
LuaMetaTEX

Reference

Manual

April 2020

Version 2.05.05

LuaMetaTEX

Reference

Manual

copyright : LuaTEX development team

: CONTEXT development team

more info : www.luatex.org

: contextgarden.net

version : April 29, 2020

1

Contents

Introduction 11

1 The internals 13

2 Differences with LUATEX 17

3 The original engines 21

3.1 The merged engines 21

3.1.1 The rationale 21

3.1.2 Changes from TEX 3.1415926 21

3.1.3 Changes from 𝜀-TEX 2.2 22

3.1.4 Changes from PDFTEX 1.40 23

3.1.5 Changes from ALEPH RC4 23

3.1.6 Changes from standard WEB2C 24

3.2 Implementation notes 24

3.2.1 Memory allocation 24

3.2.2 Sparse arrays 24

3.2.3 Simple single-character csnames 25

3.2.4 Binary file reading 25

3.2.5 Tabs and spaces 25

3.2.6 Logging 25

4 Using LUAMETATEX 27

4.1 Initialization 27

4.1.1 LUAMETATEX as a LUA interpreter 27

4.1.2 Other commandline processing 27

4.2 LUA behaviour 28

4.2.1 The LUA version 28

4.2.2 Locales 29

4.3 LUA modules 29

4.4 Testing 29

5 Basic TEX enhancements 31

5.1 Introduction 31

5.1.1 Primitive behaviour 31

5.1.2 Experiments 31

5.1.3 Version information 32

5.2 UNICODE text support 32

5.2.1 Extended ranges 32

5.2.2 \Uchar 33

5.2.3 Extended tables 33

2

5.3 Attributes 34

5.3.1 Nodes 34

5.3.2 Attribute registers 34

5.3.3 Box attributes 35

5.4 LUA related primitives 36

5.4.1 \directlua 36

5.4.2 \luaescapestring 37

5.4.3 \luafunction, \luafunctioncall and \luadef 38

5.4.4 \luabytecode and \luabytecodecall 38

5.5 Catcode tables 39

5.5.1 Catcodes 39

5.5.2 \catcodetable 39

5.5.3 \initcatcodetable 39

5.5.4 \savecatcodetable 40

5.6 Tokens, commands and strings 40

5.6.1 \scantextokens 40

5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp,

\gtokspre, \xtoksapp, \xtokspre 40

5.6.3 \csstring, \begincsname and \lastnamedcs 40

5.6.4 \clearmarks 41

5.6.5 \alignmark and \aligntab 41

5.6.6 \letcharcode 41

5.6.7 \glet 41

5.6.8 \expanded, \immediateassignment and \immediateassigned 42

5.6.9 \ignorepars 43

5.6.10 \futureexpand, \futureexpandis, \futureexpandisap 43

5.6.11 \aftergrouped 43

5.7 Conditions 44

5.7.1 \ifabsnum and \ifabsdim 44

5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and

\ifchkdim 44

5.7.3 \iftok and \ifcstok 45

5.7.4 \ifcondition 46

5.7.5 \orelse 47

5.7.6 \ifprotected, \frozen, \iffrozen and \ifusercmd 48

5.8 Boxes, rules and leaders 48

5.8.1 \outputbox 48

5.8.2 \vpack, \hpack and \tpack 48

5.8.3 \vsplit 48

5.8.4 Images and reused box objects 49

5.8.5 \hpack, \vpack and \tpack 50

5.8.6 \nohrule and \novrule 50

5.8.7 \gleaders 50

3

5.9 Languages 50

5.9.1 \hyphenationmin 50

5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary 50

5.10 Control and debugging 51

5.10.1 Tracing 51

5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype and

\internalcodesmode. 51

5.11 Files 51

5.11.1 File syntax 51

5.11.2 Writing to file 52

5.12 Math 52

5.13 Fonts 52

5.14 Directions 52

5.14.1 Two directions 52

5.14.2 How it works 52

5.14.3 Controlling glue with \breakafterdirmode 54

5.14.4 Controlling parshapes with \shapemode 54

5.14.5 Orientations 55

5.15 Expressions 56

5.16 Nodes 56

6 Fonts 57

6.1 Introduction 57

6.2 Defining fonts 57

6.3 Virtual fonts 60

6.4 Additional TEX commands 63

6.4.1 Font syntax 63

6.4.2 \fontid and \setfontid 63

6.4.3 \noligs and \nokerns 63

6.4.4 \nospaces 63

6.4.5 \protrusionboundary 64

6.4.6 \glyphdimensionsmode 64

6.5 The LUA font library 65

6.5.1 Introduction 65

6.5.2 Defining a font with define, addcharacters and setfont 65

6.5.3 Font ids: id, max and current 65

7 Languages, characters, fonts and glyphs 67

7.1 Introduction 67

7.2 Characters, glyphs and discretionaries 67

7.3 The main control loop 73

7.4 Loading patterns and exceptions 75

7.5 Applying hyphenation 77

7.6 Applying ligatures and kerning 79

4

7.7 Breaking paragraphs into lines 81

7.8 The lang library 81

7.8.1 new and id 81

7.8.2 hyphenation 82

7.8.3 clear_hyphenation and clean 82

7.8.4 patterns and clear_patterns 82

7.8.5 hyphenationmin 82

7.8.6 [pre|post][ex|]hyphenchar 82

7.8.7 hyphenate 83

7.8.8 [set|get]hjcode 83

8 Math 85

8.1 Traditional alongside OPENTYPE 85

8.2 Unicode math characters 85

8.3 Math styles 86

8.3.1 \mathstyle 86

8.3.2 \Ustack 88

8.3.3 The new \cramped ...style commands 88

8.4 Math parameter settings 89

8.4.1 Many new \Umath* primitives 89

8.4.2 Font-based math parameters 91

8.5 Math spacing 95

8.5.1 Setting inline surrounding space with \mathsurround[skip] 95

8.5.2 Pairwise spacing and \Umath...spacing commands 96

8.5.3 Local settings 97

8.5.4 Skips around display math and \mathdisplayskipmode 97

8.5.5 Nolimit correction with \mathnolimitsmode 98

8.5.6 Controlling math italic mess with \mathitalicsmode 98

8.5.7 Influencing script kerning with \mathscriptboxmode 98

8.5.8 Forcing fixed scripts with \mathscriptsmode 99

8.5.9 Penalties: \mathpenaltiesmode 100

8.5.10 Equation spacing: \matheqnogapstep 100

8.6 Math constructs 101

8.6.1 Unscaled fences and \mathdelimitersmode 101

8.6.2 Accent handling with \Umathaccent 102

8.6.3 Building radicals with \Uradical and \Uroot 103

8.6.4 Super- and subscripts 103

8.6.5 Scripts on extensibles: \Uunderdelimiter, \Uoverdelimiter,

\Udelimiterover, \Udelimiterunder and \Uhextensible 103

8.6.6 Fractions and the new \Uskewed and \Uskewedwithdelims 104

8.6.7 Math styles: \Ustyle 106

8.6.8 Delimiters: \Uleft, \Umiddle and \Uright 106

8.6.9 Accents: \mathlimitsmode 107

5

8.7 Extracting values 107

8.7.1 Codes and using \Umathcode, \Umathcharclass, \Umathcharfam

and \Umathcharslot 107

8.7.2 Last lines and \predisplaygapfactor 107

8.8 Math mode 108

8.8.1 Verbose versions of single-character math commands like

\Usuperscript and \Usubscript 108

8.8.2 Script commands \Unosuperscript and \Unosubscript 108

8.8.3 Allowed math commands in non-math modes 108

8.9 Goodies 108

8.9.1 Flattening: \mathflattenmode 108

8.9.2 Less Tracing 109

9 Nodes 111

9.1 LUA node representation 111

9.2 Main text nodes 112

9.2.1 hlist and vlist nodes 113

9.2.2 rule nodes 113

9.2.3 ins nodes 114

9.2.4 mark nodes 114

9.2.5 adjust nodes 115

9.2.6 disc nodes 115

9.2.7 math nodes 116

9.2.8 glue nodes 116

9.2.9 glue_spec nodes 117

9.2.10 kern nodes 117

9.2.11 penalty nodes 117

9.2.12 glyph nodes 118

9.2.13 boundary nodes 119

9.2.14 local_par nodes 119

9.2.15 dir nodes 120

9.2.16 Whatsits 120

9.2.17 Math noads 120

9.3 The node library 124

9.3.1 Introduction 124

9.3.2 Housekeeping 125

9.3.3 Manipulating lists 128

9.3.4 Glue handling 131

9.3.5 Attribute handling 132

9.3.6 Glyph handling 134

9.3.7 Packaging 136

9.3.8 Math 138

9.4 Two access models 138

6

9.5 Normalization 144

9.6 Properties 144

10 LUA callbacks 149

10.1 Registering callbacks 149

10.2 File related callbacks 149

10.2.1 find_read_file 150

10.2.2 find_data_file 150

10.2.3 find_format_file 150

10.2.4 open_read_file 150

10.3 Data processing callbacks 151

10.3.1 process_jobname 151

10.4 Node list processing callbacks 152

10.4.1 contribute_filter 152

10.4.2 buildpage_filter 152

10.4.3 build_page_insert 153

10.4.4 pre_linebreak_filter 153

10.4.5 linebreak_filter 154

10.4.6 append_to_vlist_filter 154

10.4.7 post_linebreak_filter 155

10.4.8 hpack_filter 155

10.4.9 vpack_filter 155

10.4.10 hpack_quality 155

10.4.11 vpack_quality 156

10.4.12 process_rule 156

10.4.13 pre_output_filter 156

10.4.14 hyphenate 156

10.4.15 ligaturing 157

10.4.16 kerning 157

10.4.17 insert_local_par 157

10.4.18 mlist_to_hlist 157

10.5 Information reporting callbacks 158

10.5.1 pre_dump 158

10.5.2 start_run 158

10.5.3 stop_run 158

10.5.4 show_error_hook 158

10.5.5 show_error_message 159

10.5.6 show_lua_error_hook 159

10.5.7 start_file 159

10.5.8 stop_file 159

10.5.9 wrapup_run 159

10.6 Font-related callbacks 159

10.6.1 define_font 159

7

11 The TEX related libraries 161

11.1 The lua library 161

11.1.1 Version information 161

11.1.2 Table allocators 161

11.1.3 Bytecode registers 161

11.1.4 Chunk name registers 162

11.1.5 Introspection 162

11.2 The status library 162

11.3 The tex library 164

11.3.1 Introduction 164

11.3.2 Internal parameter values, set and get 164

11.3.3 Convert commands 168

11.3.4 Last item commands 168

11.3.5 Accessing registers: set*, get* and is* 168

11.3.6 Character code registers: [get|set]*code[s] 170

11.3.7 Box registers: [get|set]box 171

11.3.8 triggerbuildpage 172

11.3.9 splitbox 172

11.3.10 Accessing math parameters: [get|set]math 172

11.3.11 Special list heads: [get|set]list 173

11.3.12 Semantic nest levels: getnest and ptr 174

11.3.13 Print functions 175

11.3.14 Helper functions 177

11.3.15 Functions for dealing with primitives 180

11.3.16 Core functionality interfaces 184

11.3.17 Randomizers 186

11.3.18 Functions related to synctex 187

11.4 The texconfig table 187

11.5 The texio library 188

11.5.1 write 188

11.5.2 write_nl 188

11.5.3 setescape 188

11.5.4 closeinput 188

11.6 The token library 188

11.6.1 The scanner 188

11.6.2 Picking up one token 191

11.6.3 Creating tokens 191

11.6.4 Macros 192

11.6.5 Pushing back 193

11.6.6 Nota bene 194

12 The METAPOST library mplib 197

12.1 Process management 197

12.1.1 new 197

12.1.2 statistics 198

12.1.3 execute 198

12.1.4 finish 199

8

12.2 The end result 199

12.2.1 fill 200

12.2.2 outline 200

12.2.3 text 200

12.2.4 special 201

12.2.5 start_bounds, start_clip 201

12.3 Subsidiary table formats 201

12.3.1 Paths and pens 201

12.3.2 Colors 202

12.3.3 Transforms 202

12.3.4 Dashes 202

12.3.5 Pens and pen_info 202

12.3.6 Character size information 203

12.4 Scanners 203

12.5 Injectors 204

13 The PDF related libraries 205

13.1 The pdfe library 205

13.1.1 Introduction 205

13.1.2 open, openfile, new, getstatus, close, unencrypt 205

13.1.3 getsize, getversion, getnofobjects, getnofpages 206

13.1.4 get[catalog|trailer|info] 206

13.1.5 getpage, getbox 206

13.1.6 get[string|integer|number|boolean|name] 206

13.1.7 get[dictionary|array|stream] 207

13.1.8 [open|close|readfrom|whole|]stream 207

13.1.9 getfrom[dictionary|array] 208

13.1.10 [dictionary|array]totable 208

13.1.11 getfromreference 208

13.2 Memory streams 209

13.3 The pdfscanner library 209

14 Extra libraries 211

14.1 Introduction 211

14.2 File and string readers: fio and type sio 211

14.3 md5 211

14.4 sha2 212

14.5 xzip 212

14.6 xmath 212

14.7 xcomplex 214

14.8 xdecimal 215

14.9 lfs 215

14.10 pngdecode 216

14.11 basexx 216

9

14.12 Multibyte string functions 217

14.13 Extra os library functions 218

14.14 The lua library functions 218

15 Primitives aka commands 221

15.1 Introduction 221

15.2 Languages 221

15.3 Fonts 221

15.4 Math 222

15.5 Boxes and directions 225

15.6 Scanning 226

15.7 Typesetting 227

15.8 LUA 228

15.9 Management 228

15.10 Miscellaneous 228

Topics 229

Primitives 233

Callbacks 239

Nodes 241

Libraries 243

Statistics 249

10

11Introduction

Introduction

Around 2005 we started the LUATEX projects and it took about a decade to reach a state where

we could consider the experiments to have reached a stable state. Pretty soon LUATEX could be

used in production, even if some of the interfaces evolved, but CONTEXT was kept in sync so that

was not really a problem. In 2018 the functionality was more or less frozen. Of course we might

add some features in due time but nothing fundamental will change as we consider version 1.10

to be reasonable feature complete. Among the reasons is that this engine is now used outside

CONTEXT too which means that we cannot simply change much without affecting other macro

packages.

However, in reaching that state some decisions were delayed because they didn’t go well with

a current stable version. This is why at the 2018 CONTEXT meeting those present agreed that

we could move on with a follow up tagged METATEX, a name we already had in mind for a while,

but as LUA is an important component, it got expanded to LUAMETATEX. This follow up is a

lightweight companion to LUATEX that will be maintained alongside. More about the reasons

for this follow up as well as the philosophy behind it can be found in the document(s) describing

the development. During LUATEX development I kept track of what happened in a series of

documents, parts of which were published as articles in user group journals, but all are in the

CONTEXT distribution. I did the same with the development of LUAMETATEX.

The LUAMETATEX engine is, as said, a lightweight version of LUATEX, that for now targets CON-

TEXT. We will use it for possibly drastic experiments but without affecting LUATEX. As we can

easily adapt CONTEXT to support both, no other macro package will be harmed when (for in-

stance) interfaces change as part of an experiment. Of course, when we consider something to

be useful, it can be ported back to LUATEX, but only when there are good reasons for doing so

and when no compatibility issues are involved. When considering this follow up one consider-

ation was that a lean and mean version with an extension mechanism is a bit closer to original

TEX. Of course, because we also have new primitives, this is not entirely true. The move to LUA

already meant that some aspects, especially system dependent ones, no longer made sense and

therefore had consequences for the interface at the system level.

This manual currently has quite a bit of overlap with the LUATEX manual but some chapters are

removed, others added and the rest has been (and will be further) adapted. It also discusses the

(main) differences. Some of the new primitives or functions that show up in LUAMETATEX might

show up in LUATEX at some point, others might not, so don’t take this manual as reference for

LUATEX! For now it is an experimental engine in which we can change things at will but with

CONTEXT in tandem so that this macro package will keep working.

For CONTEXT users the LUAMETATEX engine will become the default. The CONTEXT variant for

this engine is tagged LMTX. The pair can be used in production, just as with LUATEX and MKIV.

In fact, most users will probably not really notice the difference. In some cases there will be a

drop in performance, due to more work being delegated to LUA, but on the average performance

will be better, also due to some changes below the hood of the engine.

As this follow up is closely related to CONTEXT development, and becausewe expect stock LUATEX

to be used outside the CONTEXT proper, there will be no special mailing list nor coverage (or

pollution) on the LUATEX related mailing lists. We have the CONTEXT mailing lists for that. In

due time the source code will be part of the regular CONTEXT distribution.

Introduction12

This manual sometimes refers to LUATEX, especially when we talk of features common to both

engine, as well as to LUAMETATEX, when it is more specific to the follow up. A substantial

amount of time went into the transition and more will go in, so if you want to complain about

LUAMETATEX, don’t bother me. Of course, if you really need professional support with these

engines (or TEX in general), you can always consider contacting the developers.

Hans Hagen

Version : April 29, 2020

LUAMETATEX : luametatex 2.0505 / 20200428

CONTEXT : MkIV 2020.04.27 22:25

LUATEX Team : Hans Hagen, Hartmut Henkel, Taco Hoekwater, Luigi Scarso

remark: LUAMETATEX development is mostly done by Hans Hagen and Alan Braslau, who love

playing with the three languages involved. And as usual Mojca Miklavec make sure all compiles

well on the buildbot infrastructure. Testing is done by CONTEXT developers and users. Many

thanks for their patience!

remark: When there are non-intrusive features that also make sense in LUATEX, these will be

applied in the experimental branch first, so that there is no interference with the stable release.

remark: Most CONTEXT users seem always willing to keep up with the latest versions which

means that LMTX is tested well. We can therefore safely claim that end of 2019 the code has

become quite stable. There are no complaints about performance (on my laptop this manual

compiles at 22.5 pps with LMTX versus 20.7 pps for the LUATEX manual with MKIV). Probably

no one notices it, but memory consumption stepwise got reduced too. And . . . the binary is still

below 3 MegaBytes on all platforms.

13The internals

1 The internals

This is a reference manual, not a tutorial. This means that we discuss changes relative to tradi-

tional TEX and also present new functionality. As a consequence we will refer to concepts that

we assume to be known or that might be explained later. Because the LUATEX and LUAMETATEX

engines open up TEX there’s suddenly quite some more to explain, especially about the way a (to

be) typeset stream moves through the machinery. However, discussing all that in detail makes

not much sense, because deep knowledge is only relevant for those who write code not possible

with regular TEX and who are already familiar with these internals (or willing to spend time on

figuring it out).

So, the average user doesn’t need to know much about what is in this manual. For instance fonts

and languages are normally dealt with in the macro package that you use. Messing around with

node lists is also often not really needed at the user level. If you do mess around, you’d better

know what you’re dealing with. Reading “The TEX Book” by Donald Knuth is a good investment

of time then also because it’s good to know where it all started. A more summarizing overview

is given by “TEX by Topic” by Victor Eijkhout. You might want to peek in “The 𝜀-TEX manual” too.

But . . . if you’re here because of LUA, then all you need to know is that you can call it from

within a run. If you want to learn the language, just read the well written LUA book. The macro

package that you use probably will provide a few wrapper mechanisms but the basic \directlua

command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load that

file with the usual LUA commands. If you don’t know what this means, you definitely need to

have a look at the LUA book first.

If you still decide to read on, then it’s good to knowwhat nodes are, so we do a quick introduction

here. If you input this text:

Hi There

eventually we will get a linked lists of nodes, which in ASCII art looks like:

H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e

When we have a paragraph, we actually get something:

[localpar] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e <=> [glue]

Each character becomes a so called glyph node, a record with properties like the current font,

the character code and the current language. Spaces become glue nodes. There are many node

types that we will discuss later. Each node points back to a previous node or next node, given

that these exist. Sometimes multiple characters are represented by one glyphs, so one can also

get:

[localpar] <=> H <=> i <=> [glue] <=> Th <=> e <=> r <=> e <=> [glue]

The internals14

And maybe some characters get positioned relative to each other, so we might see:

[localpar] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e <=> [glue]

It’s also good to know beforehand that TEX is basically centered around creating paragraphs and

pages. The par builder takes a list and breaks it into lines. At some point horizontal blobs are

wrapped into vertical ones. Lines are so called boxes and can be separated by glue, penalties

and more. The page builder accumulates lines and when feasible triggers an output routine that

will take the list so far. Constructing the actual page is not part of TEX but done using primitives

that permit manipulation of boxes. The result is handled back to TEX and flushed to a (often PDF)

file.

The LUATEX engine provides hooks for LUA code at nearly every reasonable point in the process:

collecting content, hyphenating, applying font features, breaking into lines, etc. This means

that you can overload TEX’s natural behaviour, which still is the benchmark. When we refer to

‘callbacks’ we means these hooks. The TEX engine itself is pretty well optimized but when you

kick in much LUA code, you will notices that performance drops. Don’t blame and bother the

authors with performance issues. In CONTEXT over 50% of the time can be spent in LUA, but so

far we didn’t get many complaints about efficiency.

Where plain TEX is basically a basic framework for writing a specific style, macro packages like

CONTEXT and L
ATEX provide the user a whole lot of additional tools to make documents look

good. They hide the dirty details of font management, language demands, turning structure

into typeset results, wrapping pages, including images, and so on. You should be aware of the

fact that when you hook in your own code to manipulate lists, this can interfere with the macro

package that you use. Each successive step expects a certain result and if you mess around to

much, the engine eventually might bark and quit. It can even crash, because testing everywhere

for what users can do wrong is no real option.

When you read about nodes in the following chapters it’s good to keep in mind their commands

that relate to then. Here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist vertical box with the baseline at the bottom

\vtop vlist vertical box with the baseline at the top

\hskip glue horizontal skip with optional stretch and shrink

\vskip glue vertical skip with optional stretch and shrink

\kern kern horizontal or vertical fixed skip

\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdirection dir a change in text direction

Text (interspersedwithmacros) comes from an inputmedium. This can be a file, token list, macro

body cq. arguments, some internal quantity (like a number), LUA, etc. Macros get expanded.

In the process TEX can enter a group. Inside the group, changes to registers get saved on a

stack, and restored after leaving the group. When conditionals are encountered, another kind

15The internals

of nesting happens, and again there is a stack involved. Tokens, expansion, stacks, input levels

are all terms used in the next chapters. Don’t worry, they loose their magic once you use TEX a

lot. You have access to most of the internals and when not, at least it is possible to query some

state we’re in or level we’re at.

When we talk about packing it can mean two things. When TEX has consumed some tokens that

represent text the next can happen. When the text is put into a so called \hbox it (normally)

first gets hyphenated, next ligatures are build, and finally kerns are added. Each of that stages

can be overloaded using LUA code. When these three stages are finished, the dimension of the

content is calculated and the box gets its width, height and depth. What happens with the box

depends on what macros do with it.

The other thing that can happen is that the text starts a new paragraph. In that case some

(directional) information is put in front, indentation is prepended and some skip appended at

the end. Again the three stages are applied but this time, afterwards, the long line is broken

into lines and the result is either added to the content of a box or to the main vertical list (the

running text so to say). This is called par building. At some point TEX decides that enough is

enough and it will trigger the page builder. So, building is another concept we will encounter.

Another example of a builder is the one that turns an intermediate math list into something

typeset.

Wrapping something in a box is called packing. Adding something to a list is described in terms

of contributing. The more complicated processes are wrapped into builders. For now this should

be enough to enable you to understand the next chapters. The text is not as enlightening and

entertaining as Don Knuths books, sorry.

The internals16

17Differences with LUATEX

2 Differences with LUATEX

As LUAMETATEX is a leaner and meaner LUATEX, this chapter will discuss what is gone. We start

with the primitives that were dropped.

fonts \letterspacefont \copyfont \expandglyphsinfont \ignoreligaturesinfont

\tagcode \leftghost \rightghost

backend \dviextension \dvivariable \dvifeedback \pdfextension \pdfvariable

\pdffeedback \dviextension \draftmode \outputmode

dimensions \pageleftoffset \pagerightoffset \pagetopoffset \pagebottomoffset

\pageheight \pagewidth

resources \saveboxresource \useboxresource \lastsavedboxresourceindex \saveim-

ageresource \useimageresource \lastsavedimageresourceindex \last-

savedimageresourcepages

positioning \savepos \lastxpos \lastypos

directions \textdir \linedir \mathdir \pardir \pagedir \bodydir \pagedirection

\bodydirection

randomizer \randomseed \setrandomseed \normaldeviate \uniformdeviate

utilities \synctex

extensions \latelua \lateluafunction \immediate \openout \write \closeout

control \suppressfontnotfounderror \suppresslongerror \suppressprimitiveer-

ror \suppressmathparerror \suppressifcsnameerror \suppressoutererror

\mathoption

whatever \primitive \ifprimitive

ignored \long \outer \mag

The resources and positioning primitives are actually useful but can be defined as macros that

(via LUA) inject nodes in the input that suit the macro package and backend. The three--letter

direction primitives are gone and the numeric variants are now leading. There is no need for

page and body related directions and they don’t work well in LUATEX anyway. We only have two

directions left.

The primitive related extensions were not that useful and reliable so they have been removed.

There are some new variants that will be discussed later. The \outer and \long prefixes are

gone as they don’t make much sense nowadays and them becoming dummies opened the way to

something new, again to be discussed elsewhere. I don’t think that (CONTEXT) users will notice

it. The \suppress.. features are now default.

The \shipout primitive does no ship out but just erases the content of the box, if that hasn’t

happened already in another way.

The extension primitives relate to the backend (when not immediate) and can be implemented

as part of a backend design using generic whatsits. There is only one type of whatsit now. In

fact we’re now closer to original TEX with respect to the extensions.

The img library has been removed as it’s rather bound to the backend. The slunicode library

is also gone. There are some helpers in the string library that can be used instead and one can

write additional LUA code if needed. There is no longer a pdf backend library.

Differences with LUATEX18

In the node, tex and status library we no longer have helpers and variables that relate to the

backend. The LUAMETATEX engine is in principle DVI and PDF unaware. There are only generic

whatsit nodes that can be used for some management related tasks. For instance you can use

them to implement user nodes.

The margin kern nodes are gone and we now use regular kern nodes for them. As a consequence

there are two extra subtypes indicating the injected left or right kern. The glyph field served no

real purpose so there was no reason for a special kind of node.

