory is needed. They all start out with a hard coded minimum

and also have an hard coded maximum, the the configured size sits somewhere between these.

11.5 The texio library

This library takes care of the low-level I/O interface: writing to the log file and/or console.

11.5.1 write and writeselector

texio.write(<string> target, <string> s, ...)

texio.write(<string> s, ...)

texio.writeselector(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes mes

sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes

to the log and the terminal. The optional target can be one of terminal, logfile or termi

nal_and_logfile.

Note: If several strings are given, and if the first of these strings is or might be one of the targets

above, the target must be specified explicitly to prevent Lua from interpreting the first string

as the target.

11.5.2 writenl and writeselectornl

texio.writenl(<string> target, <string> s, ...)

texio.writenl(<string> s, ...)

texio.writeselectornl(<string> target, ...)

This function behaves like texio.write, but makes sure that the given strings will appear at the

213The TEX related libraries

beginning of a new line. You can pass a single empty string if you only want to move to the next

line.

The selector variants always expect a selector, so there is no misunderstanding if logfile is a

string or selector.

11.5.3 setescape

You can disable ^^ escaping of control characters by passing a value of zero.

11.5.4 closeinput

This function should be used with care. It acts as \endinput but at the Lua end. You can use it

to (sort of) force a jump back to TEX. Normally a Lua call will just collect prints and at the end

bump an input level and flush these prints. This function can help you stay at the current level

but you need to know what you're doing (or more precise: what TEX is doing with input).

11.6 The token library

11.6.1 The scanner

The token library provides means to intercept the input and deal with it at the Lua level. The

library provides a basic scanner infrastructure that can be used to write macros that accept a

wide range of arguments. This interface is on purpose kept general and as performance is quite

okay so one can build additional parsers without too much overhead. It's up to macro package

writers to see how they can benefit from this as the main principle behind LuaTEX is to provide

a minimal set of tools and no solutions. The scanner functions are probably the most intriguing.

FUNCTION ARGUMENT RESULT

scankeyword string returns true if the given keyword is gobbled; as with the

regular TEX keyword scanner this is case insensitive (and

ascii based)

scankeywordcs string returns true if the given keyword is gobbled; this variant

is case sensitive and also suitable for utf8

scanint returns an integer

scanreal returns a number from e.g. 1, 1.1, .1 with optional col

lapsed signs

scanfloat returns a number from e.g. 1, 1.1, .1, 1.1E10, , .1e-10

with optional collapsed signs

scandimen infinity, mu-units returns a number representing a dimension or two num

bers being the filler and order

scanglue mu-units returns a glue spec node

scantoks definer, expand returns a table of tokens

scancode bitset returns a character if its category is in the given bitset (rep

resenting catcodes)

The TEX related libraries214

scanstring returns a string given between {}, as \macro or as se

quence of characters with catcode 11 or 12

scanargument this one is simular to scanstring but also accepts a \cs

(which then get expanded)

scanword returns a sequence of characters with catcode 11 or 12 as

string

scancsname returns foo after scanning \foo

scanlist picks up a box specification and returns a [h|v]list node

The integer, dimension and glue scanners take an extra optional argument that signals that en

optional equal is permitted.

The scanners can be considered stable apart from the one scanning for a token. The scancode

function takes an optional number, the scankeyword function a normal Lua string. The infinity

boolean signals that we also permit fill as dimension and the mu-units flags the scanner that

we expect math units. When scanning tokens we can indicate that we are defining a macro, in

which case the result will also provide information about what arguments are expected and in

the result this is separated from the meaning by a separator token. The expand flag determines

if the list will be expanded.

The scanargument function expands the given argument. When a braced argument is scanned,

expansion can be prohibited by passing false (default is true). In case of a control sequence

passing false will result in a one-level expansion (the meaning of the macro).

The string scanner scans for something between curly braces and expands on the way, or when

it sees a control sequence it will return its meaning. Otherwise it will scan characters with

catcode letter or other. So, given the following definition:

\def\oof{oof}

\def\foo{foo-\oof}

we get:

NAME RESULT

\directlua{token.scanstring()}{foo} foo full expansion

\directlua{token.scanstring()}foo foo letters and others

\directlua{token.scanstring()}\foo foo-oof meaning

The \foo case only gives themeaning, but one can pass an already expanded definition (\edef'd).

In the case of the braced variant one can of course use the \detokenize and \unexpanded prim

itives since there we do expand.

The scanword scanner can be used to implement for instance a number scanner. An optional

boolean argument can signal that a trailing space or \relax should be gobbled:

function token.scannumber(base)

return tonumber(token.scanword(),base)

end

This scanner accepts any valid Lua number so it is a way to pick up floats in the input.

215The TEX related libraries

You can use the Lua interface as follows:

\directlua {

function mymacro(n)

...

end

}

\def\mymacro#1{%

\directlua {

mymacro(\number\dimexpr#1)

}%

}

\mymacro{12pt}

\mymacro{\dimen0}

You can also do this:

\directlua {

function mymacro()

local d = token.scandimen()

...

end

}

\def\mymacro{%

\directlua {

mymacro()

}%

}

\mymacro 12pt

\mymacro \dimen0

It is quite clear from looking at the code what the first method needs as argument(s). For the

second method you need to look at the Lua code to see what gets picked up. Instead of passing

from TEX to Lua we let Lua fetch from the input stream.

In the first case the input is tokenized and then turned into a string, then it is passed to Lua

where it gets interpreted. In the second case only a function call gets interpreted but then the

input is picked up by explicitly calling the scanner functions. These return proper Lua variables

so no further conversion has to be done. This is more efficient but in practice (given what TEX

has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit

but for passing strings conversion to and from tokens has to be done anyway (although we can

probably speed up the process in later versions if needed).

The TEX related libraries216

11.6.2 Picking up one token

The scanners look for a sequence. When you want to pick up one token from the input you use

scannext. This creates a token with the (low level) properties as discussed next. This token is

just the next one. If you want to enforce expansion first you can use scantoken or the _expanded

variants. Internally tokens are characterized by a number that packs a lot of information. In

order to access the bits of information a token is wrapped in a userdata object.

The expand function will trigger expansion of the next token in the input. This can be quite

unpredictable but when you call it you probably know enough about TEX not to be too worried

about that. It basically is a call to the internal expand related function.

NAME EXPLANATION

scannext get the next token

scannextexpanded get the next expanded token

skipnext skip the next token

skipnextexpanded skip the next expanded token

peeknext get the next token and put it back in the input

peeknextexpanded get the next expanded token and put it back in the input

The peek function accept a boolean argument that triggers skipping spaces and alike.

11.6.3 Creating tokens

The creator function can be used as follows:

local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible

properties of tokens are:

NAME EXPLANATION

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the

classifier that determines the internal treatment)

csname the associated control sequence (if applicable)

id the unique id of the token

tok the full token number as stored in TEX

active a boolean indicating the active state of the token

expandable a boolean indicating if the token (macro) is expandable

protected a boolean indicating if the token (macro) is protected

frozen a boolean indicating if the token is a frozen command

user a boolean indicating if the token is a user defined command

index a number that indicated the subcommand; differs per command

Alternatively you can use a getter get<fieldname> to access a property of a token.

The numbers that represent a catcode are the same as in TEX itself, so using this information

217The TEX related libraries

assumes that you know a bit about TEX's internals. The other numbers and names are used

consistently but are not frozen. So, when you use them for comparing you can best query a

known primitive or character first to see the values.

You can ask for a list of commands:

local t = token.commands()

The id of a token class can be queried as follows:

local id = token.command_id("math_shift")

If you really know what you're doing you can create character tokens by not passing a string but

a number:

local letter_x = token.create(string.byte("x"))

local other_x = token.create(string.byte("x"),12)

Passing weird numbers can give side effects so don't expect too much help with that. As said,

you need to know what you're doing. The best way to explore the way these internals work is

to just look at how primitives or macros or \chardef'd commands are tokenized. Just create a

known one and inspect its fields. A variant that ignores the current catcode table is:

local whatever = token.new(123,12)

You can test if a control sequence is defined with is_defined, which accepts a string and returns

a boolean:

local okay = token.is_defined("foo")

The largest character possible is returned by biggest_char, just in case you need to know that

boundary condition.

11.6.4 Macros

The set_macro function can get upto 4 arguments:

set_macro("csname","content")

set_macro("csname","content","global")

set_macro("csname")

You can pass a catcodetable identifier as first argument:

set_macro(catcodetable,"csname","content")

set_macro(catcodetable,"csname","content","global")

set_macro(catcodetable,"csname")

The results are like:

\def\csname{content}

The TEX related libraries218

\gdef\csname{content}

\def\csname{}

The getmacro function can be used to get the content of a macro while the getmeaning function

gives the meaning including the argument specification (as usual in TEX separated by ->).

The set_char function can be used to do a \chardef at the Lua end, where invalid assignments

are silently ignored:

set_char("csname",number)

set_char("csname",number,"global")

A special one is the following:

set_lua("mycode",id)

set_lua("mycode",id,"global","protected")

This creates a token that refers to a Lua function with an entry in the table that you can ac

cess with lua.getfunctions_table. It is the companion to \luadef. When the first (and only)

argument is true the size will preset to the value of texconfig.function_size.

The pushmacro and popmacro function are very experimental and can be used to get and set

an existing macro. The push call returns a user data object and the pop takes such a userdata

object. These object have no accessors and are to be seen as abstractions.

11.6.5 Pushing back

There is a (for now) experimental putter:

local t1 = token.scannext()

local t2 = token.scannext()

local t3 = token.scannext()

local t4 = token.scannext()

-- watch out, we flush in sequence

token.putnext { t1, t2 }

-- but this one gets pushed in front

token.putnext (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of

tokens. The token.expand function will trigger expansion but what happens really depends on

what you're doing where.

This putter is actually a bit more flexible because the following input also works out okay:

\def\foo#1{[#1]}

\directlua {

local list = { 101, 102, 103, token.create("foo"), "{abracadabra}" }

token.putnext("(the)")

token.putnext(list)

219The TEX related libraries

token.putnext("(order)")

token.putnext(unpack(list))

token.putnext("(is reversed)")

}

We get this:

(is reversed)efg[abracadabra](order)efg[abracadabra](the)

So, strings get converted to individual tokens according to the current catcode regime and num

bers become characters also according to this regime.

11.6.6 Nota bene

When scanning for the next token you need to keep in mind that we're not scanning like TEX

does: expanding, changing modes and doing things as it goes. When we scan with Lua we just

pick up tokens. Say that we have:

\oof

but \oof is undefined. Normally TEX will then issue an error message. However, when we have:

\def\foo{\oof}

We get no error, unless we expand \foo while \oof is still undefined. What happens is that as

soon as TEX sees an undefined macro it will create a hash entry and when later it gets defined

that entry will be reused. So, \oof really exists but can be in an undefined state.

oof : oof

foo : foo

myfirstoof :

This was entered as:

oof : \directlua{tex.print(token.scancsname())}\oof

foo : \directlua{tex.print(token.scancsname())}\foo

myfirstoof : \directlua{tex.print(token.scancsname())}\myfirstoof

The reason that you see oof reported and not myfirstoof is that \oof was already used in a

previous paragraph.

If we now say:

\def\foo{}

we get:

oof : oof

foo : foo

myfirstoof :

The TEX related libraries220

And if we say

\def\foo{\oof}

we get:

oof : oof

foo : foo

myfirstoof :

When scanning from Lua we are not in a mode that defines (undefined) macros at all. There we

just get the real primitive undefined macro token.

676999 537472529

678196 536969024

673734 536985953

This was generated with:

\directlua{local t = token.scannext() tex.print(t.id.." "..t.tok)}\myfirstoof

\directlua{local t = token.scannext() tex.print(t.id.." "..t.tok)}\mysecondoof

\directlua{local t = token.scannext() tex.print(t.id.." "..t.tok)}\mythirdoof

So, we do get a unique token because after all we need some kind of Lua object that can be

used and garbage collected, but it is basically the same one, representing an undefined control

sequence.

221The MetaPost library mplib

12 The MetaPost library mplib

12.1 Introduction

The library used in LuaMetaTEX differs from the one used in LuaTEX. There are for instance

no backends and the binary number model is not available. There is also no textual output.

There are scanners and injectors that make it possible to enhance the language and efficiently

feed back into MetaPost. File handling is now completely delegated to Lua, so there are more

callbacks.

Some functionality is experimental and therefore documentation is limited. Also, details are

discussed in articles.

12.2 Process management

The MetaPost library interface registers itself in the table mplib. It is based on mplib version

3.11 (LuaTEX used version 2+). Not all functionality is described here. Once we're out of the

experimental stage some more information will be added. Using the library boils down to ini

tializing an instance, executing statements and picking up assembled figures in the form of Lua

user data objects (and from there on Lua variables like tables).

12.2.1 new

To create a new MetaPost instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument is a hash table that can have a number of

different fields, as follows:

NAME TYPE DESCRIPTION DEFAULT

error_line number error line width 79

print_line number line length in ps output 100

random_seed number the initial random seed variable

math_mode string the number system to use: scaled

scaled, double or decimal

interaction string the interaction mode: batch, errorstop

nonstop, scroll or errorstop

job_name string a compatibility value

utf8_mode boolean permit characters in the range false

128 upto 255 to be part of names

text_mode boolean permit characters 2 and 3 as false

fencing string literals

tolerance number the value used as criterium for 131/65536

straight lines

The MetaPost library mplib222

extensions boolean enable all extensions (might go)

The binary mode is no longer available in the LuaMetaTEX version of mplib. It offers no real

advantage and brings a ton of extra libraries with platform specific properties that we can now

avoid. We might introduce a high resolution scaled variant at some point but only when it pays

of performance wise.

In addition to the above we need to provide functions that helps MetaPost communicate to the

outside world.

NAME TYPE ARGUMENT(S) RESULT

find_file function string, string, string string

function string, string, number string

open_file function string, string, string table

function string, string, number table

run_logger function number, string

run_script function string whatever [, boolean]

function number whatever [, boolean]

make_text function string, number string

run_internal function number, number, number, string

run_overload function number, string, number boolean

run_error function string, string, number

The find_file and open_file functions should be of this form:

<string> found = find_file (<string> name, <string> mode, <string> type)

<table> actions = open_file (<string> name, <string> mode, <string> type)

where the mode is r or w and the type is mp, data, terminal or a number, The finder is supposed

to return the full path name of the found file, or nil if the file cannot be found. The open_file

is supposed to return a table with a close and read function. This is similar to the way we do

it in TEX. The special name terminal is used for interactive input. A numeric type indicates a

specific read or write channel.

The run_logger callback gets a target and a string. A target 1 means log, a value 2 means and

3 means both.

The run_script function gets either a number or a string. The string represents a script, the

number can be used as reference to something stored. The return value can be a boolean,

number, string or table. Booleans and numbers are injected directly, strings and concatenated

tables are fed into scantokens. When the second argument is true, the strings are also injected

directly and tables are injected as pairs, colors, paths, transforms, depending on how many

elements there are.

The run_internal function triggers when internal MetaPost variables flagged with runscript

are initialized, saved or restored. The first argument is an index, the second the action. When

initialized a third and fourth argument are passed. This is an experimental feature.

The experimental run_overload callback kicks in when a variable (or macro) with a property

other than zero is redefined. It gets a property, name and the value of overloadmode passed and

when the function returns true redefinition is permitted.

223The MetaPost library mplib

The run_error callback gets the error message, help text and current interaction mode passed.

Normally it's best to just quit and let the user fix the code.

When you are processing a snippet of text starting with btex or verbatimtex and ending with

etex, the MetaPost texscriptmode parameter controls how spaces and newlines get honoured.

The default value is 1. Possible values are:

NAME MEANING

0 no newlines

1 newlines in verbatimtex

2 newlines in verbatimtex and etex

3 no leading and trailing strip in verbatimtex

4 no leading and trailing strip in verbatimtex and btex

That way the Lua handler (assigned to make_text) can do what it likes. An etex has to be

followed by a space or ; or be at the end of a line and preceded by a space or at the beginning

of a line. The make_text function can return a string that gets fed into scantokens.

12.2.2 getstatistics

You can request statistics with:

<table> stats = mp:getstatistics()

This function returns the vital statistics for an mplib instance. Some are useful, others make

more sense when debugging.

FIELD TYPE EXPLANATION

memory number bytes of node memory

hash number size of the hash

parameters number allocated parameter stack

input number allocated input stack

tokens number number of token nodes

pairs number number of pair nodes

knots number number of knot nodes

nodes number number of value nodes

symbols number number of symbolic nodes

characters number number of string bytes

strings number number of strings

internals number number of internals

Note that in the new version of mplib, this is informational only. The objects are all allocated

dynamically, so there is no chance of running out of space unless the available system memory

is exhausted.

The MetaPost library mplib224

12.2.3 execute

You can ask the MetaPost interpreter to run a chunk of code by calling

<table> rettable = execute(mp,"metapost code")

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)

because when a fatal MetaPost error occurs the mplib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey

proper syntax, like each of them is a small file. For instance, you cannot split a single statement

over multiple chunks.

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start

of the first chunk. When no string is passed to the execute function, there will still be one

triggered because it then expects input from the terminal and you can emulate that channel

with the callback you provide.

12.2.4 finish

Once you create an instance it is likely that you will keep it open for successive processing, if

only because you want to avoid loading a format each time. If for some reason you want to stop

using an mplib instance while processing is not yet actually done, you can call finish.