The KPSE library is no longer built-in. Because there is no backend, quite some file related

callbacks could go away. The following file related callbacks remained (till now):

find_write_file find_data_file find_format_file

open_data_file read_data_file

Also callbacks related to errors stay:

show_error_hook show_lua_error_hook,

show_error_message show_warning_message

The (job) management hooks are kept:

process_jobname

start_run stop_run wrapup_run

pre_dump

start_file stop_file

Because we use a more generic whatsit model, there is a new callback:

show_whatsit

Being the core of extensibility, the typesetting callbacks of course stayed. This is what we ended

up with:

find_log_file, find_data_file, find_format_file, open_data_file, read_data_file,

process_jobname, start_run, stop_run, define_font, pre_output_filter,

buildpage_filter, hpack_filter, vpack_filter, hyphenate, ligaturing, kerning,

pre_linebreak_filter, linebreak_filter, post_linebreak_filter,

append_to_vlist_filter, mlist_to_hlist, pre_dump, start_file, stop_file,

handle_error_hook, show_error_hook, show_lua_error_hook, show_error_message,

show_warning_message, hpack_quality, vpack_quality, insert_local_par,

contribute_filter, build_page_insert, wrapup_run, new_graf, make_extensible,

show_whatsit, terminal_input,

As in LUATEX font loading happens with the following callback. This time it really needs to be

set because there is no built-in font loader.

define_font

There are all kinds of subtle differences in the implementation, for instance we no longer inter-

cept * and & as these were already replaced long ago in TEX engines by command line options.

Talking of options, only a few are left.

19Differences with LUATEX

We took our time for reaching a stable state in LUATEX. Among the reasons is the fact that most

was experimented with in CONTEXT. It took many man-years to decide what to keep and how

to do things. Of course there are places when things can be improved and it might happen in

LUAMETATEX. Contrary to what is sometimes suggested, the LUATEX-CONTEXTMKIV combination

(assuming matched versions) has been quite stable. It made no sense otherwise. Most CONTEXT

functionality didn’t changemuch at the user level. Of course there have been issues, as is natural

with everything new and beta, but we have a fast update cycle.

The same is true for LUAMETATEX and CONTEXT LMTX: it can be used for production as usual

and in practice CONTEXT users tend to use the beta releases, which proves this. Of course, if

you use low level features that are experimental you’re on your own. Also, as with LUATEX it

might take many years before a long term stable is defined. The good news is that, the source

code being part of the CONTEXT distribution, there is always a properly working, more or less

long term stable, snapshot.

The error reporting subsystem has been redone a little but is still fundamentally the same. We

don’t really assume interactive usage but if someone uses it, it might be noticed that it is not

possible to backtrack or inject something. Of course it is no big deal to implement all that in

LUA if needed. It removes a system dependency and makes for a bit cleaner code.

There are new primitives too as well as some extensions to existing primitive functionality. These

are described in following chapters but there might be hidden treasures in the binary. If you

locate them, don’t automatically assume them to stay, some might be part of experiments!

Differences with LUATEX20

21The original engines

3 The original engines

3.1 The merged engines

3.1.1 The rationale

The first version of LUATEX, made by Hartmut after we discussed the possibility of an extension

language, only had a few extra primitives and it was largely the same as PDFTEX. It was presented

to the public in 2005. As part of the Oriental TEX project, Taco merged substantial parts of

ALEPH into the code and some more primitives were added. Then we started more fundamental

experiments. After many years, when the engine had become more stable, the decision was

made to clean up the rather hybrid nature of the program. This means that some primitives

were promoted to core primitives, often with a different name, and that others were removed.

This also made it possible to start cleaning up the code base. In chapter 5 we discuss some new

primitives, here we will cover most of the adapted ones.

During more than a decade stepwise new functionality was added and after 10 years the more

of less stable version 1.0 was presented. But we continued and after some 15 years the

LUAMETATEX follow up entered its first testing stage. But before details about the engine are

discussed in successive chapters, we first summarize where we started from. Keep in mind that

in LUAMETATEX we have a bit less than in LUATEX, so this section differs from the one in the

LUATEX manual.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-

pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often

than not, a change necessary to clean up the internal interfaces. These will also be mentioned.

3.1.2 Changes from TEX 3.1415926

Of course it all starts with traditional TEX. Even if we started with PDFTEX, most still comes from

original Knuthian TEX. But we divert a bit.

‣ The current code base is written in C, not PASCAL. The original CWEB documentation is kept

when possible and not wrapped in tagged comments. As a consequence instead of one large

file plus change files, we now have multiple files organized in categories like tex, luaf, lan-

guages, fonts, libraries, etc. There are some artifacts of the conversion to C, but these

got (and get) removed stepwise. The documentation, which actually comes from the mix of

engines (via so called change files), is kept as much as possible. Of course we want to stay

as close as possible to the original so that the documentation of the fundamentals behind

TEX by Don Knuth still applies. However, because we use C, some documentation is a bit off.

Also, most global variables are now collected in structures, but the original names were kept.

There are lots of so called macros too.

‣ See chapter 7 for many small changes related to paragraph building, language handling and

hyphenation. The most important change is that adding a brace group in the middle of a

word (like in of{}fice) does not prevent ligature creation. Also, the hyphenation, ligature

The original engines22

building and kerning has been split so that we can hook in alternative or extra code wherever

we like. There are various options to control discretionary injection and related penalties are

now integrated in these nodes. Language information is now bound to glyphs. The number

of languages in LUAMETATEX is smaller than in LUATEX.

‣ There is no pool file, all strings are embedded during compilation. This also removed some

memory constraints. We kept token and node memory management because it is convenient

and efficient but parts were reimplemented in order to remove some constraints. Token

memory management is largely the same.

‣ The specifier plus 1 fillll does not generate an error. The extra ‘l’ is simply typeset.

‣ The upper limit to \endlinechar and \newlinechar is 127.

‣ Because the backend is not built-in, the magnification (\mag) primitive is not doing nothing.

A shipout just discards the content of the given box. The write related primitives have to be

implemented in the used macro package using LUA. None of the PDFTEX derived primitives

is present.

‣ There is more control over some (formerly hard-coded) math properties. In fact, there is a

whole extra bit of math related code because we need to deal with OPENTYPE fonts.

‣ The \outer and \long prefixed are silently ignored. It is permitted to use \par in math.

‣ Because there is no font loader, a LUA variant is free to either support or not the OMEGA ofm

file format. As there are hardly any such fonts it probably makes no sense.

‣ The lack of a backend means that some primitives related to it are not implemented. This is

no big deal because it is possible to use the scanner library to implement them as needed,

which depends on the macro package and backend.

‣ When detailed logging is enabled more detail is output with respect to what nodes are in-

volved. This is a side effect of the core nodes having more detailed subtype information. The

benefit of more detail wins from any wish to be byte compatible in the logging. One can

always write additional logging in LUA.

3.1.3 Changes from 𝜀-TEX 2.2

Being the de-facto standard extension of course we provide the 𝜀-TEX features, but with a few
small adaptations.

‣ The 𝜀-TEX functionality is always present and enabled so the prepended asterisk or -etex
switch for INITEX is not needed.

‣ The TEXXET extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,

\endR and \endL are missing. Instead we used the OMEGA/ALEPH approach to directionality

as starting point, albeit it has been changed quite a bit, so that we’re probably not that far

from TEXXET.

‣ Some of the tracing information that is output by 𝜀-TEX’s \tracingassigns and \tracingre-
stores is not there. Also keep in mind that tracing doesn’t involve what LUA does.

‣ Register management in LUAMETATEX uses the OMEGA/ALEPH model, so the maximum value

is 65535 and the implementation uses a flat array instead of the mixed flat & sparse model

from 𝜀-TEX.
‣ Because we don’t use change files on top of original TEX, the integration of 𝜀-TEX functionality
is bit more natural, code wise.

23The original engines

3.1.4 Changes from PDFTEX 1.40

Because we want to produce PDF the most natural starting point was the popular PDFTEX pro-

gram. We inherit the stable features, dropped most of the experimental code and promoted

some functionality to core LUATEX functionality which in turn triggered renaming primitives.

However, as the backend was dropped, not that much from PDFTEX is present any more. Basi-

cally all we now inherit from PDFTEX is expansion and protrusion but even that has been adapted.

So don’t expect LUAMETATEX to be compatible.

‣ The experimental primitives \ifabsnum and \ifabsdim have been promoted to core primi-

tives.

‣ The primitives \ifincsname, \expanded and \quitvmode have become core primitives.

‣ As the hz (expansion) and protrusion mechanism are part of the core the related prim-

itives \lpcode, \rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to

core primitives. The two commands \protrudechars and \adjustspacing control these

processes.

‣ In LUAMETATEX three extra primitives can be used to overload the font specific settings:

\adjustspacingstep (max: 100), \adjustspacingstretch (max: 1000) and \adjustspac-

ingshrink (max: 500).

‣ The hz optimization code has been partially redone so that we no longer need to create extra

font instances. The front- and backend have been decoupled and the glyph and kern nodes

carry the used values. In LUATEX that made a more efficient generation of PDF code possible.

It also resulted in much cleaner code. The backend code is gone, but of course the information

is still carried around.

‣ When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When

the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature. With

value of 1, font expansion is applied after TEX’s normal paragraph breaking routines have

broken the paragraph into lines. In this case, line breaks are identical to standard TEX behav-

ior (as with PDFTEX). But . . . this is a left-over from the early days of PDFTEX when this feature

was part of a research topic. At some point level 1 might be dropped from LUAMETATEX.

‣ When \protrudechars has a value larger than zero characters at the edge of a line can

be made to hang out. A value of 2 will take the protrusion into account when breaking a

paragraph into lines. A value of 3 will try to deal with right-to-left rendering; this is a still

experimental feature.

‣ The pixel multiplier dimension \pxdimen has be inherited as core primitive.

‣ The primitive \tracingfonts is now a core primitive but doesn’t relate to the backend.

3.1.5 Changes from ALEPH RC4

In LUATEX we took the 32 bit aspects and much of the directional mechanisms and merged

it into the PDFTEX code base as starting point for further development. Then we simplified

directionality, fixed it and opened it up. In LUAMETATEX not that much of the later is left. We

only have two horizontal directions. Instead of vertical directions we introduce an orientation

model bound to boxes.

The already reduced-to-four set of directions now only has two members: left-to-right and right-

to-left. They don’t do much as it is the backend that has to deal with them. When paragraphs

The original engines24

are constructed a change in horizontal direction is irrelevant for calculating the dimensions.

So, basically most that we do is registering state and passing that on till the backend can do

something with it.

Here is a summary of inherited functionality:

‣ The ^^ notation has been extended: after ^^^^ four hexadecimal characters are expected and

after ^^^^^^ six hexadecimal characters have to be given. The original TEX interpretation is

still valid for the ^^ case but the four and six variants do no backtracking, i.e. when they are

not followed by the right number of hexadecimal digits they issue an error message. Because

^^^ is a normal TEX case, we don’t support the odd number of ^^^^^ either.

‣ Glues immediately after direction change commands are not legal breakpoints. There is a bit

more sanity testing for the direction state.

‣ The placement of math formula numbers is direction aware and adapts accordingly. Boxes

carry directional information but rules don’t.

‣ There are no direction related primitives for page and body directions. The paragraph, text

and math directions are specified using primitives that take a number.

3.1.6 Changes from standard WEB2C

The LUAMETATEX codebase is not dependent on the WEB2C framework. The interaction with the

file system and TDS is up to LUA. There still might be traces but eventually the code base should

be lean and mean. The METAPOST library is coded in CWEB and in order to be independent from

related tools, conversion to C is done with a LUA script ran by, surprise, LUAMETATEX.

3.2 Implementation notes

3.2.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two

separate arrays. Each of these will grow dynamically when needed. Internally a token or node is

an index into these arrays. This permits for an efficient implementation and is also responsible

for the performance of the core. The original documentation in TEX The Programmostly applies!

3.2.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)

tables are now sparse arrays that are implemented in C. They are no longer part of the TEX

‘equivalence table’ and because each had 1.1 million entries with a few memory words each,

this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don’t show up when using

the 𝜀-TEX tracing routines \tracingassigns and \tracingrestores but we don’t see that as a

real limitation. It also saves a lot of clutter.

A side-effect of the current implementation is that \global is now more expensive in terms of

processing than non-global assignments but not many users will notice that.

25The original engines

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up

to index 221 − 1 but these are never accessed directly so again users will not notice this.

3.2.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in

the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to

decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequences

that uses a prefix that is otherwise impossible to obtain.

3.2.4 Binary file reading

All of the internal code is changed in such a way that if one of the read_xxx_file callbacks is not

set, then the file is read by a C function using basically the same convention as the callback: a

single read into a buffer big enough to hold the entire file contents. While this uses more memory

than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on

your IO subsystem). So far we never had issues with this approach.

3.2.5 Tabs and spaces

We conform to the way other TEX engines handle trailing tabs and spaces. For decades trailing

tabs and spaces (before a newline) were removed from the input but this behaviour was changed

in September 2017 to only handle spaces. We are aware that this can introduce compatibility

issues in existing workflows but because we don’t want too many differences with upstream

TEXLIVE we just follow up on that patch (which is a functional one and not really a fix). It is up to

macro packages maintainers to deal with possible compatibility issues and in LUAMETATEX they

can do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from

generated sources) it was normally dealt with by adding a comment token to the line in case the

spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts

some of our other choices but consistency with other engines. We still stick to our view that at

the log level we can (and might be) more incompatible. We already expose some more details

anyway.

3.2.6 Logging

The information that goes into the log file can be different from LUATEX, and might even differ

a bit more in the future. The main reason is that inside the engine we have more granularity,

which for instance means that we output subtype related information when nodes are printed.

Of course we could have offered a compatibility mode but it serves no purpose. Over time there

have been many subtle changes to control logs in the TEX ecosystems so another one is bearable.

In a similar fashion, there is a bit different behaviour when TEX expects input, which in turn is

a side effect of removing the interception of * and & which made for cleaner code (quite a bit

The original engines26

had accumulated as side effect of continuous adaptations in the TEX ecosystems). There was

already code that was never executed, simply as side effect of the way LUATEX initializes itself

(one needs to enable classes of primitives for instance).

27Using LUAMETATEX

4 Using LUAMETATEX

4.1 Initialization

4.1.1 LUAMETATEX as a LUA interpreter

Although LUAMETATEX is primarily meant as a TEX engine, it can also serve as a stand alone LUA

interpreter. There are two ways to make LUAMETATEX behave like a standalone LUA interpreter:

‣ if a --luaonly option is given on the commandline, or

‣ if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set LUA’s arg[0] to the found script name, pushing preceding options in neg-

ative values and the rest of the command line in the positive values, just like the LUA interpreter

does.

LUAMETATEX will exit immediately after executing the specified LUA script and is, in effect, a

somewhat bulky stand alone LUA interpreter with a bunch of extra preloaded libraries.

When no argument is given, LUAMETATEX will look for a LUA file with the same name as the

binary and run that one when present. This makes it possible to use the engine as a stub. For

instance, in CONTEXT a symlink from mtxrun to type luametatex will run the mtxrun.lua script

when present in the same path as the binary itself

4.1.2 Other commandline processing

When the LUAMETATEX executable starts, it looks for the --lua command line option. If there is

no --lua option, the command line is interpreted in a similar fashion as the other TEX engines.

All options are accepted but only some are understood by LUAMETATEX itself:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--fmt=FORMAT load the format file FORMAT

--help display help and exit

--ini be iniluatex, for dumping formats

--jobname=STRING set the job name to STRING

--lua=FILE load and execute a LUA initialization script

--version display version and exit

There are less options than with LUATEX, because one has to deal with them in LUA anyway.

There are no options to enter a safer mode or control executing programs. This can easily be

achieved with a startup LUA script.

The value to use for \jobname is decided as follows:

Using LUAMETATEX28

‣ If --jobname is given on the command line, its argument will be the value for \jobname,

without any changes. The argument will not be used for actual input so it need not exist. The

--jobname switch only controls the \jobname setting.

‣ Otherwise, \jobname will be the name of the first file that is read from the file system, with

any path components and the last extension (the part following the last .) stripped off.

‣ There is an exception to the previous point: if the command line goes into interactive mode

(by starting with a command) and there are no files input via \everyjob either, then the

\jobname is set to texput as a last resort.

Next the initialization script is loaded and executed. From within the script, the entire com-

mand line is available in the LUA table arg, beginning with arg[0], containing the name of the

executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX’s initializa-

tions have taken place yet. The LUA libraries that don’t deal with TEX are initialized early.

LUAMETATEX allows some of the command line options to be overridden by reading values from

the texconfig table at the end of script execution (see the description of the texconfig table

later on in this document for more details on which ones exactly).

So let’s summarize this. The handling of when is called jobname is a bit complex. There can be

explicit names set on the command line but when not set they can be taken from the texconfig

table.

startup filename --lua a LUA file

startup jobname --jobname a TEX tex texconfig.jobname

startup dumpname --fmt a format file texconfig.formatname

These names are initialized according to --luaonly or the first filename seen in the list of op-

tions. Special treatment of & and * as well as interactive startup is gone.

When we are in TEX mode at some point the engine needs a filename, for instance for opening a

log file. At that moment the set jobname becomes the internal one and when it has not been set

which internalized to jobname but when not set becomes texput. When you see a texput.log

file someplace on your system it normally indicates a bad run.

When running on MS WINDOWS the command line, filenames, environment variable access etc.

internally uses the current code page but to the user is exposed as UTF8. Normally users won’t

notice this.

4.2 LUA behaviour

4.2.1 The LUA version

We currently use LUA 5.4 and will follow developments of the language but normally with some

delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of

the language. Here is an example of one aspect.

LUAs tostring function (and string.format) may return values in scientific notation, thereby

confusing the TEX end of things when it is used as the right-hand side of an assignment to a

29Using LUAMETATEX

\dimen or \count. The output of these serializers also depend on the LUA version, so in LUA

5.3 you can get different output than from 5.2. It is best not to depend the automatic cast from

string to number and vise versa as this can change in future versions.

4.2.2 Locales

In stock LUA, many things depend on the current locale. In LUAMETATEX, we can’t do that,

because it makes documents unportable. While LUAMETATEX is running if forces the following

locale settings:

LC_CTYPE=C

LC_COLLATE=C

LC_NUMERIC=C

There is no way to change that as it would interfere badly with the often language specific

conversions needed at the TEX end.

4.3 LUA modules

Of course the regular LUA modules are present. In addition we provide the lpeg library by

Roberto Ierusalimschy, This library is not UNICODE-aware, but interprets strings on a byte-per-

byte basis. This mainly means that lpeg.S cannot be used with UTF8 characters that need more

than one byte, and thus lpeg.S will look for one of those two bytes when matching, not the

combination of the two. The same is true for lpeg.R, although the latter will display an error

message if used with multibyte characters. Therefore lpeg.R('aä') results in the message bad

argument #1 to 'R' (range must have two characters), since to lpeg, ä is two ’characters’

(bytes), so aä totals three. In practice this is no real issue and with some care you can deal with

UNICODE just fine.

There are some more libraries present. These are discussed on a later chapter. For instance

we embed luasocket but contrary to LUATEX don’t embed the related LUA code. An adapted

version of luafilesystem is also included. There is a more extensive math library and there are

libraries that deal with encryption and compression.

4.4 Testing

For development reasons you can influence the used startup date and time. By setting the

start_time variable in the texconfig table; as with other variables we use the internal name

there. When Universal Time is needed, set the entry use_utc_time in the texconfig table.

In CONTEXT we provide the command line argument --nodates that does a bit more than dis-

abling dates; it avoids time dependent information in the output file for instance.

Using LUAMETATEX30

31Basic TEX enhancements

5 Basic TEX enhancements

5.1 Introduction

5.1.1 Primitive behaviour

From day one, LUATEX has offered extra features compared to the superset of PDFTEX, which

includes 𝜀-TEX, and ALEPH. This has not been limited to the possibility to execute LUA code
via \directlua, but LUATEX also adds functionality via new TEX-side primitives or extensions to

existing ones. The same is true for LUAMETATEX. Some primitives have luatex in their name and

there will be no luametatex variants. This is because we consider LUAMETATEX to be LUATEX2
+.

Contrary to the LUATEX engine LUAMETATEX enables all its primitives. You can clone (a selection

of) primitives with a different prefix, like:

\directlua { tex.enableprimitives('normal',tex.extraprimitives()) }

The extraprimitives function returns the whole list or a subset, specified by one or more key-

words core, tex, etex or luatex.1.

But be aware that the curly braces may not have the proper \catcode assigned to them at this

early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before

the above line:

\catcode `\{=1

\catcode `\}=2

More fine-grained primitives control is possible and you can look up the details in section 11.3.15.

There are only three kinds of primitives: tex, etex and luatex but a future version might drop

this and no longer make that distinction as it no longer serves a purpose.

5.1.2 Experiments

There are a few extensions to the engine regarding the macro machinery. Some are already well

tested but others are (still) experimental. Although they are likely to stay, their exact behaviour

might evolve. Because LUAMETATEX is also used for experiments, this is not a problem. We can

always decide to also add some of what is discussed here to LUATEX, but it will happen with a

delay.

There are all kinds of small improvements that might find their way into stock LUATEX: a few

more helpers, some cleanup of code, etc. We’ll see. In any case, if you play with these before

they are declared stable, unexpected side effects are what you have to accept.

1 At some point this function might be changed to return the whole list always

Basic TEX enhancements32

5.1.3 Version information

5.1.3.1 \luatexbanner, \luatexversion and \luatexrevision

There are three primitives to test the version of LUATEX (and LUAMETATEX):

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaMetaTeX, Version 2.05.05 the banner reported on the com-

mand line

\luatexversion 205 a combination of major and minor

number

\luatexrevision 5 the revision number

A version is defined as follows:

‣ The major version is the integer result of \luatexversion divided by 100. The primitive is

an ‘internal variable’, so you may need to prefix its use with \the or \number depending on

the context.

‣ The minor version is a number running from 0 upto 99.

‣ The revision is reported by \luatexrevision. Contrary to other engines in LUAMETATEX is

also a number so one needs to prefix it with \the or \number.2

‣ The full version number consists of the major version (X), minor version (YY) and revision (ZZ),

separated by dots, so X.YY.ZZ.

The LUAMETATEX version number starts at 2 in order to prevent a clash with LUATEX, and the

version commands are the same. This is a way to indicate that these projects are related.

5.1.3.2 \formatname

The \formatname syntax is identical to \jobname. In INITEX, the expansion is empty. Otherwise,

the expansion is the value that \jobname had during the INITEX run that dumped the currently

loaded format. You can use this token list to provide your own version info.

5.2 UNICODE text support

5.2.1 Extended ranges

Text input and output is now considered to be UNICODE text, so input characters can use the

full range of UNICODE (220 + 216 − 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a

character is always converted to a suitable graphic representation of that character in a specific

2 In the past it always was good to prefix the revision with \number anyway, just to play safe, although there have for

instance been times that PDFTEX had funny revision indicators that at some point ended up as letters due to the internal

conversions.

33Basic TEX enhancements

font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as

a character. Inside the engine there is no clear separation between the two concepts. Because

the subtype of a glyph node can be changed in LUA it is up to the user. Subtypes larger than 255

indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate

for a larger range of acceptable numbers. For instance, \char now accepts values between 0

and 1,114,111. This should not be a problem for well-behaved input files, but it could create in-
compatibilities for input that would have generated an error when processed by older TEX-based

engines. The affected commands with an altered initial (left of the equal sign) or secondary (right

of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efcode,

\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is UTF-8 encoded. In-

put files can be pre-processed using the reader callback. This will be explained in section ??.

Normalization of the UNICODE input is on purpose not built-in and can be handled by a macro

package during callback processing. We have made some practical choices and the user has to

live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid UNI-

CODE range, starting at the value 1,114,112 (0x110000). When the time comes to print a char-
acter 𝑐 >= 1,114,112, LUATEX will actually print the single byte corresponding to 𝑐 minus
1,114,112.

Contrary to other TEX engines, the output to the terminal is as-is so there is no escaping with

^^. We operate in a UTF universe.

5.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated UNICODE character.

5.2.3 Extended tables

All traditional TEX and 𝜀-TEX registers can be 16-bit numbers. The affected commands are:

\count

\dimen

\skip

\muskip

\marks

\toks

\countdef

\dimendef

\skipdef

\muskipdef

\toksdef

\insert

\box

\unhbox

\unvbox

\copy

\unhcopy

\unvcopy

\wd

\ht

\dp

\setbox

\vsplit

Fonts are loaded via LUA and a minimal amount of information is kept at the TEX end. Sharing

resources is up to the loaders. The engine doesn’t really care about what a character (or glyph)

number represents (a UNICODE or index) as it only is interested in dimensions.

Basic TEX enhancements34

5.3 Attributes

5.3.1 Nodes

When TEX reads input it will interpret the stream according to the properties of the characters.

Some signal a macro name and trigger expansion, others open and close groups, trigger math

mode, etc. What’s left over becomes the typeset text. Internally we get a linked list of nodes.

Characters become glyph nodes that have for instance a font and char property and \kern

10pt becomes a kern node with a width property. Spaces are alien to TEX as they are turned

into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)

and glue nodes (spaces). A node can have a subtype so that it can be recognized as for instance

a space related glue.

The sequences of characters at some point are extended with disc nodes that relate to hy-

phenation. After that font logic can be applied and we get a list where some characters can

be replaced, for instance multiple characters can become one ligature, and font kerns can be

injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes with width, height, depth and shift

properties and a pointer list to its actual content. Boxes can be constructed explicitly or can

be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines

are a linked list of hlist nodes, possibly with glue and penalties in between.

Internally nodes have a number. This number is actually an index in the memory used to store

nodes.

So, to summarize: all that you enter as content eventually becomes a node, often as part of a

(nested) list structure. They have a relative small memory footprint and carry only the minimal

amount of information needed. In traditional TEX a character node only held the font and slot

number, in LUATEX we also store some language related information, the expansion factor, etc.

Now that we have access to these nodes from LUA it makes sense to be able to carry more

information with a node and this is where attributes kick in.

5.3.2 Attribute registers

Attributes are a completely new concept in LUATEX. Syntactically, they behave a lot like counters:

attributes obey TEX’s nesting stack and can be used after \the etc. just like the normal \count

registers.

\attribute ⟨16-bit number⟩ ⟨optional equals⟩ ⟨32-bit number⟩
\attributedef ⟨csname⟩ ⟨optional equals⟩ ⟨16-bit number⟩

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value

to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,

a.k.a. −2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in

this ‘unset’ state in INITEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact

that the numbers and values of all ‘set’ attributes are attached to all nodes created in their

35Basic TEX enhancements

scope. These can then be queried from any LUA code that deals with node processing. Further

information about how to use attributes for node list processing from LUA is given in chapter 9.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits

efficient testing and updating. You can define many thousands of attributes but normally such a

large number makes no sense and is also not that efficient because each node carries a (possibly

shared) link to a list of currently set attributes. But they are a convenient extension and one of

the first extensions we implemented in LUATEX.

In LUAMETATEX we try to minimize the memory footprint and creation of these attribute lists

more aggressive sharing them. This feature is still somewhat experimental.

5.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment

can be quite asynchronous. For example: in paragraph building, the individual line boxes are

created after the \par command has been processed, so they will receive the list of attributes

that is in effect then, not the attributes that were in effect in, say, the first or third line of the

paragraph.

Similar situations happen in LUATEX regularly. A few of the more obvious problematic cases are

dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-

ing borrow their attributes from their surrounding glyphs, and it is possible to influence box

attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are

unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

same as characters that have been converted to references to glyphs in fonts. For instance,

when you use attributes to implement color support, each node carries information about its

eventual color. In that case, unless you implement mechanisms that deal with it, applying a color

to already boxed material will have no effect. Keep in mind that this incompatibility is mostly

due to the fact that separate specials and literals are a more unnatural approach to colors than

attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the

use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also

specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the

nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative

value causes an attribute to be ignored.

To give you an idea of what this means at the LUA end, take the following code:

for b=0,2,2 do

for a=997, 999 do

Basic TEX enhancements36

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [a]))

tex.sprint("\\quad\\quad")

tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))

tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist

nodes that have a field list that points to the content. Because the attributes are a list them-

selves you can access them by indexing the node (here we do that with [a]). Running this snippet

gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123

box 0 : attr 998 : 456 list 0 : attr 998 : 456

box 0 : attr 999 : nil list 0 : attr 999 : nil

box 2 : attr 997 : 123 list 2 : attr 997 : 123

box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the

word nil.

A special kind of box is \vcenter. This one also can have attributes. When one or more are

set these plus the currently set attributes are bound to the resulting box. In regular TEX these

centered boxes are only permitted in math mode, but in LUAMETATEX there is no error message

and the box the height and depth are equally divided. Of course in text mode there is no math

axis related offset applied.

5.4 LUA related primitives

5.4.1 \directlua

In order to merge LUA code with TEX input, a few new primitives are needed. The primitive

\directlua is used to execute LUA code immediately. The syntax is

\directlua ⟨general text⟩

The ⟨general text⟩ is expanded fully, and then fed into the LUA interpreter. After reading and
expansion has been applied to the ⟨general text⟩, the resulting token list is converted to a string
as if it was displayed using \the\toks. On the LUA side, each \directlua block is treated as a

separate chunk. In such a chunk you can use the local directive to keep your variables from

interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use LUA line comments

(starting with --) within the argument. As there typically will be only one ‘line’ the first line com-

ment will run on until the end of the input. You will either need to use TEX-style line comments

(starting with %), or change the TEX category codes locally. Another possibility is to say:

\begingroup

\endlinechar=10

37Basic TEX enhancements

\directlua ...

\endgroup

Then LUA line comments can be used, since TEX does not replace line endings with spaces. Of

course such an approach depends on the macro package that you use.

The \directlua command is expandable. Since it passes LUA code to the LUA interpreter its

expansion from the TEX viewpoint is usually empty. However, there are some LUA functions that

produce material to be read by TEX, the so called print functions. The most simple use of these

is tex.print(<string> s). The characters of the string s will be placed on the TEX input buffer,

that is, ‘before TEX’s eyes’ to be read by TEX immediately. For example:

\count10=20

a\directlua{tex.print(tex.count[10]+5)}b

expands to

a25b

Here is another example:

$\pi = \directlua{tex.print(math.pi)}$

will result in

𝜋 = 3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all

TEX commands. So formally speaking its expansion is null, but it places material on a pseudo-file

to be immediately read by TEX, as 𝜀-TEX’s \scantokens. For a description of print functions look
at section 11.3.13.

Because the ⟨general text⟩ is a chunk, the normal LUA error handling is triggered if there is a
problem in the included code. The LUA error messages should be clear enough, but the contex-

tual information is still pretty bad. Often, you will only see the line number of the right brace at

the end of the code.

While on the subject of errors: some of the things you can do inside LUA code can break up

LUAMETATEX pretty bad. If you are not careful while working with the node list interface, you

may even end up with assertion errors from within the TEX portion of the executable.

5.4.2 \luaescapestring

This primitive converts a TEX token sequence so that it can be safely used as the contents of a

LUA string: embedded backslashes, double and single quotes, and newlines and carriage returns

are escaped. This is done by prepending an extra token consisting of a backslash with category

code 12, and for the line endings, converting them to n and r respectively. The token sequence

is fully expanded.

\luaescapestring ⟨general text⟩

Most often, this command is not actually the best way to deal with the differences between TEX

and LUA. In very short bits of LUA code it is often not needed, and for longer stretches of LUA

code it is easier to keep the code in a separate file and load it using LUA’s dofile:

Basic TEX enhancements38

\directlua { dofile("mysetups.lua") }

5.4.3 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optional

name or number specification). The tokenlist is then converted into a string and given to LUA to

turn into a function that is called. The overhead is rather small but when you have millions of

calls it can have some impact. For this reason there is a variant call available: \luafunction.

This command is used as follows:

\directlua {

local t = lua.get_functions_table()

t[1] = function() tex.print("!") end

t[2] = function() tex.print("?") end

}

\luafunction1

\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of

functions apart from normal LUA limitations. Of course there is the limitation of no arguments

but that would involve parsing and thereby give no gain. The function, when called in fact gets

one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get_functions_table()

t[8] = function(slot) tex.print(slot) end

}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.

In addition LUATEX provides a definer:

\luadef\MyFunctionA 1

\global\luadef\MyFunctionB 2

\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens and

assume that the function is available when that token expands. On the other hand, as we have

tested this functionality in relative complex situations normal usage should not give problems.

5.4.4 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code callers.

Again the call variant is unexpandable.

\directlua {

lua.bytecode[9998] = function(s)

tex.sprint(s*token.scan_int())

39Basic TEX enhancements

end

lua.bytecode[5555] = function(s)

tex.sprint(s*token.scan_dimen())

end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp

\luabytecodecall9998 5 \luabytecodecall5555 5sp

The variable s in the code is the number of the byte code register that can be used for diagnostic

purposes. The advantage of bytecode registers over function calls is that they are stored in the

format (but without upvalues).

5.5 Catcode tables

5.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regime in a

single statement. You can have lots of different tables, but if you need a dozen you might wonder

what you’re doing. This subsystem is backward compatible: if you never use the following

commands, your document will not notice any difference in behaviour compared to traditional

TEX. The contents of each catcode table is independent from any other catcode table, and its

contents is stored and retrieved from the format file.

5.5.2 \catcodetable

\catcodetable ⟨15-bit number⟩

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-

ously created using one of the two primitives below, or it has to be zero. Table zero is initialized

by INITEX.

5.5.3 \initcatcodetable

\initcatcodetable ⟨15-bit number⟩

The primitive \initcatcodetable creates a new table with catcodes identical to those defined

by INITEX. The new catcode table is allocated globally: it will not go away after the current group

has ended. If the supplied number is identical to the currently active table, an error is raised.

The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 ^^M return car_ret

9 ^^@ null ignore

Basic TEX enhancements40

10 <space> space spacer

11 a – z letter

11 A – Z letter

12 everything else other

14 % comment

15 ^^? delete invalid_char

5.5.4 \savecatcodetable

\savecatcodetable ⟨15-bit number⟩

\savecatcodetable copies the current set of catcodes to a new table with the requested number.

The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the

supplied number is the currently active table, an error is raised.

5.6 Tokens, commands and strings

5.6.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted

version of 𝜀-TEX’s \scantokens. The differences are:

‣ The last (and usually only) line does not have a \endlinechar appended.

‣ \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

‣ There are no ‘. . . while end of file . . .’ error tests executed. This allows the expansion to end

on a different grouping level or while a conditional is still incomplete.

5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\xtoksapp, \xtokspre

Instead of:

\toks0\expandafter{\the\toks0 foo}

you can use:

\etoksapp0{foo}

The pre variants prepend instead of append, and the e variants expand the passed general text.

The g and x variants are global.

5.6.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading

escape character. This can be somewhat more efficient than stripping it afterwards.

41Basic TEX enhancements

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there

is no such name. It is equivalent to

\ifcsname foo\endcsname

\csname foo\endcsname

\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that

it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above

example could be written as:

\ifcsname foo\endcsname

\lastnamedcs

\fi

This is slightly more efficient than constructing the string twice (deep down in LUATEX this also

involves some UTF8 juggling), but probably more relevant is that it saves a few tokens and can

make code a bit more readable.

5.6.4 \clearmarks

This primitive complements the 𝜀-TEX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks ⟨16-bit number⟩

5.6.5 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while

\aligntab duplicates the functionality of &.

5.6.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

\def\foo{bar} \letcharcode123=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase that

it treats active characters special).

5.6.7 \glet

This primitive is similar to:

\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all we

also have \gdef).

Basic TEX enhancements42

5.6.8 \expanded, \immediateassignment and \immediateassigned

The \expanded primitive takes a token list and expands its content which can come in handy:

it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happens

inside the body of an \edef. But this kind of expansion still doesn’t expand some primitive

operations.

\newcount\NumberOfCalls

\def\TestMe{\advance\NumberOfCalls1 }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

The result is a macro that has the not expanded code in its body:

macro:->\advance \NumberOfCalls 1 foo:0

Instead we can define \TestMe in a way that expands the assignment immediately. You need of

course to be aware of preventing look ahead interference by using a space or \relax (often an

expression works better as it doesn’t leave an \relax).

\def\TestMe{\immediateassignment\advance\NumberOfCalls1 }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

This time the counter gets updates and we don’t see interference in the resulting \Testedmacro:

macro:->foo:3

Here is a somewhat silly example of expanded comparison:

\def\expandeddoifelse#1#2#3#4%

{\immediateassignment\edef\tempa{#1}%

\immediateassignment\edef\tempb{#2}%

\ifx\tempa\tempb

\immediateassignment\def\next{#3}%

\else

\immediateassignment\def\next{#4}%

\fi

\next}

\edef\Tested

{(\expandeddoifelse{abc}{def}{yes}{nop}/%

43Basic TEX enhancements

\expandeddoifelse{abc}{abc}{yes}{nop})}

\meaning\Tested

It gives:

macro:->(nop/yes)

A variant is:

\def\expandeddoifelse#1#2#3#4%

{\immediateassigned{

\edef\tempa{#1}%

\edef\tempb{#2}%

}%

\ifx\tempa\tempb

\immediateassignment\def\next{#3}%

\else

\immediateassignment\def\next{#4}%

\fi

\next}

The possible error messages are the same as using assignments in preambles of alignments and

after the \accent command. The supported assignments are the so called prefixed commands

(except box assignments).

5.6.9 \ignorepars

This primitive is like \ignorespaces but also skips paragraph ending commands (normally \par

and empty lines).

5.6.10 \futureexpand, \futureexpandis, \futureexpandisap

These commands are used as:

\futureexpand\sometoken\whenfound\whennotfound

When there is no match and a space was gobbled a space will be put back. The is variant

doesn’t do that while the isap even skips \pars, These characters stand for ‘ignorespaces’ and

‘ignorespacesandpars’.

5.6.11 \aftergrouped

There is a new experimental feature that can inject multiple tokens to after the group ends. An

example demonstrate its use:

{

\aftergroup A \aftergroup B \aftergroup C

Basic TEX enhancements44

test 1 : }

{

\aftergrouped{What comes next 1}

\aftergrouped{What comes next 2}

\aftergrouped{What comes next 3}

test 2 : }

{

\aftergroup A \aftergrouped{What comes next 1}

\aftergroup B \aftergrouped{What comes next 2}

\aftergroup C \aftergrouped{What comes next 3}

test 3 : }

{

\aftergrouped{What comes next 1} \aftergroup A

\aftergrouped{What comes next 2} \aftergroup B

\aftergrouped{What comes next 3} \aftergroup C

test 4 : }

This gives:

test 1 : ABC

test 2 : What comes next 1What comes next 2What comes next 3

test 3 : AWhat comes next 1BWhat comes next 2CWhat comes next 3

test 4 : What comes next 1AWhat comes next 2BWhat comes next 3C

5.7 Conditions

5.7.1 \ifabsnum and \ifabsdim

There are two tests that we took from PDFTEX:

\ifabsnum -10 = 10

the same number

\fi

\ifabsdim -10pt = 10pt

the same dimension

\fi

This gives

the same number the same dimension

5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and

\ifchkdim

New are the ones that compare two numbers or dimensions:

45Basic TEX enhancements

\ifcmpnum 5 8 less \or equal \else more \fi

\ifcmpnum 5 5 less \or equal \else more \fi

\ifcmpnum 8 5 less \or equal \else more \fi

less equal more

and

\ifcmpdim 5pt 8pt less \or equal \else more \fi

\ifcmpdim 5pt 5pt less \or equal \else more \fi

\ifcmpdim 8pt 5pt less \or equal \else more \fi

less equal more

There are also some number and dimension tests. All four expose the \else branch when there

is an error, but two also report if the number is less, equal or more than zero.

\ifnumval -123 \or < \or = \or > \or ! \else ? \fi

\ifnumval 0 \or < \or = \or > \or ! \else ? \fi

\ifnumval 123 \or < \or = \or > \or ! \else ? \fi

\ifnumval abc \or < \or = \or > \or ! \else ? \fi

\ifdimval -123pt \or < \or = \or > \or ! \else ? \fi

\ifdimval 0pt \or < \or = \or > \or ! \else ? \fi

\ifdimval 123pt \or < \or = \or > \or ! \else ? \fi

\ifdimval abcpt \or < \or = \or > \or ! \else ? \fi

< = > !

< = > !

\ifchknum -123 \or okay \else bad \fi

\ifchknum 0 \or okay \else bad \fi

\ifchknum 123 \or okay \else bad \fi

\ifchknum abc \or okay \else bad \fi

\ifchkdim -123pt \or okay \else bad \fi

\ifchkdim 0pt \or okay \else bad \fi

\ifchkdim 123pt \or okay \else bad \fi

\ifchkdim abcpt \or okay \else bad \fi

okay okay okay bad

okay okay okay bad

5.7.3 \iftok and \ifcstok

Comparing tokens and macros can be done with \ifx. Two extra test are provided in

LUAMETATEX:

\def\ABC{abc} \def\DEF{def} \def\PQR{abc} \newtoks\XYZ \XYZ {abc}

Basic TEX enhancements46

\iftok{abc}{def}\relax (same) \else [different] \fi

\iftok{abc}{abc}\relax [same] \else (different) \fi

\iftok\XYZ {abc}\relax [same] \else (different) \fi

\ifcstok\ABC \DEF\relax (same) \else [different] \fi

\ifcstok\ABC \PQR\relax [same] \else (different) \fi

\ifcstok{abc}\ABC\relax [same] \else (different) \fi

[different][same][same]

[different][same][same]

You can check if a macro is is defined as protected with \ifprotected while frozen macros can

be tested with \iffrozen. A provisional \ifusercmd tests will check if a command is defined at

the user level (and this one might evolve).

5.7.4 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balanced

in order to let TEX’s fast branch skipping work well. This new primitive is basically a no--op

flagged as a condition so that the scanner can recognize it as an if-test. However, when a real

test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%

{\edef\tempa{#1}%

\edef\tempb{#2}

\ifx\tempa\tempb}

\ifcondition\something{a}{b}%

\ifcondition\something{a}{a}%

true 1

\else

false 1

\fi

\else

\ifcondition\something{a}{a}%

true 2

\else

false 2

\fi

\fi

If you are familiar with METAPOST, this is a bit like vardef where the macro has a return value.

Here the return value is a test.

Experiments with something \ifdef actually worked ok but were rejected because in the end it

gave no advantage so this generic one has to do. The \ifcondition test is basically is a no-op

except when branches are skipped. However, when a test is expected, the scanner gobbles it

and the next test result is used. Here is an other example:

47Basic TEX enhancements

\def\mytest#1%

{\ifabsdim#1>0pt\else

\expandafter \unless

\fi

\iftrue}

\ifcondition\mytest{10pt}\relax non-zero \else zero \fi

\ifcondition\mytest {0pt}\relax non-zero \else zero \fi

non-zero zero

The last expansion in a macro like \mytest has to be a condition and here we use \unless to

negate the result.

5.7.5 \orelse

Sometimes you have successive tests that, when laid out in the source lead to deep trees. The

\ifcase test is an exception. Experiments with \ifcasex worked out fine but eventually were

rejected because we have many tests so it would add a lot. As LUAMETATEX permitted more

experiments, eventually an alternative was cooked up, one that has some restrictions but is

relative lightweight. It goes like this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\else

more

\fi

The \orelse has to be followed by one of the if test commands, except \ifcondition, and there

can be an \unless in front of such a command. These restrictions make it possible to stay in

the current condition (read: at the same level). If you need something more complex, using

\orelse is probably unwise anyway. In case you wonder about performance, there is a little

more checking needed when skipping branches but that can be neglected. There is some gain

due to staying at the same level but that is only measurable when you runs tens of millions of

complex tests and in that case it is very likely to drown in the real action. It’s a convenience

mechanism, in the sense that it can make your code look a bit easier to follow.

There is a nice side effect of this mechanism. When you define:

\def\quitcondition{\orelse\iffalse}

you can do this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

Basic TEX enhancements48

\quitcondition

indeed

\else

more

\fi

Of course it is only useful at the right level, so you might end up with cases like

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\ifnum\count2=30

\expandafter\quitcondition

\fi

indeed

\else

more

\fi

5.7.6 \ifprotected, \frozen, \iffrozen and \ifusercmd

These checkers deal with control sequences. You can check if a command is a protected one,

that is, defined with the \protected prefix. A command is frozen when it has been defined with

the \frozen prefix. Beware: only macros can be frozen. A user command is a command that is

not part of the predefined set of commands. This is an experimental command.

5.8 Boxes, rules and leaders

5.8.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the

page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to

65535.

\outputbox = 12345

5.8.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

5.8.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative

for the to keyword you can use upto to get a split of the given size but result has the natural

dimensions then.

49Basic TEX enhancements

5.8.4 Images and reused box objects

In original TEX image support is dealt with via specials. It’s not a native feature of the engine. All

that TEX cares about is dimensions, so in practice that meant: using a box with known dimensions

that wraps a special that instructs the backend to include an image. The wrapping is needed

because a special itself is a whatsit and as such has no dimensions.

In PDFTEX a special whatsit for images was introduced and that one has dimensions. As a con-

sequence, in several places where the engine deals with the dimensions of nodes, it now has

to check the details of whatsits. By inheriting code from PDFTEX, the LUATEX engine also had

that property. However, at some point this approach was abandoned and a more natural trick

was used: images (and box resources) became a special kind of rules, and as rules already have

dimensions, the code could be simplified.

When direction nodes and localpar nodes also became first class nodes, whatsits again became

just that: nodes representing whatever you want, but without dimensions, and therefore they

could again be ignored when dimensions mattered. And, because images were disguised as

rules, as mentioned, their dimensions automatically were taken into account. This seperation

between front and backend cleaned up the code base already quite a bit.

In LUAMETATEX we still have the image specific subtypes for rules, but the engine never looks at

subtypes of rules. That was up to the backend. This means that image support is not present in

LUAMETATEX. When an image specification was parsed the special properties, like the filename,

or additional attributes, were stored in the backend and all that LUATEX does is registering a

reference to an image’s specification in the rule node. But, having no backend means nothing

is stored, which in turn would make the image inclusion primitives kind of weird.

Therefore you need to realize that contrary to LUATEX, in LUAMETATEX support for images and

box reuse is not built in! However, we can assume that an implementation uses rules in a similar

fashion as LUATEX does. So, you can still consider images and box reuse to be core concepts.

Here we just mention the primitives that LUATEX provides. They are not available in the engine

but can of course be implemented in LUA.

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later

\saveimageresource save the image as an object to be included later

\useboxresource include the saved box object here (by index)

\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object

\lastsavedimageresourceindex the index of the last saved image object

\lastsavedimageresourcepages the number of pages in the last saved image object

An implementation probably should accept the usual optional dimension parameters for

\use...resource in the same format as for rules. With images, these dimensions are then used

instead of the ones given to \useimageresource but the original dimensions are not overwrit-

ten, so that a \useimageresource without dimensions still provides the image with dimensions

defined by \saveimageresource. These optional parameters are not implemented for \save-

boxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex

Basic TEX enhancements50

\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

Examples or optional entries are attr and resources that accept a token list, and the type key.

When set to non-zero the /Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or

3 will write a /Matrix. But, as said: this is entirely up to the backend. Generic macro packages

(like tikz) can use these assumed primitives so one can best provide them. It is probably, for

historic reasons, the only more or less standardized image inclusion interface one can expect to

work in all macro packages.

5.8.5 \hpack, \vpack and \tpack

These three primitives are the equivalents of \hbox, \vbox and \vtop but they don’t trigger the

packaging related callbacks. Of course one never know if content needs a treatment so using

them should be done with care.

5.8.6 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were intro-

duced: \nohrule and \novrule. These can be used to reserve space. This is often more efficient

than creating an empty box with fake dimensions.

5.8.7 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal

\leaders in that they align nicely, except that the alignment is based on the largest enclosing

box instead of the smallest. The g stresses this global nature.

5.9 Languages

5.9.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of

the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive

accepts a number and stores the value with the language.

5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary command is used to inject a whatsit node but now injects a normal node with

type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-

ature builder still sees this as a cancel boundary directive but at the LUA end you can implement

51Basic TEX enhancements

different behaviour. The added benefit of passing this value is a side effect of the generalization.

The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and

have related primitives.

5.10 Control and debugging

5.10.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the

nodes.

5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype and

\internalcodesmode.

The 𝜀-TEX command \lastnodetype is limited to some nodes. When the parameter \internal-
codesmode is set to a non-zero value the normal (internally used) numbers are reported. The

same is true for \currentiftype, as we have more conditionals and also use a different order.

The \lastnodesubtype is a bonus.

5.11 Files

5.11.1 File syntax

LUAMETATEX will accept a braced argument as a file name:

\input {plain}

\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

The \tracingfonts primitive that has been inherited from PDFTEX has been adapted to support

variants in reporting the font. The reason for this extension is that a csname not always makes

sense. The zero case is the default.

VALUE REPORTED

0 \foo xyz

1 \foo (bar)

2 <bar> xyz

3 <bar @ ..pt> xyz

4 <id>

5 <id: bar>

6 <id: bar @ ..pt> xyz

Basic TEX enhancements52

5.11.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the

console and log. The write related primitives have to be implemented as part of a backend! As

a consequence a system command is no longer possible but one can use os.execute to do the

same.

5.12 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac-

ing model have been enhanced (thereby introducing many new primitives) but also because

some more control has been added to existing functionality. Much of this relates to the different

approaches of traditional TEX fonts and OPENTYPE math.

5.13 Fonts

Like math, we will cover fonts extensions in its own chapter. Here we stick to mentioning that

loading fonts is different in LUAMETATEX. As in LUATEX we have the extra primitives \fontid

and \setfontid, \noligs and \nokerns, and \nospaces. The other new primitives in LUATEX

have been dropped.

5.14 Directions

5.14.1 Two directions

The directional model in LUAMETATEX is a simplified version the the model used in LUATEX. In

fact, not much is happening at all: we only register a change in direction.

5.14.2 How it works

The approach is that we try to make node lists balanced but also try to avoid some side effects.

What happens is quite intuitive if we forget about spaces (turned into glue) but even there what

happens makes sense if you look at it in detail. However that logic makes in-group switching

kind of useless when no properly nested grouping is used: switching from right to left several

times nested, results in spacing ending up after each other due to nested mirroring. Of course

a sane macro package will manage this for the user but here we are discussing the low level

injection of directional information.

This is what happens:

\textdirection 1 nur {\textdirection 0 run \textdirection 1 NUR} nur

This becomes stepwise:

injected: [push 1]nur {[push 0]run [push 1]NUR} nur

balanced: [push 1]nur {[push 0]run [pop 0][push 1]NUR[pop 1]} nur[pop 0]

53Basic TEX enhancements

result : run {RUNrun } run

And this:

\textdirection 1 nur {nur \textdirection 0 run \textdirection 1 NUR} nur

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur

balanced: [+TRT]nur {nur [+TLT]run [-TLT][+TRT]NUR[-TRT]} nur[-TRT]

result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:

\textdirection 1 nur {{\textdirection 0 run} {\textdirection 1 NUR}} nur

This becomes:

nurrunNURnur

Compare this to:

\textdirection 1 nur {{\textdirection 0 run }{\textdirection 1 NUR}} nur

Which renders as:

nurrunNURnur

So how do we deal with the next?

\def\ltr{\textdirection 0\relax}

\def\rtl{\textdirection 1\relax}

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir

node. But that way we loose the subtype information that for some applications can be handy to

be kept as-is. This is why we now have a variant of \textdirection which injects the balanced

node before the skip. Instead of the previous definition we can use:

\def\ltr{\linedirection 0\relax}

\def\rtl{\linedirection 1\relax}

and this time:

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

Basic TEX enhancements54

comes out as a properly spaced:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be

handled in the input or macro package because there is no way we can predict the expected

behaviour. In fact, the \linedir is just a convenience extra which could also have been imple-

mented using node list parsing.

5.14.3 Controlling glue with \breakafterdirmode

Glue after a dir node is ignored in the linebreak decision but you can bypass that by setting

\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

0 1

pre {\textdirection 0 xxx} post pre pre

xxx post xxx

post

pre {\textdirection 0 xxx }post pre pre

xxx xxx

post post

pre{ \textdirection 0 xxx} post pre pre

xxx post xxx

post

pre{ \textdirection 0 xxx }post pre pre

xxx xxx

post post

pre { \textdirection 0 xxx } post pre pre

xxx xxx

post

post

pre {\textdirection 0\relax \space xxx} post pre pre

xxx post

xxx

post

5.14.4 Controlling parshapes with \shapemode

Another adaptation to the ALEPH directional model is control over shapes driven by \hangindent

and \parshape. This is controlled by a new parameter \shapemode:

VALUE \HANGINDENT \PARSHAPE

0 normal normal

1 mirrored normal

2 normal mirrored

3 mirrored mirrored

55Basic TEX enhancements

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done with.