<table> rettable = finish(mp)

Eventually, used memory will be freed and open files will be closed by the Lua garbage collector,

but an explicit finish is the only way to capture the final part of the output streams.

12.2.5 settolerance and gettolerance

These two functions relate to the bend tolerance, a value that is used when the export determines

if a path has straight lines (like a rectangle has).

12.2.6 Errors

In case of an error you can get the context where it happened with showcontext.

12.2.7 The scanner status

When processing a graphic an instance is in a specific state and again we have a getter for

the (internal) values mplib.getstates(): 0: normal, 1: skipping, 2: flushing, 3: absorbing, 4:

var_defining, 5: op_defining, 6: loop_defining. The current status can be queried with getsta

tus.

225The MetaPost library mplib

12.2.8 The hash

Macro names and variable names are stored in a hash table. You can get a list with entries

with gethashentries, which takes an instance as first argument. When the second argument is

true more details will be provided. With gethashentry you get info about the given macro or

variable.

12.2.9 Callbacks

Some statistics about the number of calls to the callbacks can be queried with getcallback

state, This function expects a valid instance.

12.3 The end result

12.3.1 The figure

The return value of execute and finish is a table with a few possible keys (only status is always

guaranteed to be present).

FIELD TYPE EXPLANATION

status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error

fig table an array of generated figures (if any)

When status equals 3, you should stop using this mplib instance immediately, it is no longer

capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,

and each of those has a number of object methods you can call:

You can check if a figure uses stacking with the stacking function. When objects are fetched,

memory gets freed so no information about stacking is available then. You can get the used bend

tolerance of an object with tolerance.

FIELD TYPE EXPLANATION

boundingbox function returns the bounding box, as an array of 4 values

objects function returns the actual array of graphic objects in this fig

filename function the filename this fig's PostScript output would have written to in

stand alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italic function the fontcharit value

charcode function the (rounded) charcode value

stacking function is there a non-zero stacking

Note: you can call fig:objects() only once for any one fig object! Some information, like

The MetaPost library mplib226

stacking, can only be queried when the complete figure is still present and calling up objects

will free elements in the original once they are transferred.

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is

larger than the second set, the picture is empty.

Graphical objects come in various types: fill, outline, text, start_clip, stop_clip,

start_bounds, stop_bounds, start_group and stop_group. Each type has a different list of

accessible values.

There is a helper function (mplib.fields(obj)) to get the list of accessible values for a particular

object, but you can just as easily use the tables given below.

All graphical objects have a field type that gives the object type as a string value; it is not explicit

mentioned in the following tables. In the following, numbers are PostScript points (base points

in TEX speak) represented as a floating point number, unless stated otherwise. Field values that

are of type table are explained in the next section.

12.3.2 fill

FIELD TYPE EXPLANATION

path table the list of knots

htap table the list of knots for the reversed trajectory

pen table knots of the pen

color table the object's color

linejoin number line join style (bare number)

miterlimit number miterlimit

prescript string the prescript text

postscript string the postscript text

stacking number the stacking (level)

The entries htap and pen are optional.

12.3.3 outline

FIELD TYPE EXPLANATION

path table the list of knots

pen table knots of the pen

color table the object's color

linejoin number line join style (bare number)

miterlimit number miterlimit

linecap number line cap style (bare number)

dash table representation of a dash list

prescript string the prescript text

postscript string the postscript text

stacking number the stacking (level)

The entry dash is optional.

227The MetaPost library mplib

12.3.4 start_bounds, start_clip, start_group

FIELD TYPE EXPLANATION

path table the list of knots

stacking number the stacking (level)

12.3.5 stop_bounds, stop_clip, stop_group

Here we have only one key:

FIELD TYPE EXPLANATION

stacking number the stacking (level)

12.4 Subsidiary table formats

12.4.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as mplib is concerned) are

represented by an array where each entry is a table that represents a knot.

FIELD TYPE EXPLANATION

left_type string when present: endpoint, but usually absent

right_type string like left_type

x_coord number X coordinate of this knot

y_coord number Y coordinate of this knot

left_x number X coordinate of the precontrol point of this knot

left_y number Y coordinate of the precontrol point of this knot

right_x number X coordinate of the postcontrol point of this knot

right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra key type

with value elliptical besides the array part containing the knot list.

12.4.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

FIELD TYPE EXPLANATION

0 marking only no values

1 greyscale one value in the range (0, 1), ‘black’ is 0
3 rgb three values in the range (0, 1), ‘black’ is 0, 0, 0
4 cmyk four values in the range (0, 1), ‘black’ is 0, 0, 0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values

The MetaPost library mplib228

representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the

shipout.

12.4.3 Transforms

Each transform is a six-item array.

INDEX TYPE EXPLANATION

1 number represents x

2 number represents y

3 number represents xx

4 number represents yx

5 number represents xy

6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,

where the translation comes last.

12.4.4 Dashes

Each dash is a hash with two items. We use the same model as PostScript for the representation

of the dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

FIELD TYPE EXPLANATION

dashes hash an array of on-off numbers

offset number the starting offset value

12.4.5 Pens and peninfo

There is helper function (peninfo(obj)) that returns a table containing a bunch of vital charac

teristics of the used pen (all values are floats):

FIELD TYPE EXPLANATION

width number width of the pen

sx number 𝑥 scale
rx number 𝑥𝑦 multiplier
ry number 𝑦𝑥 multiplier
sy number 𝑦 scale
tx number 𝑥 offset
ty number 𝑦 offset

12.4.6 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the

229The MetaPost library mplib

argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

<number> w = char_width(mp,<string> fontname, <number> char)

<number> h = char_height(mp,<string> fontname, <number> char)

<number> d = char_depth(mp,<string> fontname, <number> char)

12.5 Scanners

After a relative long period of testing the scanners are now part of the interface. That doesn't

mean that there will be no changes: depending on the needs and experiences details might

evolve. The summary below is there still preliminary and mostly provided as reminder.

SCANNER ARGUMENT RETURNS

scannext instance, keep token, mode, type

scanexpression instance, keep type

scantoken instance, keep token, mode, kind

scansymbol instance, keep, expand string

scannumeric instance, type number

scaninteger instance, type integer

scanboolean instance, type boolean

scanstring instance, type string

scanpair instance, hashed, type table or two numbers

scancolor instance, hashed, type table or three numbers

scancmykcolor instance, hashed, type table or four numbers

scantransform instance, hashed, type table or six numbers

scanpath instance, hashed, type table with hashes or arrays

scanpen instance, hashed, type table with hashes or arrays

scanproperty todo

skiptoken todo

The types and token codes are numbers but they actually depend on the implementation (al

though changes are unlikely). The types of data structures can be queried with mplib.get

types(): 0: undefined, 1: vacuous, 2: boolean, 3: unknownboolean, 4: string, 5: unknown

string, 6: pen, 7: unknownpen, 8: path, 9: unknownpath, 10: picture, 11: unknownpicture,

12: transform, 13: color, 14: cmykcolor, 15: pair, 16: numeric, 17: known, 18: dependent,

19: protodependent, 20: independent, 21: tokenlist, 22: structured, 23: unsuffixedmacro, 24:

suffixedmacro, and command codes with mplib.getcodes(): 0: undefined, 1: btex, 2: etex, 3:

if, 4: fiorelse, 5: input, 6: iteration, 7: repeatloop, 8: exittest, 9: relax, 10: scantokens, 11:

runscript, 12: maketext, 13: expandafter, 14: definedmacro, 15: save, 16: interim, 17: let, 18:

newinternal, 19: macrodef, 20: shipout, 21: addto, 22: setbounds, 23: protection, 24: property,

25: show, 26: mode, 27: randomseed, 28: message, 29: everyjob, 30: delimiters, 31: write, 32:

typename, 33: leftdelimiter, 34: begingroup, 35: nullary, 36: unary, 37: str, 38: void, 39: cycle,

40: ofbinary, 41: capsule, 42: string, 43: internal, 44: tag, 45: numeric, 46: plusorminus, 47:

secondarydef, 48: tertiarybinary, 49: leftbrace, 50: pathjoin, 51: ampersand, 52: tertiarydef,

53: primarybinary, 54: equals, 55: and, 56: primarydef, 57: slash, 58: secondarybinary, 59:

parametertype, 60: controls, 61: tension, 62: atleast, 63: curl, 64: macrospecial, 65: rightde

The MetaPost library mplib230

limiter, 66: leftbracket, 67: rightbracket, 68: rightbrace, 69: with, 70: thingstoadd, 71: of, 72:

to, 73: step, 74: until, 75: within, 76: assignment, 77: colon, 78: comma, 79: semicolon, 80:

endgroup, 81: stop, 82: undefinedcs

Now, if you really want to use these, keep in mind that the internals of MetaPost are not trivial,

especially because expression scanning can be complex. So you need to experiment a bit. In

ConTEXt all is (and will be) hidden below an abstraction layer so users are not bothered by all

these look-ahead and push-back issues that originate in the way MetaPost scans its input.

The supported color models are: mplib.getcolormodels(): 0: no, 1: grey, 2: rgb, 3: cmyk.

If you want the internal codes of the possible fields in a graphic object use mplib.getobject

types(): 0: , 1: fill, 2: outline, 3: start_clip, 4: start_group, 5: start_bounds, 6: stop_clip, 7:

stop_group, 8: stop_bounds. You can query the id of a graphic object with the gettype function.

ID OBJECT FIELDS

1 fill type path htap pen color linejoin miterlimit prescript postscript

stacking

2 outline type path pen color linejoin miterlimit linecap dash prescript

postscript stacking

3 start_clip type path prescript postscript stacking

4 start_group type path prescript postscript stacking

5 start_bounds type path prescript postscript stacking

6 stop_clip type stacking

7 stop_group type stacking

8 stop_bounds type stacking

12.6 Injectors

It is important to know that piping code into the library is pretty fast and efficient. Most pro

cessing time relates to memory management, calculations and generation of output can not be

neglected either. Out of curiousity I added some functions that directly push data into the library

but the gain is not that large.6

SCANNER ARGUMENT

injectnumeric instance, number

injectinteger instance, number

injectboolean instance, boolean

injectstring instance, string

injectpair instance, (table with) two numbers

injectcolor instance, (table with) three numbers

injectcmykcolor instance, (table with) four numbers

injecttransform instance, (table with) six numbers

injectpath instance, table with hashes or arrays, cycle, variant

injectwhatever instance, ont of the above depending on type and size

6 The main motivation was checking of huge paths could be optimized. The other data structures were then added for

completeness.

231The MetaPost library mplib

The path injector takes a table with subtables that are either hashed (like the path solver) or

arrays with two, four or six entries. When the third argument has the value true the path is

closed. When the fourth argument is true the path is constructed out of straight lines (as with

--) by setting the curl values to 1 automatically.7

This is the simplest path definition:

{

{ x, y },

...,

cycle = true

}

and this one also has the control points:

{

{ x0, y0, x1, y1, x2, y2 },

...,

cycle = true

}

A very detailed specification is this but you have to make sure that the parameters make sense.

{

{

x_coord = ...,

y_coord = ...,

left_x = ...,

left_y = ...,

right_x = ...,

right_y = ...,

left_tension = ...,

right_tension = ...,

left_curl = ...,

right_curl = ...,

direction_x = ...,

direction_y = ...,

left_type = ...,

right_type = ...,

},

...,

cycle = true

}

Instead of the optional keyword cycle you can use close.

7 This is all experimental so future versions might provide more control.

The MetaPost library mplib232

12.7 To be checked

% solvepath

% expandtex

233The pdf related libraries

13 The pdf related libraries

13.1 The pdfe library

13.1.1 Introduction

The pdfe library replaces the epdf library and provides an interface to pdf files. It uses the

same code as is used for pdf image inclusion. The pplib library by Paweł Jackowski replaces

the poppler (derived from xpdf) library.

A pdf file is basically a tree of objects and one descends into the tree via dictionaries (key/value)

and arrays (index/value). There are a few topmost dictionaries that start at root that are accessed

more directly.

Although everything in pdf is basically an object we only wrap a few in so called userdata Lua

objects.

TYPE MAPPING

pdf Lua

null nil

boolean boolean

integer integer

float number

name string

string string

array array userdatum

dictionary dictionary userdatum

stream stream userdatum (with related dictionary)

reference reference userdatum

The regular getters return these Lua data types but one can also get more detailed information.

13.1.2 open, openfile, new, getstatus, close, unencrypt

A document is loaded from a file (by name or handle) or string:

<pdfe document> = pdfe.open(filename)

<pdfe document> = pdfe.openfile(filehandle)

<pdfe document> = pdfe.new(somestring,somelength)

Such a document is closed with:

pdfe.close(<pdfe document>)

You can check if a document opened well by:

The pdf related libraries234

pdfe.getstatus(<pdfe document>)

The returned codes are:

VALUE EXPLANATION

-2 the document failed to open

-1 the document is (still) protected

0 the document is not encrypted

2 the document has been unencrypted

An encrypted document can be unencrypted by the next command where instead of either pass

word you can give nil:

pdfe.unencrypt(<pdfe document>,userpassword,ownerpassword)

13.1.3 getsize, getversion, getnofobjects, getnofpages

A successfully opened document can provide some information:

bytes = getsize(<pdfe document>)

major, minor = getversion(<pdfe document>)

n = getnofobjects(<pdfe document>)

n = getnofpages(<pdfe document>)

bytes, waste = getnofpages(<pdfe document>)

13.1.4 get[catalog|trailer|info]

For accessing the document structure you start with the so called catalog, a dictionary:

<pdfe dictionary> = pdfe.getcatalog(<pdfe document>)

The other two root dictionaries are accessed with:

<pdfe dictionary> = pdfe.gettrailer(<pdfe document>)

<pdfe dictionary> = pdfe.getinfo(<pdfe document>)

13.1.5 getpage, getbox

A specific page can conveniently be reached with the next command, which returns a dictionary.

<pdfe dictionary> = pdfe.getpage(<pdfe document>,pagenumber)

Another convenience command gives you the (bounding) box of a (normally page) which can be

inherited from the document itself. An example of a valid box name is MediaBox.

pages = pdfe.getbox(<pdfe dictionary>,boxname)

235The pdf related libraries

13.1.6 get[string|integer|number|boolean|name]

Common values in dictionaries and arrays are strings, integers, floats, booleans and names

(which are also strings) and these are also normal Lua objects:

s = getstring (<pdfe array|dictionary>,index|key)

i = getinteger(<pdfe array|dictionary>,index|key)

n = getnumber (<pdfe array|dictionary>,index|key)

b = getboolean(<pdfe array|dictionary>,index|key)

n = getname (<pdfe array|dictionary>,index|key)

The getstring function has two extra variants:

s, h = getstring (<pdfe array|dictionary>,index|key,false)

s = getstring (<pdfe array|dictionary>,index|key,true)

The first call returns the original string plus a boolean indicating if the string is hex encoded.

The second call returns the unencoded string.

13.1.7 get[dictionary|array|stream]

Normally you will use an index in an array and key in a dictionary but dictionaries also accept

an index. The size of an array or dictionary is available with the usual # operator.

<pdfe dictionary> = getdictionary(<pdfe array|dictionary>,index|key)

<pdfe array> = getarray (<pdfe array|dictionary>,index|key)

<pdfe stream>,

<pdfe dictionary> = getstream (<pdfe array|dictionary>,index|key)

These commands return dictionaries, arrays and streams, which are dictionaries with a blob of

data attached.

Before we come to an alternative access mode, we mention that the objects provide access in a

different way too, for instance this is valid:

print(pdfe.open("foo.pdf").Catalog.Type)

At the topmost level there are Catalog, Info, Trailer and Pages, so this is also okay:

print(pdfe.open("foo.pdf").Pages[1])

13.1.8 [open|close|readfrom|whole|]stream

Streams are sort of special. When your index or key hits a stream you get back a stream object

and dictionary object. The dictionary you can access in the usual way and for the stream there

are the following methods:

okay = openstream(<pdfe stream>,[decode])

closestream(<pdfe stream>)

The pdf related libraries236

str, n = readfromstream(<pdfe stream>)

str, n = readwholestream(<pdfe stream>,[decode])

You either read in chunks, or you ask for the whole. When reading in chunks, you need to open

and close the stream yourself. The n value indicates the length read. The decode parameter

controls if the stream data gets uncompressed.

As with dictionaries, you can access fields in a stream dictionary in the usual Lua way too. You

get the content when you ‘call’ the stream. You can pass a boolean that indicates if the stream

has to be decompressed.

13.1.9 getfrom[dictionary|array]

In addition to the interface described before, there is also a bit lower level interface available.

key, type, value, detail = getfromdictionary(<pdfe dictionary>,index)

type, value, detail = getfromarray(<pdfe array>,index)

TYPE MEANING VALUE DETAIL

0 none nil

1 null nil

2 boolean boolean

3 integer integer

4 number float

5 name string

6 string string hex

7 array arrayobject size

8 dictionary dictionaryobject size

9 stream streamobject dictionary size

10 reference integer

A hex string is (in the pdf file) surrounded by <> while plain strings are bounded by <>.

13.1.10 [dictionary|array]totable

All entries in a dictionary or table can be fetched with the following commands where the return

values are a hashed or indexed table.

hash = dictionarytotable(<pdfe dictionary>)

list = arraytotable(<pdfe array>)

You can get a list of pages with:

{ { <pdfe dictionary>, size, objnum }, ... } = pagestotable(<pdfe document>)

237The pdf related libraries

13.1.11 getfromreference

Because you can have unresolved references, a reference object can be resolved with:

type, <pdfe dictionary|array|stream>, detail = getfromreference(<pdfe refer

ence>)

So, as second value you get back a new pdfe userdata object that you can query.

13.2 Memory streams

The pdfe.new function takes three arguments:

VALUE EXPLANATION

stream this is a (in low level Lua speak) light userdata object, i.e. a pointer to a sequence of

bytes

length this is the length of the stream in bytes (the stream can have embedded zeros)

name optional, this is a unique identifier that is used for hashing the stream

The third argument is optional. When it is not given the function will return a pdfe document

object as with a regular file, otherwise it will return a filename that can be used elsewhere (e.g.

in the image library) to reference the stream as pseudo file.

Instead of a light userdata stream (which is actually fragile but handy when you come from a

library) you can also pass a Lua string, in which case the given length is (at most) the string

length.

The function returns a pdfe object and a string. The string can be used in the img library instead

of a filename. You need to prevent garbage collection of the object when you use it as image (for

instance by storing it somewhere).

Both the memory stream and it's use in the image library is experimental and can change. In

case you wonder where this can be used: when you use the swiglib library for graphicmagick,

it can return such a userdata object. This permits conversion in memory and passing the result

directly to the backend. This might save some runtime in one-pass workflows. This feature is

currently not meant for production and we might come up with a better implementation.

13.3 The pdfscanner library

This library is not available in LuaMetaTEX.

The pdf related libraries238

239Extra libraries

14 Extra libraries

14.1 Introduction

The libraries can be grouped in categories like fonts, languages, TEX, MetaPost, pdf, etc. There

are however also some that are more general purpose and these are discussed here.

14.2 File and string readers: fio and type sio

This library provides a set of functions for reading numbers from a file and in addition to the

regular io library functions. The following work on normal Lua file handles.

NAME ARGUMENTS RESULTS

readcardinal1 (f) a 1 byte unsigned integer

readcardinal2 (f) a 2 byte unsigned integer

readcardinal3 (f) a 3 byte unsigned integer

readcardinal4 (f) a 4 byte unsigned integer

readcardinaltable (f,n,b) n cardinals of b bytes

readinteger1 (f) a 1 byte signed integer

readinteger2 (f) a 2 byte signed integer

readinteger3 (f) a 3 byte signed integer

readinteger4 (f) a 4 byte signed integer

readintegertable (f,n,b) n integers of b bytes

readfixed2 (f) a float made from a 2 byte fixed format

readfixed4 (f) a float made from a 4 byte fixed format

read2dot14 (f) a float made from a 2 byte in 2dot4 format

setposition (f,p) goto position p

getposition (f) get the current position

skipposition (f,n) skip n positions

readbytes (f,n) n bytes

readbytetable (f,n) n bytes

When relevant there are also variants that end with le that do it the little endian way. The fixed

and dot floating points formats are found in font files and return Lua doubles.

A similar set of function as in the fio library is available in the sio library: sio.readcardi

nal1, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltable,

sio.readinteger1, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.readin

tegertable, sio.readfixed2, sio.readfixed4, sio.read2dot14, sio.setposition, sio.get

position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first argu

ment is a string instead of a file handle.

Extra libraries240

14.3 md5

NAME ARGUMENTS RESULTS

sum

hex

HEX

14.4 sha2

NAME ARGUMENTS RESULTS

digest256

digest384

digest512

14.5 xzip

NAME ARGUMENTS RESULTS

compress

decompress

adler32

crc32

14.6 xmath

This library just opens up standard C math library and the main reason for it being there is that it

permits advanced graphics in MetaPost (via the Lua interface). There are three constant values:

NAME ARGUMENTS RESULTS

inf — inf

nan — nan

pi — 3.1415926535898

and a lot of functions:

NAME ARGUMENTS RESULTS

acos (a)

acosh (a)

asin (a)

asinh (a)

atan (a[,b])

atan2 (a[,b])

atanh (a)

cbrt (a)

241Extra libraries

ceil (a)

copysign (a,b)

cos (a)

cosh (a)

deg (a)

erf (a)

erfc (a)

exp (a)

exp2 (a)

expm1 (a)

fabs (a)

fdim (a,b)

floor (a)

fma (a,b,c)

fmax (...)

fmin (...)

fmod (a,b)

frexp (a,b)

gamma (a)

hypot (a,b)

isfinite (a)

isinf (a)

isnan (a)

isnormal (a)

j0 (a)

j1 (a)

jn (a,b)

ldexp (a,b)

lgamma (a)

l0 (a)

l1 (a)

ln (a,b)

log (a[,b])

log10 (a)

log1p (a)

log2 (a)

logb (a)

modf (a,b)

nearbyint (a)

nextafter (a,b)

pow (a,b)

rad (a)

remainder (a,b)

remquo (a,b)

round (a)

scalbn (a,b)

Extra libraries242

sin (a)

sinh (a)

sqrt (a)

tan (a)

tanh (a)

tgamma (a)

trunc (a)

y0 (a)

y1 (a)

yn (a)

14.7 xcomplex

LuaMetaTEX also provides a complex library xcomplex. The complex number is a userdatum:

NAME ARGUMENTS RESULTS

new (r,i) a complex userdata type

tostring (z) a string representation

topair (z) two numbers

There is a bunch of functions that take a complex number:

NAME ARGUMENTS RESULTS

abs (a)

arg (a)

imag (a)

real (a)

onj (a)

proj (a)

exp" (a)

log (a)

sqrt (a)

pow (a,b)

sin (a)

cos (a)

tan (a)

asin (a)

acos (a)

atan (a)

sinh (a)

cosh (a)

tanh (a)

asinh (a)

acosh (a)

atanh (a)

243Extra libraries

These are accompanied by libcerf functions:

NAME ARGUMENTS RESULTS

erf (a) The complex error function erf(z)

erfc (a) The complex complementary error function erfc(z) = 1 - erf(z)

erfcx (a) The underflow-compensating function erfcx(z) = exp(z^2) erfc(z)

erfi (a) The imaginary error function erfi(z) = -i erf(iz)

dawson (a) Dawson's integral D(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)

voigt (a,b,c) The convolution of a Gaussian and a Lorentzian

voigt_hwhm (a,b) The half width at half maximum of the Voigt profile

14.8 xdecimal

As an experiment LuaMetaTEX provides an interface to the decNumber library that we have on

board forMetaPost anyway. Apart from the usual support for operators there are some functions.

NAME ARGUMENTS RESULTS

abs (a)

new ([n or s])

copy (a)

trim (a)

tostring (a)

tonumber (a)

setprecision (n)

getprecision ()

conj (a)

abs (a)

pow (a,b)

sqrt (a)

ln (a)

log (a)

exp (a)

bor (a,b)

bxor (a,b)

band (a,b)

shift (a,b)

rotate (a,b)

minus (a)

plus (a)

min (a,b)

max (a,b)

14.9 lfs

The original lfs module has been adapted a bit to our needs but for practical reasons we kept

Extra libraries244

the namespace. This module will probably evolve a bit over time.

NAME ARGUMENTS RESULTS

attributes (name)

chdir (name)

currentdir ()

dir (name) name, mode, size and mtime

mkdir (name)

rmdir (name)

touch (name)

link (name)

symlinkattributes (name)

isdir (name)

isfile (name)

iswriteabledir (name)

iswriteablefile (name)

isreadabledir (name)

isreadablefile (name)

The dir function is a traverser which in addition to the name returns some more properties.

Keep in mind that the traverser loops over a directory and that it doesn't run well when used

nested. This is a side effect of the operating system. It is also the reason why we return some

properties because querying them via attributes would interfere badly.

The following attributes are returned by attributes:

NAME VALUE

mode

size

modification

access

change

permissions

nlink

14.10 pngdecode

This module is experimental and used in image inclusion. It is not some general purpose module

and is supposed to be used in a very controlled way. The interfaces might evolve.

NAME ARGUMENTS RESULTS

applyfilter (str,nx,ny,slice) string

splitmask (str,nx,ny,bpp,bytes) string

interlace (str,nx,ny,slice,pass) string

expand (str,nx,ny,parts,xline,factor) string

245Extra libraries

14.11 basexx

Some more experimental helpers:

NAME ARGUMENTS RESULTS

encode16 (str[,newline]) string

decode16 (str) string

encode64 (str[,newline]) string

decode64 (str) string

encode85 (str[,newline]) string

decode85 (str) string

encodeRL (str) string

decodeRL (str) string

encodeLZW (str[,defaults]) string

decodeLZW (str[,defaults]) string

14.12 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function takes

upto two arguments: string.explode(s[,m]) and returns an array containing the string argu

ment s split into sub-strings based on the value of the string argument m. The second argument is

a string that is either empty (this splits the string into characters), a single character (this splits

on each occurrence of that character, possibly introducing empty strings), or a single character

followed by the plus sign + (this special version does not create empty sub-strings). The default

value for m is ‘ +’ (multiple spaces). Note: m is not hidden by surrounding braces as it would be

if this function was written in TEX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfval

ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes and

string.bytepairs.

‣ string.utfvalues(s): an integer value in the Unicode range

‣ string.utfcharacters(s): a string with a single utf-8 token in it

‣ string.characters(s): a string containing one byte

‣ string.characterpairs(s): two strings each containing one byte or an empty second string

if the string length was odd

‣ string.bytes(s): a single byte value

‣ string.bytepairs(s): two byte values or nil instead of a number as its second return value

if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the

conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,

if true, strips the symbols from the dumped data. This matches an extension made in luajit.

This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the

Extra libraries246

utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func

tions from the slnunicode library can be used, e.g., unicode.utf8.len, unicode.utf8.lower

etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and

unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are

Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture

() but other captures work as expected. For the interpretation of character classes in uni

code.utf8 functions refer to the library sources at http://luaforge.net/projects/sln.

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers

too: string.utfvalue, string.utfcharacter and string.utflength.

‣ string.utfvalue(s): returns the codepoints of the characters in the given string

‣ string.utfcharacter(c,...): returns a string with the characters of the given code points

‣ string.utflength(s): returns the length of the given string

These three functions are relative fast and don't do much checking. They can be used as building

blocks for other helpers.

14.13 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.selfarg, os.setenv,

os.env, os.gettimeofday, os.type, os.name and os.uname, that we will discuss here. There

are also some time related helpers in the lua namespace.

‣ os.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

‣ os.selfarg is a table with the command line arguments.

‣ os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value

string will remove the variable.

‣ os.env is a hash table containing a dump of the variables and values in the process envi

ronment at the start of the run. It is writeable, but the actual environment is not updated

automatically.

‣ os.gettimeofday returns the current ‘Unix time’, but as a float. Keep in mind that there

might be platforms where this function is not available.

‣ os.type is a string that gives a global indication of the class of operating system. The possible

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

‣ os.name is a string that gives a more precise indication of the operating system. These pos

sible values are not yet fixed, and for os.type values windows and msdos, the os.name values

are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv,

generic (unknown). But . . . we only provide LuaMetaTEX binaries for the mainstream vari

ants.

Officially we only support mainstream systems: MS Windows, linux, FreeBSD and os-x. Of

course one can build LuaMetaTEX for other systems, in which case on has to check the above.

‣ os.uname returns a table with specific operating system information acquired at runtime.

The keys in the returned table are all string values, and their names are: sysname, machine,

247Extra libraries

release, version, and nodename.

14.14 The lua library functions

The lua library provides some general helpers.

‣ The newtable and newindex functions can be used to create tables with space reserved be

forehand for the given amount of entries.

‣ The getstacktop function returns a number that can be used for diagnostic purposes.

‣ The functions getruntime, getcurrenttime, getpreciseticks and getpreciseseconds re

turn what their name suggests.

‣ On MS Windows the getcodepage function returns two numbers, one for the command han

dler and one for the graphical user interface.

‣ The name of the startup file is reported by getstartupfile.

‣ The Lua version is reported by getversion.

‣ The lua.openfile function can be used instead of io.open. On MS Windows it will convert

the filename to a so called wide one which means that filenames in utf8 encoding will work

ok. On the other hand, names given in the codepage won't.

Extra libraries248

249Primitive codes

Primitive codes

here follows a list with all primitives and their category is shown. When the engine starts up

in ini mode all primitives get defined along with some properties that makes it possible to do a

reverse lookup of a combination of command code and char code. But, a primitive, being also

a regular command can be redefined later on. The table below shows the original pairs but in

ConTEXt some of these primitives are redefined. However, any macro that fits a command and

char pair is (reported as) a primitive in logs and error messages. In the end all tokens are such a

combination, The first 16 command codes are reserved for characters (the whole Unicode range

can be used as char code) with specific catcodes and not mentioned in the list.