You can use negative values to prevent this. In figure 5.1 a few examples are given.

We thrive in information--thick worlds because of our

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-

monize, synthesize, focus, organize, condense, reduce, boil down,

choose, categorize, catalog, classify, list, abstract, scan, look into,

idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick

over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, item-

ize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our mar-

velous and everyday capacity to select, edit, single out,

structure, highlight, group, pair, merge, harmonize, syn-

thesize, focus, organize, condense, reduce, boil down, choose, catego-

rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,

discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,

blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,

cluster, aggregate, outline, summarize, itemize, review, dip into, flip

through, browse, glance into, leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from the chaff and separate the

sheep from the goats.

TLT: hangindent TLT: parshape

Wethriveininformation--thickworldsbecauseofour

marvelousandeverydaycapacitytoselect,edit,sin-

gleout,structure,highlight,group,pair,merge,har-

monize,synthesize,focus,organize,condense,reduce,boildown,

choose,categorize,catalog,classify,list,abstract,scan,lookinto,

idealize,isolate,discriminate,distinguish,screen,pigeonhole,pick

over,sort,integrate,blend,inspect,filter,lump,skip,smooth,chunk,

average,approximate,cluster,aggregate,outline,summarize,item-

ize,review,dipinto,flipthrough,browse,glanceinto,leafthrough,

skim,refine,enumerate,glean,synopsize,winnowthewheatfrom

thechaffandseparatethesheepfromthegoats.

Wethriveininformation--thickworldsbecauseofourmar-

velousandeverydaycapacitytoselect,edit,singleout,

structure,highlight,group,pair,merge,harmonize,syn-

thesize,focus,organize,condense,reduce,boildown,choose,catego-

rize,catalog,classify,list,abstract,scan,lookinto,idealize,isolate,

discriminate,distinguish,screen,pigeonhole,pickover,sort,integrate,

blend,inspect,filter,lump,skip,smooth,chunk,average,approximate,

cluster,aggregate,outline,summarize,itemize,review,dipinto,flip

through,browse,glanceinto,leafthrough,skim,refine,enumerate,

glean,synopsize,winnowthewheatfromthechaffandseparatethe

sheepfromthegoats.

TRT: hangindent mode 0 TRT: parshape mode 0

Wethriveininformation--thickworldsbecauseofour

marvelousandeverydaycapacitytoselect,edit,sin-

gleout,structure,highlight,group,pair,merge,har-

monize,synthesize,focus,organize,condense,reduce,boildown,

choose,categorize,catalog,classify,list,abstract,scan,lookinto,

idealize,isolate,discriminate,distinguish,screen,pigeonhole,pick

over,sort,integrate,blend,inspect,filter,lump,skip,smooth,chunk,

average,approximate,cluster,aggregate,outline,summarize,item-

ize,review,dipinto,flipthrough,browse,glanceinto,leafthrough,

skim,refine,enumerate,glean,synopsize,winnowthewheatfrom

thechaffandseparatethesheepfromthegoats.

Wethriveininformation--thickworldsbecauseofourmar-

velousandeverydaycapacitytoselect,edit,singleout,

structure,highlight,group,pair,merge,harmonize,syn-

thesize,focus,organize,condense,reduce,boildown,choose,catego-

rize,catalog,classify,list,abstract,scan,lookinto,idealize,isolate,

discriminate,distinguish,screen,pigeonhole,pickover,sort,integrate,

blend,inspect,filter,lump,skip,smooth,chunk,average,approximate,

cluster,aggregate,outline,summarize,itemize,review,dipinto,flip

through,browse,glanceinto,leafthrough,skim,refine,enumerate,

glean,synopsize,winnowthewheatfromthechaffandseparatethe

sheepfromthegoats.

TRT: hangindent mode 1 & 3 TRT: parshape mode 2 & 3

Figure 5.1 The effect of shapemode.

We have \pardirection, \textdirection, \mathdirection and \linedirection that is like

\textdirection but with some additional (inline) glue checking.

5.14.5 Orientations

As mentioned, the difference with LUATEX is that we only have numeric directions and that there

are only two: left-to-right (0) and right-to-left (1). The direction of a box is set with direction.

In addition to that boxes can now have an orientation keyword followed by optional xoffset

and/or yoffset keywords. The offsets don’t have consequences for the dimensions. The alter-

natives xmove and ymove on the contrary are reflected in the dimensions. Just play with them.

The offsets and moves only are accepted when there is also an orientation, so no time is wasted

on testing for these rarely used keywords. There are related primitives \box... that set these

properties.

As these are experimental it will not be explained here (yet). They are covered in the descriptions

of the development of LUAMETATEX: articles and/or documents in the CONTEXT distribution. For

now it is enough to know that the orientation can be up, down, left or right (rotated) and that it

Basic TEX enhancements56

has some anchoring variants. Combined with the offsets this permits macro writers to provide

solutions for top-down and bottom-up writing directions, something that is rather macro package

specific and used for scripts that need manipulations anyway. The ‘old’ vertical directions were

never okay and therefore not used.

There are a couple of properties in boxes that you can set and query but that only really take

effect when the backend supports them. When usage on CONTEXT shows that is’t okay, they

will become official, so we just mention them: \boxdirection, \boxattr, \boxorientation,

\boxxoffset, \boxyoffset, \boxxmove, \boxymove and \boxtotal.

5.15 Expressions

The *expr parsers now accept : as operator for integer division (the / operators does rounding.

This can be used for division compatible with \divide. I’m still wondering if adding a couple of

bit operators makes sense (for integers).

5.16 Nodes

The 𝜀-TEX primitive \lastnodetype is not honest in reporting the internal numbers as it uses its
own values. But you can set \internalcodesmode to a non-zero value to get the real id’s instead.

In addition there is \lastnodesubtype.

Another last one is \lastnamedcs which holds the last match but this one should be used with

care because one never knows if in the meantime something else ‘last’ has been seen.

57Fonts

6 Fonts

6.1 Introduction

Only traditional font support is built in, anything more needs to be implemented in LUA. This

conforms to the LUATEX philosophy. When you pass a font to the frontend only the dimensions

matter, as these are used in typesetting, and optionally ligatures and kerns when you rely on the

built-in font handler. For math some extra data is needed, like information about extensibles and

next in size glyphs. You can of course put more information in your LUA tables because when

such a table is passed to TEX only that what is needed is filtered from it.

Because there is no built-in backend, virtual font information is not used. If you want to be

compatible you’d better make sure that your tables are okay, and in that case you can best

consult the LUATEX manual. For instance, parameters like extend are backend related and the

standard LUATEX backend sets the standard here.

6.2 Defining fonts

All TEX fonts are represented to LUA code as tables, and internally as C structures. All keys in

the table below are saved in the internal font structure if they are present in the table passed to

font.define. When the callback is set, which is needed for \font to work, its function gets the

name and size passed, and it has to return a valid font identifier (a positive number).

For the engine to work well, the following information has to be present at the font level:

KEY VALUE TYPE DESCRIPTION

name string metric (file) name

characters table the defined glyphs of this font

designsize number expected size (default: 655360 == 10pt)

fonts table locally used fonts

hyphenchar number default: TEX’s \hyphenchar

parameters hash default: 7 parameters, all zero

size number the required scaling (by default the same as designsize)

skewchar number default: TEX’s \skewchar

stretch number the ‘stretch’

shrink number the ‘shrink’

step number the ‘step’

nomath boolean this key allows a minor speedup for text fonts; if it is present and

true, then LUATEX will not check the character entries for math-

specific keys

oldmath boolean this key flags a font as representing an old school TEX math font

and disables the OPENTYPE code path

The parameters is a hash with mixed key types. There are seven possible string keys, as well as

a number of integer indices (these start from 8 up). The seven strings are actually used instead

of the bottom seven indices, because that gives a nicer user interface.

Fonts58

The names and their internal remapping are:

NAME REMAPPING

slant 1

space 2

space_stretch 3

space_shrink 4

x_height 5

quad 6

extra_space 7

The characters table is a LUA hash table where the keys are integers. When a character in the

input is turned into a glyph node, it gets a character code that normally refers to an entry in that

table. For proper paragraph building and math rendering the following fields can be present

in an entry in the characters table. You can of course add all kind of extra fields. The engine

only uses those that it needs for typesetting a paragraph or formula. The subtables that define

ligatures and kerns are also hashes with integer keys, and these indices should point to entries

in the main characters table.

Providing ligatures and kerns this way permits TEX to construct ligatures and add inter-character

kerning. However, normally you will use an OPENTYPE font in combination with LUA code that

does this. In CONTEXT we have base mode that uses the engine, and node mode that uses LUA.

A monospaced font normally has no ligatures and kerns and is normally not processed at all.

KEY TYPE DESCRIPTION

width number width in sp (default 0)

height number height in sp (default 0)

depth number depth in sp (default 0)

italic number italic correction in sp (default 0)

top_accent number top accent alignment place in sp (default zero)

bot_accent number bottom accent alignment place, in sp (default zero)

left_protruding number left protruding factor (\lpcode)

right_protruding number right protruding factor (\rpcode)

expansion_factor number expansion factor (\efcode)

next number ‘next larger’ character index

extensible table constituent parts of an extensible recipe

vert_variants table constituent parts of a vertical variant set

horiz_variants table constituent parts of a horizontal variant set

kerns table kerning information

ligatures table ligaturing information

mathkern table math cut-in specifications

For example, here is the character ‘f’ (decimal 102) in the font cmr10 at 10pt. The numbers

that represent dimensions are in scaled points.

[102] = {

["width"] = 200250,

["height"] = 455111,

59Fonts

["depth"] = 0,

["italic"] = 50973,

["kerns"] = {

[63] = 50973,

[93] = 50973,

[39] = 50973,

[33] = 50973,

[41] = 50973

},

["ligatures"] = {

[102] = { ["char"] = 11, ["type"] = 0 },

[108] = { ["char"] = 13, ["type"] = 0 },

[105] = { ["char"] = 12, ["type"] = 0 }

}

}

Two very special string indexes can be used also: left_boundary is a virtual character whose

ligatures and kerns are used to handle word boundary processing. right_boundary is similar

but not actually used for anything (yet).

The values of top_accent, bot_accent and mathkern are used only for math accent and super-

script placement, see page 85 in this manual for details. The values of left_protruding and

right_protruding are used only when \protrudechars is non-zero. Whether or not expan-

sion_factor is used depends on the font’s global expansion settings, as well as on the value of

\adjustspacing.

A math character can have a next field that points to a next larger shape. However, the presence

of extensible will overrule next, if that is also present. The extensible field in turn can be

overruled by vert_variants, the OPENTYPE version. The extensible table is very simple:

KEY TYPE DESCRIPTION

top number top character index

mid number middle character index

bot number bottom character index

rep number repeatable character index

The horiz_variants and vert_variants are arrays of components. Each of those components

is itself a hash of up to five keys:

KEY TYPE EXPLANATION

glyph number The character index. Note that this is an encoding number, not a name.

extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the

natural size of the glyph for character component is used.

Fonts60

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either

a non-negative integer or the string value right_boundary), with the values of the kerning to

be applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as

either a non-negative integer or the string value right_boundary), with the values being yet

another small hash, with two fields:

KEY TYPE DESCRIPTION

type number the type of this ligature command, default 0

char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or

string value of one of the eight possible ligature types supported by TEX. When TEX inserts a

new ligature, it puts the new glyph in the middle of the left and right glyphs. The original left

and right glyphs can optionally be retained, and when at least one of them is kept, it is also

possible to move the new ‘insertion point’ forward one or two places. The glyph that ends up to

the right of the insertion point will become the next ‘left’.

TEXTUAL (KNUTH) NUMBER STRING RESULT

l + r =: n 0 =: |n

l + r =:| n 1 =:| |nr

l + r |=: n 2 |=: |ln

l + r |=:| n 3 |=:| |lnr

l + r =:|> n 5 =:|> n|r

l + r |=:> n 6 |=:> l|n

l + r |=:|> n 7 |=:|> l|nr

l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature

replaces both original glyphs. In this table the | indicates the final insertion point.

6.3 Virtual fonts

Virtual fonts have been introduced to overcome limitations of good old TEX. They were mostly

used for providing a direct mapping from for instance accented characters onto a glyph. The

backend was responsible for turning a reference to a character slot into a real glyph, possibly

constructed from other glyphs. In our case there is no backend so there is also no need to pass

this information through TEX. But it can of course be part of the font information and because it

is a kind of standard, we describe it here.

A character is virtual when it has a commands array as part of the data. A virtual character can

itself point to virtual characters but be careful with nesting as you can create loops and overflow

the stack (which often indicates an error anyway).

At the font level there can be a an (indexed) fonts table. The values are one- or two-key hashes

themselves, each entry indicating one of the base fonts in a virtual font. In case your font is

referring to itself in for instance a virtual font, you can use the slot command with a zero font

reference, which indicates that the font itself is used. So, a table looks like this:

61Fonts

fonts = {

{ name = "ptmr8a", size = 655360 },

{ name = "psyr", size = 600000 },

{ id = 38 }

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second

is psyr loaded at a little over 9pt. The third one is a previously defined font that is known to

LUATEX as font id 38. The array index numbers are used by the character command definitions

that are part of each character.

The commands array is a hash where each item is another small array, with the first entry rep-

resenting a command and the extra items being the parameters to that command. The allowed

commands and their arguments are:

COMMAND ARGUMENTS TYPE DESCRIPTION

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,

and move right by the character’s width

node 1 node output this node (list), and move right by the width

of this list

slot 2 2 numbers a shortcut for the combination of a font and char com-

mand

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ℎ𝑡 ∗𝑤𝑑, and move right.
down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

pdf 2 2 strings output a PDF literal, the first string is one of ori-

gin, page, text, font, direct or raw; if you have one

string only origin is assumed

lua 1 string, function execute a LUA script when the glyph is embedded; in

case of a function it gets the font id and character

code passed

image 1 image output an image (the argument can be either an <im-

age> variable or an image_spec table)

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This prevents

the need for hackery with future id’s.

The pdf option also accepts a mode keyword in which case the third argument sets the mode.

That option will change the mode in an efficient way (passing an empty string would result in

an extra empty lines in the PDF file. This option only makes sense for virtual fonts. The font

mode only makes sense in virtual fonts. Modes are somewhat fuzzy and partially inherited from

PDFTEX.

Fonts62

MODE DESCRIPTION

origin enter page mode and set the position

page enter page mode

text enter text mode

font enter font mode (kind of text mode, only in virtual fonts)

always finish the current string and force a transform if needed

raw finish the current string

You always need to check what PDF code is generated because there can be all kind of inter-

ferences with optimization in the backend and fonts are complicated anyway. Here is a rather

elaborate glyph commands example using such keys:

...

commands = {

{ "push" }, -- remember where we are

{ "right", 5000 }, -- move right about 0.08pt

{ "font", 3 }, -- select the fonts[3] entry

{ "char", 97 }, -- place character 97 (ASCII 'a')

-- { "slot", 2, 97 }, -- an alternative for the previous two

{ "pop" }, -- go all the way back

{ "down", -200000 }, -- move upwards by about 3pt

{ "special", "pdf: 1 0 0 rg" } -- switch to red color

-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)

{ "rule", 500000, 20000 } -- draw a bar

{ "special", "pdf: 0 g" } -- back to black

-- { "pdf", "origin", "0 g" } -- back to black (alternative)

}

...

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual

font is essentially only a re-encoding, then you do usually not have created an explicit ‘font’

command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.

For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will

always move by exactly the width that was given in the width key of the character hash. Any

movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When

you have to concatenate strings using the pdf command might be more efficient.

The fields mentioned above can be found in external fonts. It is good to keep in mind that we

can extend this model, given that the backend knows what to do with it.

63Fonts

6.4 Additional TEX commands

6.4.1 Font syntax

LUATEX will accept a braced argument as a font name:

\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

6.4.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with

\number (and using \the gives an error). The currently used font id is 29. Here are some more:

STYLE COMMAND FONT ID

normal \tf 29

bold \bf 38

italic \it 59

bold italic \bi 77

These numbers depend on the macro package used because each one has its own way of dealing

with fonts. They can also differ per run, as they can depend on the order of loading fonts.

For instance, when in CONTEXT virtual math UNICODE fonts are used, we can easily get over a

hundred ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs

to be a valid one.

6.4.3 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is

built by LUATEX’s main control loop. You can enable these primitives when you want to do node

list processing of ‘characters’, where TEX’s normal processing would get in the way.

\noligs ⟨integer⟩
\nokerns ⟨integer⟩

These primitives can also be implemented by overloading the ligature building and kerning func-

tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when

you define a font (using LUA) you can also omit the kern and ligature tables, which has the same

effect as the above.

6.4.4 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space

character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a

zero skip. In figure 6.1 we see the results for four characters separated by a space.

Fonts64

x x x x xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 6.1 The \nospaces options.

6.4.5 \protrusionboundary

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.

When protrusion characters are identified some nodes are skipped:

‣ zero glue

‣ penalties

‣ empty discretionaries

‣ normal zero kerns

‣ rules with zero dimensions

‣ math nodes with a surround of zero

‣ dir nodes

‣ empty horizontal lists

‣ local par nodes

‣ inserts, marks and adjusts

‣ boundaries

‣ whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next

node being ignored. When the value is 1 or 3, the next node will be ignored in the test when

locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored

when locating a right boundary condition (the search goes from right to left). This permits

protrusion combined with for instance content moved into the margin:

\protrusionboundary1\llap{!\quad}«Who needs protrusion?»

6.4.6 \glyphdimensionsmode

Already in the early days of LUATEX the decision was made to calculate the effective height and

depth of glyphs in a way that reflected the applied vertical offset. The height got that offset

added, the depth only when the offset was larger than zero. We can now control this in more

detail with this mode parameter. An offset is added to the height and/or subtracted from the

depth. The effective values are never negative. The zero mode is the default.

VALUE EFFECT

0 the old behaviour: add the offset to the height and only subtract the offset only from

the depth when it is positive

1 add the offset to the height and subtract it from the depth

2 add the offset to the height and subtract it from the depth but keep the maxima of the

current and previous results

3 use the height and depth of the glyph, so no offset is applied

65Fonts

6.5 The LUA font library

6.5.1 Introduction

The LUA font library is reduced to a few commands. Contrary to LUATEX there is no loading of

TFM or VF files. The explanation of the following commands is in the LUATEX manual.

FUNCTION DESCRIPTION

current returns the id of the currently active font

max returns the last assigned font identifier

setfont enables a font setfont (sets the current font id)

addcharacters adds characters to a font

define defined a font

id returns the id that relates to a command name

For practical reasons the management of font identifiers is still done by TEX but it can become

an experiment to delegate that to LUA as well.

6.5.2 Defining a font with define, addcharacters and setfont

Normally you will use a callback to define a font but there’s also a LUA function that does the

job.

id = font.define(<table> f)

Within reasonable bounds you can extend a font after it has been defined. Because some prop-

erties are best left unchanged this is limited to adding characters.

font.addcharacters(<number n>, <table> f)

The table passed can have the fields characterswhich is a (sub)table like the one used in define,

and for virtual fonts a fonts table can be added. The characters defined in the characters table

are added (when not yet present) or replace an existing entry. Keep in mind that replacing can

have side effects because a character already can have been used. Instead of posing restrictions

we expect the user to be careful. The setfont helper is a more drastic replacer and only works

when a font has not been used yet.

6.5.3 Font ids: id, max and current

<number> i = font.id(<string> csname)

This returns the font id associated with csname, or −1 if csname is not defined.

<number> i = font.max()

This is the largest used index so far. The currently active font id can be queried or set with:

<number> i = font.current()

font.current(<number> i)

Fonts66

67Languages, characters, fonts and glyphs

7 Languages, characters, fonts and

glyphs

7.1 Introduction

LUATEX’s internal handling of the characters and glyphs that eventually become typeset is quite

different from the way TEX82 handles those same objects. The easiest way to explain the differ-

ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later

on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char node records when they are encoun-

tered by the main control loop. TEX attaches and processes the font information while creating

those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-

plicit kerning. This packaging is needed because we may want to get the effective width of for

instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time)

the char node records into a string by replacing ligatures with their components and ignoring

the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated

result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.

Keep in mind that the paragraph may contain unboxed horizontal material, which then already

contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,

and therefore not really ‘characters’ in the linguistic sense. There is no language information in-

side the char node records at all. Instead, language information is passed along using language

whatsit nodes inside the horizontal list.

In LUATEX, the situation is quite different. The characters you type are always converted into

glyph node records with a special subtype to identify them as being intended as linguistic char-

acters. LUATEX stores the needed language information in those records, but does not do any

font-related processing at the time of node creation. It only stores the index of the current font

and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LUATEX first inserts all hyphenation points

right into thewhole node list. Next, it processes all the font information in thewhole list (creating

ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the

records are ‘glyph nodes’ from now on.

7.2 Characters, glyphs and discretionaries

TEX82 (including PDFTEX) differentiates between char nodes and lig nodes. The former are

simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the

same memory as tokens did. The latter also contained a list of components, and a subtype

indicating whether this ligature was the result of a word boundary, and it was stored in the

same place as other nodes like boxes and kerns and glues. In LUAMETATEX we no longer keep

the list of components with the glyph node.

Languages, characters, fonts and glyphs68

In LUATEX, these two types are merged into one, somewhat larger structure called a glyph node.

Besides having the old character, font, and component fields there are a few more, like ‘attr’ that

we will see in section 9.2.12, these nodes also contain a subtype, that codes four main types and

two additional ghost types. For ligatures, multiple bits can be set at the same time (in case of a

single-glyph word).

‣ character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

‣ glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

‣ ligature, for constructed ligatures bit 1 is set.

The glyph nodes also contain language data, split into four items that were current when the

node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin

(8 bits), and \uchyph (1 bit).

Incidentally, LUATEX allows 16383 separate languages, and words can be 256 characters long.

The language is stored with each character. You can set \firstvalidlanguage to for instance 1

and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This

value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from

TEX82: changes to \uchyph become effective immediately, not at the end of the current partial

paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,

so there is no longer a possible dependency on the surrounding language settings. In TEX82, a

mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-

guage unless there was a \setlanguage issued inside the box. In LUATEX, all language variables

are already frozen.

In traditional TEX the process of hyphenation is driven by lccodes. In LUATEX we made this de-

pendency less strong. There are several strategies possible. When you do nothing, the currently

used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of lccodes will be

saved with the language. In that case changing a lccode afterwards has no effect. However,

you can adapt the set with:

\hjcode`a=`a

This change is global which makes sense if you keep in mind that the moment that hyphenation

happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-

phcodes was zero when the language got initialized you start out with nothing, otherwise you

already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the

following example we map a character (x) onto another one in the patterns and tell the engine

that œ counts as two characters. Because traditionally zero itself is reserved for inhibiting hy-

phenation, a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

69Languages, characters, fonts and glyphs

foobar foo-bar

\hjcode `x=`o fxxbar fxx-bar

\lefthyphenmin 3 œdipus œdi-pus

\lefthyphenmin 4 œdipus œdipus

\hjcode `œ=2 œdipus œdi-pus

\hjcode `i=32 \hjcode `d=32 œdipus œdipus

Carrying all this information with each glyph would give too much overhead and also make the

process of setting up these codes more complex. A solution with hjcode sets was considered but

rejected because in practice the current approach is sufficient and it would not be compatible

anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-

codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance

discretionary injection. For this you can use the \wordboundary as a trigger. Here are a few

examples of usage:

discrete---discrete

discrete—discrete

discrete\discretionary{}{}{---}discrete

discrete

discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-

crete

discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-

crete

dis-

crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-

crete—

dis-

crete

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of

explicit hyphens since that normally indicates a -- or --- ligature in which case we can in a

worse case usage get bad node lists later on due to messed up ligature building as these dashes

Languages, characters, fonts and glyphs70

are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing and

kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary

node. But by default also a hlist, vlist, rule, dir, whatsit, ins, and adjust node indicate a

start or end. You can omit the last set from the test by setting \hyphenationbounds to a non-zero

value:

VALUE BEHAVIOUR

0 not strict

1 strict start

2 strict end

3 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when hyphenationbounds 1 or 3

vlist when hyphenationbounds 1 or 3

rule when hyphenationbounds 1 or 3

dir when hyphenationbounds 1 or 3

whatsit when hyphenationbounds 1 or 3

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no – —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language

glue yes

penalty yes

kern yes when not italic (for some historic reason)

hlist when hyphenationbounds 2 or 3

vlist when hyphenationbounds 2 or 3

rule when hyphenationbounds 2 or 3

dir when hyphenationbounds 2 or 3

whatsit when hyphenationbounds 2 or 3

ins when hyphenationbounds 2 or 3

adjust when hyphenationbounds 2 or 3

Figures 7.1 upto 7.5 show some examples. In all cases we set the min values to 1 and make sure

that the words hyphenate at each character.

71Languages, characters, fonts and glyphs

o-

n-

e

o-

n-

e

o-

n-

e

o-

n-

e

0 1 2 3

Figure 7.1 one

o-

n-

et-

w-

o

o-

n-

etwo

onet-

w-

o

onetwo

0 1 2 3

Figure 7.2 one\null two

o-

n-

et-

w-

o

o-

n-

etwo

onet-

w-

o

onetwo

0 1 2 3

Figure 7.3 \null one\null two

o-

n-

et-

w-

o

o-

n-

etwo

onetwo onetwo

0 1 2 3

Figure 7.4 one\null two\null

o-

n-

et-

w-

o

o-

n-

etwo

onetwo onetwo

0 1 2 3

Figure 7.5 \null one\null two\null

In traditional TEX ligature building and hyphenation are interwoven with the line break mech-

anism. In LUATEX these phases are isolated. As a consequence we deal differently with (a

sequence of) explicit hyphens. We already have added some control over aspects of the hyphen-

ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

When \automatichyphenmode has a value of 0, a hyphen will be turned into an automatic discre-

tionary. The snippets before and after it will not be hyphenated. A side effect is that a leading

hyphen can lead to a split but one will seldom run into that situation. Setting a pre and post

Languages, characters, fonts and glyphs72

character makes this more prominent. A value of 1 will prevent this side effect and a value of

2 will not turn the hyphen into a discretionary. Experiments with other options, like permitting

hyphenation of the words on both sides were discarded.

before-after

before--after

before---after

before-

after

before--

after

before---

after

before-

after

before--after

before---after

before-after

before--after

before---after

A 0 6em A 0 2pt A 1 2pt A 2 2pt

-before

after-

--before

after--

---before

after---

-

before

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt

before-after

before--after

before---after

before-

after

before--

after

before---

after

before-

after

before--after

before---after

before-after

before--after

before---after

C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 7.6 The automatic modes 0 (default), 1 and 2, with a \hsize of

6em and 2pt (which triggers a linebreak).