PRIMITIVE COMMAND CODE CHAR CODE ORIGIN

\ explicit_space 0 tex

\- discretionary 1 tex

\/ italic_correction 0 tex

\UUskewed math_fraction 7 luatex

\UUskewedwithdelims math_fraction 15 luatex

\Uabove math_fraction 4 luatex

\Uabovewithdelims math_fraction 12 luatex

\Uatop math_fraction 6 luatex

\Uatopwithdelims math_fraction 14 luatex

\Uchar convert 14 luatex

\Udelcode define_char_code 9 luatex

\Udelcodenum define_char_code 10 luatex

\Udelimiter delimiter_number 1 luatex

\Udelimiterover math_radical 6 luatex

\Udelimiterunder math_radical 5 luatex

\Uhextensible math_radical 7 luatex

\Uleft math_fence 5 luatex

\Umathaccent math_accent 1 luatex

\Umathaccentbaseheight set_math_parameter 2 luatex

\Umathaccentvariant set_math_parameter 131 luatex

\Umathadapttoleft math_modifier 3 luatex

\Umathadapttoright math_modifier 4 luatex

\Umathaxis set_math_parameter 1 luatex

\Umathbinbinspacing set_math_parameter 74 luatex

\Umathbinclosespacing set_math_parameter 77 luatex

\Umathbininnerspacing set_math_parameter 79 luatex

\Umathbinopenspacing set_math_parameter 76 luatex

\Umathbinopspacing set_math_parameter 73 luatex

\Umathbinordspacing set_math_parameter 72 luatex

\Umathbinpunctspacing set_math_parameter 78 luatex

\Umathbinrelspacing set_math_parameter 75 luatex

\Umathbotaccentvariant set_math_parameter 133 luatex

\Umathchar math_char_number 1 luatex

Primitive codes250

\Umathcharclass some_item 27 luatex

\Umathchardef shorthand_def 2 luatex

\Umathcharfam some_item 28 luatex

\Umathcharnum math_char_number 2 luatex

\Umathcharnumdef shorthand_def 3 luatex

\Umathcharslot some_item 29 luatex

\Umathclass math_char_number 3 luatex

\Umathclosebinspacing set_math_parameter 98 luatex

\Umathcloseclosespacing set_math_parameter 101 luatex

\Umathcloseinnerspacing set_math_parameter 103 luatex

\Umathcloseopenspacing set_math_parameter 100 luatex

\Umathcloseopspacing set_math_parameter 97 luatex

\Umathcloseordspacing set_math_parameter 96 luatex

\Umathclosepunctspacing set_math_parameter 102 luatex

\Umathcloserelspacing set_math_parameter 99 luatex

\Umathcode define_char_code 6 luatex

\Umathcodenum define_char_code 7 luatex

\Umathconnectoroverlapmin set_math_parameter 51 luatex

\Umathdegreevariant set_math_parameter 130 luatex

\Umathdelimiterovervariant set_math_parameter 124 luatex

\Umathdelimiterundervariant set_math_parameter 125 luatex

\Umathdenominatorvariant set_math_parameter 136 luatex

\Umathextrasubpreshift set_math_parameter 55 luatex

\Umathextrasubshift set_math_parameter 53 luatex

\Umathextrasuppreshift set_math_parameter 54 luatex

\Umathextrasupshift set_math_parameter 52 luatex

\Umathfractiondelsize set_math_parameter 25 luatex

\Umathfractiondenomdown set_math_parameter 24 luatex

\Umathfractiondenomvgap set_math_parameter 23 luatex

\Umathfractionnumup set_math_parameter 22 luatex

\Umathfractionnumvgap set_math_parameter 21 luatex

\Umathfractionrule set_math_parameter 20 luatex

\Umathfractionvariant set_math_parameter 128 luatex

\Umathhextensiblevariant set_math_parameter 126 luatex

\Umathinnerbinspacing set_math_parameter 114 luatex

\Umathinnerclosespacing set_math_parameter 117 luatex

\Umathinnerinnerspacing set_math_parameter 119 luatex

\Umathinneropenspacing set_math_parameter 116 luatex

\Umathinneropspacing set_math_parameter 113 luatex

\Umathinnerordspacing set_math_parameter 112 luatex

\Umathinnerpunctspacing set_math_parameter 118 luatex

\Umathinnerrelspacing set_math_parameter 115 luatex

\Umathlimitabovebgap set_math_parameter 29 luatex

\Umathlimitabovekern set_math_parameter 30 luatex

\Umathlimitabovevgap set_math_parameter 28 luatex

\Umathlimitbelowbgap set_math_parameter 32 luatex

251Primitive codes

\Umathlimitbelowkern set_math_parameter 33 luatex

\Umathlimitbelowvgap set_math_parameter 31 luatex

\Umathlimits math_modifier 1 luatex

\Umathnoaxis math_modifier 6 luatex

\Umathnolimits math_modifier 2 luatex

\Umathnolimitsubfactor set_math_parameter 34 luatex

\Umathnolimitsupfactor set_math_parameter 35 luatex

\Umathnumeratorvariant set_math_parameter 135 luatex

\Umathopbinspacing set_math_parameter 66 luatex

\Umathopclosespacing set_math_parameter 69 luatex

\Umathopenbinspacing set_math_parameter 90 luatex

\Umathopenclosespacing set_math_parameter 93 luatex

\Umathopeninnerspacing set_math_parameter 95 luatex

\Umathopenopenspacing set_math_parameter 92 luatex

\Umathopenopspacing set_math_parameter 89 luatex

\Umathopenordspacing set_math_parameter 88 luatex

\Umathopenpunctspacing set_math_parameter 94 luatex

\Umathopenrelspacing set_math_parameter 91 luatex

\Umathopenupdepth math_modifier 10 luatex

\Umathopenupheight math_modifier 9 luatex

\Umathoperatorsize set_math_parameter 4 luatex

\Umathopinnerspacing set_math_parameter 71 luatex

\Umathopopenspacing set_math_parameter 68 luatex

\Umathopopspacing set_math_parameter 65 luatex

\Umathopordspacing set_math_parameter 64 luatex

\Umathoppunctspacing set_math_parameter 70 luatex

\Umathoprelspacing set_math_parameter 67 luatex

\Umathordbinspacing set_math_parameter 58 luatex

\Umathordclosespacing set_math_parameter 61 luatex

\Umathordinnerspacing set_math_parameter 63 luatex

\Umathordopenspacing set_math_parameter 60 luatex

\Umathordopspacing set_math_parameter 57 luatex

\Umathordordspacing set_math_parameter 56 luatex

\Umathordpunctspacing set_math_parameter 62 luatex

\Umathordrelspacing set_math_parameter 59 luatex

\Umathoverbarkern set_math_parameter 5 luatex

\Umathoverbarrule set_math_parameter 6 luatex

\Umathoverbarvgap set_math_parameter 7 luatex

\Umathoverdelimiterbgap set_math_parameter 39 luatex

\Umathoverdelimitervariant set_math_parameter 122 luatex

\Umathoverdelimitervgap set_math_parameter 38 luatex

\Umathoverlayaccentvariant set_math_parameter 134 luatex

\Umathoverlinevariant set_math_parameter 120 luatex

\Umathphantom math_modifier 7 luatex

\Umathpunctbinspacing set_math_parameter 106 luatex

\Umathpunctclosespacing set_math_parameter 109 luatex

Primitive codes252

\Umathpunctinnerspacing set_math_parameter 111 luatex

\Umathpunctopenspacing set_math_parameter 108 luatex

\Umathpunctopspacing set_math_parameter 105 luatex

\Umathpunctordspacing set_math_parameter 104 luatex

\Umathpunctpunctspacing set_math_parameter 110 luatex

\Umathpunctrelspacing set_math_parameter 107 luatex

\Umathquad set_math_parameter 0 luatex

\Umathradicaldegreeafter set_math_parameter 15 luatex

\Umathradicaldegreebefore set_math_parameter 14 luatex

\Umathradicaldegreeraise set_math_parameter 16 luatex

\Umathradicalkern set_math_parameter 11 luatex

\Umathradicalrule set_math_parameter 12 luatex

\Umathradicalvariant set_math_parameter 129 luatex

\Umathradicalvgap set_math_parameter 13 luatex

\Umathrelbinspacing set_math_parameter 82 luatex

\Umathrelclosespacing set_math_parameter 85 luatex

\Umathrelinnerspacing set_math_parameter 87 luatex

\Umathrelopenspacing set_math_parameter 84 luatex

\Umathrelopspacing set_math_parameter 81 luatex

\Umathrelordspacing set_math_parameter 80 luatex

\Umathrelpunctspacing set_math_parameter 86 luatex

\Umathrelrelspacing set_math_parameter 83 luatex

\Umathskewedfractionhgap set_math_parameter 26 luatex

\Umathskewedfractionvgap set_math_parameter 27 luatex

\Umathspaceafterscript set_math_parameter 50 luatex

\Umathspacebeforescript set_math_parameter 49 luatex

\Umathspacingmode set_math_parameter 3 luatex

\Umathstackdenomdown set_math_parameter 19 luatex

\Umathstacknumup set_math_parameter 18 luatex

\Umathstackvariant set_math_parameter 139 luatex

\Umathstackvgap set_math_parameter 17 luatex

\Umathsubscriptvariant set_math_parameter 138 luatex

\Umathsubshiftdown set_math_parameter 42 luatex

\Umathsubshiftdrop set_math_parameter 40 luatex

\Umathsubsupshiftdown set_math_parameter 43 luatex

\Umathsubsupvgap set_math_parameter 48 luatex

\Umathsubtopmax set_math_parameter 44 luatex

\Umathsupbottommin set_math_parameter 46 luatex

\Umathsuperscriptvariant set_math_parameter 137 luatex

\Umathsupshiftdrop set_math_parameter 41 luatex

\Umathsupshiftup set_math_parameter 45 luatex

\Umathsupsubbottommax set_math_parameter 47 luatex

\Umathtopaccentvariant set_math_parameter 132 luatex

\Umathunderbarkern set_math_parameter 8 luatex

\Umathunderbarrule set_math_parameter 9 luatex

\Umathunderbarvgap set_math_parameter 10 luatex

253Primitive codes

\Umathunderdelimiterbgap set_math_parameter 37 luatex

\Umathunderdelimitervariant set_math_parameter 123 luatex

\Umathunderdelimitervgap set_math_parameter 36 luatex

\Umathunderlinevariant set_math_parameter 121 luatex

\Umathvextensiblevariant set_math_parameter 127 luatex

\Umathvoid math_modifier 8 luatex

\Umiddle math_fence 6 luatex

\Unosubprescript math_script 7 luatex

\Unosubscript math_script 5 luatex

\Unosuperprescript math_script 8 luatex

\Unosuperscript math_script 6 luatex

\Uover math_fraction 5 luatex

\Uoverdelimiter math_radical 4 luatex

\Uoverwithdelims math_fraction 13 luatex

\Uradical math_radical 1 luatex

\Uright math_fence 7 luatex

\Uroot math_radical 2 luatex

\Uskewed math_fraction 3 luatex

\Uskewedwithdelims math_fraction 11 luatex

\Ustack math_choice 1 luatex

\Ustartdisplaymath math_shift_cs 2 luatex

\Ustartmath math_shift_cs 0 luatex

\Ustopdisplaymath math_shift_cs 3 luatex

\Ustopmath math_shift_cs 1 luatex

\Ustyle math_style 8 luatex

\Usubprescript math_script 4 luatex

\Usubscript math_script 1 luatex

\Usuperprescript math_script 3 luatex

\Usuperscript math_script 2 luatex

\Uunderdelimiter math_radical 3 luatex

\Uvextensible math_fence 4 luatex

\above math_fraction 0 tex

\abovedisplayshortskip internal_glue 5 tex

\abovedisplayskip internal_glue 3 tex

\abovewithdelims math_fraction 8 tex

\accent accent 0 tex

\adjdemerits internal_int 16 tex

\adjustspacing internal_int 83 luatex

\adjustspacingshrink internal_int 86 luatex

\adjustspacingstep internal_int 84 luatex

\adjustspacingstretch internal_int 85 luatex

\advance arithmic 0 tex

\afterassigned after_something 4 luatex

\afterassignment after_something 1 tex

\aftergroup after_something 0 tex

\aftergrouped after_something 3 luatex

Primitive codes254

\aliased prefix 11 luatex

\alignmark parameter 0 luatex

\aligntab alignment_tab 0 luatex

\atendofgroup after_something 2 luatex

\atendofgrouped after_something 5 luatex

\atop math_fraction 2 tex

\atopwithdelims math_fraction 10 tex

\attribute register 1 luatex

\attributedef shorthand_def 5 luatex

\automaticdiscretionary discretionary 2 luatex

\automatichyphenpenalty internal_int 112 luatex

\automigrationmode internal_int 116 luatex

\badness some_item 6 tex

\baselineskip internal_glue 1 tex

\batchmode set_interaction 0 tex

\begincsname cs_name 2 luatex

\begingroup begin_group 0 tex

\beginlocalcontrol begin_local 0 luatex

\beginsimplegroup begin_group 1 tex

\belowdisplayshortskip internal_glue 6 tex

\belowdisplayskip internal_glue 4 tex

\binoppenalty internal_int 9 tex

\botmark get_mark 2 tex

\botmarks get_mark 7 etex

\boundary boundary 1 luatex

\box make_box 0 tex

\boxattribute set_box_property 10 luatex

\boxdirection set_box_property 3 luatex

\boxmaxdepth internal_dimen 7 tex

\boxorientation set_box_property 4 luatex

\boxtotal set_box_property 9 luatex

\boxxmove set_box_property 7 luatex

\boxxoffset set_box_property 5 luatex

\boxymove set_box_property 8 luatex

\boxyoffset set_box_property 6 luatex

\brokenpenalty internal_int 8 tex

\catcode define_char_code 0 tex

\catcodetable internal_int 80 luatex

\char char_number 0 tex

\chardef shorthand_def 0 tex

\cleaders special_box 4 tex

\clearmarks set_mark 2 luatex

\clubpenalties set_specification 0 etex

\clubpenalty internal_int 5 tex

\copy make_box 1 tex

\count register 0 tex

255Primitive codes

\countdef shorthand_def 4 tex

\cr end_template 4 tex

\crampeddisplaystyle math_style 1 luatex

\crampedscriptscriptstyle math_style 7 luatex

\crampedscriptstyle math_style 5 luatex

\crampedtextstyle math_style 3 luatex

\crcr end_template 5 tex

\csname cs_name 0 tex

\csstring convert 9 luatex

\currentgrouplevel some_item 10 etex

\currentgrouptype some_item 11 etex

\currentifbranch some_item 14 etex

\currentiflevel some_item 12 etex

\currentiftype some_item 13 etex

\day internal_int 20 tex

\deadcycles set_page_property 8 tex

\def def 1 tex

\defaulthyphenchar internal_int 56 tex

\defaultskewchar internal_int 57 tex

\defcsname def 5 luatex

\delcode define_char_code 8 tex

\delimiter delimiter_number 0 tex

\delimiterfactor internal_int 17 tex

\delimitershortfall internal_dimen 10 tex

\detokenize the 3 etex

\dimen register 2 tex

\dimendef shorthand_def 6 tex

\dimensiondef shorthand_def 12 luatex

\dimexpr some_item 43 etex

\dimexpression some_item 47 luatex

\directlua convert 4 luatex

\discretionary discretionary 0 tex

\displayindent internal_dimen 15 tex

\displaylimits math_modifier 0 tex

\displaystyle math_style 0 tex

\displaywidowpenalties set_specification 0 etex

\displaywidowpenalty internal_int 7 tex

\displaywidth internal_dimen 14 tex

\divide arithmic 2 tex

\doublehyphendemerits internal_int 14 tex

\dp set_box_property 2 tex

\dump end_job 1 tex

\edef def 0 tex

\edefcsname def 4 luatex

\efcode set_font_property 4 luatex

\else if_test 3 tex

Primitive codes256

\emergencystretch internal_dimen 18 tex

\end end_job 0 tex

\endcsname end_cs_name 0 tex

\endgroup end_group 0 tex

\endinput input 1 tex

\endlinechar internal_int 58 tex

\endlocalcontrol end_local 0 luatex

\endsimplegroup end_group 1 tex

\enforced prefix 13 luatex

\eqno equation_number 1 tex

\errhelp internal_toks 9 tex

\errmessage message 1 tex

\errorcontextlines internal_int 66 tex

\errorstopmode set_interaction 3 tex

\escapechar internal_int 55 tex

\etoksapp combine_toks 1 luatex

\etokspre combine_toks 3 luatex

\everybeforepar internal_toks 10 luatex

\everycr internal_toks 7 tex

\everydisplay internal_toks 3 tex

\everyeof internal_toks 11 etex

\everyhbox internal_toks 4 tex

\everyjob internal_toks 6 tex

\everymath internal_toks 2 tex

\everypar internal_toks 1 tex

\everytab internal_toks 8 luatex

\everyvbox internal_toks 5 tex

\exceptionpenalty internal_int 114 luatex

\exhyphenchar internal_int 82 tex

\exhyphenpenalty internal_int 4 tex

\expand expand_after 9 luatex

\expandafter expand_after 0 tex

\expandafterpars expand_after 6 luatex

\expandafterspaces expand_after 5 luatex

\expandcstoken expand_after 8 luatex

\expanded convert 7 luatex

\expandtoken expand_after 7 luatex

\explicitdiscretionary discretionary 1 luatex

\explicithyphenpenalty internal_int 113 luatex

\fam internal_int 54 tex

\fi if_test 2 tex

\finalhyphendemerits internal_int 15 tex

\firstmark get_mark 1 tex

\firstmarks get_mark 6 etex

\firstvalidlanguage internal_int 111 luatex

\floatingpenalty internal_int 52 tex

257Primitive codes

\font define_font 0 tex

\fontchardp some_item 20 etex

\fontcharht some_item 19 etex

\fontcharic some_item 21 etex

\fontcharwd some_item 18 etex

\fontdimen set_font_property 5 tex

\fontid some_item 17 luatex

\fontmathcontrol some_item 23 luatex

\fontname convert 16 tex

\fontspecifiedname convert 17 tex

\fontspecifiedsize some_item 22 luatex

\fonttextcontrol some_item 24 luatex

\formatname convert 19 luatex

\frozen prefix 0 luatex

\futurecsname cs_name 3 luatex

\futuredef let 3 luatex

\futureexpand expand_after 2 luatex

\futureexpandis expand_after 3 luatex

\futureexpandisap expand_after 4 luatex

\futurelet let 2 tex

\gdef def 3 tex

\gdefcsname def 7 luatex

\gleaders special_box 6 luatex

\glet let 0 luatex

\gletcsname let 11 luatex

\glettonothing let 13 luatex

\global prefix 7 tex

\globaldefs internal_int 53 tex

\glueexpr some_item 44 etex

\glueshrink some_item 39 etex

\glueshrinkorder some_item 16 etex

\gluespecdef shorthand_def 13 luatex

\gluestretch some_item 38 etex

\gluestretchorder some_item 15 etex

\gluetomu some_item 41 etex

\glyph char_number 1 tex

\glyphdatafield internal_int 73 luatex

\glyphoptions internal_int 76 luatex

\glyphscale internal_int 70 luatex

\glyphscriptfield internal_int 75 luatex

\glyphscriptscale internal_int 78 luatex

\glyphscriptscriptscale internal_int 79 luatex

\glyphstatefield internal_int 74 luatex

\glyphtextscale internal_int 77 luatex

\glyphxoffset internal_dimen 19 luatex

\glyphxscale internal_int 71 luatex

Primitive codes258

\glyphyoffset internal_dimen 20 luatex

\glyphyscale internal_int 72 luatex

\gtoksapp combine_toks 4 luatex

\gtokspre combine_toks 6 luatex

\halign halign 0 tex

\hangafter internal_int 51 tex

\hangindent internal_dimen 17 tex

\hbadness internal_int 26 tex

\hbox make_box 10 tex

\hccode define_char_code 4 luatex

\hfil hskip 0 tex

\hfill hskip 1 tex

\hfilneg hskip 3 tex

\hfuzz internal_dimen 8 tex

\hjcode hyphenation 7 luatex

\holdinginserts internal_int 65 tex

\hpack make_box 7 luatex

\hrule hrule 0 tex

\hsize internal_dimen 3 tex

\hskip hskip 4 tex

\hss hskip 2 tex

\ht set_box_property 1 tex

\hyphenation hyphenation 0 tex

\hyphenationmin hyphenation 6 luatex

\hyphenationmode internal_int 62 luatex

\hyphenchar set_font_property 0 tex

\hyphenpenalty internal_int 3 tex

\if if_test 7 tex

\ifabsdim if_test 11 luatex

\ifabsnum if_test 9 luatex

\ifarguments if_test 45 luatex

\ifboolean if_test 41 luatex

\ifcase if_test 32 tex

\ifcat if_test 8 tex

\ifchkdim if_test 29 luatex

\ifchknum if_test 26 luatex

\ifcmpdim if_test 31 luatex

\ifcmpnum if_test 28 luatex

\ifcondition if_test 37 luatex

\ifcsname if_test 34 etex

\ifcstok if_test 22 luatex

\ifdefined if_test 33 etex

\ifdim if_test 12 tex

\ifdimval if_test 30 luatex

\ifempty if_test 39 luatex

\ifexpression if_test 42 luatex

259Primitive codes

\iffalse if_test 25 tex

\ifflags if_test 38 luatex

\iffontchar if_test 36 etex

\ifhastok if_test 48 luatex

\ifhastoks if_test 49 luatex

\ifhasxtoks if_test 50 luatex

\ifhbox if_test 19 tex

\ifhmode if_test 15 tex

\ifincsname if_test 35 luatex

\ifinner if_test 17 tex

\ifinsert if_test 51 luatex

\ifmathparameter if_test 43 luatex

\ifmathstyle if_test 44 luatex

\ifmmode if_test 16 tex

\ifnum if_test 10 tex

\ifnumval if_test 27 luatex

\ifodd if_test 13 tex

\ifparameter if_test 47 luatex

\ifparameters if_test 46 luatex

\ifrelax if_test 40 luatex

\iftok if_test 21 luatex

\iftrue if_test 24 tex

\ifvbox if_test 20 tex

\ifvmode if_test 14 tex

\ifvoid if_test 18 tex

\ifx if_test 23 tex

\ignorearguments ignore_something 2 luatex

\ignorepars ignore_something 1 luatex

\ignorespaces ignore_something 0 tex

\immediate prefix 12 luatex

\immutable prefix 2 luatex

\indent begin_paragraph 1 tex

\initcatcodetable catcode_table 1 luatex

\input input 0 tex

\inputlineno some_item 5 tex

\insert insert 0 tex

\insertbox make_box 11 luatex

\insertcopy make_box 12 luatex

\insertdepth set_page_property 15 luatex

\insertdistance set_page_property 11 luatex

\insertheight set_page_property 14 luatex

\insertheights set_page_property 10 luatex

\insertlimit set_page_property 13 luatex

\insertmode set_auxiliary 4 luatex

\insertmultiplier set_page_property 12 luatex

\insertpenalties set_page_property 9 tex

Primitive codes260

\insertprogress some_item 32 luatex

\insertunbox un_vbox 11 luatex

\insertuncopy un_vbox 12 luatex

\insertwidth set_page_property 16 luatex

\instance prefix 5 luatex

\integerdef shorthand_def 11 luatex

\interactionmode set_auxiliary 3 etex

\interlinepenalties set_specification 0 etex

\interlinepenalty internal_int 13 tex

\jobname convert 18 tex

\kern kern 0 tex

\language internal_int 60 tex

\lastarguments some_item 30 luatex

\lastbox make_box 3 tex

\lastchkdim some_item 49 luatex

\lastchknum some_item 48 luatex

\lastkern some_item 1 tex

\lastlinefit internal_int 89 etex

\lastnamedcs cs_name 1 luatex

\lastnodesubtype some_item 4 luatex

\lastnodetype some_item 3 etex

\lastpenalty some_item 0 tex

\lastskip some_item 2 tex

\lccode define_char_code 1 tex

\leaders special_box 3 tex

\left math_fence 1 tex

\lefthyphenmin internal_int 63 tex

\leftmarginkern some_item 33 luatex

\leftskip internal_glue 7 tex

\leqno equation_number 0 tex

\let let 1 tex

\letcharcode let 4 luatex

\letcsname let 10 luatex

\letfrozen let 8 luatex

\letprotected let 6 luatex

\lettonothing let 12 luatex

\limits math_modifier 1 tex

\linedirection internal_int 122 luatex

\linepar undefined_cs 0 luatex

\linepenalty internal_int 2 tex

\lineskip internal_glue 0 tex

\lineskiplimit internal_dimen 2 tex

\localbrokenpenalty internal_int 68 luatex

\localcontrol begin_local 1 luatex

\localcontrolled begin_local 2 luatex

\localinterlinepenalty internal_int 67 luatex

261Primitive codes

\localleftbox special_box 1 luatex

\localrightbox special_box 2 luatex

\long prefix 15 tex

\looseness internal_int 18 tex

\lower vmove 0 tex

\lowercase case_shift 0 tex

\lpcode set_font_property 2 luatex

\luabytecode convert 6 luatex

\luabytecodecall lua_function_call 1 luatex

\luacopyinputnodes internal_int 115 luatex

\luadef shorthand_def 10 luatex

\luaescapestring convert 15 luatex

\luafunction convert 5 luatex

\luafunctioncall lua_function_call 0 luatex

\luatexbanner convert 20 luatex

\luatexrevision some_item 9 luatex

\luatexversion some_item 8 luatex

\mark set_mark 0 tex

\marks set_mark 1 etex

\mathaccent math_accent 0 tex

\mathbin math_component 2 tex

\mathchar math_char_number 0 tex

\mathchardef shorthand_def 1 tex

\mathchoice math_choice 0 tex

\mathclose math_component 5 tex

\mathcode define_char_code 5 tex

\mathcontrolmode internal_int 106 luatex

\mathdelimitersmode internal_int 102 luatex

\mathdirection internal_int 121 luatex

\mathdisplayskipmode internal_int 93 luatex

\matheqnogapstep internal_int 92 luatex

\mathflattenmode internal_int 104 luatex

\mathfontcontrol internal_int 107 luatex

\mathinner math_component 7 tex

\mathitalicsmode internal_int 100 luatex

\mathnolimitsmode internal_int 97 luatex

\mathop math_component 1 tex

\mathopen math_component 4 tex

\mathord math_component 0 tex

\mathpenaltiesmode internal_int 101 luatex

\mathpunct math_component 6 tex

\mathrel math_component 3 tex

\mathrulesfam internal_int 99 luatex

\mathrulesmode internal_int 98 luatex

\mathrulethicknessmode internal_int 103 luatex

\mathscale some_item 25 luatex

Primitive codes262

\mathscriptboxmode internal_int 95 luatex

\mathscriptcharmode internal_int 96 luatex

\mathscriptsmode internal_int 94 luatex

\mathstyle some_item 26 luatex

\mathsurround internal_dimen 1 tex

\mathsurroundmode internal_int 105 luatex

\mathsurroundskip internal_glue 16 luatex

\maxdeadcycles internal_int 50 tex

\maxdepth internal_dimen 5 tex

\meaning convert 11 tex

\meaningfull convert 12 tex

\meaningless convert 13 tex

\medmuskip internal_mu_glue 2 tex

\message message 0 tex

\middle math_fence 2 tex

\mkern mkern 0 tex

\month internal_int 21 tex

\moveleft hmove 1 tex

\moveright hmove 0 tex

\mskip mskip 0 tex

\muexpr some_item 45 etex

\mugluespecdef shorthand_def 14 luatex

\multiply arithmic 1 tex

\muskip register 4 tex

\muskipdef shorthand_def 8 tex

\mutable prefix 3 luatex

\mutoglue some_item 40 etex

\newlinechar internal_int 59 tex

\noalign end_template 3 tex

\noaligned prefix 4 luatex

\noboundary boundary 0 luatex

\noexpand no_expand 0 tex

\nohrule hrule 1 luatex

\noindent begin_paragraph 0 tex

\nolimits math_modifier 2 tex

\nonscript math_script 0 tex

\nonstopmode set_interaction 1 tex

\norelax relax 1114113 luatex

\normalizelinemode internal_int 117 luatex

\nospaces internal_int 69 luatex

\novrule vrule 1 luatex

\nulldelimiterspace internal_dimen 11 tex

\nullfont set_font 0 tex

\number convert 0 tex

\numericscale some_item 50 luatex

\numexpr some_item 42 etex

263Primitive codes

\numexpression some_item 46 luatex

\omit end_template 2 tex

\or if_test 4 tex

\orelse if_test 5 luatex

\orunless if_test 6 luatex

\outer prefix 16 tex

\output internal_toks 0 tex

\outputbox internal_int 81 luatex

\outputpenalty internal_int 49 tex

\over math_fraction 1 tex

\overfullrule internal_dimen 16 tex

\overline math_component 9 tex

\overloaded prefix 10 luatex

\overloadmode internal_int 123 luatex

\overshoot some_item 7 tex

\overwithdelims math_fraction 9 tex

\pagedepth set_page_property 7 tex

\pagediscards un_vbox 3 etex

\pagefilllstretch set_page_property 5 tex

\pagefillstretch set_page_property 4 tex

\pagefilstretch set_page_property 3 tex

\pagegoal set_page_property 0 tex

\pageshrink set_page_property 6 tex

\pagestretch set_page_property 2 tex

\pagetotal set_page_property 1 tex

\par end_paragraph 1114112 tex

\parametercount some_item 31 luatex

\parattribute begin_paragraph 5 luatex

\pardirection internal_int 119 luatex

\parfillleftskip internal_glue 14 tex

\parfillskip internal_glue 15 tex

\parindent internal_dimen 0 tex

\parshape set_specification 0 tex

\parshapedimen some_item 37 etex

\parshapeindent some_item 36 etex

\parshapelength some_item 35 etex

\parskip internal_glue 2 tex

\patterns hyphenation 1 tex

\pausing internal_int 28 tex

\penalty penalty 0 tex

\permanent prefix 1 luatex

\postdisplaypenalty internal_int 12 tex

\postexhyphenchar hyphenation 5 luatex

\posthyphenchar hyphenation 3 luatex

\prebinoppenalty internal_int 109 luatex

\predisplaydirection internal_int 88 etex

Primitive codes264

\predisplaygapfactor internal_int 108 luatex

\predisplaypenalty internal_int 11 tex

\predisplaysize internal_dimen 13 tex

\preexhyphenchar hyphenation 4 luatex

\prehyphenchar hyphenation 2 luatex

\prerelpenalty internal_int 110 luatex

\pretolerance internal_int 0 tex

\prevdepth set_auxiliary 1 tex

\prevgraf set_auxiliary 2 tex

\protected prefix 9 etex

\protrudechars internal_int 87 luatex

\protrusionboundary boundary 2 luatex

\pxdimen internal_dimen 21 luatex

\quitvmode begin_paragraph 2 luatex

\radical math_radical 0 tex

\raise vmove 1 tex

\relax relax 1114112 tex

\relpenalty internal_int 10 tex

\right math_fence 3 tex

\righthyphenmin internal_int 64 tex

\rightmarginkern some_item 34 luatex

\rightskip internal_glue 8 tex

\romannumeral convert 10 tex

\rpcode set_font_property 3 luatex

\savecatcodetable catcode_table 0 luatex

\savinghyphcodes internal_int 91 etex

\savingvdiscards internal_int 90 etex

\scaledfontdimen set_font_property 6 tex

\scantextokens input 3 luatex

\scantokens input 2 etex

\scriptfont define_family 1 tex

\scriptscriptfont define_family 2 tex

\scriptscriptstyle math_style 6 tex

\scriptspace internal_dimen 12 tex

\scriptstyle math_style 4 tex

\scrollmode set_interaction 2 tex

\setbox set_box 0 tex

\setfontid internal_int 61 luatex

\setlanguage internal_int 60 tex

\sfcode define_char_code 3 tex

\shipout special_box 0 tex

\show xray 0 tex

\showbox xray 1 tex

\showboxbreadth internal_int 23 tex

\showboxdepth internal_int 24 tex

\showgroups xray 4 etex

265Primitive codes

\showifs xray 6 etex

\showlists xray 3 tex

\shownodedetails internal_int 25 tex

\showthe xray 2 tex

\showtokens xray 5 etex

\skewchar set_font_property 1 tex

\skip register 3 tex

\skipdef shorthand_def 7 tex

\snapshotpar begin_paragraph 4 luatex

\spacefactor set_auxiliary 0 tex

\spaceskip internal_glue 12 tex

\span end_template 1 tex

\splitbotmark get_mark 4 tex

\splitbotmarks get_mark 9 etex

\splitdiscards un_vbox 4 etex

\splitfirstmark get_mark 3 tex

\splitfirstmarks get_mark 8 etex

\splitmaxdepth internal_dimen 6 tex

\splittopskip internal_glue 10 tex

\string convert 8 tex

\supmarkmode internal_int 118 luatex

\swapcsvalues let 5 luatex

\tabskip internal_glue 11 tex

\textdirection internal_int 120 luatex

\textfont define_family 0 tex

\textstyle math_style 2 tex

\the the 0 tex

\thewithoutunit the 1 luatex

\thewithproperty the 2 luatex

\thickmuskip internal_mu_glue 3 tex

\thinmuskip internal_mu_glue 1 tex

\time internal_int 19 tex

\todimension convert 3 tex

\tointeger convert 1 tex

\tokenized input 4 luatex

\toks register 5 tex

\toksapp combine_toks 0 luatex

\toksdef shorthand_def 9 tex

\tokspre combine_toks 2 luatex

\tolerance internal_int 1 tex

\tolerant prefix 8 luatex

\topmark get_mark 0 tex

\topmarks get_mark 5 etex

\topskip internal_glue 9 tex

\toscaled convert 2 tex

\tpack make_box 5 luatex

Primitive codes266

\tracingalignments internal_int 45 etex

\tracingassigns internal_int 39 etex

\tracingcommands internal_int 36 tex

\tracingexpressions internal_int 47 luatex

\tracingfonts internal_int 38 luatex

\tracinggroups internal_int 40 etex

\tracinghyphenation internal_int 46 luatex

\tracingifs internal_int 41 etex

\tracinglevels internal_int 43 etex

\tracinglostchars internal_int 35 tex

\tracingmacros internal_int 30 tex

\tracingmath internal_int 42 luatex

\tracingnesting internal_int 44 etex

\tracingonline internal_int 29 tex

\tracingoutput internal_int 34 tex

\tracingpages internal_int 33 tex

\tracingparagraphs internal_int 32 tex

\tracingrestores internal_int 37 tex

\tracingstats internal_int 31 tex

\uccode define_char_code 2 tex

\uchyph internal_int 48 tex

\undent begin_paragraph 3 luatex

\underline math_component 8 tex

\unexpanded the 4 etex

\unhbox un_hbox 0 tex

\unhcopy un_hbox 1 tex

\unhpack un_hbox 2 tex

\unkern remove_item 0 tex

\unless expand_after 1 etex

\unletfrozen let 9 luatex

\unletprotected let 7 luatex

\unpenalty remove_item 1 tex

\unskip remove_item 2 tex

\untraced prefix 6 luatex

\unvbox un_vbox 0 tex

\unvcopy un_vbox 1 tex

\unvpack un_vbox 2 tex

\uppercase case_shift 1 tex

\vadjust vadjust 0 tex

\valign valign 0 tex

\vbadness internal_int 27 tex

\vbox make_box 9 tex

\vcenter vcenter 0 tex

\vfil vskip 0 tex

\vfill vskip 1 tex

\vfilneg vskip 3 tex

267Primitive codes

\vfuzz internal_dimen 9 tex

\vpack make_box 6 luatex

\vrule vrule 0 tex

\vsize internal_dimen 4 tex

\vskip vskip 4 tex

\vsplit make_box 4 tex

\vss vskip 2 tex

\vtop make_box 8 tex

\wd set_box_property 0 tex

\widowpenalties set_specification 0 etex

\widowpenalty internal_int 6 tex

\wordboundary boundary 3 luatex

\wrapuppar begin_paragraph 6 luatex

\xdef def 2 tex

\xdefcsname def 6 luatex

\xleaders special_box 5 tex

\xspaceskip internal_glue 13 tex

\xtoksapp combine_toks 5 luatex

\xtokspre combine_toks 7 luatex

\year internal_int 22 tex

Primitive codes268

269Topics

Topics

a

Aleph 28, 62

adjust 131

attributes 42, 43, 150, 192

b

banner 37

boundaries 80

boundary 135

boxes 13, 43, 195

split 196

bytecodes 179

c

callbacks 167

building pages 169

contributions 169, 171

dump 175

errors 176

files 176

fonts 172, 177

format file 168

hyphenation 174

inserts 169

job run 175

jobname 168

kerning 174

ligature building 174

linebreaks 170, 171

log file 168

math 175

opening files 168

output 173

packing 172, 173

rules 173

warnings 176

whatsits 177

wrapping up 176

catcodes 47

characters 83

codes 194

command line 33

conditions 55

dimensions 52

numbers 52

tokens 54

configuration 211

convert commands 191

csnames 29

d

dimensions 52

direct nodes 156

directions 62, 136

discretionaries 92, 94, 131

e

𝜀-TEX 26

engines 25

errors 202

escaping 45

exceptions 90

expansion 50

suppress 78

f

files

binary 29

names 61

writing 62

fonts 62, 78

current 81

define 81

defining 204

extend 81

id 81

used 293

g

getstartupfile 179

getversion 179

glue 132

gluespec 133

glyphs 83, 134

Topics270

h

hash 204

helpers 201

history 25

hyphenation 60, 83, 88, 90

discretionaries 92

exceptions 90

how it works 92

patterns 90

tracing 88

i

io 212

images

MetaPost 221

mplib 221

initialization 33, 204

insertions 130

k

kerning 93

kerns 133

suppress 78

l

Lua 13

extensions 35

interpreter 33

libraries 35

modules 35

languages 60, 83

library 94

last items 192

leaders 59

libraries

lua 179

status 180

tex 189

texconfig 211

texio 212

token 213

ligatures 93

suppress 78

linebreaks 94, 209

lists 129, 197

m

MetaPost 221

mplib 221

macros 217

main loop 88

marks 49, 131

math 62, 99

accents 116, 121

codes 121

cramped 102

delimiters 118, 121

extensibles 118

fences 115

flattening 123

fractions 119

italics 113

kerning 113

last line 122

limits 112

nodes 132, 136

parameters 104, 105, 196

penalties 115

radicals 117

scripts 113, 118, 123

spacing 102, 109, 110, 112

stacks 102

styles 101, 102, 122, 123

text 123

tracing 124

Unicode 99

memory 29

n

nesting 198, 211

newline 30

nodes 13, 41, 127

adjust 131

attributes 150

boundary 135

direct 156

direction 136

discretionaries 131

functions 143

glue 132, 133

glyph 134

271Topics

insertions 130

kerns 133

lists 129

marks 131

math 132, 136

paragraphs 135

penalty 134

properties 163

rules 129

text 128

numbers 52

o

Omega 62

output 57

p

pdf

analyze 233

memory streams 237

objects 233

pdfe 233

pdfTEX 27

pages 196, 210

paragraphs 94, 135

reset 209

parameters

internal 189

math 196

patterns 90

penalty 134

primitives 204

printing 199

properties 163

protrusion 80

suppress 78

r

registers 192, 195

bytecodes 179

rules 57, 129

s

shipout 210

space 30

spaces

suppress 80

splitting 58

synctex 211

t

TEX 25

tables 179

testing 36

text

math 123

tokens 54, 213

scanning 48

tracing 60

u

Unicode 38, 39

math 99

v

vcentering 43

version 37

w

web2c 28

Topics272

273Primitives

Primitives

This register contains the primitives that are mentioned in the manual. There are of course

many more primitives. The LuaTEX primitives are typeset in bold.