In figure 7.6 and 7.7 we show what happens with three samples:

Input A:

before-after \par

before--after \par

before---after \par

Input B:

-before \par

after- \par

--before \par

after-- \par

---before \par

after--- \par

73Languages, characters, fonts and glyphs

before-after

before--after

before---after

beforeB

Aafter

before-B

Aafter

before--B

Aafter

beforeB

Aafter

before--after

before---after

before-after

before--after

before---after

A 0 6em A 0 2pt A 1 2pt A 2 2pt

-before

after-

--before

after--

---before

after---

B

Abefore

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt

before-after

before--after

before---after

beforeB

Aafter

before-B

Aafter

before--B

Aafter

beforeB

Aafter

before--after

before---after

before-after

before--after

before---after

C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 7.7 The automatic modes 0 (default), 1 and 2, with \preexhy-

phenchar and \postexhyphenchar set to characters A and B.

Input C:

before-after \par

before--after \par

before---after \par

As with primitive companions of other single character commands, the \- command has a more

verbose primitive version in \explicitdiscretionary and the normally intercepted in the hy-

phenator character - (or whatever is configured) is available as \automaticdiscretionary.

7.3 The main control loop

In LUATEX’s main loop, almost all input characters that are to be typeset are converted into

glyph node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the

actual accent and one for the accentee. The primary reason for this is that \accent in TEX82

is explicitly dependent on the current font encoding, so it would not make much sense to

Languages, characters, fonts and glyphs74

attach a new meaning to the primitive’s name, as that would invalidate many old documents

and macro packages. A secondary reason is that in TEX82, \accent prohibits hyphenation of

the current word. Since in LUATEX hyphenation only takes place on ‘character’ nodes, it is

possible to achieve the same effect. Of course, modern UNICODE aware macro packages will

not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a

character subtype. In traditional TEX there was a strong relationship between the 8-bit input

encoding, hyphenation and glyphs taken from a font. In LUATEX we have UTF input, and in

most cases this maps directly to a character in a font, apart from glyph replacement in the

font engine. If you want to access arbitrary glyphs in a font directly you can always use LUA

to do so, because fonts are available as LUA table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.

In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalties,

boxes etc.

3. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after

sensing an input character that matches the \hyphenchar in the current font. This test is

wrong in our opinion: whether or not hyphenation takes place should not depend on the

current font, it is a language property.3

In LUATEX, it works like this: if LUATEX senses a string of input characters that matches the

value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary

after that series of nodes. Initially TEX sets the \exhyphenchar=`\-. Incidentally, this is a

global parameter instead of a language-specific one because it may be useful to change the

value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same

time as the other hyphenation processing, not inside the main control loop.

The only use LUATEX has for \hyphenchar is at the check whether a word should be consid-

ered for hyphenation at all. If the \hyphenchar of the font attached to the first character node

in a word is negative, then hyphenation of that word is abandoned immediately. This behav-

iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of

preventing hyphenation should not be used in new LUATEX documents.

4. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is

changed so that it is now an integer parameter like all others. That integer parameter is used

in \glyph_node creation to add language information to the glyph nodes. In conjunction, the

\language primitive is extended so that it always also updates the value of \setlanguage.

5. The \noboundary command (that prohibits word boundary processing where that would nor-

mally take place) now does create nodes. These nodes are needed because the exact place

of the \noboundary command in the input stream has to be retained until after the ligature

and font processing stages.

6. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of

processing while adding char_nodes to the horizontal list? For speed reasons, it handled

that processing code outside of the ‘main control’ loop, and only the first character of any

‘word’ was handled by that ‘main control’ loop. In LUATEX, there is no longer a need for that

(all hard work is done later), and the (now very small) bits of character-handling code have

3 When TEX showed up we didn’t have UNICODE yet and being limited to eight bits meant that one sometimes had to

compromise between supporting character input, glyph rendering, hyphenation.

75Languages, characters, fonts and glyphs

been moved back inline. When \tracingcommands is on, this is visible because the full word

is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have been

added:

\hyphenpenaltymode

\automatichyphenpenalty

\explicithyphenpenalty

The first parameter has the following consequences for automatic discs (the ones resulting from

an \exhyphenchar):

MODE AUTOMATIC DISC - EXPLICIT DISC \-

0 \exhyphenpenalty \exhyphenpenalty

1 \hyphenpenalty \hyphenpenalty

2 \exhyphenpenalty \hyphenpenalty

3 \hyphenpenalty \exhyphenpenalty

4 \automatichyphenpenalty \explicithyphenpenalty

5 \exhyphenpenalty \explicithyphenpenalty

6 \hyphenpenalty \explicithyphenpenalty

7 \automatichyphenpenalty \exhyphenpenalty

8 \automatichyphenpenalty \hyphenpenalty

other values do what we always did in LUATEX: insert \exhyphenpenalty.

7.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the

implementation of the hyphenation algorithm in LUATEX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper UTF8 with individual patterns

separated by spaces, no \char or \chardefd commands are allowed. The current implementa-

tion is quite strict and will reject all non-UNICODE characters. Likewise, the expanded argument

for \hyphenation also has to be proper UTF8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary,

with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal

document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,

but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the

internal command names. This string is then converted into a dictionary by a routine that creates

key-value pairs by converting the other listed items. It is important to note that the keys in an

exception dictionary can always be generated from the values. Here are a few examples:

Languages, characters, fonts and glyphs76

VALUE IMPLIED KEY (INPUT) EFFECT

ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)

ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is

the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the

command is optional in the TEX-based input syntax. The underlying reason for that is that it is

conceivable that a whole dictionary of words is stored as a plain text file and loaded into LUATEX

using one of the functions in the LUA lang library. This loading method is quite a bit faster than

going through the TEX language primitives, but some (most?) of that speed gain would be lost if

it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the

explicit hyphen character (replace - by the actual explicit hyphen character if needed). For

example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween

‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the 𝜀-TEX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LUATEX, and the corresponding primitive is

basically ignored. Because we now have \hjcode, the case related codes can be used exclusively

for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try

to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the

pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text

(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax now

also can take a penalty specification. The value between square brackets is a multiplier for

\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xxa-

-bxa-

-bxa-

-bxx

123

123

xa-

-bxa-

-bxa-

-bxa-

-bxx

123

123 xxxxxx

xxxxxx xxa-

-bxxxx xxa-

-bxxxx 123

77Languages, characters, fonts and glyphs

x{a-}{-b}{}x{a-}{-b}{}[3]x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xa-

-bxxxa-

-bxx

123

123

xa-

-bxxxa-

-bxx

123

123 xxxxa-

-bxx xxxxxx

xxxxxx xa-

-bxxxxx 123

z{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za-

-bza-

-bza-

-b

123

123

za-

-bza-

-bza-

-b

a-

-b23

123 zzzzzz

zzzzzz zzza-

-bzz zzzzzz

123

z{a-}{-b}{z}{a-}{-b}{z}[3]{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za-

-bzzzz

123

123

za-

-bzzzz

a-

-b23

123 zzzzzz

zzzzzz za-

-bzzzz a-

-bzzzzz 123

7.5 Applying hyphenation

The internal structures LUATEX uses for the insertion of discretionaries in words is very different

from the ones in TEX82, and that means there are some noticeable differences in handling as

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still

reads pattern files generated by PATGEN, but LUATEX uses a finite state hash to match the pat-

terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OPENOFFICE, which in turn is inspired by TEX.

There are a few differences between LUATEX and TEX82 that are a direct result of the implemen-

tation:

‣ LUATEX happily hyphenates the full UNICODE character range.

‣ Pattern and exception dictionary size is limited by the available memory only, all allocations

are done dynamically. The trie-related settings in texmf.cnf are ignored.

‣ Because there is no ‘trie preparation’ stage, language patterns never become frozen. This

means that the primitive \patterns (and its LUA counterpart lang.patterns) can be used at

any time, not only in iniTEX.

Languages, characters, fonts and glyphs78

‣ Only the string representation of \patterns and \hyphenation is stored in the format file.

At format load time, they are simply re-evaluated. It follows that there is no real reason to

preload languages in the format file. In fact, it is usually not a good idea to do so. It is much

smarter to load patterns no sooner than the first time they are actually needed.

‣ LUATEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the

creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of the

language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-

tionaries (instead of TEX82’s empty discretionary).

‣ The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen-

penalty, are now stored in the discretionary nodes. This permits a local overload for explicit

\discretionary commands. The value current when the hyphenation pass is applied is used.

When no callbacks are used this is compatible with traditional TEX. When you apply the LUA

lang.hyphenate function the current values are used.

‣ The hyphenation exception dictionary is maintained as key-value hash, and that is also dy-

namic, so the hyph_size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended

to accept an optional penalty specification, so you can do the following:

\hsize1mm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par

2:foo\discretionary penalty 10000 {}{}{}bar\par

3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar

2:foobar

3:foo

bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-

ally the preceding one, but the following one for the items inserted at the left-hand side of a

word).

Word boundaries are no longer implied by font switches, but by language switches. One word

can have two separate fonts and still be hyphenated correctly (but it can not have two different

languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar=`\-, \posthyphenchar=0, \preexhyphenchar=0

and \postexhyphenchar=0. When you assign the values of one of these four parameters, you

are actually changing the settings for the current \language, this behaviour is compatible with

\patterns and \hyphenation.

LUATEX also hyphenates the first word in a paragraph. Words can be up to 256 characters long

(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitation

will be removed or perhaps it will become possible to silently ignore the excess characters (this

is what happens in TEX82, but there the behaviour cannot be controlled).

79Languages, characters, fonts and glyphs

If you are using the LUA function lang.hyphenate, you should be aware that this function expects

to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,

‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

7.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LUATEX will process the list

to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two

stages: first all ligatures are processed, then all kerning information is applied to the result list.

But those two stages are somewhat dependent on each other: If the used font makes it possible

to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.

While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those

word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,

at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This separation is worth mentioning because, if you overrule from LUA only one of the two call-

backs related to font handling, then you have to make sure you perform the tasks normally

done by LUATEX itself in order to make sure that the other, non-overruled, routine continues to

function properly.

Although we could improve the situation the reality is that in modern OPENTYPE fonts ligatures

can be constructed in many ways: by replacing a sequence of characters by one glyph, or by

selectively replacing individual glyphs, or by kerning, or any combination of this. Add to that

contextual analysis and it will be clear that we have to let LUA do that job instead. The generic

font handler that we provide (which is part of CONTEXT) distinguishes between base mode (which

essentially is what we describe here and which delegates the task to TEX) and node mode (which

deals with more complex fonts.

Let’s look at an example. Take the word office, hyphenated of-fice, using a ‘normal’ font with

all the f-f and f-i type ligatures:

initial {o}{f}{f}{i}{c}{e}

after hyphenation {o}{f}{{-},{},{}}{f}{i}{c}{e}

first ligature stage {o}{{f-},{f},{<ff>}}{i}{c}{e}

final result {o}{{f-},{<fi>},{<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and

the i, to create of-f-ice. Then the final result should be:

{o}{{f-},

{{f-},

{i},

{<fi>}},

{{<ff>-},

{i},

{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level

discretionary that resulted from the first hyphenation point.

Languages, characters, fonts and glyphs80

Here is that nested solution again, in a different representation:

PRE POST REPLACE

topdisc f- (1) sub 1 sub 2

sub 1 f- (2) i (3) <fi> (4)

sub 2 <ff>- (5) i (6) <ffi> (7)

When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f- (1)

f- (2)

i (3)

of-fice f- (1)

<fi> (4)

off-ice <ff>- (5)

i (6)

office <ffi> (7)

The current solution in LUATEX is not able to handle nested discretionaries, but it is in fact

smart enough to handle this fictional of-f-ice example. It does so by combining two sequential

discretionary nodes as if they were a single object (where the second discretionary node is

treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-

placement list (i), and that this would be the case even if i was the first item of a potential

following ligature like ic. This allows LUATEX to do away with one of the fields, and thus make

the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

FIELD DESCRIPTION

disc1.pre f- (1)

disc1.post <fi> (4)

disc1.replace <ffi> (7)

disc2.pre f- (2)

disc2.post i (3,6)

disc2.replace <ff>- (5)

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},

{<fi>},

{<ffi>}}

{{f-},

{i},

{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the

first has subtype 4, and the second has subtype 5. The need for these special subtypes stems

81Languages, characters, fonts and glyphs

from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary

especially looks odd, with things like the <ff>- appearing in disc2.replace. The fact that some

of the fields have different meanings (and different processing code internally) is what makes it

necessary to have different subtypes: this enables LUATEX to distinguish this sequence of two

joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a

sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means

that the above examples are just representing the traditional approach.

7.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to

discretionaries and ligatures, line breaking will potentially be different from traditional TEX.

The actual line breaking code is still based on the TEX82 algorithms, and there can be no dis-

cretionaries inside of discretionaries. But, as patterns evolve and font handling can influence

discretionaries, you need to be aware of the fact that long term consistency is not an engine

matter only.

But that situation is now fairly common in LUATEX, due to the changes to the ligaturing mech-

anism. And also, the LUATEX discretionary nodes are implemented slightly different from the

TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these

nodes kept their place in the horizontal list. In traditional TEX the discretionary node contains

a counter indicating how many nodes to skip, but in LUATEX we store the pre, post and replace

text in the discretionary node.

The combined effect of these two differences is that LUATEX does not always use all of the poten-

tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course

kerning also complicates matters here.

7.8 The lang library

7.8.1 new and id

This library provides the interface to LUATEX’s structure representing a language, and the asso-

ciated functions.

<language> l = lang.new()

<language> l = lang.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument

to most of the other functions in the lang library. These functions can also be used as if they

were object methods, using the colon syntax. Without an argument, the next available internal

id number will be assigned to this object. With argument, an object will be created that links to

the internal language with that id number.

<number> n = lang.id(<language> l)

Languages, characters, fonts and glyphs82

The number returned is the internal \language id number this object refers to.

7.8.2 hyphenation

You can hyphenate a string directly with:

<string> n = lang.hyphenation(<language> l)

lang.hyphenation(<language> l, <string> n)

7.8.3 clear_hyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones. The

syntax of the string is explained in section 7.4.

lang.clear_hyphenation(<language> l)

This call clears the exception dictionary (string) for this language.

<string> n = lang.clean(<language> l, <string> o)

<string> n = lang.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the

argument string is explained in section 7.4. This function is useful if you want to do something

else based on the words in a dictionary file, like spell-checking.

7.8.4 patterns and clear_patterns

<string> n = lang.patterns(<language> l)

lang.patterns(<language> l, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntax of

this string is explained in section 7.4.

lang.clear_patterns(<language> l)

This can be used to clear the pattern dictionary for a language.

7.8.5 hyphenationmin

This function sets (or gets) the value of the TEX parameter \hyphenationmin.

n = lang.hyphenationmin(<language> l)

lang.hyphenationmin(<language> l, <number> n)

7.8.6 [pre|post][ex|]hyphenchar

<number> n = lang.prehyphenchar(<language> l)

83Languages, characters, fonts and glyphs

lang.prehyphenchar(<language> l, <number> n)

<number> n = lang.posthyphenchar(<language> l)

lang.posthyphenchar(<language> l, <number> n)

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit

hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal 0 (indicat-

ing emptiness).

<number> n = lang.preexhyphenchar(<language> l)

lang.preexhyphenchar(<language> l, <number> n)

<number> n = lang.postexhyphenchar(<language> l)

lang.postexhyphenchar(<language> l, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in

this language. Both are initially decimal 0 (indicating emptiness).

7.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as

argument, processing stops on that node. Currently, success is always true if head (and tail,

if specified) are proper nodes, regardless of possible other errors.

<boolean> success = lang.hyphenate(<node> head)

<boolean> success = lang.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node

subtype having the value 1. Glyph modes with different subtypes are not processed. See sec-

tion 7.2 for more details.

7.8.8 [set|get]hjcode

The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> l, <number> char, <number> usedchar)

<number> usedchar = lang.gethjcode(<language> l, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due

to \savinghyphcodes being larger than zero.

Languages, characters, fonts and glyphs84

85Math

8 Math

8.1 Traditional alongside OPENTYPE

At this point there is no difference between LUAMETATEX and LUATEX with respect to math. The

handling of mathematics in LUATEX differs quite a bit from how TEX82 (and therefore PDFTEX)

handles math. First, LUATEX adds primitives and extends some others so that UNICODE input can

be used easily. Second, all of TEX82’s internal special values (for example for operator spacing)

have been made accessible and changeable via control sequences. Third, there are extensions

that make it easier to use OPENTYPEmath fonts. And finally, there are some extensions that have

been proposed or considered in the past that are now added to the engine.

8.2 Unicode math characters

Character handling is now extended up to the full UNICODE range (the \U prefix), which is com-

patible with XƎTEX.

The math primitives from TEX are kept as they are, except for the ones that convert from input to

math commands: mathcode, and delcode. These two now allow for a 21-bit character argument

on the left hand side of the equals sign.

Some of the new LUATEX primitives read more than one separate value. This is shown in the

tables below by a plus sign.

The input for such primitives would look like this:

\def\overbrace{\Umathaccent 0 1 "23DE }

The altered TEX82 primitives are:

PRIMITIVE MIN MAX MIN MAX

\mathcode 0 10FFFF = 0 8000

\delcode 0 10FFFF = 0 FFFFFF

The unaltered ones are:

PRIMITIVE MIN MAX

\mathchardef 0 8000

\mathchar 0 7FFF

\mathaccent 0 7FFF

\delimiter 0 7FFFFFF

\radical 0 7FFFFFF

For practical reasons \mathchardef will silently accept values larger that 0x8000 and interpret

it as \Umathcharnumdef. This is needed to satisfy older macro packages.

The following new primitives are compatible with XƎTEX:

Math86

PRIMITIVE MIN MAX MIN MAX

\Umathchardef 0+0+0 7+FF+10FFFF

\Umathcharnumdef5 -80000000 7FFFFFFF

\Umathcode 0 10FFFF = 0+0+0 7+FF+10FFFF

\Udelcode 0 10FFFF = 0+0 FF+10FFFF

\Umathchar 0+0+0 7+FF+10FFFF

\Umathaccent 0+0+0 7+FF+10FFFF

\Udelimiter 0+0+0 7+FF+10FFFF

\Uradical 0+0 FF+10FFFF

\Umathcharnum -80000000 7FFFFFFF

\Umathcodenum 0 10FFFF = -80000000 7FFFFFFF

\Udelcodenum 0 10FFFF = -80000000 7FFFFFFF

Specifications typically look like:

\Umathchardef\xx="1"0"456

\Umathcode 123="1"0"789

The new primitives that deal with delimiter-style objects do not set up a ‘large family’. Selecting

a suitable size for display purposes is expected to be dealt with by the font via the \Umathoper-

atorsize parameter.

For some of these primitives, all information is packed into a single signed integer. For the first

two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code, the 3 bits

above that represent the math class, and the family data is kept in the topmost bits. This means

that the values for math families 128–255 are actually negative. For \Udelcodenum there is no

math class. Themath family information is stored in the bits directly on top of the character code.

Using these three commands is not as natural as using the two- and three-value commands, so

unless you know exactly what you are doing and absolutely require the speedup resulting from

the faster input scanning, it is better to use the verbose commands instead.

The \Umathaccent command accepts optional keywords to control various details regarding

math accents. See section 8.6.2 below for details.

There are more new primitives and all of these will be explained in following sections:

PRIMITIVE VALUE RANGE (IN HEX)

\Uroot 0 + 0–FF + 10FFFF

\Uoverdelimiter 0 + 0–FF + 10FFFF

\Uunderdelimiter 0 + 0–FF + 10FFFF

\Udelimiterover 0 + 0–FF + 10FFFF

\Udelimiterunder 0 + 0–FF + 10FFFF

8.3 Math styles

8.3.1 \mathstyle

It is possible to discover the math style that will be used for a formula in an expandable fashion

(while the math list is still being read). To make this possible, LUATEX adds the new primitive:

87Math

\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,

not set.

The returned value is between 0 and 7 (in math mode), or −1 (all other modes). For easy testing,
the eight math style commands have been altered so that they can be used as numeric values,

so you can write code like this:

\ifnum\mathstyle=\textstyle

\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle

\message{cramped text style}

\fi \fi

Sometimes you won’t get what you expect so a bit of explanation might help to understand what

happens. When math is parsed and expanded it gets turned into a linked list. In a second pass

the formula will be build. This has to do with the fact that in order to determine the automatically

chosen sizes (in for instance fractions) following content can influence preceding sizes. A side

effect of this is for instance that one cannot change the definition of a font family (and thereby

reusing numbers) because the number that got used is stored and used in the second pass (so

changing \fam 12 mid-formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are

frozen. The \mathchoice primitive results in four lists being constructed of which one is used

in the second pass. The fact that some automatic styles are not yet known also means that the

\mathstyle primitive expands to the current style which can of course be different from the one

really used. It’s a snapshot of the first pass state. As a consequence in the following example

you get a style number (first pass) typeset that can actually differ from the used style (second

pass). In the case of a math choice used ungrouped, the chosen style is used after the choice

too, unless you group.

[a:\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (x:d :\mathstyle)}

{\bf \scriptscriptstyle (x:t :\mathstyle)}

{\bf \scriptscriptstyle (x:s :\mathstyle)}

{\bf \scriptscriptstyle (x:ss:\mathstyle)}

\egroup

\quad[b:\mathstyle]\quad

\mathchoice

{\bf \scriptstyle (y:d :\mathstyle)}

{\bf \scriptscriptstyle (y:t :\mathstyle)}

{\bf \scriptscriptstyle (y:s :\mathstyle)}

{\bf \scriptscriptstyle (y:ss:\mathstyle)}

\quad[c:\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (z:d :\mathstyle)}

{\bf \scriptscriptstyle (z:t :\mathstyle)}

Math88

{\bf \scriptscriptstyle (z:s :\mathstyle)}

{\bf \scriptscriptstyle (z:ss:\mathstyle)}

\egroup

\quad[d:\mathstyle]

This gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏 : 0] (𝐲:𝐝:𝟒) [𝑐:0] (𝐳:𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏 : 2] (𝐲:𝐭:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

Using \begingroup . . . \endgroup instead gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏:0] (𝐲:𝐬:𝟔) [𝑐:0] (𝐳:𝐬𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏:2] (𝐲:𝐬𝐬:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

This might look wrong but it’s just a side effect of \mathstyle expanding to the current (first

pass) style and the number being injected in the list that gets converted in the second pass. It all

makes sense and it illustrates the importance of grouping. In fact, the math choice style being

effective afterwards has advantages. It would be hard to get it otherwise.

8.3.2 \Ustack

There are a few math commands in TEX where the style that will be used is not known straight

from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would

therefore normally return wrong values for \mathstyle. To fix this, LUATEX introduces a special

prefix command: \Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct

(numerator) math style.

8.3.3 The new \cramped ...style commands

LUATEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle

\crampedtextstyle

\crampedscriptstyle

\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as

arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TEX by Topic” the rules for handling styles in scripts are described as follows:

‣ In any style superscripts and subscripts are taken from the next smaller style. Exception: in

display style they are in script style.

‣ Subscripts are always in the cramped variant of the style; superscripts are only cramped if

the original style was cramped.

89Math

‣ In an ..\over.. formula in any style the numerator and denominator are taken from the next

smaller style.

‣ The denominator is always in cramped style; the numerator is only in cramped style if the

original style was cramped.

‣ Formulas under a \sqrt or \overline are in cramped style.

In LUATEX one can set the styles in more detail which means that you sometimes have to set

both normal and cramped styles to get the effect you want. (Even) if we force styles in the script

using \scriptstyle and \crampedscriptstyle we get this:

STYLE EXAMPLE

default 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
script 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives a different result:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥 𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

8.4 Math parameter settings

8.4.1 Many new \Umath* primitives

In LUATEX, the font dimension parameters that TEX used in math typesetting are now accessible

via primitive commands. In fact, refactoring of the math engine has resulted in turning some

hard codes properties into parameters.

Math90

PRIMITIVE NAME DESCRIPTION

\Umathquad the width of 18 mu’s

\Umathaxis height of the vertical center axis of the math formula above the

baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

\Umathradicaldegreebefore the forward kern that takes place before placement of the rad-

ical degree

\Umathradicaldegreeafter the backward kern that takes place after placement of the rad-

ical degree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical

sign that the degree is raised by; it is expressed in percents,

so 60% is expressed as the integer 60
\Umathstackvgap vertical clearance between the two elements in an \atop stack

\Umathstacknumup numerator shift upward in \atop stack

\Umathstackdenomdown denominator shift downward in \atop stack

\Umathfractionrule the width of the rule in a \over

\Umathfractionnumvgap vertical clearance between the numerator and the rule

\Umathfractionnumup numerator shift upward in \over

\Umathfractiondenomvgap vertical clearance between the denominator and the rule

\Umathfractiondenomdown denominator shift downward in \over

\Umathfractiondelsize minimum delimiter size for \...withdelims

\Umathlimitabovevgap vertical clearance for limits above operators

\Umathlimitabovebgap vertical baseline clearance for limits above operators

\Umathlimitabovekern space reserved at the top of the limit

\Umathlimitbelowvgap vertical clearance for limits below operators

\Umathlimitbelowbgap vertical baseline clearance for limits below operators

\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters

\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters

\Umathunderdelimitervgap vertical clearance for limits below delimiters

\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas

\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas

\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

91Math

\Umathsubtopmax the top of standalone subscripts cannot be higher than this

above the baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this

above the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and sub-

script be at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1em

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

8.4.2 Font-based math parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have

to set each of them by hand. For this reason, LUATEX initializes a bunch of these parameters

whenever you assign a font identifier to a math family based on either the traditional math font

dimensions in the font (for assignments to math family 2 and 3 using TFM-based fonts like cmsy

and cmex), or based on the named values in a potential MathConstants table when the font is

loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,

and in that case no attention is paid to which family is being assigned to: the MathConstants

tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names

match those used in the TEXbook. Assignments to \textfont set the values for the cramped and

uncramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont

sets the scriptscript styles, so we have eight parameters for three font sizes. In the TFM case,

assignments only happen in family 2 and family 3 (and of course only for the parameters for

which there are font dimensions).

Besides the parameters below, LUATEX also looks at the ‘space’ font dimension parameter. For

math fonts, this should be set to zero.