\abovedisplayskip 112

\abovewithdelims 119

\accent 88

\adjustspacing 27, 28, 73

\adjustspacingshrink 27

\adjustspacingstep 27

\adjustspacingstretch 27

\aftergrouped [entry not flushed], 51

\aliased 68

\alignmark [entry not flushed], 49

\aligntab [entry not flushed], 49

\atop 102, 104

\atopwithdelims 102

\attribute 192

\attributedef 192

\automatichyphenpenalty 88

\batchmode 212

\begincsname [entry not flushed], 49

\begingroup 102

\belowdisplayskip 112

\boundary [entry not flushed], 60, 135

\box 39

\boxattribute 44

\catcode 29, 37, 39, 194

\catcodetable [entry not flushed], 47,

199

\char 16, 38, 39, 79, 88, 90, 134

\chardef 39, 90, 217, 218

\clearmarks [entry not flushed], 49

\clubpenalties 209

\copy 39

\count 35, 39, 42, 192

\countdef 39, 192

\crampedscriptstyle 103

\csname 49, 50

\csstring [entry not flushed], 49

\currentiftype [entry not flushed], 61

\currentiftype 127

\defcsname [entry not flushed], 50

\delcode 29, 99, 194, 195

\delimiter 99

\detokenize 214

\dimen 35, 39, 192

\dimendef [entry not flushed]

\dimendef 39

\dimendef 69

\dimendef 192

\directlua [entry not flushed]

\directlua 13

\directlua 37, 44, 45, 46, 199, 204, 205

\discretionary 16, 88, 90, 92, 131

\displaystyle 109

\displaywidowpenalties 210

\dp 39

\edef 46, 50, 214

\edefcsname [entry not flushed], 50

\efcode 27, 39, 72

\endgroup 102

\endinput 213

\endlinechar 26, 48, 199, 201

\enforced 69

\errhelp 202

\errmessage 202

\etoksapp [entry not flushed], 48

\etokspre [entry not flushed], 48

\everyeof 48

\everyjob 34

\exceptionpenalty 91

\exhyphenchar 89

\exhyphenpenalty 89, 92, 131

\expandafter 50

\expanded [entry not flushed], 27, 50

\explicithyphenpenalty 88

\firstvalidlanguage 84

\fontdimen 79

\fontid [entry not flushed], 78

Primitives274

\fontmathcontrol 75

\fonttextcontrol 75

\formatname 205

\frozen [entry not flushed], 57, 68, 111

\futureexpand [entry not flushed], 51

\futureexpandis [entry not flushed], 51

\futureexpandisap [entry not flushed],

51

\gleaders [entry not flushed], 59

\glet [entry not flushed], 50

\glettonothing [entry not flushed], 50

\global 68

\glyph [entry not flushed], 79

\glyphdata [entry not flushed], 82

\glyphoptions [entry not flushed], 78

\glyphscript [entry not flushed], 82

\glyphstate [entry not flushed], 82

\glyphxoffset [entry not flushed], 79

\glyphxscale [entry not flushed], 79

\glyphyoffset [entry not flushed], 79

\glyphyscale [entry not flushed], 79

\gtoksapp [entry not flushed], 48

\gtokspre [entry not flushed], 48

\halign 171

\hbox 16, 42, 59, 113, 170, 171, 195

\hjcode 29, 39, 84, 91

\hpack [entry not flushed], 59

\hrule [entry not flushed], 16, 57

\hskip 16, 132

\ht 39

\hyphenation 90, 92, 93

\hyphenationmin [entry not flushed],

60, 84

\hyphenationmode 75, 86, 89, 94

\hyphenchar 71, 89, 92

\hyphenpenalty 92, 131

\if 49

\ifabsdim [entry not flushed], 27, 52

\ifabsnum [entry not flushed], 27, 52

\ifarguments [entry not flushed], 54

\ifboolean [entry not flushed], 54

\ifcase 53, 112

\ifchkdim [entry not flushed], 52

\ifchknum [entry not flushed], 52

\ifcmpdim [entry not flushed], 52

\ifcmpnum [entry not flushed], 52

\ifcondition [entry not flushed], 55

\ifcstok [entry not flushed], 54

\ifdimval [entry not flushed], 52

\ifempty [entry not flushed], 53

\iffrozen [entry not flushed], 57

\ifincsname 27

\ifmathparameter [entry not flushed],

53, 112

\ifmathstyle [entry not flushed], 53

\ifnumval [entry not flushed], 52

\ifparameter [entry not flushed], 54

\ifparameters [entry not flushed], 54

\ifprotected [entry not flushed], 57

\ifrelax [entry not flushed], 53

\iftok [entry not flushed], 54

\ifusercmd [entry not flushed], 57

\ignorepars [entry not flushed], 51

\ignorespaces 51

\immutable 67

\initcatcodetable [entry not flushed],

47

\insert 39, 130

\instance 68, 69

\integerdef [entry not flushed], 69

\interlinepenalties 209

\internalcodesmode 127

\jobname 34, 168

\kern 16, 133

\language 89, 90, 93, 95

\lastchkdim 53

\lastchknum 53

\lastnamedcs [entry not flushed], 49

\lastnodesubtype [entry not flushed],

61

\lastnodetype [entry not flushed], 61

\lastnodetype 127

\lastsavedboxresourceindex 59

\lastsavedimageresourceindex 59

\lastsavedimageresourcepages 59

\lccode 29, 39, 194

275Primitives

\leaders 59

\left 116

\lefthyphenmin 60, 84

\leftmarginkern 27

\letcharcode [entry not flushed], 49

\lettonothing [entry not flushed], 50

\linedir 64

\localbrokenpenalty 136

\localinterlinepenalty 136

\localleftbox 136, 171

\localrightbox 136, 170

\lowercase 91

\lpcode 27, 39, 72

\luabytecode [entry not flushed], 46

\luabytecodecall [entry not flushed],

46

\luacopyinputnodes 200

\luadef [entry not flushed], 46, 218

\luaescapestring [entry not flushed],

45

\luafunction [entry not flushed], 46

\luafunctioncall [entry not flushed],

46

\luatexbanner [entry not flushed], 37

\luatexrevision [entry not flushed],

37, 38

\luatexversion [entry not flushed], 37,

38

\mag 26

\mark 131

\marks 39, 154

\mathaccent 99

\mathchar 99, 123

\mathchardef 99, 123

\mathchoice 101

\mathcode 29, 99, 194

\mathcontrolmode 75

\mathdelimitersmode [entry not

flushed], 115

\mathdir 198

\mathdisplayskipmode [entry not

flushed], 112

\matheqnogapstep [entry not flushed],

115

\mathflattenmode [entry not flushed],

123, 124

\mathitalicsmode [entry not flushed],

113, 115

\mathnolimitsmode [entry not flushed],

112, 113

\mathpenaltiesmode [entry not

flushed], 115

\mathscriptboxmode [entry not

flushed], 113

\mathscriptcharmode 114

\mathscriptsmode [entry not flushed],

114

\mathstyle [entry not flushed], 101,

102, 120, 198

\mathsurround 109, 110, 132

\mathsurroundmode 109

] [entry not flushed], 109

\mathsurroundskip 109, 110

\maxdepth 172

\meaning 68

\meaningfull 68

\meaningless 68

\medmuskip 111

\middle 198

\muskip 39, 111, 192

\muskipdef 39

\mutable 67

\newlinechar 26

\noalign 68

\noaligned 68

\noboundary [entry not flushed], 60, 89,

93, 135

\noexpand 50

\nohrule [entry not flushed], 57, 58

\normalizelinemode 64

\nospaces [entry not flushed], 80

\novrule [entry not flushed], 57, 58

\number 38, 201

\numericscale [entry not flushed], 66

\openin 61

\orelse [entry not flushed], 56

\orunless [entry not flushed], 56, 57

\output 173

\outputbox [entry not flushed], 57

Primitives276

\over 102, 104, 198

\overline 103

\overloaded 69

\overloadmode 67, 68, 189

\overwithdelims 102

\par 43, 51, 169

\parattribute 44

\parfillskip 170, 210

\parindent 189

\patterns 90, 92, 93

\penalty 134

\permanent 67

\postexhyphenchar 92

\posthyphenchar 92

\predisplaygapfactor [entry not

flushed], 122

\preexhyphenchar 92

\prehyphenchar 92

\protrudechars 27, 28, 73

\protrusionboundary [entry not

flushed]

\protrusionboundary [entry not

flushed]

\protrusionboundary 60

\protrusionboundary 80

\protrusionboundary 135

\pxdimen 28

\quitvmode 27

\radical 99

\readline 27

\relax 68, 90, 199, 204, 216

\right 116

\righthyphenmin 60, 84

\rightmarginkern 27

\romannumeral 101, 201

\rpcode 27, 39, 72

\rule 129

\saveboxresource 59

\savecatcodetable [entry not flushed],

48

\saveimageresource 59

\savinghyphcodes 84, 85, 91, 97

\scaledfontdimen [entry not flushed],

79

\scantextokens [entry not flushed], 48

\scantokens 45, 48

\scriptfont 105

\scriptscriptfont 105

\scriptscriptstyle 117

\scriptspace 109

\scriptstyle 103

\setbox 39

\setfontid [entry not flushed], 78

\setlanguage 84, 89, 93

\sfcode 29, 39, 194

\skewchar 71, 117

\skip 39, 192, 193

\skipdef 39, 192

\spaceskip 80

\special 76

\string 49

\textdir 136

\textdir 198

\textdirection 16

\textdirection 63

\textfont 105, 123

\textstyle 101

\the 38, 42, 69, 189, 191, 192, 199

\thickmuskip 111

\thinmuskip 111

\todimension [entry not flushed], 69

\tointeger [entry not flushed], 69

\tokenized [entry not flushed], 48

\toks 39, 191, 192, 199

\toksapp [entry not flushed], 48

\toksdef 39, 192

\tokspre [entry not flushed], 48

\tolerant 66, 68

\toscaled [entry not flushed], 69

\tpack [entry not flushed], 59

\tracingassigns 27, 29

\tracingcommands 89, 189

\tracingfonts 28, 61

\tracinghyphenation 89

\tracinglevels 60, 177

\tracingnesting 203

\tracingonline 60

277Primitives

\tracingrestores 27, 29

\Uabove 120

\Uabovewithdelims 120

\Uatop 120

\Uatopwithdelims 120

\Uchar [entry not flushed], 39

\Udelcode 100, 195

\Udelcodenum 100

\Udelimiter 100

\Udelimiterover [entry not flushed],

100, 118

\Udelimiterunder [entry not flushed],

100, 118

\Uhextensible [entry not flushed], 118,

119

\Umathaccent [entry not flushed], 100,

116

\Umathaxis 104

\Umathbinbinspacing 110

\Umathbinclosespacing 110

\Umathbininnerspacing 110

\Umathbinopenspacing 110

\Umathbinopspacing 110

\Umathbinordspacing 110

\Umathbinpunctspacing 110

\Umathbinrelspacing 110

\Umathchar 100, 123

\Umathcharclass [entry not flushed],

121

\Umathchardef 100, 123

\Umathcharfam [entry not flushed], 121

\Umathcharnum 100

\Umathcharnumdef 99, 100

\Umathcharslot [entry not flushed], 121

\Umathclosebinspacing 110

\Umathcloseclosespacing 110

\Umathcloseinnerspacing 110

\Umathcloseopenspacing 110

\Umathcloseopspacing 110

\Umathcloseordspacing 110

\Umathclosepunctspacing 110

\Umathcloserelspacing 110

\Umathcode [entry not flushed], 100,

121

\Umathcodenum 100

\Umathconnectoroverlapmin 105, 109

\Umathfractiondelsize 104

\Umathfractiondenomdown 104

\Umathfractiondenomvgap 104

\Umathfractionnumup 104

\Umathfractionnumvgap 104

\Umathfractionrule 104

\Umathinnerbinspacing 111

\Umathinnerclosespacing 111

\Umathinnerinnerspacing 111

\Umathinneropenspacing 111

\Umathinneropspacing 111

\Umathinnerordspacing 111

\Umathinnerpunctspacing 111

\Umathinnerrelspacing 111

\Umathlimitabovebgap 105

\Umathlimitabovekern 105, 108

\Umathlimitabovevgap 104

\Umathlimitbelowbgap 105

\Umathlimitbelowkern 105, 108

\Umathlimitbelowvgap 105

\Umathnolimitsubfactor 112

\Umathnolimitsupfactor 112

\Umathopbinspacing 110

\Umathopclosespacing 110

\Umathopenbinspacing 110

\Umathopenclosespacing 110

\Umathopeninnerspacing 110

\Umathopenopenspacing 110

\Umathopenopspacing 110

\Umathopenordspacing 110

\Umathopenpunctspacing 110

\Umathopenrelspacing 110

\Umathoperatorsize 100, 104, 109

\Umathopinnerspacing 110

\Umathopopenspacing 110

\Umathopopspacing 110

\Umathopordspacing 110

\Umathoppunctspacing 110

\Umathoprelspacing 110

\Umathordbinspacing 110

\Umathordclosespacing 110

\Umathordinnerspacing 110

\Umathordopenspacing 110

\Umathordopspacing 110

\Umathordordspacing 110

Primitives278

\Umathordpunctspacing 110

\Umathordrelspacing 110

\Umathoverbarkern 104

\Umathoverbarrule 104

\Umathoverbarvgap 104

\Umathoverdelimiterbgap 105, 118

\Umathoverdelimitervgap 105, 118

\Umathpunctbinspacing 111

\Umathpunctclosespacing 111

\Umathpunctinnerspacing 111

\Umathpunctopenspacing 111

\Umathpunctopspacing 110

\Umathpunctordspacing 110

\Umathpunctpunctspacing 111

\Umathpunctrelspacing 111

\Umathquad 104, 108

\Umathradicaldegreeafter 104, 109, 117

\Umathradicaldegreebefore 104, 109, 117

\Umathradicaldegreeraise 104, 109, 117

\Umathradicalkern 104

\Umathradicalrule 104, 108

\Umathradicalvgap 104, 109

\Umathrelbinspacing 110

\Umathrelclosespacing 110

\Umathrelinnerspacing 110

\Umathrelopenspacing 110

\Umathrelopspacing 110

\Umathrelordspacing 110

\Umathrelpunctspacing 110

\Umathrelrelspacing 110

\Umathskewedfractionhgap 119

\Umathskewedfractionvgap 119

\Umathspaceafterscript 105, 109

\Umathspacebeforescript 105

\Umathstackdenomdown 104

\Umathstacknumup 104

\Umathstackvgap 104

\Umathsubshiftdown 105, 114

\Umathsubshiftdrop 105

\Umathsubsupshiftdown 105, 114

\Umathsubsupvgap 105

\Umathsubtopmax 105

\Umathsupbottommin 105

\Umathsupshiftdrop 105

\Umathsupshiftup 105, 114

\Umathsupsubbottommax 105

\Umathunderbarkern 104

\Umathunderbarrule 104

\Umathunderbarvgap 104

\Umathunderdelimiterbgap 105, 118

\Umathunderdelimitervgap 105, 118

\Umath* [entry not flushed], 104

\Umath...spacing [entry not flushed],

110

\Umiddle [entry not flushed], 121

\Unosubscript [entry not flushed], 123

\Unosuperscript [entry not flushed],

123

\Uover 120

\Uoverdelimiter [entry not flushed],

100, 118

\Uoverwithdelims 120

\Uradical [entry not flushed], 100, 117

\Uright [entry not flushed], 121

\Uroot [entry not flushed], 100, 117,

140

\Uskewed [entry not flushed], 119

\Uskewedwithdelims [entry not

flushed], 119

\Ustack [entry not flushed], 102

\Ustartdisplaymath 123

\Ustartmath 123

\Ustopdisplaymath 123

\Ustopmath 123

\Ustyle [entry not flushed], 120

\Usubscript [entry not flushed], 122,

123

\Usuperprescript [entry not flushed],

124, 125

\Usuperscript [entry not flushed], 122,

123

\UUskewed 120

\UUskewedwithdelims 120

\Uunderdelimiter [entry not flushed],

100, 118

\uccode 29, 39, 194

\uchyph 84, 88, 134

\unexpanded 214

\unhbox 39

\unhcopy 39

\unless 57

\untraced 69

279Primitives

\unvbox 39

\unvcopy 39

\uppercase 50, 91

\useboxresource 59

\useimageresource 59

\vadjust 131, 169, 198

\valign 170

\vbox 16, 42, 59, 171, 195, 210

\vcenter 44, 59, 171

\vpack [entry not flushed], 59

\vrule [entry not flushed], 16, 57

\vskip 16, 132

\vsplit [entry not flushed], 39, 58, 170,

196

\vtop 16, 59, 171, 195

\wd 39

\widowpenalties 210

\wordboundary [entry not flushed], 60,

85, 135

\xdefcsname [entry not flushed], 50

\xtoksapp [entry not flushed], 48

\xtokspre [entry not flushed], 48

\- 131

Primitives280

281Callbacks

Callbacks

b

buildpage_filter [entry not flushed],

169

build_page_insert [entry not flushed],

169

c

contribute_filter [entry not flushed],

169

d

define_font [entry not flushed], 177

f

find_format_file [entry not flushed],

168

find_log_file [entry not flushed], 168

g

glyph_run [entry not flushed], 172

h

hpack_filter [entry not flushed], 170,

172

hyphenate [entry not flushed], 174

i

intercept_lua_error [entry not

flushed], 176

intercept_tex_error [entry not

flushed], 176

k

kerning [entry not flushed], 174

l

ligaturing [entry not flushed], 174

linebreak_filter [entry not flushed],

171, 210

m

mlisttohlist 155

mlist_to_hlist [entry not flushed],

115, 175

o

open_data_file [entry not flushed], 168

p

post_linebreak_filter [entry not

flushed], 171

pre_dump [entry not flushed], 175

pre_linebreak_filter [entry not

flushed], 170, 210

process_jobname [entry not flushed],

168

process_rule [entry not flushed], 173

s

show_error_message [entry not

flushed], 176

show_warning_message [entry not

flushed], 176

show_whatsit [entry not flushed], 177

start_file [entry not flushed], 176

start_run [entry not flushed], 175

stop_file [entry not flushed], 176

stop_run [entry not flushed], 175

v

vpack_filter [entry not flushed], 170,

172

w

wrapup_run [entry not flushed], 176

Callbacks282

283Nodes

Nodes

This register contains the nodes that are known to LuaTEX. The primary nodes are in bold,

whatsits that are determined by their subtype are normal.