VARIABLE / STYLE TFM / OPENTYPE

\Umathaxis axis_height

AxisHeight

6 \Umathoperatorsize —

D, D’ DisplayOperatorMinHeight

9 \Umathfractiondelsize delim1

D, D’ FractionDelimiterDisplayStyleSize

9 \Umathfractiondelsize delim2

T, T’, S, S’, SS, SS’ FractionDelimiterSize

\Umathfractiondenomdown denom1

Math92

D, D’ FractionDenominatorDisplayStyleShiftDown

\Umathfractiondenomdown denom2

T, T’, S, S’, SS, SS’ FractionDenominatorShiftDown

\Umathfractiondenomvgap 3*default_rule_thickness

D, D’ FractionDenominatorDisplayStyleGapMin

\Umathfractiondenomvgap default_rule_thickness

T, T’, S, S’, SS, SS’ FractionDenominatorGapMin

\Umathfractionnumup num1

D, D’ FractionNumeratorDisplayStyleShiftUp

\Umathfractionnumup num2

T, T’, S, S’, SS, SS’ FractionNumeratorShiftUp

\Umathfractionnumvgap 3*default_rule_thickness

D, D’ FractionNumeratorDisplayStyleGapMin

\Umathfractionnumvgap default_rule_thickness

T, T’, S, S’, SS, SS’ FractionNumeratorGapMin

\Umathfractionrule default_rule_thickness

FractionRuleThickness

\Umathskewedfractionhgap math_quad/2

SkewedFractionHorizontalGap

\Umathskewedfractionvgap math_x_height

SkewedFractionVerticalGap

\Umathlimitabovebgap big_op_spacing3

UpperLimitBaselineRiseMin

1 \Umathlimitabovekern big_op_spacing5

0

\Umathlimitabovevgap big_op_spacing1

UpperLimitGapMin

\Umathlimitbelowbgap big_op_spacing4

LowerLimitBaselineDropMin

1 \Umathlimitbelowkern big_op_spacing5

0

\Umathlimitbelowvgap big_op_spacing2

LowerLimitGapMin

\Umathoverdelimitervgap big_op_spacing1

StretchStackGapBelowMin

\Umathoverdelimiterbgap big_op_spacing3

StretchStackTopShiftUp

\Umathunderdelimitervgap big_op_spacing2

StretchStackGapAboveMin

\Umathunderdelimiterbgap big_op_spacing4

StretchStackBottomShiftDown

\Umathoverbarkern default_rule_thickness

93Math

OverbarExtraAscender

\Umathoverbarrule default_rule_thickness

OverbarRuleThickness

\Umathoverbarvgap 3*default_rule_thickness

OverbarVerticalGap

1 \Umathquad math_quad

<font_size(f)>

\Umathradicalkern default_rule_thickness

RadicalExtraAscender

2 \Umathradicalrule <not set>

RadicalRuleThickness

3 \Umathradicalvgap default_rule_thickness+abs(math_x_height)/4

D, D’ RadicalDisplayStyleVerticalGap

3 \Umathradicalvgap default_rule_thickness+abs(default_rule_thickness)/4

T, T’, S, S’, SS, SS’ RadicalVerticalGap

2 \Umathradicaldegreebefore <not set>

RadicalKernBeforeDegree

2 \Umathradicaldegreeafter <not set>

RadicalKernAfterDegree

2,7 \Umathradicaldegreeraise <not set>

RadicalDegreeBottomRaisePercent

4 \Umathspaceafterscript script_space

SpaceAfterScript

\Umathstackdenomdown denom1

D, D’ StackBottomDisplayStyleShiftDown

\Umathstackdenomdown denom2

T, T’, S, S’, SS, SS’ StackBottomShiftDown

\Umathstacknumup num1

D, D’ StackTopDisplayStyleShiftUp

\Umathstacknumup num3

T, T’, S, S’, SS, SS’ StackTopShiftUp

\Umathstackvgap 7*default_rule_thickness

D, D’ StackDisplayStyleGapMin

\Umathstackvgap 3*default_rule_thickness

T, T’, S, S’, SS, SS’ StackGapMin

\Umathsubshiftdown sub1

SubscriptShiftDown

\Umathsubshiftdrop sub_drop

SubscriptBaselineDropMin

8 \Umathsubsupshiftdown —

SubscriptShiftDownWithSuperscript

\Umathsubtopmax abs(math_x_height*4)/5

Math94

SubscriptTopMax

\Umathsubsupvgap 4*default_rule_thickness

SubSuperscriptGapMin

\Umathsupbottommin abs(math_x_height/4)

SuperscriptBottomMin

\Umathsupshiftdrop sup_drop

SuperscriptBaselineDropMax

\Umathsupshiftup sup1

D SuperscriptShiftUp

\Umathsupshiftup sup2

T, S, SS, SuperscriptShiftUp

\Umathsupshiftup sup3

D’, T’, S’, SS’ SuperscriptShiftUpCramped

\Umathsupsubbottommax abs(math_x_height*4)/5

SuperscriptBottomMaxWithSubscript

\Umathunderbarkern default_rule_thickness

UnderbarExtraDescender

\Umathunderbarrule default_rule_thickness

UnderbarRuleThickness

\Umathunderbarvgap 3*default_rule_thickness

UnderbarVerticalGap

5 \Umathconnectoroverlapmin 0

MinConnectorOverlap

Note 1: OPENTYPE fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set

\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: Traditional TFM fonts do not set \Umathradicalrule because TEX82 uses the height of

the radical instead. When this parameter is indeed not set when LUATEX has to typeset a radi-

cal, a backward compatibility mode will kick in that assumes that an oldstyle TEX font is used.

Also, they do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umath-

radicaldegreeraise. These are then automatically initialized to 5/18quad, −10/18quad, and
60.

Note 3: If TFM fonts are used, then the \Umathradicalvgap is not set until the first time LUATEX

has to typeset a formula because this needs parameters from both family 2 and family 3. This

provides a partial backward compatibility with TEX82, but that compatibility is only partial: once

the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When TFM fonts are used a similar situation arises with respect to \Umathspaceafter-

script: it is not set until the first time LUATEX has to typeset a formula. This provides some

backward compatibility with TEX82. But once the \Umathspaceafterscript is set, \script-

space will never be looked at again.

Note 5: Traditional TFM fonts set \Umathconnectoroverlapmin to zero because TEX82 always

stacks extensibles without any overlap.

95Math

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OPENTYPE

fonts. In TFM font mode, it is artificially set to one scaled point more than the initial attempt’s

size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that

is expressed in a percentage instead of a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ OPEN-

TYPE math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex-

ist in the ‘standard’ OPENTYPE math font Cambria, but were useful enough to be added.

8.5 Math spacing

8.5.1 Setting inline surrounding space with

\mathsurround[skip]\mathsurround[skip]

Inline math is surrounded by (optional) \mathsurround spacing but that is a fixed dimension.

There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or zero

with some stretch or shrink) this parameter will replace \mathsurround. By using an additional

parameter instead of changing the nature of \mathsurround, we can remain compatible. In the

meantime a bit more control has been added via \mathsurroundmode. This directive can take 6

values with zero being the default behaviour.

\mathsurround 10pt

\mathsurroundskip20pt

MODE XXX X X X EFFECT

0 x 𝑥 x x 𝑥 x obey \mathsurround when \mathsurroundskip is 0pt

1 x 𝑥x x 𝑥 x only add skip to the left

2 x𝑥 x x 𝑥 x only add skip to the right

3 x 𝑥 x x 𝑥 x add skip to the left and right

4 x 𝑥 x x 𝑥 x ignore the skip setting, obey \mathsurround

5 x𝑥x x 𝑥 x disable all spacing around math

6 x 𝑥 x x 𝑥 x only apply \mathsurroundskip when also spacing

7 x 𝑥 x x 𝑥 x only apply \mathsurroundskip when no spacing

Anything more fancy, like checking the beginning or end of a paragraph (or edges of a box)

would not be robust anyway. If you want that you can write a callback that runs over a list and

analyzes a paragraph. Actually, in that case you could also inject glue (or set the properties of

a math node) explicitly. So, these modes are in practice mostly useful for special purposes and

experiments (they originate in a tracker item). Keep in mind that this glue is part of the math

node and not always treated as normal glue: it travels with the begin and end math nodes. Also,

method 6 and 7 will zero the skip related fields in a node when applicable in the first occasion

that checks them (linebreaking or packaging).

Math96

8.5.2 Pairwise spacing and \Umath...spacing commands

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to

control the math spacing table (as explained in Chapter 18 of the TEXbook). The primitive names

are a simple matter of combining two math atom types, but for completeness’ sake, here is the

whole list:

\Umathordordspacing

\Umathordopspacing

\Umathordbinspacing

\Umathordrelspacing

\Umathordopenspacing

\Umathordclosespacing

\Umathordpunctspacing

\Umathordinnerspacing

\Umathopordspacing

\Umathopopspacing

\Umathopbinspacing

\Umathoprelspacing

\Umathopopenspacing

\Umathopclosespacing

\Umathoppunctspacing

\Umathopinnerspacing

\Umathbinordspacing

\Umathbinopspacing

\Umathbinbinspacing

\Umathbinrelspacing

\Umathbinopenspacing

\Umathbinclosespacing

\Umathbinpunctspacing

\Umathbininnerspacing

\Umathrelordspacing

\Umathrelopspacing

\Umathrelbinspacing

\Umathrelrelspacing

\Umathrelopenspacing

\Umathrelclosespacing

\Umathrelpunctspacing

\Umathrelinnerspacing

\Umathopenordspacing

\Umathopenopspacing

\Umathopenbinspacing

\Umathopenrelspacing

\Umathopenopenspacing

\Umathopenclosespacing

\Umathopenpunctspacing

\Umathopeninnerspacing

\Umathcloseordspacing

\Umathcloseopspacing

\Umathclosebinspacing

\Umathcloserelspacing

\Umathcloseopenspacing

\Umathcloseclosespacing

\Umathclosepunctspacing

\Umathcloseinnerspacing

\Umathpunctordspacing

\Umathpunctopspacing

\Umathpunctbinspacing

\Umathpunctrelspacing

\Umathpunctopenspacing

\Umathpunctclosespacing

\Umathpunctpunctspacing

\Umathpunctinnerspacing

\Umathinnerordspacing

\Umathinneropspacing

\Umathinnerbinspacing

\Umathinnerrelspacing

\Umathinneropenspacing

\Umathinnerclosespacing

\Umathinnerpunctspacing

\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:

\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the

TEXbook.

97Math

Note 1: For ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and

\thickmuskip are treated specially. In their case a pointer to the corresponding internal para-

meter is saved, not the actual \muskip value. This means that any later changes to one of these

three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the

TEXbook. These will not actually be used as those combinations of atoms cannot actually happen,

but it seemed better not to break orthogonality. They are initialized to zero.

8.5.3 Local settings

Math is processed in two passes. The first pass is needed to intercept for instance \over, one

of the few TEX commands that actually has a preceding argument. There are often lots of curly

braces used in math and these can result in a nested run of the math sub engine. However, you

need to be aware of the fact that some properties are kind of global to a formula and the last

setting (for instance a family switch) wins. This also means that a change (or again, the last one)

in math parameters affects the whole formula. In LUAMETATEX we have changed this model a

bit. One can argue that this introduces an incompatibility but it’s hard to imagine a reason for

setting the parameters at the end of a formula run and assume that they also influence what

goes in front.

$

x \Usubscript {-}

\frozen\Umathsubshiftdown\textstyle 0pt x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 5pt x \Usubscript {5}}

x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 15pt x \Usubscript {15}}

x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 20pt x \Usubscript {20}}

x \Usubscript {0}

\frozen\Umathsubshiftdown\textstyle 10pt x \Usubscript {10}

x \Usubscript {0}

$

The \frozen prefix does themagic: it injects information in themath list about the set parameter.

In LUATEX 1.10+ the last setting, the 10pt drop wins, but in LUAMETATEX you will see each local

setting taking effect. The implementation uses a new node type, parameters nodes, so you might

encounter these in an unprocessed math list. The result looks as follows:

𝑥−𝑥0𝑥5𝑥0𝑥
15

𝑥0𝑥

20

𝑥0𝑥
10
𝑥
0

8.5.4 Skips around display math and \mathdisplayskipmode

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one

is always inserted, also when zero, but the below is only inserted when larger than zero. Espe-

cially the latter makes it sometimes hard to fully control spacing. Therefore LUATEX comes with

a new directive: \mathdisplayskipmode. The following values apply:

Math98

VALUE MEANING

0 normal TEX behaviour

1 always (same as 0)

2 only when not zero

3 never, not even when not zero

8.5.5 Nolimit correction with \mathnolimitsmode

There are two extra math parameters \Umathnolimitsupfactor and \Umathnolimitsubfactor

that were added to provide some control over how limits are spaced (for example the position

of super and subscripts after integral operators). They relate to an extra parameter \mathno-

limitsmode. The half corrections are what happens when scripts are placed above and below.

The problem with italic corrections is that officially that correction italic is used for above/be-

low placement while advanced kerns are used for placement at the right end. The question is:

how often is this implemented, and if so, do the kerns assume correction too. Anyway, with this

parameter one can control it.

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0

1
mode 0 1 2 3 4 8000

superscript 0 font 0 0 +ic/2 0

subscript -ic font 0 -ic/2 -ic/2 8000ic/1000

When the mode is set to one, the math parameters are used. This way a macro package writer

can decide what looks best. Given the current state of fonts in CONTEXT we currently use mode

1 with factor 0 for the superscript and 750 for the subscripts. Positive values are used for both

parameters but the subscript shifts to the left. A \mathnolimitsmode larger that 15 is considered

to be a factor for the subscript correction. This feature can be handy when experimenting.

8.5.6 Controlling math italic mess with \mathitalicsmode

The \mathitalicsmode parameter can be set to 1 to force italic correction before noads that

represent some more complex structure (read: everything that is not an ord, bin, rel, open,

close, punct or inner). We show a Cambria example.

\mathitalicsmode = 0 �𝑇1� |𝑇| 𝑇 + 1 𝑇1
2 𝑇√1

\mathitalicsmode = 1 �𝑇1� |𝑇| 𝑇 + 1 𝑇1
2 𝑇√1

This kind of parameters relate to the fact that italic correction in OPENTYPE math is bound to

fuzzy rules. So, control is the solution.

8.5.7 Influencing script kerning with \mathscriptboxmode

If you want to typeset text in math macro packages often provide something \text which obeys

the script sizes. As the definition can be anything there is a good chance that the kerning doesn’t

come out well when used in a script. Given that the first glyph ends up in an \hbox we have

99Math

some control over this. And, as a bonus we also added control over the normal sublist kerning.

The \mathscriptboxmode parameter defaults to 1.

VALUE MEANING

0 forget about kerning

1 kern math sub lists with a valid glyph

2 also kern math sub boxes that have a valid glyph

3 only kern math sub boxes with a boundary node present

Here we show some examples. Of course this doesn’t solve all our problems, if only because

some fonts have characters with bounding boxes that compensate for italics, while other fonts

can lack kerns.

$T_{\tf fluff}$ $T_{\tf fluff}$ T_{fluff} T_{fluff} $T_{\text{\boundary1 fluff}}$

mode 0 mode 1 mode 1 mode 2 mode 3

modern 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff
lucidaot 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

pagella 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

cambria 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

dejavu 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

Kerning between a character subscript is controlled by \mathscriptcharmode which also de-

faults to 1.

Here is another example. Internally we tag kerns as italic kerns or font kerns where font kerns

result from the staircase kern tables. In 2018 fonts like Latin Modern and Pagella rely on cheats

with the boundingbox, Cambria uses staircase kerns and Lucida a mixture. Depending on how

fonts evolve we might add some more control over what one can turn on and off.

normal modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.872

luf
0.872

f
pagella 𝑇 𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.346luf 0.346f
cambria 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.382

𝑒 𝑇fluff
lucidaot 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇fluff

bold modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 1.003

luf
1.003

f
pagella 𝑇 𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.398luf 0.398f
cambria 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.440

𝑒 𝑇fluff
lucidaot 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.376𝑒 𝑇f 0.751luf 0.751f

8.5.8 Forcing fixed scripts with \mathscriptsmode

We have three parameters that are used for this fixed anchoring:

PARAMETER REGISTER

𝑑 \Umathsubshiftdown

Math100

𝑢 \Umathsupshiftup

𝑠 \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed

positions. This is something that is needed for instance for chemistry. You can manipulate the

mentioned variables to achieve different effects.

MODE DOWN UP EXAMPLE

0 dynamic dynamic CH2 +CH+
2 +CH2

2
1 𝑑 𝑢 CH2 +CH+

2 +CH2
2

2 𝑠 𝑢 CH2 +CH+
2 +CH2

2
3 𝑠 𝑢 + 𝑠 − 𝑑 CH2 +CH+

2 +CH2
2

4 𝑑+ (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 +CH+
2 +CH2

2
5 𝑑 𝑢+ 𝑠 − 𝑑 CH2 +CH+

2 +CH2
2

The value of this parameter obeys grouping but applies to the whole current formula.

8.5.9 Penalties: \mathpenaltiesmode

Only in inline math penalties will be added in a math list. You can force penalties (also in display

math) by setting:

\mathpenaltiesmode = 1

This primnitive is not really needed in LUATEX because you can use the callback mlist_to_hlist

to force penalties by just calling the regular routine with forced penalties. However, as part

of opening up and control this primitive makes sense. As a bonus we also provide two extra

penalties:

\prebinoppenalty = -100 % example value

\prerelpenalty = 900 % example value

They default to inifinite which signals that they don’t need to be inserted. When set they are

injected before a binop or rel noad. This is an experimental feature.

8.5.10 Equation spacing: \matheqnogapstep

By default TEX will add one quad between the equation and the number. This is hard coded. A

new primitive can control this:

\matheqnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to

control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the

usual way to mimmick floating point factors in TEX.

101Math

8.6 Math constructs

8.6.1 Unscaled fences and \mathdelimitersmode

The \mathdelimitersmode primitive is experimental and deals with the following (potential)

problems. Three bits can be set. The first bit prevents an unwanted shift when the fence symbol

is not scaled (a cambria side effect). The second bit forces italic correction between a preceding

character ordinal and the fenced subformula, while the third bit turns that subformula into an

ordinary so that the same spacing applies as with unfenced variants. Here we show Cambria

(with \mathitalicsmode enabled).

\mathdelimitersmode = 0 𝑓
0.293

(𝑥
0.303

) 𝑓 (𝑥
0.303

)
\mathdelimitersmode = 1 𝑓

0.293

(𝑥
0.303

) 𝑓 (𝑥
0.303

)
\mathdelimitersmode = 2 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 3 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 4 𝑓

0.293

(𝑥
0.303

) 𝑓(𝑥
0.303

)
\mathdelimitersmode = 5 𝑓

0.293

(𝑥
0.303

) 𝑓(𝑥
0.303

)
\mathdelimitersmode = 6 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 7 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)

So, when set to 7 fenced subformulas with unscaled delimiters come out the same as unfenced

ones. This can be handy for cases where one is forced to use \left and \right always be-

cause of unpredictable content. As said, it’s an experimental feature (which somehow fits in the

exceptional way fences are dealt with in the engine). The full list of flags is given in the next

table:

VALUE MEANING

"01 don’t apply the usual shift

"02 apply italic correction when possible

"04 force an ordinary subformula

"08 no shift when a base character

"10 only shift when an extensible

The effect can depend on the font (and for Cambria one can use for instance "16).

Sometimes you might want to act upon the size of a delimiter, something that is not really pos-

sible because of the fact that they are calculated after most has been typeset already. In the fol-

lowing example the all-zero specification is the trigger to make a fake box with the last delimiter

dimensions and shift. It’s an ugly hack but its relative simple and not intrusive implementation

has no side effects. Any other heuristic solution would not satisfy possible demands anyway.

Here is a rather low level example:

\startformula

\Uleft \Udelimiter 5 0 "222B

\frac{\frac{a}{b}}{\frac{c}{d}}

\Uright \Udelimiter 5 0 "222B

\kern-2\fontcharwd\textfont0 "222B

\mathlimop{\Uvextensible \Udelimiter 0 0 0}_1^2 x

Math102

\stopformula

The last line, by passing zero values, results in a fake operator that has the dimensions of the

previous delimiter. We can then backtrack over the (presumed) width and the two numbers

become limit operators. As said, it’s not pretty but it works.

∫⎮⎮
∫

𝑎
𝑏
𝑐
𝑑

∫⎮⎮
∫
2
1
𝑥

8.6.2 Accent handling with \Umathaccent

LUATEX supports both top accents and bottom accents in math mode, and math accents stretch

automatically (if this is supported by the font the accent comes from, of course). Bottom and

combined accents as well as fixed-width math accents are controlled by optional keywords fol-

lowing \Umathaccent.

The keyword bottom after \Umathaccent signals that a bottom accent is needed, and the keyword

both signals that both a top and a bottom accent are needed (in this case two accents need to

be specified, of course).

Then the set of three integers defining the accent is read. This set of integers can be prefixed by

the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,

this step is repeated).

A simple example:

\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top_ac-

cent value, then this value will be used to place the accent instead of the \skewchar kern used

by TEX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be

shifted horizontally such that its own top_accent line coincides with the one from the accentee.

If the top_accent value of the accent is zero, then half the width of the accent followed by its

italic correction is used instead.

The vertical placement of a top accent depends on the x_height of the font of the accentee (as

explained in the TEXbook), but if a value turns out to be zero and the font had a MathConstants

table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes

place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.

An additional parameter fraction can be specified followed by a number; a value of for instance

1200 means that the criterium is 1.2 times the width of the nucleus. The fraction only applies

to the stepwise selected shapes and is mostly meant for the overlay location. It also works for

the other locations but then it concerns the width.

103Math

8.6.3 Building radicals with \Uradical and \Uroot

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its

syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>

\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by themath parameters \Umathradicaldegreebefore,

\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in

\scriptscriptstyle.

8.6.4 Super- and subscripts

The character fields in a LUA-loaded OPENTYPE math font can have a ‘mathkern’ table. The

format of this table is the same as the ‘mathkern’ table that is returned by the fontloader

library, except that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LUATEX checks whether the

super- or subscript and the nucleus are both simple character items. If they are, and if the

fonts of both character items are OPENTYPE fonts (as opposed to legacy TEX fonts), then LUATEX

will use the OPENTYPE math algorithm for deciding on the horizontal placement of the super- or

subscript.

This works as follows:

‣ The vertical position of the script is calculated.

‣ The default horizontal position is flat next to the base character.

‣ For superscripts, the italic correction of the base character is added.

‣ For a superscript, two vertical values are calculated: the bottom of the script (after shifting

up), and the top of the base. For a subscript, the two values are the top of the (shifted down)

script, and the bottom of the base.

‣ For each of these two locations:

– find the math kern value at this height for the base (for a subscript placement, this is the

bottom_right corner, for a superscript placement the top_right corner)

– find the math kern value at this height for the script (for a subscript placement, this is the

top_left corner, for a superscript placement the bottom_left corner)

– add the found values together to get a preliminary result.

‣ The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher

height and kern pair, or the highest one in the character (if there is no value high enough in the

character), or simply zero (if the character has no math kern pairs at all).

8.6.5 Scripts on extensibles: \Uunderdelimiter, \Uoverdelimiter,

\Udelimiterover, \Udelimiterunder and \Uhextensible

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or

superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover

Math104

allow the placement of an automatically extensible item as a subscript or superscript on a nu-

cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$

$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$

$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$

$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter
↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

underdelimiter

↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔
delimiterover delimiterunder↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim-

itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit

placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable

scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an optional width specification. When used the also optional keywords

left, middle and rightwill determine what happens when a requested size can’t be met (which

can happen when we step to successive larger variants).

An extra primitive \Uhextensible is available that can be used like this:

$\Uhextensible width 10cm 0 "2194$

This will render this:

↔↔↔

Here you can also pass options, like:

$\Uhextensible width 1pt middle 0 "2194$

This gives:

↔

LUATEX internally uses a structure that supports OPENTYPE ‘MathVariants’ as well as TFM ‘ex-

tensible recipes’. In most cases where font metrics are involved we have a different code path

for traditional fonts end OPENTYPE fonts.

8.6.6 Fractions and the new \Uskewed and \Uskewedwithdelims

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela-

tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com-

mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap

for skewed fractions. Of course some guessing is needed in order to implement something that

105Math

uses them. And so we now provide a primitive similar to the other fraction related ones but with

a few options so that one can influence the rendering. Of course a user can also mess around a

bit with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }

{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by

default we zero the width of the middle character. For Latin Modern the result looks as follows:

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

The \over and related primitives have the form:

{{top}\over{bottom}}

For convenience, which also avoids some of the trickery that makes this ‘looking back’ possible,

the LUAMETATEX also provides this variant:

\Uover{top}{bottom}

The optional arguments are also supported but we have one extra option: style. The style is

applied to the numerator and denominator.

\Uover style \scriptstyle {top} {bottom}

The complete list of these commands is: \Uabove, \Uatop, \Uover, \Uabovewithdelims, \Uatop-

withdelims, \Uoverwithdelims, \UUskewed, \UUskewedwithdelims. As with other extensions

we use a leading U and because we already had extra skew related primitives we end up with a

UU there. This obscurity is not that big an issue because normally such primitives are wrapped

in a macro. Here are a few examples:

$\Uover { 1234} { 5678} $\quad

$\Uover {\textstyle 1234} {\textstyle 5678} $\quad

$\Uover {\scriptstyle 1234} {\scriptstyle 5678} $\quad

$\Uover {\scriptscriptstyle 1234} {\scriptscriptstyle 5678} $\blank

$\Uover {1234} {5678} $\quad

$\Uover style \textstyle {1234} {5678} $\quad

$\Uover style \scriptstyle {1234} {5678} $\quad

$\Uover style \scriptscriptstyle {1234} {5678} $\blank

These render as: 1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

Math106

8.6.7 Math styles: \Ustyle

This primitive accepts a style identifier:

\Ustyle \displaystyle

This in itself is not spectacular because it is equivalent to

\displaystyle

Both commands inject a style node and change the current style. However, as in other places

where LUAMETATEX expects a style you can also pass a number in the range zero upto seven (like

the ones reported by the primitive \mathstyle). So, the next few lines give identical results:

Like: 07 07 07. Values outside the valid range are ignored.

8.6.8 Delimiters: \Uleft, \Umiddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it.

The resulting delimiter will either be a character from the stepwise size range or an extensible.

The latter can be quite differently positioned than the characters as it depends on the fit as well

as the fact whether the used characters in the font have depth or height. Commands like (plain

TEXs) \big need to use this feature. In LUATEX we provide a bit more control by three variants

that support optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

⎛⎜⎜⎜⎜
⎝

𝑥

∥
∥
∥
∥
∥
∥
∥

𝑥
⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝ 𝑥

∥
∥
∥
∥
∥
∥
∥

𝑥

⎞⎟⎟⎟⎟
⎠

The keyword exact can be used as directive that the real dimensions should be applied when

the criteria can’t be met which can happen when we’re still stepping through the successively

larger variants. When no dimensions are given the noaxis command can be used to prevent

shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing. The

numbers are the same as for character classes.

107Math

8.6.9 Accents: \mathlimitsmode

When you use \limits or \nolimits without scripts spacing might get messed up. This can be

prevented by setting \mathlimitsmode to a non-zero value.

8.7 Extracting values

8.7.1 Codes and using \Umathcode, \Umathcharclass, \Umathcharfam and

\Umathcharslot

You can extract the components of a math character. Say that we have defined:

\Umathcode 1 2 3 4

then

[\Umathcharclass1] [\Umathcharfam1] [\Umathcharslot1]

will return:

[2] [3] [4]

These commands are provided as convenience. Before they come available you could do the

following:

\def\Umathcharclass{\directlua{tex.print(tex.getmathcode(token.scan_int())[1])}}

\def\Umathcharfam {\directlua{tex.print(tex.getmathcode(token.scan_int())[2])}}

\def\Umathcharslot {\directlua{tex.print(tex.getmathcode(token.scan_int())[3])}}

8.7.2 Last lines and \predisplaygapfactor

There is a new primitive to control the overshoot in the calculation of the previous line in mid-

paragraph display math. The default value is 2 times the em width of the current font:

\predisplaygapfactor=2000

If you want to have the length of the last line independent of math i.e. you don’t want to revert

to a hack where you insert a fake display math formula in order to get the length of the last line,

the following will often work too:

\def\lastlinelength{\dimexpr

\directlua {tex.sprint (

(nodes.dimensions(node.tail(tex.lists.page_head).list))

)}sp

\relax}

Math108

8.8 Math mode

8.8.1 Verbose versions of single-character math commands like

\Usuperscript and \Usubscript

LUATEX defines six new primitives that have the same function as ^, _, $, and $$:

PRIMITIVE EXPLANATION

\Usuperscript duplicates the functionality of ^

\Usubscript duplicates the functionality of _

\Ustartmath duplicates the functionality of $, when used in non-math mode.

\Ustopmath duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath duplicates the functionality of $$, when used in non-math mode.

\Ustopdisplaymath duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor-

rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands

with explicit dollar sign(s).

8.8.2 Script commands \Unosuperscript and \Unosubscript

These two commands result in super- and subscripts but with the current style (at the time of

rendering). So,

$

x\Usuperscript {1}\Usubscript {2} =

x\Unosuperscript{1}\Unosubscript{2} =

x\Usuperscript {1}\Unosubscript{2} =

x\Unosuperscript{1}\Usubscript {2}

$

results in 𝑥12 = 𝑥12 = 𝑥12 = 𝑥12 .

8.8.3 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math-

chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those

cases, the \textfont from the requested math family is used.

8.9 Goodies

8.9.1 Flattening: \mathflattenmode

The TEX math engine collapses ord noads without sub- and superscripts and a character as

nucleus, which has the side effect that in OPENTYPE mode italic corrections are applied (given

that they are enabled).

109Math

\switchtobodyfont[modern]

$V \mathbin{\mathbin{v}} V$\par

$V \mathord{\mathord{v}} V$\par

This renders as:

𝑉 𝑣 𝑉
𝑉 𝑣𝑉

When we set \mathflattenmode to 31 we get:

𝑉 𝑣 𝑉
𝑉 𝑣𝑉

When you see no difference, then the font probably has the proper character dimensions and no

italic correction is needed. For Latin Modern (at least till 2018) there was a visual difference. In

that respect this parameter is not always needed unless of course you want efficient math lists

anyway.

You can influence flattening by adding the appropriate number to the value of the mode para-

meter. The default value is 1.

MODE CLASS

1 ord

2 bin

4 rel

8 punct

16 inner

8.9.2 Less Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.

Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

Math110

111Nodes

9 Nodes

9.1 LUA node representation

TEX’s nodes are represented in LUA as userdata objects with a variable set of fields or by a

numeric identifier when requested. When you print a node userdata object you will see these

numbers. In the following syntax tables the type of such a userdata object is represented as

⟨node⟩.

The return values of node.types are: hlist (0), vlist (1), rule (2), ins (3), mark (4), adjust

(5), boundary (6), disc (7), whatsit (8), local_par (9), dir (10), math (11), glue (12), kern (13),

penalty (14), style (15), choice (16), parameter (17), noad (18), radical (19), fraction (20),

accent (21), fence (22), math_char (23), math_text_char (24), sub_box (25), sub_mlist (26),

delim (27), glyph (28), unset (29), attribute_list (34), attribute (35), glue_spec (36), temp

(37), page_insert (38) and split_insert (39)

In 𝜀-TEX the \lastnodetype primitive has been introduced. With this primitive the valid range of
numbers is still [−1, 15] and glyph nodes (formerly known as char nodes) have number 0. That
way macro packages can use the same symbolic names as in traditional 𝜀-TEX. But you need to
keep in mind that these 𝜀-TEX node numbers are different from the real internal ones. When

you set \internalcodesmode to a non-zero value, the internal codes will be used in the 𝜀-TEX
introspection commands \lastnodetype and \currentiftype.

You can ask for a list of fields with node.fields and for valid subtypes with node.subtypes.

The node.values function reports some used values. Valid arguments are glue, style and

math. Keep in mind that the setters normally expect a number, but this helper gives you a list

of what numbers matter. For practical reason the pagestate values are also reported with this

helper, but they are backend specific.

The return values of node.values("glue") are: normal (0), fi (1), fil (2), fill (3) and filll

(4)

The return values of node.values("style") are: display (0), crampeddisplay (1), text (2),

crampedtext (3), script (4), crampedscript (5), scriptscript (6) and crampedscriptscript

(7)

The return values of node.values("math") are: quad (0), axis (1), spacingmode (2), oper-

atorsize (3), overbarkern (4), overbarrule (5), overbarvgap (6), underbarkern (7), under-

barrule (8), underbarvgap (9), radicalkern (10), radicalrule (11), radicalvgap (12), radi-

caldegreebefore (13), radicaldegreeafter (14), radicaldegreeraise (15), stackvgap (16),

stacknumup (17), stackdenomdown (18), fractionrule (19), fractionnumvgap (20), fraction-

numup (21), fractiondenomvgap (22), fractiondenomdown (23), fractiondelsize (24), skewed-

fractionhgap (25), skewedfractionvgap (26), limitabovevgap (27), limitabovebgap (28),

limitabovekern (29), limitbelowvgap (30), limitbelowbgap (31), limitbelowkern (32), no-

limitsubfactor (33), nolimitsupfactor (34), underdelimitervgap (35), underdelimiterb-

gap (36), overdelimitervgap (37), overdelimiterbgap (38), subshiftdrop (39), supshiftdrop

Nodes112

(40), subshiftdown (41), subsupshiftdown (42), subtopmax (43), supshiftup (44), supbottom-

min (45), supsubbottommax (46), subsupvgap (47), spaceafterscript (48), connectoroverlap-

min (49), ordordspacing (50), ordopspacing (51), ordbinspacing (52), ordrelspacing (53),

ordopenspacing (54), ordclosespacing (55), ordpunctspacing (56), ordinnerspacing (57),

opordspacing (58), opopspacing (59), opbinspacing (60), oprelspacing (61), opopenspacing

(62), opclosespacing (63), oppunctspacing (64), opinnerspacing (65), binordspacing (66),

binopspacing (67), binbinspacing (68), binrelspacing (69), binopenspacing (70), binclos-

espacing (71), binpunctspacing (72), bininnerspacing (73), relordspacing (74), relopspac-

ing (75), relbinspacing (76), relrelspacing (77), relopenspacing (78), relclosespacing

(79), relpunctspacing (80), relinnerspacing (81), openordspacing (82), openopspacing

(83), openbinspacing (84), openrelspacing (85), openopenspacing (86), openclosespacing

(87), openpunctspacing (88), openinnerspacing (89), closeordspacing (90), closeopspac-

ing (91), closebinspacing (92), closerelspacing (93), closeopenspacing (94), closeclos-

espacing (95), closepunctspacing (96), closeinnerspacing (97), punctordspacing (98),

punctopspacing (99), punctbinspacing (100), punctrelspacing (101), punctopenspacing

(102), punctclosespacing (103), punctpunctspacing (104), punctinnerspacing (105), in-

nerordspacing (106), inneropspacing (107), innerbinspacing (108), innerrelspacing (109),

inneropenspacing (110), innerclosespacing (111), innerpunctspacing (112) and innerin-

nerspacing (113)

The return values of node.values("pagestate") are: empty (0), box_there (1) and in-

serts_only (2)

9.2 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all

nodes regardless of their type, these are:

FIELD TYPE EXPLANATION

next node the next node in a list, or nil

id number the node’s type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a dummy entry because not all nodes actually use the subtype,

but this way you can be sure that all nodes accept it as a valid field name, and that is often handy

in node list traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field

called prev. That last field is always present, but only initialized on explicit request: when the

function node.slide is called, it will set up the prev fields to be a backwards pointer in the

argument node list. By now most of TEX’s node processing makes sure that the prev nodes are

valid but there can be exceptions, especially when the internal magic uses a leading temp nodes

to temporarily store a state.

The LUAMETATEX engine provides a lot of freedom and it is up to the user to make sure that the

node lists remain sane. There are some safeguards but there can be cases where the engine just

quits out of frustration. And, of course you can make the engine crash.

113Nodes

9.2.1 hlist and vlist nodes

These lists share fields and subtypes although some subtypes can only occur in horizontal lists

while others are unique for vertical lists. The possible fields are attr, depth, direction, doff-

set, glue_order, glue_set, glue_sign, height, hoffset, list, orientation, shift, width,

woffset, xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number accent, alignment, box, cell, degree, denominator, equation, equa-

tionnumber, fraction, hdelimiter, hextensible, indent, limits, line,

math, mathchar, nucleus, numerator, over, overdelimiter, radical,

scripts, sub, sup, under, underdelimiter, unknown, vdelimiter and

vextensible

attr node list of attributes

width number the width of the box

height number the height of the box

depth number the depth of the box

direction number the direction of this box, see 9.2.15

shift number a displacement perpendicular to the character (hlist) or line (vlist) pro-

gression direction

glue_order number a number in the range [0, 4], indicating the glue order
glue_set number the calculated glue ratio

glue_sign number 0 = normal, 1 = stretching, 2 = shrinking

list node the first node of the body of this list

The orientation, woffset, hoffset, doffset, xoffset and yoffset fields are special. They can

be used to make the backend rotate and shift boxes which can be handy in for instance vertical

typesetting. Because they relate to (and depend on the) the backend they are not discussed here

(yet).

A warning: never assign a node list to the list field unless you are sure its internal link structure

is correct, otherwise an error may result.

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to

a list by head, sometimes list makes more sense.

9.2.2 rule nodes

Contrary to traditional TEX, LUATEX has more \rule subtypes because we also use rules to store

reuseable objects and images. User nodes are invisible and can be intercepted by a callback.

The supported fields are attr, data, depth, height, left, right, width, xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number box, empty, fraction, image, normal, outline, over, radical, under

and user

attr node list of attributes

width number the width of the rule where the special value −1073741824 is used for
‘running’ glue dimensions

Nodes114

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

left number shift at the left end (also subtracted from width)

right number (subtracted from width)

dir string the direction of this rule, see 9.2.15

index number an optional index that can be referred to

transform number an private variable (also used to specify outline width)

The left and type right keys are somewhat special (and experimental). When rules are auto

adapting to the surrounding box width you can enforce a shift to the right by setting left. The

value is also subtracted from the width which can be a value set by the engine itself and is not

entirely under user control. The right is also subtracted from the width. It all happens in the

backend so these are not affecting the calculations in the frontend (actually the auto settings

also happen in the backend). For a vertical rule left affects the height and right affects the

depth. There is no matching interface at the TEX end (although we can have more keywords

for rules it would complicate matters and introduce a speed penalty.) However, you can just

construct a rule node with LUA and write it to the TEX input. The outline subtype is just a

convenient variant and the transform field specifies the width of the outline.

The xoffset and yoffset fields are special. They can be used to shift rules. Because they relate

to (and depend on the) the backend they are not discussed here (yet).

9.2.3 ins nodes

This node relates to the \insert primitive and support the fields: attr, cost, depth, height,

list and spec.

FIELD TYPE EXPLANATION

subtype number the insertion class

attr node list of attributes

cost number the penalty associated with this insert

height number height of the insert

depth number depth of the insert

list node the first node of the body of this insert

There is a set of extra fields that concern the associated glue: width, stretch, stretch_order,

shrink and shrink_order. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may result. You can use list instead (often in functions you want

to use local variable with similar names and both names are equally sensible).

9.2.4 mark nodes

This one relates to the \mark primitive and only has a few fields: attr, class and mark.

FIELD TYPE EXPLANATION

subtype number unused

115Nodes

attr node list of attributes

class number the mark class

mark table a table representing a token list

9.2.5 adjust nodes

This node comes from \vadjust primitive and has fields: attr and list.

FIELD TYPE EXPLANATION

subtype number normal and pre

attr node list of attributes

list node adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be the result.

9.2.6 disc nodes

The \discretionary and \-, the - character but also the hyphenation mechanism produces

these nodes. The available fields are: attr, penalty, post, pre and replace.

FIELD TYPE EXPLANATION

subtype number automatic, discretionary, explicit, first, regular and second

attr node list of attributes

pre node pointer to the pre-break text

post node pointer to the post-break text

replace node pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \ex-

hyphenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere. These disc

nodes are kind of special as at some point they also keep information about breakpoints and

nested ligatures.

The pre, post and replace fields at the LUA end are in fact indirectly accessed and have a prev

pointer that is not nil. This means that when you mess around with the head of these (three)

lists, you also need to reassign them because that will restore the proper prev pointer, so:

pre = d.pre

-- change the list starting with pre

d.pre = pre

Otherwise you can end up with an invalid internal perception of reality and LUAMETATEX might

even decide to crash on you. It also means that running forward over for instance pre is ok but

backward you need to stop at pre. And you definitely must not mess with the node that prev

points to, if only because it is not really a node but part of the disc data structure (so freeing it

again might crash LUAMETATEX).

Nodes116

9.2.7 math nodes

Math nodes represent the boundaries of a math formula, normally wrapped into $ signs. The

following fields are available: attr, shrink, shrink_order, stretch, stretch_order, surround

and width.

FIELD TYPE EXPLANATION

subtype number beginmath and endmath

attr node list of attributes

surround number width of the \mathsurround kern

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

The glue fields only kick in when the surround fields is zero.

9.2.8 glue nodes

Skips are about the only type of data objects in traditional TEX that are not a simple value. They

are inserted when TEX sees a space in the text flow but also by \hskip and \vskip. The structure

that represents the glue components of a skip internally is called a glue_spec. In LUAMETATEX

we don’t use the spec itself but just its values. A glue node has the fields: attr, font, leader,

shrink, shrink_order, stretch, stretch_order and width.

FIELD TYPE EXPLANATION

subtype number abovedisplayshortskip, abovedisplayskip, baselineskip, be-

lowdisplayshortskip, belowdisplayskip, cleaders, condi-

tionalmathskip, correctionskip, gleaders, indentskip, in-

termathskip, leaders, lefthangskip, leftskip, lineskip, math-

skip, medmuskip, muglue, parfillskip, parskip, righthangskip,

rightskip, spaceskip, splittopskip, tabskip, thickmuskip,

thinmuskip, topskip, userskip, xleaders and xspaceskip

attr node list of attributes

leader node pointer to a box or rule for leaders

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

Note that we use the key width in both horizontal and vertical glue. This suits the TEX internals

well so we decided to stick to that naming.

The effective width of some glue subtypes depends on the stretch or shrink needed to make

the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue

117Nodes

representing spaces and these stretch or shrink to make the content fit in the available space.

The effective_glue function that takes a glue node and a parent (hlist or vlist) returns the

effective width of that glue item. When you pass true as third argument the value will be

rounded.

9.2.9 glue_spec nodes

Internally LUAMETATEX (like its ancestors) also uses nodes to store data that is not seen in node

lists. For instance the state of expression scanning (\dimexpr etc.) and conditionals (\ifcase

etc.) is also kept in lists of nodes. A glue, which has five components, is stored in a node as

well, so, where most registers store just a number, a skip register (of internal quantity) uses a

pointer to a glue spec node. It has similar fields as glue nodes: shrink, shrink_order, stretch,

stretch_order and width, which is not surprising because in the past (and other engines than

LUATEX) a glue node also has its values stored in a glue spec. This has some advantages because

often the values are the same, so for instance spacing related skips were not resolved immedi-

ately but pointed to the current value of a space related internal register (like \spaceskip). But,

in LUATEX we do resolve these quantities immediately and we put the current values in the glue

nodes.

FIELD TYPE EXPLANATION

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

You will only find these nodes in a few places, for instance when you query an internal quantity.

In principle we could do without them as we have interfaces that use the five numbers instead.

For compatibility reasons we keep glue spec nodes exposed but this might change in the future.

9.2.10 kern nodes

The \kern command creates such nodes but for instance the font and math machinery can also

add them. There are not that many fields: attr, expansion_factor and kern.

FIELD TYPE EXPLANATION

subtype number accentkern, fontkern, italiccorrection, leftmarginkern, math-

listkern, rightmarginkern and userkern

attr node list of attributes

kern number fixed horizontal or vertical advance

expansion_factor number multiplier related to hz for font kerns

9.2.11 penalty nodes

The \penalty command is one that generates these nodes. It is one of the type of nodes often

found in vertical lists. It has the fields: attr and penalty.

Nodes118

FIELD TYPE EXPLANATION

subtype number afterdisplaypenalty, beforedisplaypenalty, equationnumberpenalty,

finalpenalty, linebreakpenalty, linepenalty, noadpenalty, userpenalty

and wordpenalty

attr node list of attributes

penalty number the penalty value

The subtypes are just informative and TEX itself doesn’t use them. When you run into an line-

breakpenalty you need to keep in mind that it’s a accumulation of club, widow and other rele-

vant penalties.

9.2.12 glyph nodes

These are probably themostly used nodes and although you can push them in the current list with

for instance \char TEX will normally do it for you when it considers some input to be text. Glyph

nodes are relatively large and have many fields: attr, char, data, depth, expansion_factor,

font, height, lang, left, right, state, uchyph, width, xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number bit field

attr node list of attributes

char number the character index in the font

font number the font identifier

lang number the language identifier

left number the frozen \lefthyphenmnin value

right number the frozen \righthyphenmnin value

uchyph boolean the frozen \uchyph value

state number a user field (replaces the component list)

xoffset number a virtual displacement in horizontal direction

yoffset number a virtual displacement in vertical direction

width number the (original) width of the character

height number the (original) height of the character

depth number the (original) depth of the character

expansion_factor number the to be applied expansion_factor

data number a general purpose field for users (we had room for it)

The width, height and depth values are read-only. The expansion_factor is assigned in the

par builder and used in the backend. Valid bits for the subtype field are:

BIT MEANING

0 character

1 ligature

2 ghost

3 left

4 right

119Nodes

The expansion_factor has been introduced as part of the separation between front- and back-

end. It is the result of extensive experiments with a more efficient implementation of expansion.

Early versions of LUATEX already replaced multiple instances of fonts in the backend by scaling

but contrary to PDFTEX in LUATEX we now also got rid of font copies in the frontend and replaced

them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is

also a step towards a better separation between front- and backend.

The is_char function checks if a node is a glyph node with a subtype still less than 256. This

function can be used to determine if applying font logic to a glyph node makes sense. The value

nil gets returned when the node is not a glyph, a character number is returned if the node is

still tagged as character and false gets returned otherwise. When nil is returned, the id is also

returned. The is_glyph variant doesn’t check for a subtype being less than 256, so it returns

either the character value or nil plus the id. These helpers are not always faster than separate

calls but they sometimes permit making more readable tests. The uses_font helpers takes a

node and font id and returns true when a glyph or disc node references that font.

9.2.13 boundary nodes

This node relates to the \noboundary, \boundary, \protrusionboundary and \wordboundary

primitives. These are small nodes: attr and data are the only fields.

FIELD TYPE EXPLANATION

subtype number cancel, protrusion, user and word

attr node list of attributes

data number values 0–255 are reserved

9.2.14 local_par nodes

This node is inserted at the start of a paragraph. You should not mess too much with this one.

Valid fields are: attr, box_left, box_left_width, box_right, box_right_width, dir, pen_bro-

ken and pen_inter.

FIELD TYPE EXPLANATION

attr node list of attributes

pen_inter number local interline penalty (from \localinterlinepenalty)

pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 9.2.15

box_left node the \localleftbox

box_left_width number width of the \localleftbox

box_right node the \localrightbox

box_right_width number width of the \localrightbox

A warning: never assign a node list to the box_left or box_right field unless you are sure its

internal link structure is correct, otherwise an error may result.

Nodes120

9.2.15 dir nodes

Direction nodes mark parts of the running text that need a change of direction and the \textdir

command generates them. Again this is a small node, we just have attr, dir and level.

FIELD TYPE EXPLANATION

subtype number cancel and normal

attr node list of attributes

dir string the direction (0 = l2r, 1 = r2l)

level number nesting level of this direction

There are only two directions: left-to-right (0) and right-to-left (1). This is different from LUATEX

that has four directions.

9.2.16 Whatsits

A whatsit node is a real simple one and it only has a subtype. It is even less than a user node

(which it actually could be) and uses hardly any memory. What you do with it it entirely up to

you: it’s is real minimalistic. You can assign a subtype and it has attributes. It is all up to the

user how they are handled.

9.2.17 Math noads

9.2.17.1 The concept

These are the so--called ‘noad’s and the nodes that are specifically associated with math pro-

cessing. When you enter a formula, TEX creates a node list with regular nodes and noads. Then

it hands over the list the math processing engine. The result of that is a nodelist without noads.

Most of the noads contain subnodes so that the list of possible fields is actually quite small. Math

formulas are both a linked list and a tree. For instance in 𝑒 = 𝑚𝑐2 there is a linked list e = m c

but the c has a superscript branch that itself can be a list with branches.

First, there are the objects (the TEXbook calls them ‘atoms’) that are associated with the sim-

ple math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcenter. These all

have the same fields, and they are combined into a single node type with separate subtypes for

differentiation: attr, nucleus, options, sub and sup.

Many object fields in math mode are either simple characters in a specific family or math lists or

node lists: math_char, math_text_char, sub_box and sub_mlist and delim. These are endpoints

and therefore the next and prev fields of these these subnodes are unused.

Some of the more elaborate noads have an option field. The values in this bitset are common:

MEANING BITS

set 0x08

internal 0x00 + 0x08

internal 0x01 + 0x08

axis 0x02 + 0x08

121Nodes

no axis 0x04 + 0x08

exact 0x10 + 0x08

left 0x11 + 0x08

middle 0x12 + 0x08

right 0x14 + 0x08

no subscript 0x21 + 0x08

no superscript 0x22 + 0x08

no script 0x23 + 0x08

9.2.17.2 math_char and math_text_char subnodes

These are the most common ones, as they represent characters, and they both have the same

fields: attr, char and fam.

FIELD TYPE EXPLANATION

attr node list of attributes

char number the character index

fam number the family number

The math_char is the simplest subnode field, it contains the character and family for a single

glyph object. The family eventually resolves on a reference to a font. The math_text_char

is a special case that you will not normally encounter, it arises temporarily during math list

conversion (its sole function is to suppress a following italic correction).

9.2.17.3 sub_box and sub_mlist subnodes

These two subnode types are used for subsidiary list items. For sub_box, the list points to a

‘normal’ vbox or hbox. For sub_mlist, the list points to a math list that is yet to be converted.

Their fields are: attr and head.

FIELD TYPE EXPLANATION

attr node list of attributes

list node list of nodes

A warning: never assign a node list to the list field unless you are sure its internal link structure

is correct, otherwise an error is triggered.

9.2.17.4 delim subnodes

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next

and prev fields are unused, but we do have: attr, large_char, large_fam, small_char and

small_fam.

FIELD TYPE EXPLANATION

attr node list of attributes

small_char number character index of base character

Nodes122

small_fam number family number of base character

large_char number character index of next larger character

large_fam number family number of next larger character

The fields large_char and large_fam can be zero, in that case the font that is set for the

small_fam is expected to provide the large version as an extension to the small_char.

9.2.17.5 simple noad nodes

In these noads, the nucleus, sub and sup fields can branch of. Its fields are: attr, nucleus,

options, sub and sup.

FIELD TYPE EXPLANATION

subtype number bin, close, inner, opdisplaylimits, open, oplimits, opnolimits,

ord, ordlimits, over, punct, rel, under and vcenter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

options number bitset of rendering options

9.2.17.6 accent nodes

Accent nodes deal with stuff on top or below a math constructs. They support: accent, attr,

bot_accent, fraction, nucleus, overlay_accent, sub, sup and top_accent.

FIELD TYPE EXPLANATION

subtype number bothflexible, fixedboth, fixedbottom and fixedtop

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

accent kernel node top accent

bot_accent kernel node bottom accent

fraction number larger step criterium (divided by 1000)

9.2.17.7 style nodes

These nodes are signals to switch to another math style. They are quite simple: attr and style.

Currently the subtype is actually used to store the style but don’t rely on that for the future.

Fields are: attr and style.

FIELD TYPE EXPLANATION

style string contains the style

Valid styles are: display (0), crampeddisplay (1), text (2), crampedtext (3), script (4),

crampedscript (5), scriptscript (6) and crampedscriptscript (7).

123Nodes

9.2.17.8 parameter nodes

These nodes are used to (locally) set math parameters: list, name, style and value. Fields are:

list, name, style and value.

FIELD TYPE EXPLANATION

style string contains the style

name string defines the parameter

value number holds the value, in case of a muglue multiple

9.2.17.9 choice nodes

Of its fields attr, display, script, scriptscript and text most are lists. Warning: never

assign a node list unless you are sure its internal link structure is correct, otherwise an error

can occur.