a

accent [entry not flushed], 138

adjust [entry not flushed], 86, 131

attr [entry not flushed], 150

attribute_list [entry not flushed], 150

b

boundary [entry not flushed], 60, 86,

135

c

choice [entry not flushed], 139

d

delimiter [entry not flushed], 138

delta 201

dir [entry not flushed], 16, 86, 136

disc [entry not flushed], 16, 41, 131,

147

f

fence [entry not flushed], 140

fraction [entry not flushed], 117, 140

g

glue [entry not flushed], 16, 41, 86, 132,

147

glue-spec 193

glue_spec [entry not flushed], 132, 133,

189, 191, 193

glyph [entry not flushed], 16, 41, 83, 84,

88, 134, 147

glyphs 147

h

hlist [entry not flushed], 16, 42, 43, 86,

129, 147

i

insert [entry not flushed], 86, 130

k

kern [entry not flushed], 16, 41, 86, 133

m

mark [entry not flushed], 131

math [entry not flushed], 132

math_char [entry not flushed], 137

math_text_char [entry not flushed], 137

n

noad [entry not flushed], 138

p

par [entry not flushed], 135, 210

parameter [entry not flushed], 139

penalty [entry not flushed], 86, 134

r

radical [entry not flushed], 139

rule [entry not flushed], 16, 86, 129

rules 147

s

style [entry not flushed], 139

sub_box [entry not flushed], 137

sub_mlist [entry not flushed], 137

t

temp 129

v

vlist [entry not flushed], 16, 42, 86,

129, 147

w

whatsit 86

Nodes284

285Libraries

Libraries

This register contains the functions available in libraries. Not all functions are documented, for

instance because they can be experimental or obsolete.

char_depth 228

char_height 228

char_width 228

fields 225

peninfo 228

stacking 225

callback

find 167

known 167

list 167

register 167

lang

clean 95

clearhyphenation 95

clearpatterns 95

gethjcode 96

hyphenate 96

hyphenation 95

hyphenationmin 96

id 94

new 94

patterns 95

postexhyphenchar 96

posthyphenchar 96

preexhyphenchar 96

prehyphenchar 96

sethjcode 96

lua

bytecode 179

callbytecode 179

getbytecode 179

getcurrenttime 180

getpreciseseconds 180

getpreciseticks 180

getruntime 180

getstacktop 180

getstartupfile 179

getversion 179

newindex 179

newtable 179

setbytecode 179

mplib

execute 224

finish 224

getcallbackstate 225

gethashentries 225

gethashentry 225

getstates 224

getstatus 224

gettolerance 224

new 221

settolerance 224

showcontext 224

statistics 223

version 221

node

checkdiscretionaries 153

checkdiscretionary 153

copy 144, 157

copylist 144, 157

count 145

currentattr 150

currentattributes 158

dimensions 154

end_of_math 155

fields 127, 142

findattribute 151

find_node 149

firstglyph 152

flattendiscretionaries 153

flushlist 143, 158

flushnode 143, 158

free 143, 158

getattribute 151, 158

getfield 158

getglue 149

getpropertiestable 158, 163

getproperty 159

gettotal 159

hasattribute 151, 159

Libraries286

hasfield 142, 159

hasglyph 152

hpack 153

id 142

insertafter 145, 159

insertbefore 145, 159

isnode 159

iszeroglue 149

is_char 152

is_glyph 152

is_node 143

kerning 152

lastnode 146

length 145

ligaturing 152

mlisttohlist 155

new 143, 160

prepend_prevdepth 154

protectglyph 153

protectglyphs 153

protrusionskippable 153

rangedimensions 154

remove 145, 160

setattribute 151, 160

setfield 160

setglue 149, 160

setpropertiesmode 163

setproperty 161

slide 144

subtypes 127

tail 144, 161

todirect 156

tonode 156

tostring 156, 161

traverse 146, 161

traverse_char 147, 161

traverse_content 147, 161

traverse_glyph 147, 161

traverse_id 146, 161

traverse_list 147, 161

type 142, 161

types 142

unprotectglyph 152

unprotectglyphs 152

unsetattribute 151, 161

values 127

vpack 154

write 144, 161

node.direct

checkdiscretionaries 157

checkdiscretionary 157

copy 157

copylist 157

count 157

currentattributes 158

dimensions 158

effectiveglue 158

endofmath 158

findattribute 158

findattributerange 158

findnode 158

firstglyph 158

flattendiscretionaries 158

flushlist 158

flushnode 158

free 158

getattribute 158

getattributelist 158

getattributes 158

getboth 158

getbox 158

getchar 158

getdata 158

getdepth 158

getdirection 158

getdisc 158

getexpansion 158

getfam 158

getfield 158

getfont 158

getglue 158

getglyphdata 158

getglyphdimensions 158

getglyphscript 158

getglyphstate 158

getheight 158

getid 158

getindex 158

getkern 158

getkerndimension 158

getlanguage 158

getleader 158

287Libraries

getlist 158

getnext 158

getnormalizedline 158

getnucleus 158

getoffsets 158

getoptions 158

getorientation 159

getparstate 159

getpenalty 159

getpost 159

getpre 159

getprev 159

getpropertiestable 158

getproperty 159

getreplace 159

getscales 159

getscript 159

getshift 159

getstate 159

getsub 159

getsubpre 159

getsubtype 159

getsup 159

getsuppre 159

getsynctexfields 158

gettotal 159

getwhd 159

getwidth 159

getxscale 159

getxyscale 159

getyscale 159

hasattribute 159

hasdimensions 159

hasfield 159

hasglyph 159

hasglyphoption 159

hpack 159

hyphenating 159

ignoremathskip 159

insertafter 159

insertbefore 159

ischar 159

isdirect 159

isglyph 159

isnextchar 159

isnextglyph 159

isnode 159

isprevchar 159

isprevglyph 159

isvalid 159

iszeroglue 159

kerning 159

lastnode 159

length 159

ligaturing 160

makeextensible 160

migrate 160

mlisttohlist 160

naturalwidth 160

new 160

protectglyph 160

protectglyphs 160

protrusionskippable 160

rangedimensions 160

remove 160

setattribute 160

setattributelist 160

setattributes 160

setboth 160

setbox 160

setchar 160

setdata 160

setdepth 160

setdirection 160

setdisc 160

setexpansion 160

setfam 160

setfield 160

setfont 160

setglue 160

setglyphdata 160

setglyphscript 160

setglyphstate 160

setheight 160

setindex 160

setkern 160

setlanguage 160

setleader 160

setlink 160

setlist 160

setnext 160

setnucleus 160

Libraries288

setoffsets 160

setoptions 160

setorientation 160

setpenalty 160

setpost 160

setpre 160

setprev 160

setproperty 161

setreplace 161

setscales 161

setscript 161

setshift 161

setsplit 161

setstate 161

setsub 161

setsubpre 161

setsubtype 161

setsup 161

setsuppre 161

setsynctexfields 160

setwhd 161

setwidth 161

slide 161

startofpar 161

tail 161

todirect 161

tonode 161

total 161

tovaliddirect 161

traverse 161

traverse_char 161

traverse_content 161

traverse_glyph 161

traverse_id 161

traverse_list 161

unprotectglyph 161

unprotectglyphs 161

unsetattribute 161

unsetattributes 161

usedlist 161

usesfont 161

verticalbreak 161

vpack 161

write 161

os

env 246

gettimeofday 246

name 246

selfarg 246

selfdir 246

setenv 246

type 246

uname 246

pdfe

arraytotable 236

close 233

closestream 235

dictionarytotable 236

getarray 235

getboolean 235

getbox 234

getcatalog 234

getdictionary 235

getfromarray 235, 236

getfromdictionary 235, 236

getfromreference 237

getfromstream 235

getinfo 234

getinteger 235

getname 235

getnofobjects 234

getnofpages 234

getnumber 235

getpage 234

getsize 234

getstatus 233

getstream 235

getstring 235

gettrailer 234

getversion 234

new 233, 237

open 233

openstream 235

readfromstream 235

readfromwholestream 235

unencrypt 233

sio

getposition 239

readbytes 239

readbytetable 239

readcardinaltable 239

readcardinal1 239

289Libraries

readcardinal2 239

readcardinal3 239

readcardinal4 239

readfixed2 239

readfixed4 239

readintegertable 239

readinteger1 239

readinteger2 239

readinteger3 239

readinteger4 239

read2dot14 239

setposition 239

skipposition 239

status

list 180

resetmessages 180

setexitcode 180

string

bytepairs 245

bytes 245

characterpairs 245

characters 245

explode 245

utfcharacter 246

utfcharacters 245

utflength 246

utfvalue 246

utfvalues 245

tex

attribute 192

badness 209

box 192, 195

catcode 194

count 192

cprint 200

definefont 204

delcode 194

dimen 192

enableprimitives 204

error 202

extraprimitives 205

fontidentifier 201

fontname 201

forcehmode 204

forcesynctexline 211

forcesynctextag 211

get 189

getattribute 192

getbox 192, 195

getcatcode 194

getcount 192

getdelcode 194

getdelcodes 194

getdimen 192

getfamilyoffont 202

getglue 192

gethelptext 202

getinteraction 203

getlccode 194

getlinenumber 202

getlist 197

getlocallevel 211

getmark 192

getmath 196

getmathcode 194

getmathcodes 194

getmuglue 192

getmuskip 192

getnest 198

getpagestate 210

getsfcode 194

getskip 192

getsynctexline 211

getsynctexmode 211

getsynctextag 211

gettoks 192

getuccode 194

glue 192

hashtokens 204

isattribute 192

isbox 192

iscount 192

isdimen 192

isglue 192

ismuglue 192

ismuskip 192

isskip 192

istoks 192

lccode 194

linebreak 209

lists 197

mathcode 194

Libraries290

muglue 192

muskip 192

nest 198

number 201

primitives 209

print 199

ptr 198

resetparagraph 209

romannumeral 201

round 201

scale 201

scantoks 192

set 189

setattribute 192

setbox 192, 195

setcatcode 194

setcount 192

setdelcode 194

setdelcodes 194

setdimen 192

setglue 192

setinteraction 203

setlccode 194

setlinenumber 202

setlist 197

setmath 196

setmathcode 194

setmathcodes 194

setmuglue 192

setmuskip 192

setsfcode 194

setskip 192

setsynctexline 211

setsynctexmode 211

setsynctexnofiles 211

setsynctextag 211

settoks 192

setuccode 194

sfcode 194

shipout 210

show_context 202

skip 192

sp 202

splitbox 196

sprint 199

toks 192

tprint 200

triggerbuildpage 196

uccode 194

write 201

texio

closeinput 213

setescape 213

write 212

writenl 212

writeselector 212

writeselectornl 212

token

biggest_char 216

commands 216

command_id 216

create 216

expand 216

getactive 216

getcmdname 216

getcommand 216

getcsname 216

getexpandable 216

getfrozen 216

getfunctionstable 217

getid 216

getindex 216

getmacro 217

getmeaning 217

getmode 216

getprotected 216

gettok 216

getuser 216

is_defined 216

is_token 216

new 216

peeknext 216

peeknextexpanded 216

popmacro 217

pushmacro 217

putnext 218

scanargument 213

scancode 213

scancsname 213

scandimen 213

scanfloat 213

scanglue 213

291Libraries

scanint 213

scankeyword 213

scankeywordcs 213

scanlist 213

scannext 216, 218

scannextexpanded 216

scanreal 213

scanstring 213

scantoken 216

scantoks 213

scanword 213

setchar 217

setlua 217

setmacro 217

skipnext 216

skipnextexpanded 216

Libraries292

293Statistics

Statistics

The following fonts are used in this document:

used filesize version filename

2 988.684 5.000 cambmath.ttf

1 927.280 5.020 cambria.ttf

1 163.452 1.802 LucidaBrightMathOT-Demi.otf

1 348.296 1.802 LucidaBrightMathOT.otf

1 73.284 1.801 LucidaBrightOT.otf

2 733.500 1.958 latinmodern-math.otf

2 64.684 2.004 lmmono10-regular.otf

1 64.160 2.004 lmmonoltcond10-regular.otf

1 111.536 2.004 lmroman10-regular.otf

3 525.008 1.106 texgyredejavu-math.otf

2 601.220 1.632 texgyrepagella-math.otf

1 218.100 2.501 texgyrepagella-regular.otf

1 693.876 2.340 DejaVuSans-Bold.ttf

1 741.536 2.340 DejaVuSans.ttf

1 318.392 2.340 DejaVuSansMono-Bold.ttf

1 245.948 2.340 DejaVuSansMono-Oblique.ttf

1 335.068 2.340 DejaVuSansMono.ttf

2 345.364 2.340 DejaVuSerif-Bold.ttf

1 336.884 2.340 DejaVuSerif-BoldItalic.ttf

1 343.388 2.340 DejaVuSerif-Italic.ttf

1 367.260 2.340 DejaVuSerif.ttf

28 8.546.920 21 files loaded

Statistics294

295Some remarks

Some remarks

Here I collect remarks that I'd like to make but that don't fit into the manual. Consider in a

notebook.

remark: LuaMetaTEX development is mostly done by Hans Hagen and in adapting the macros

to the new features Wolfgang Schuster, who knows the code inside--out is a instrumental. In

the initial phase Alan Braslau, who love playing with the three languages did extensive testing

and compiled for several platforms. Later Mojca Miklavec make sure all compiles well on the

buildbot infrastructure. After the first release more users got involved in testing. Many thanks

for their patience! The development also triggered upgrading of the wiki support infrastructure

where Taco Hoekwater and Paul Mazaitis have teamed up. So, progress all around.

remark: When there are non-intrusive features that also make sense in LuaTEX, these will be

applied in the experimental branch first, so that there is no interference with the stable release.

However, given that in the meantime the code bases differs a lot, it is unlikely that much will

trickle back. This is no real problem as there's not much demand for that anyway.

remark: Most ConTEXt users seem always willing to keep up with the latest versions which

means that LMTX is tested well. We can therefore safely claim that end of 2019 the code has

become quite stable, although after that in some areas there were substantial additions. There

are no complaints about performance (on my 2013 laptop this manual compiles at 24.5 pps with

LMTX versus 20.7 pps for the LuaTEX manual with MkIV). After updating some of the ConTEXt

code to use recently added features by the end of 2020 I could do more than 25.5 pps and in 2021

at some point to measured some 29.1 pps (probably also due to some performance improvements

in the MetaFun code) but don't expect spectacular bumps in performance (I need a new machine

for that to happen). Probably no one notices it, but memory consumption stepwise got reduced

too. And . . . the binary is still below 3 MegaBytes on all platforms.

remark: I tried to only add features that are sort of generic and much relates to controlling and

opening up the engine. That also means that there are extensions that (at least not now) are

used in ConTEXt, simply because there are already mechanisms in place that work well. So, it's

also about trying to be complete in order not have to add more later, which makes it possible

to shift to larger interval between updates. That way local experiments are also better isolated

from stable versions.

In that perspective arguments like “This got added because ConTEXt needs it.” or “That got

done because features creep.” as well as “Because of such features ConTEXt performs better.”

aremerely distractions from the fact that we are dealing with a project that just wants to upgrade

the machinery while making that effort fun to do. There has not been much community drive

and demand for substantial extensions over the last decades, so it has to be the fun factor, right?

And the ConTEXt community being willing to join the experiment makes it even more fun. Just

keep that in mind.

remark: It's is kind of strange to run into arguments for not using LuaTEX or for what it is

worth LuaMetaTEX. No one forces anyone to use TEX in the first place, also because often word

processors or web based editing provides plenty of benefits. And no one forces a TEX users to use

a specific engine. I bet that for most users pdfTEX suits well, especially when you only need TEX

for relative simple publications and reports in English, using default styles that put constraints

Some remarks296

on the user. Often the math is what matters there. Also, using XƎTEX is quite okay because it

ships with built in font handling (of course that also has disadvantages, just consider the fact

that it changed over time). When you want scripting LuaTEX is fine. When you need specific cjk

support there are specialized engines for that. The same is true for ConTEXt. You don't have

to dislike it: just ignore it and don't waste time on barking against a tree. But when you use

ConTEXt the Lua enhanced engines are what you use.

remark: Yes there are bugs but I always consider the ‘many’ in “There are many bugs.” to be an

indication of frustration. Given the number of extensions and experiment one can expect bugs.

But if someone can only mention a few, of which some fit into the category of engine limitations,

it's probably more about ego. Abusing a mechanism for what it's not meant to, stretching it to

the limits, running into a border case, those are not really bugs, more missing features. A crash

is a bug indeed but we can count those in a few digits. The same is true for something missing

in the manual: myabe it has a simple reason and explanation.

We have a fast cycle of resolving issues on the ConTEXt list where user also test new functionality

so that it can get improved. Complaints are also kind of puzzling because when we talk new

features we're also talking of something that could not be done before. No one forces anyone to

use experimental features. Yes, trying out something that is not perfect is no fun, but I clearly

remember working around many limitations which is not always fun but can also be interesting.

Just choose a better program if you don't like it, and definitely stick to the robust older engines!

As a warning: the tone in an email of a complaint or remark nowadays determines how high it

ends up on the to-be-dealt-with list: pretty low. There are always more interesting things on top.

remark: Some extensions involve the way macro arguments are dealt with. Combined with the

possibility to parse the input stream using Lua one can come up with solution that are hard (or

maybe even impossible) otherwise. For me it meant throwing away nice (but often complex)

solutions that evolved over decades. That can hurt, especially when you consider the time spent

on it. But all this doesn't change the concept of TEX the macro language. When pondering some

criticism, just wonder first why TEX attracts users, some of which like to write code.

I'm always puzzled by folks who complain about TEX as a language (the other part being the

typesetter). Why use it if you don't like it? A macro language has its own characteristics so live

with it. After years of writing TEX code it's this language that intrigues me. It's also a reason

why MetaPost and Lua are embedded: they are different languages and depending on the task

they might suit better. When Alan, Aditya, I and others are playing with MetaPost extensions

using the new scanners and interfaces resulting from that we do just that. We could invent a

new language, with lots of fruitless debate, with limitations, but in the end there's nothing wrong

with MetaPost (coming from MetaFont).

	Introduction
	1 The internals
	2 Differences with LuaTEX
	3 The original engines
	3.1 The merged engines
	3.1.1 The rationale
	3.1.2 Changes from TEX 3.1415926...
	3.1.3 Changes from 𝜀-TEX 2.2
	3.1.4 Changes from pdfTEX 1.40
	3.1.5 Changes from Aleph RC4
	3.1.6 Changes from standard web2c

	3.2 Implementation notes
	3.2.1 Memory allocation
	3.2.2 Sparse arrays
	3.2.3 Simple single-character csnames
	3.2.4 Binary file reading
	3.2.5 Tabs and spaces
	3.2.6 Logging
	3.2.7 Parsing

	4 Using LuaMetaTEX
	4.1 Initialization
	4.1.1 LuaMetaTEX as a Lua interpreter
	4.1.2 Other commandline processing

	4.2 Lua behaviour
	4.2.1 The Lua version
	4.2.2 Locales

	4.3 Lua modules
	4.4 Testing

	5 Basic TEX enhancements
	5.1 Introduction
	5.1.1 Primitive behaviour
	5.1.2 Version information

	5.2 Unicode text support
	5.2.1 Extended ranges
	5.2.2 {0}Uchar
	5.2.3 Extended tables

	5.3 Attributes
	5.3.1 Nodes
	5.3.2 Attribute registers
	5.3.3 Box attributes

	5.4 Lua related primitives
	5.4.1 {0}\directlua
	5.4.2 {0}\luaescapestring
	5.4.3 {0}\luafunction, {0}\luafunctioncall and {0}\luadef
	5.4.4 {0}\luabytecode and {0}\luabytecodecall

	5.5 Catcode tables
	5.5.1 Catcodes
	5.5.2 {0}\catcodetable
	5.5.3 {0}\initcatcodetable
	5.5.4 {0}\savecatcodetable

	5.6 Tokens, commands and strings
	5.6.1 {0}\scantextokens and {0}\tokenized
	5.6.2 {0}\toksapp, {0}\tokspre, {0}\etoksapp, {0}\etokspre, {0}\gtoksapp, {0}\gtokspre, {0}\xtoksapp, {0}\xtokspre
	5.6.3 {0}\csstring, {0}\begincsname and {0}\lastnamedcs
	5.6.4 {0}\clearmarks
	5.6.5 {0}\alignmark and {0}\aligntab
	5.6.6 {0}\letcharcode
	5.6.7 {0}\lettonothing and {0}\glettonothing
	5.6.8 {0}\glet
	5.6.9 {0}\defcsname, {0}\edefcsname, {0}\edefcsname and {0}\xdefcsname
	5.6.10 {0}\expanded
	5.6.11 {0}\ignorepars
	5.6.12 {0}\futureexpand, {0}\futureexpandis, {0}\futureexpandisap
	5.6.13 {0}\aftergrouped

	5.7 Conditions
	5.7.1 {0}\ifabsnum and {0}\ifabsdim
	5.7.2 {0}\ifcmpnum, {0}\ifcmpdim, {0}\ifnumval, {0}\ifdimval, {0}\ifchknum and {0}\ifchkdim
	5.7.3 {0}\ifmathstyle and {0}\ifmathparameter
	5.7.4 {0}\ifempty
	5.7.5 {0}\ifrelax
	5.7.6 {0}\ifboolean
	5.7.7 {0}\iftok and {0}\ifcstok
	5.7.8 {0}\ifarguments, {0}\ifparameters and {0}\ifparameter
	5.7.9 {0}\ifcondition
	5.7.10 {0}\orelse and {0}\orunless
	5.7.11 {0}\ifprotected, {0}\frozen, {0}\iffrozen and {0}\ifusercmd

	5.8 Boxes, rules and leaders
	5.8.1 {0}\outputbox
	5.8.2 {0}\hrule, {0}\vrule, {0}\nohrule and {0}\novrule
	5.8.3 {0}\vsplit
	5.8.4 Images and reused box objects
	5.8.5 {0}\hpack, {0}\vpack and {0}\tpack
	5.8.6 {0}\gleaders

	5.9 Languages
	5.9.1 {0}\hyphenationmin
	5.9.2 {0}\boundary, {0}\noboundary, {0}\protrusionboundary and {0}\wordboundary

	5.10 Control and debugging
	5.10.1 Tracing
	5.10.2 {0}\lastnodetype, {0}\lastnodesubtype, {0}\currentiftype

	5.11 Files
	5.11.1 File syntax
	5.11.2 Writing to file

	5.12 Math
	5.13 Fonts
	5.14 Directions
	5.14.1 Two directions
	5.14.2 How it works
	5.14.3 Normalizing lines
	5.14.4 Orientations

	5.15 Keywords
	5.16 Expressions and {0}\numericscale
	5.17 Macro arguments
	5.18 Overload protection
	5.19 Constants with {0}\integerdef and {0}\dimendef
	5.20 Serialization with {0}\todimension, {0}\toscaled and {0}\tointeger
	5.21 Nodes

	6 Fonts
	6.1 Introduction
	6.2 Defining fonts
	6.3 Virtual fonts
	6.4 Additional TEX commands
	6.4.1 Font syntax
	6.4.2 {0}\fontid and {0}\setfontid
	6.4.3 {0}\glyphoptions
	6.4.4 {0}\glyphxscale, {0}\glyphyscale and {0}\scaledfontdimen
	6.4.5 {0}\glyphxoffset, {0}\glyphyoffset
	6.4.6 {0}\glyph
	6.4.7 {0}\nospaces
	6.4.8 {0}\protrusionboundary

	6.5 The Lua font library
	6.5.1 Introduction
	6.5.2 Defining a font with define, addcharacters and setfont
	6.5.3 Font ids: id, max and current
	6.5.4 Glyph data: {0}\glyphdata, {0}\glyphscript, {0}\glyphstate

	7 Languages, characters, fonts and glyphs
	7.1 Introduction
	7.2 Characters, glyphs and discretionaries
	7.3 The main control loop
	7.4 Loading patterns and exceptions
	7.5 Applying hyphenation
	7.6 Applying ligatures and kerning
	7.7 Breaking paragraphs into lines
	7.8 The language library
	7.8.1 new and id
	7.8.2 hyphenation
	7.8.3 clearhyphenation and clean
	7.8.4 patterns and clearpatterns
	7.8.5 hyphenationmin
	7.8.6 [pre|post][ex|]hyphenchar
	7.8.7 hyphenate
	7.8.8 [set|get]hjcode

	8 Math
	8.1 Traditional alongside OpenType
	8.2 Unicode math characters
	8.3 Math styles
	8.3.1 {0}\mathstyle
	8.3.2 {0}Ustack
	8.3.3 The new \cramped ...style commands

	8.4 Math parameter settings
	8.4.1 Many new {0}Umath* primitives
	8.4.2 Font-based math parameters

	8.5 Math spacing
	8.5.1 Setting inline surrounding space with {0}\mathsurround[skip]\mathsurround[skip]
	8.5.2 Pairwise spacing and {0}Umath...spacing commands
	8.5.3 Local {0}\frozen settings with
	8.5.4 Checking a state with {0}\ifmathparameter
	8.5.5 Skips around display math and {0}\mathdisplayskipmode
	8.5.6 Nolimit correction with {0}\mathnolimitsmode
	8.5.7 Controlling math italic mess with {0}\mathitalicsmode
	8.5.8 Influencing script kerning with {0}\mathscriptboxmode
	8.5.9 Forcing fixed scripts with {0}\mathscriptsmode
	8.5.10 Penalties: {0}\mathpenaltiesmode
	8.5.11 Equation spacing: {0}\matheqnogapstep

	8.6 Math constructs
	8.6.1 Unscaled fences and {0}\mathdelimitersmode
	8.6.2 Accent handling with {0}Umathaccent
	8.6.3 Building radicals with {0}Uradical and {0}Uroot
	8.6.4 Super- and subscripts
	8.6.5 Scripts on extensibles: {0}Uunderdelimiter, {0}Uoverdelimiter, {0}Udelimiterover, {0}Udelimiterunder and {0}Uhextensible
	8.6.6 Fractions and the new {0}Uskewed and {0}Uskewedwithdelims
	8.6.7 Math styles: {0}Ustyle
	8.6.8 Delimiters: Uleft, {0}Umiddle and {0}Uright
	8.6.9 Accents: \mathlimitsmode

	8.7 Extracting values
	8.7.1 Codes and using {0}Umathcode, {0}Umathcharclass, {0}Umathcharfam and {0}Umathcharslot
	8.7.2 Last lines and {0}\predisplaygapfactor

	8.8 Math mode
	8.8.1 Verbose versions of single-character math commands like {0}Usuperscript and {0}Usubscript
	8.8.2 Script commands {0}Unosuperscript and {0}Unosubscript
	8.8.3 Allowed math commands in non-math modes

	8.9 Goodies
	8.9.1 Flattening: {0}\mathflattenmode
	8.9.2 Less Tracing

	8.10 Experiments
	8.10.1 Prescripts with {0}Usuperprescript and Usubprescript
	8.10.2 Prescripts with {0}Usuperprescript and Usubprescript

	9 Nodes
	9.1 Lua node representation
	9.2 Main text nodes
	9.2.1 {0}hlist and {0}vlist nodes
	9.2.2 {0}rule nodes
	9.2.3 {0}insert nodes
	9.2.4 {0}mark nodes
	9.2.5 {0}adjust nodes
	9.2.6 {0}disc nodes
	9.2.7 {0}math nodes
	9.2.8 {0}glue nodes
	9.2.9 {0}glue_spec nodes
	9.2.10 {0}kern nodes
	9.2.11 {0}penalty nodes
	9.2.12 {0}glyph nodes
	9.2.13 {0}boundary nodes
	9.2.14 {0}par nodes
	9.2.15 {0}dir nodes
	9.2.16 Whatsits
	9.2.17 Math noads

	9.3 The node library
	9.3.1 Introduction
	9.3.2 Housekeeping
	9.3.3 Manipulating lists
	9.3.4 Glue handling
	9.3.5 Attribute handling
	9.3.6 Glyph handling
	9.3.7 Packaging
	9.3.8 Math

	9.4 Two access models
	9.5 Normalization
	9.6 Properties

	10 Lua callbacks
	10.1 Registering callbacks
	10.2 File related callbacks
	10.2.1 {0}find_format_file and {0}find_log_file
	10.2.2 {0}open_data_file

	10.3 Data processing callbacks
	10.3.1 {0}process_jobname

	10.4 Node list processing callbacks
	10.4.1 {0}contribute_filter
	10.4.2 {0}buildpage_filter
	10.4.3 {0}build_page_insert
	10.4.4 {0}pre_linebreak_filter
	10.4.5 {0}linebreak_filter
	10.4.6 append_to_vlist_filter
	10.4.7 {0}post_linebreak_filter
	10.4.8 {0}glyph_run
	10.4.9 {0}hpack_filter
	10.4.10 {0}vpack_filter
	10.4.11 hpack_quality
	10.4.12 vpack_quality
	10.4.13 {0}process_rule
	10.4.14 pre_output_filter
	10.4.15 {0}hyphenate
	10.4.16 {0}ligaturing
	10.4.17 {0}kerning
	10.4.18 insert_par
	10.4.19 {0}mlist_to_hlist

	10.5 Information reporting callbacks
	10.5.1 {0}pre_dump
	10.5.2 {0}start_run
	10.5.3 {0}stop_run
	10.5.4 {0}intercept_tex_error, {0}intercept_lua_error
	10.5.5 {0}show_error_message and {0}show_warning_message
	10.5.6 {0}start_file
	10.5.7 {0}stop_file
	10.5.8 {0}wrapup_run

	10.6 Font-related callbacks
	10.6.1 {0}define_font
	10.6.2 {0}show_whatsit

	11 The TEX related libraries
	11.1 The lua library
	11.1.1 Version information
	11.1.2 Table allocators
	11.1.3 Bytecode registers
	11.1.4 Introspection

	11.2 The status library
	11.3 The tex library
	11.3.1 Introduction
	11.3.2 Internal parameter values, set and get
	11.3.3 Convert commands
	11.3.4 Item commands
	11.3.5 Accessing registers: set*, get* and is*
	11.3.6 Character code registers: [get|set]*code[s]
	11.3.7 Box registers: [get|set]box
	11.3.8 triggerbuildpage
	11.3.9 splitbox
	11.3.10 Accessing math parameters: [get|set]math
	11.3.11 Special list heads: [get|set]list
	11.3.12 Semantic nest levels: getnest and ptr
	11.3.13 Print functions
	11.3.14 Helper functions
	11.3.15 Functions for dealing with primitives
	11.3.16 Core functionality interfaces
	11.3.17 Functions related to synctex

	11.4 The texconfig table
	11.5 The texio library
	11.5.1 write and writeselector
	11.5.2 writenl and writeselectornl
	11.5.3 setescape
	11.5.4 closeinput

	11.6 The token library
	11.6.1 The scanner
	11.6.2 Picking up one token
	11.6.3 Creating tokens
	11.6.4 Macros
	11.6.5 Pushing back
	11.6.6 Nota bene

	12 The MetaPost library mplib
	12.1 Introduction
	12.2 Process management
	12.2.1 new
	12.2.2 getstatistics
	12.2.3 execute
	12.2.4 finish
	12.2.5 settolerance and gettolerance
	12.2.6 Errors
	12.2.7 The scanner status
	12.2.8 The hash
	12.2.9 Callbacks

	12.3 The end result
	12.3.1 The figure
	12.3.2 fill
	12.3.3 outline
	12.3.4 start_bounds, start_clip, start_group
	12.3.5 stop_bounds, stop_clip, stop_group

	12.4 Subsidiary table formats
	12.4.1 Paths and pens
	12.4.2 Colors
	12.4.3 Transforms
	12.4.4 Dashes
	12.4.5 Pens and peninfo
	12.4.6 Character size information

	12.5 Scanners
	12.6 Injectors
	12.7 To be checked

	13 The pdf related libraries
	13.1 The pdfe library
	13.1.1 Introduction
	13.1.2 open, openfile, new, getstatus, close, unencrypt
	13.1.3 getsize, getversion, getnofobjects, getnofpages
	13.1.4 get[catalog|trailer|info]
	13.1.5 getpage, getbox
	13.1.6 get[string|integer|number|boolean|name]
	13.1.7 get[dictionary|array|stream]
	13.1.8 [open|close|readfrom|whole|]stream
	13.1.9 getfrom[dictionary|array]
	13.1.10 [dictionary|array]totable
	13.1.11 getfromreference

	13.2 Memory streams
	13.3 The pdfscanner library

	14 Extra libraries
	14.1 Introduction
	14.2 File and string readers: fio and type sio
	14.3 md5
	14.4 sha2
	14.5 xzip
	14.6 xmath
	14.7 xcomplex
	14.8 xdecimal
	14.9 lfs
	14.10 pngdecode
	14.11 basexx
	14.12 Multibyte string functions
	14.13 Extra os library functions
	14.14 The lua library functions

	Primitive codes
	Topics
	Primitives
	Callbacks
	Nodes
	Libraries
	Statistics
	Some remarks