FIELD TYPE EXPLANATION

attr node list of attributes

display node list of display size alternatives

text node list of text size alternatives

script node list of scriptsize alternatives

scriptscript node list of scriptscriptsize alternatives

9.2.17.10 radical nodes

Radical nodes are the most complex as they deal with scripts as well as constructed large sym-

bols. Many fields: attr, degree, left, nucleus, options, sub, sup and width. Warning: never

assign a node list to the nucleus, sub, sup, left, or degree field unless you are sure its internal

link structure is correct, otherwise an error can be triggered.

FIELD TYPE EXPLANATION

subtype number radical, udelimiterover, udelimiterunder, uhextensible, uoverde-

limiter, uradical, uroot and uunderdelimiter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

left delimiter node

degree kernel node only set by \Uroot

width number required width

options number bitset of rendering options

9.2.17.11 fraction nodes

Fraction nodes are also used for delimited cases, hence the left and right fields among: attr,

denom, fam, left, middle, num, options, right and width.

Nodes124

FIELD TYPE EXPLANATION

attr node list of attributes

width number (optional) width of the fraction

num kernel node numerator

denom kernel node denominator

left delimiter node left side symbol

right delimiter node right side symbol

middle delimiter node middle symbol

options number bitset of rendering options

Warning: never assign a node list to the num, or denom field unless you are sure its internal link

structure is correct, otherwise an error can result.

9.2.17.12 fence nodes

Fence nodes come in pairs but either one can be a dummy (this period driven empty fence).

Fields are: attr, class, delim, depth, height, italic and options. Some of these fields are

used by the renderer and might get adapted in the process.

FIELD TYPE EXPLANATION

subtype number left, middle, no, right and unset

attr node list of attributes

delim delimiter node delimiter specification

italic number italic correction

height number required height

depth number required depth

options number bitset of rendering options

class number spacing related class

9.3 The node library

9.3.1 Introduction

The node library provides methods that facilitate dealing with (lists of) nodes and their values.

They allow you to create, alter, copy, delete, and insert node, the core objects within the typeset-

ter. Nodes are represented in LUA as userdata. The various parts within a node can be accessed

using named fields.

Each node has at least the three fields next, id, and subtype. The other available fields depend

on the id.

‣ The next field returns the userdata object for the next node in a linked list of nodes, or nil,

if there is no next node.

‣ The id indicates TEX’s ‘node type’. The field id has a numeric value for efficiency reasons,

but some of the library functions also accept a string value instead of id.

‣ The subtype is another number. It often gives further information about a node of a particular

id.

125Nodes

Nodes can be compared to each other, but: you are actually comparing indices into the node

memory. This means that equality tests can only be trusted under very limited conditions. It will

not work correctly in any situation where one of the two nodes has been freed and/or reallocated:

in that case, there will be false positives. The general approach to a node related callback is as

follows:

‣ Assume that the node list that you get is okay and properly double linked. If for some reason

the links are not right, you can apply node.slide to the list.

‣ When you insert a node, make sure you use a previously removed one, a new one or a copy.

Don’t simply inject the same node twice.

‣ When you remove a node, make sure that when this is permanent, you also free the node or

list.

‣ Although you can fool the system, normally you will trigger an error when you try to copy

a nonexisting node, or free an already freed node. There is some overhead involved in this

checking but the current compromise is acceptable.

‣ When you’re done, pass back (if needed) the result. It’s your responsibility to make sure that

the list is properly linked (you can play safe and again apply node.slide. In principle you

can put nodes in a list that are not acceptable in the following up actions. Some nodes get

ignored, others will trigger an error, and sometimes the engine will just crash.

So, from the above it will be clear thenmemory management of nodes has to be done explicitly by

the user. Nodes are not ‘seen’ by the LUA garbage collector, so you have to call the node freeing

functions yourself when you are no longer in need of a node (list). Nodes form linked lists without

reference counting, so you have to be careful that when control returns back to LUATEX itself,

you have not deleted nodes that are still referenced from a next pointer elsewhere, and that

you did not create nodes that are referenced more than once. Normally the setters and getters

handle this for you.

A good example are discretionary nodes that themselves have three sublists. Internally they use

special pointers, but the user never sees them because when you query them or set fields, this

property is hidden and taken care of. You just see a list. But, when you mess with these sub lists

it is your responsibility that it only contains nodes that are permitted in a discretionary.

There are statistics available with regards to the allocated node memory, which can be handy

for tracing. Normally the amount of used nodes is not that large. Typesetting a page can involve

thousands of them but most are freed when the page has been shipped out. Compared to other

programs, node memory usage is not that excessive. So, if for some reason your application

leaks nodes, if at the end of your run you lost as few hundred it’s not a real problem. In fact, if

you created boxes and made copies but not flushed them for good reason, your run will for sure

end with used nodes and the statistics will mention that. The same is true for attributes and

skips (glue spec nodes): keeping the current state involves using nodes.

9.3.2 Housekeeping

9.3.2.1 types

This function returns an array that maps node id numbers to node type strings, providing an

overview of the possible top-level id types.

Nodes126

<table> t = node.types()

When we issue this command, we get a table. The currently visible types are { [0] = "hlist",

"vlist", "rule", "ins", "mark", "adjust", "boundary", "disc", "whatsit", "lo-

cal_par", "dir", "math", "glue", "kern", "penalty", "style", "choice", "parameter",

"noad", "radical", "fraction", "accent", "fence", "math_char", "math_text_char",

"sub_box", "sub_mlist", "delim", "glyph", "unset", [34] = "attribute_list", [35]

= "attribute", [36] = "glue_spec", [37] = "temp", [38] = "page_insert", [39] =

"split_insert", } where the numbers are the internal identifiers. Only those nodes are

reported that make sense to users so there can be gaps in the range of numbers.

9.3.2.2 id and type

This converts a single type name to its internal numeric representation.

<number> id = node.id(<string> type)

The node.id("glyph") command returns the number 28 and node.id("hlist") returns 0

where the numbers don’t relate to importance or some ordering; they just appear in the order

that is handy for the engine. Commands like this are rather optimized so performance should

be ok but you can of course always store the id in a LUA number.

The reverse operation is: node.type If the argument is a number, then the next function converts

an internal numeric representation to an external string representation. Otherwise, it will return

the string node if the object represents a node, and nil otherwise.

<string> type = node.type(<any> n)

The node.type(4) command returns the string hlist and node.id(99) returns nil because

there is no node with that id.

9.3.2.3 fields and has_field

This function returns an indexed table with valid field names for a particular type of node.

<table> t = node.fields(<number|string> id)

The function accepts a string or number, so node.fields ("glyph") returns { [-1]

= "prev", [0] = "next", "id", "subtype", "attr", "char", "font", "lang", "left",

"right", "uchyph", "state", "xoffset", "yoffset", "width", "height", "depth", "ex-

pansion_factor", "data", } and node.fields (12) gives { [-1] = "prev", [0] = "next",

"id", "subtype", "attr", "leader", "width", "stretch", "shrink", "stretch_order",

"shrink_order", "font", }.

The has_field function returns a boolean that is only true if n is actually a node, and it has the

field.

<boolean> t = node.has_field(<node> n, <string> field)

This function probably is not that useful but some nodes don’t have a subtype, attr or prev field

and this is a way to test for that.

127Nodes

9.3.2.4 is_node

<boolean|integer> t = node.is_node(<any> item)

This function returns a number (the internal index of the node) if the argument is a userdata

object of type <node> and false when no node is passed.

9.3.2.5 new

The new function creates a new node. All its fields are initialized to either zero or nil except

for id and subtype. Instead of numbers you can also use strings (names). If you pass a second

argument the subtype will be set too.

<node> n = node.new(<number|string> id)

<node> n = node.new(<number|string> id, <number|string> subtype)

As already has been mentioned, you are responsible for making sure that nodes created this way

are used only once, and are freed when you don’t pass them back somehow.

9.3.2.6 free, flush_node and flush_list

The next one frees node n from TEX’s memory. Be careful: no checks are done on whether this

node is still pointed to from a register or some next field: it is up to you to make sure that the

internal data structures remain correct. Fields that point to nodes or lists are flushed too. So,

when you used their content for something else you need to set them to nil first.

<node> next = node.free(<node> n)

flush_node(<node> n)

The free function returns the next field of the freed node, while the flush_node alternative

returns nothing.

A list starting with node n can be flushed from TEX’s memory too. Be careful: no checks are

done on whether any of these nodes is still pointed to from a register or some next field: it is up

to you to make sure that the internal data structures remain correct.

node.flush_list(<node> n)

When you free for instance a discretionary node, flush_list is applied to the pre, post, replace

so you don’t need to do that yourself. Assigning them nil won’t free those lists!

9.3.2.7 copy and copy_list

This creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.

Only the next field is not copied.

<node> m = node.copy(<node> n)

A deep copy of the node list that starts at n can be created too. If m is also given, the copy stops

just before node m.

Nodes128

<node> m = node.copy_list(<node> n)

<node> m = node.copy_list(<node> n, <node> m)

Note that you cannot copy attribute lists this way. However, there is normally no need to copy

attribute lists as when you do assignments to the attr field or make changes to specific attrib-

utes, the needed copying and freeing takes place automatically. When you change a value of an

attribute in a list, it will affect all the nodes that share that list.

9.3.2.8 write

node.write(<node> n)

This function will append a node list to TEX’s ‘current list’. The node list is not deep-copied!

There is no error checking either! You might need to enforce horizontal mode in order for this

to work as expected.

9.3.3 Manipulating lists

9.3.3.1 slide

This helper makes sure that the node list is double linked and returns the found tail node.

<node> tail = node.slide(<node> n)

After some callbacks automatic sliding takes place. This feature can be turned off with

node.fix_node_lists(false) but you better make sure then that you don’t mess up lists. In

most cases TEX itself only uses next pointers but your other callbacks might expect proper prev

pointers too. Future versions of LUATEX can add more checking but this will not influence usage.

9.3.3.2 tail

<node> m = node.tail(<node> n)

Returns the last node of the node list that starts at n.

9.3.3.3 length and count

<number> i = node.length(<node> n)

<number> i = node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it

stops at m instead of at the end of the list. The node m is not counted.

<number> i = node.count(<number> id, <node> n)

<number> i = node.count(<number> id, <node> n, <node> m)

129Nodes

Returns the number of nodes contained in the node list that starts at n that have a matching id

field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not

counted. This function also accept string id’s.

9.3.3.4 remove

<node> head, current, removed =

node.remove(<node> head, <node> current)

<node> head, current =

node.remove(<node> head, <node> current, <boolean> true)

This function removes the node current from the list following head. It is your responsibility

to make sure it is really part of that list. The return values are the new head and current

nodes. The returned current is the node following the current in the calling argument, and

is only passed back as a convenience (or nil, if there is no such node). The returned head is

more important, because if the function is called with current equal to head, it will be changed.

When the third argument is passed, the node is freed.

9.3.3.5 insert_before

<node> head, new = node.insert_before(<node> head, <node> current, <node> new)

This function inserts the node new before current into the list following head. It is your respon-

sibility to make sure that current is really part of that list. The return values are the (potentially

mutated) head and the node new, set up to be part of the list (with correct next field). If head is

initially nil, it will become new.

9.3.3.6 insert_after

<node> head, new = node.insert_after(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon-

sibility to make sure that current is really part of that list. The return values are the head and

the node new, set up to be part of the list (with correct next field). If head is initially nil, it will

become new.

9.3.3.7 last_node

<node> n = node.last_node()

This function pops the last node from TEX’s ‘current list’. It returns that node, or nil if the

current list is empty.

9.3.3.8 traverse

<node> t, id, subtype = node.traverse(<node> n)

Nodes130

This is a LUA iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

...

end

is functionally equivalent to:

do

local n

local function f (head,var)

local t

if var == nil then

t = head

else

t = var.next

end

return t

end

while true do

n = f (head, n)

if n == nil then break end

...

end

end

It should be clear from the definition of the function f that even though it is possible to add or

remove nodes from the node list while traversing, you have to take great care to make sure all

the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the LUA Reference Manual.

9.3.3.9 traverse_id

<node> t, subtype = node.traverse_id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching

id field.

See the previous section for details. The change is in the local function f, which now does an

extra while loop checking against the upvalue id:

local function f(head,var)

local t

if var == nil then

t = head

else

t = var.next

end

131Nodes

while not t.id == id do

t = t.next

end

return t

end

9.3.3.10 traverse_char and traverse_glyph

The traverse_char iterator loops over the glyph nodes in a list. Only nodes with a subtype less

than 256 are seen.

<node> n, font, char = node.traverse_char(<node> n)

The traverse_glyph iterator loops over a list and returns the list and filters all glyphs:

<node> n, font, char = node.traverse_glyph(<node> n)

9.3.3.11 traverse_list

This iterator loops over the hlist and vlist nodes in a list.

<node> n, id, subtype, list = node.traverse_list(<node> n)

The four return values can save some time compared to fetching these fields but in practice you

seldom need them all. So consider it a (side effect of experimental) convenience.

9.3.3.12 find_node

This helper returns the location of the first match at or after node n:

<node> n = node.find_node(<node> n, <integer> subtype)

<node> n, subtype = node.find_node(<node> n)

9.3.4 Glue handling

9.3.4.1 setglue

You can set the five properties of a glue in one go. If a non-numeric value is passed the property

becomes zero.

node.setglue(<node> n)

node.setglue(<node> n,width,stretch,shrink,stretch_order,shrink_order)

When you pass values, only arguments that are numbers are assigned so

node.setglue(n,655360,false,65536)

will only adapt the width and shrink.

Nodes132

When a list node is passed, you set the glue, order and sign instead.

9.3.4.2 getglue

The next call will return 5 values or nothing when no glue is passed.

<integer> width, <integer> stretch, <integer> shrink, <integer> stretch_order,

<integer> shrink_order = node.getglue(<node> n)

When the second argument is false, only the width is returned (this is consistent with tex.get).

When a list node is passed, you get back the glue that is set, the order of that glue and the sign.

9.3.4.3 is_zero_glue

This function returns true when the width, stretch and shrink properties are zero.

<boolean> isglue = node.is_zero_glue(<node> n)

9.3.5 Attribute handling

9.3.5.1 Attributes

Assignments to attributes registers result in assigning lists with set attributes to nodes and the

implementation is non-trivial because the value that is attached to a node is essentially a (sorted)

sparse array of key-value pairs. It is generally easiest to deal with attribute lists and attributes

by using the dedicated functions in the node library.

9.3.5.2 attribute_list nodes

An attribute_list item is used as a head pointer for a list of attribute items. It has only one

user-visible field:

FIELD TYPE EXPLANATION

next node pointer to the first attribute

9.3.5.3 attr nodes

A normal node’s attribute field will point to an item of type attribute_list, and the next field

in that item will point to the first defined ‘attribute’ item, whose next will point to the second

‘attribute’ item, etc.

FIELD TYPE EXPLANATION

next node pointer to the next attribute

number number the attribute type id

value number the attribute value

133Nodes

As mentioned it’s better to use the official helpers rather than edit these fields directly. For

instance the prev field is used for other purposes and there is no double linked list.

9.3.5.4 current_attr

This returns the currently active list of attributes, if there is one.

<node> m = node.current_attr()

The intended usage of current_attr is as follows:

local x1 = node.new("glyph")

x1.attr = node.current_attr()

local x2 = node.new("glyph")

x2.attr = node.current_attr()

or:

local x1 = node.new("glyph")

local x2 = node.new("glyph")

local ca = node.current_attr()

x1.attr = ca

x2.attr = ca

The attribute lists are ref counted and the assignment takes care of incrementing the refcount.

You cannot expect the value ca to be valid any more when you assign attributes (using tex.se-

tattribute) or when control has been passed back to TEX.

9.3.5.5 has_attribute

<number> v = node.has_attribute(<node> n, <number> id)

<number> v = node.has_attribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value

matches val. It returns the value, or, if no match is found, nil.

9.3.5.6 get_attribute

<number> v = node.get_attribute(<node> n, <number> id)

Tests if a node has an attribute with number id set. It returns the value, or, if no match is found,

nil. If no id is given then the zero attributes is assumed.

9.3.5.7 find_attribute

<number> v, <node> n = node.find_attribute(<node> n, <number> id)

Finds the first node that has attribute with number id set. It returns the value and the node if

there is a match and otherwise nothing.

Nodes134

9.3.5.8 set_attribute

node.set_attribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

9.3.5.9 unset_attribute

<number> v =

node.unset_attribute(<node> n, <number> id)

<number> v =

node.unset_attribute(<node> n, <number> id, <number> val)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation

if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

9.3.6 Glyph handling

9.3.6.1 first_glyph

<node> n = node.first_glyph(<node> n)

<node> n = node.first_glyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is

a glyph, or nil. If m is given, processing stops at (but including) that node, otherwise processing

stops at the end of the list.

9.3.6.2 is_char and is_glyph

The subtype of a glyph node signals if the glyph is already turned into a character reference or

not.

<boolean> b = node.is_char(<node> n)

<boolean> b = node.is_glyph(<node> n)

9.3.6.3 has_glyph

This function returns the first glyph or disc node in the given list:

<node> n = node.has_glyph(<node> n)

9.3.6.4 ligaturing

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n, <node> m)

135Nodes

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned

nodes h and t are the new head and tail (both n and m can change into a new ligature).

9.3.6.5 kerning

<node> h, <node> t, <boolean> success = node.kerning(<node> n)

<node> h, <node> t, <boolean> success = node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified node list. The tail node m is optional. The two returned

nodes h and t are the head and tail (either one of these can be an inserted kern node, because

special kernings with word boundaries are possible).

9.3.6.6 unprotect_glyph[s]

node.unprotect_glyph(<node> n)

node.unprotect_glyphs(<node> n,[<node> n])

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to con-

vert from characters to glyphs during node processing. The second argument is optional and

indicates the end of a range.

9.3.6.7 protect_glyph[s]

node.protect_glyph(<node> n)

node.protect_glyphs(<node> n,[<node> n])

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,

it adds only 255. The special handling of 1 means that characters will become glyphs after

subtraction of 256. A single character can be marked by the singular call. The second argument

is optional and indicates the end of a range.

9.3.6.8 protrusion_skippable

<boolean> skippable = node.protrusion_skippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,

this node can be skipped.

9.3.6.9 check_discretionary, check_discretionaries

When you fool around with disc nodes you need to be aware of the fact that they have a special

internal data structure. As long as you reassign the fields when you have extended the lists it’s

ok because then the tail pointers get updated, but when you add to list without reassigning you

might end up in trouble when the linebreak routine kicks in. You can call this function to check

the list for issues with disc nodes.

node.check_discretionary(<node> n)

Nodes136

node.check_discretionaries(<node> head)

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it

also checks if the node is a disc node).

9.3.6.10 flatten_discretionaries

This function will remove the discretionaries in the list and inject the replace field when set.

<node> head, count = node.flatten_discretionaries(<node> n)

9.3.7 Packaging

9.3.7.1 hpack

This function creates a new hlist by packaging the list that begins at node n into a horizontal

box. With only a single argument, this box is created using the natural width of its components.

In the three argument form, infomust be either additional or exactly, and w is the additional

(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness

of the generated box.

<node> h, <number> b =

node.hpack(<node> n)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info, <string> dir)

Caveat: there can be unexpected side-effects to this function, like updating some of the \marks

and \inserts. Also note that the content of h is the original node list n: if you call node.free(h)

you will also free the node list itself, unless you explicitly set the list field to nil beforehand.

And in a similar way, calling node.free(n) will invalidate h as well!

9.3.7.2 vpack

This function creates a new vlist by packaging the list that begins at node n into a vertical box.

With only a single argument, this box is created using the natural height of its components. In

the three argument form, info must be either additional or exactly, and w is the additional

(\vbox spread) or exact (\vbox to) height to be used.

<node> h, <number> b =

node.vpack(<node> n)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info, <string> dir)

137Nodes

The second return value is the badness of the generated box. See the description of hpack for a

few memory allocation caveats.

9.3.7.3 prepend_prevdepth

This function is somewhat special in the sense that it is an experimental helper that adds the

interlinespace to a line keeping the baselineskip and lineskip into account.

<node> n, <number> delta =

node.prepend_prevdepth(<node> n,<number> prevdepth)

9.3.7.4 dimensions, rangedimensions, naturalwidth

<number> w, <number> h, <number> d =

node.dimensions(<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<node> n, <node> t)

This function calculates the natural in-line dimensions of the node list starting at node n and

terminating just before node t (or the end of the list, if there is no second argument). The

return values are scaled points. An alternative format that starts with glue parameters as the

first three arguments is also possible:

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n, <node> t)

This calling method takes glue settings into account and is especially useful for finding the actual

width of a sublist of nodes that are already boxed, for example in code like this, which prints the

width of the space in between the a and b as it would be if \box0 was used as-is:

\setbox0 = \hbox to 20pt {a b}

\directlua{print (node.dimensions(

tex.box[0].glue_set,

tex.box[0].glue_sign,

tex.box[0].glue_order,

tex.box[0].head.next,

node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TEX where floats are used, which

means that you can get small differences in rounding when you compare the width reported by

hpack with dimensions.

The second alternative saves a few lookups and can be more convenient in some cases:

Nodes138

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first)

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first, <node> last)

A simple and somewhat more efficient variant is this:

<number> w =

node.naturalwidth(<node> start, <node> stop)

9.3.8 Math

9.3.8.1 mlist_to_hlist

<node> h =

node.mlist_to_hlist(<node> n, <string> display_type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal

list h. The interface is exactly the same as for the callback mlist_to_hlist.

9.3.8.2 end_of_math

<node> t = node.end_of_math(<node> start)

Looks for and returns the next math_node following the start. If the given node is a math end

node this helper returns that node, else it follows the list and returns the next math endnote. If

no such node is found nil is returned.

9.4 Two access models

Deep down in TEX a node has a number which is a numeric entry in a memory table. In fact, this

model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks

that operate on nodes is quite fast too. Each node gets a number that is in fact an index in the

memory table and that number often is reported when you print node related information. You

go from userdata nodes and there numeric references and back with:

<integer> d = node.todirect(<node> n))

<node> n = node.tonode(<integer> d))

The userdata model is rather robust as it is a virtual interface with some additional checking

while themore direct access which uses the node numbers directly. However, even with userdata

you can get into troubles when you free nodes that are no longer allocated or mess up lists. if

you apply tostring to a node you see its internal (direct) number and id.

The first model provides key based access while the second always accesses fields via functions:

nodeobject.char

139Nodes

getfield(nodenumber,"char")

If you use the direct model, even if you know that you deal with numbers, you should not depend

on that property but treat it as an abstraction just like traditional nodes. In fact, the fact that we

use a simple basic datatype has the penalty that less checking can be done, but less checking

is also the reason why it’s somewhat faster. An important aspect is that one cannot mix both

methods, but you can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct

one when speed might be a real issue. For that reason LUATEX also provide the get* and set*

functions in the top level node namespace. There is a limited set of getters. When implementing

this direct approach the regular index by key variant was also optimized, so direct access only

makes sense when nodes are accessed millions of times (which happens in some font processing

for instance).

We’re talking mostly of getters because setters are less important. Documents have not that

many content related nodes and setting many thousands of properties is hardly a burden con-

trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next

if next then

-- do something

end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being

called. In practice it boils down to looking up the node type and based on the node type checking

for the field name. In a worst case you have a node type that sits at the end of the lookup list and

a field that is last in the lookup chain. However, in successive versions of LUATEX these lookups

have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.

The next code does the same and performs a tiny bit faster (but not that much because it is still

a function call but one that knows what to look up).

local next = node.next(current)

if next then

-- do something

end

In the direct namespace there are more helpers and most of them are accompanied by setters.

The getters and setters are clever enough to see what node is meant. We don’t deal with whatsit

nodes: their fields are always accessed by name. It doesn’t make sense to add getters for all

fields, we just identifier the most likely candidates. In complex documents, many node and fields

types never get seen, or seen only a few times, but for instance glyphs are candidates for such

optimization. The node.direct interface has some more helpers.4

4 We can define the helpers in the node namespace with getfield which is about as efficient, so at some point we might

provide that as module.

Nodes140

The setdisc helper takes three (optional) arguments plus an optional fourth indicating the sub-

type. Its getdisc takes an optional boolean; when its value is true the tail nodes will also be

returned. The setfont helper takes an optional second argument, it being the character. The

directmode setter setlink takes a list of nodes and will link them, thereby ignoring nil entries.

The first valid node is returned (beware: for good reason it assumes single nodes). For rarely

used fields no helpers are provided and there are a few that probably are used seldom too but

were added for consistency. You can of course always define additional accessors using get-

field and setfield with little overhead. When the second argument of setattributelist is

true the current attribute list is assumed.

The reverse function reverses a given list. The exchange function swaps two nodes; it takes

upto three arguments: a head node, and one or two to be swapped nodes. When there is no

third argument, it will assume that the node following node is to be used. So we have:

head = node.direct.reverse(head)

head = node.direct.exchange(head,first,[second])

In CONTEXT some of the not performance-critical userdata variants are emulated in LUA and not

in the engine, so we retain downward compatibility.

FUNCTION NODE DIRECTemulated

check_discretionaries − + +
check_discretionary − + +
copy + +
copy_list + +
count − + +
current_attr + +
dimensions − + +
effective_glue − + +
end_of_math − + +
find_attribute − + +
first_glyph − + +
flatten_discretionaries − + +
flush_list + +
flush_node + +
free + +
get_attribute + +
get_properties_table + +
get_synctex_fields − +
getattributelist − +
getboth − +
getbox − +
getchar − +
getstate − +
getdata − +
getdepth − +
getdirection − +
getdisc − +

141Nodes

getexpansion − +
getfam − +
getfield + +
getfont − +
getglue − + +
getheight − +
getid − +
getkern − +
getlang − +
getleader − +
getlist − +
getnext − +
getnormalizedline − +
getnucleus − +
getoffsets − +
getorientation − +
getpenalty − +
getpost − +
getpre − +
getprev − +
getproperty + +
getreplace − +
getshift − +
getsub − +
getsubtype − +
getsup − +
getwhd − +
getwidth − +
has_attribute + +
has_dimensions − +
has_field + +
has_glyph − + +
hpack − + +
insert_after + +
insert_before + +
is_char − +
is_direct − +
is_glyph − +
is_node + +
is_valid − +
is_zero_glue − + +
kerning − + +
last_node − + +
length − + +
ligaturing − + +
make_extensible − + +

Nodes142

mlist_to_hlist − + +
naturalwidth − + +
new + +
prepend_prevdepth − + +
protect_glyphs − + +
protect_glyph − + +
protrusion_skippable − + +
rangedimensions − + +
remove + +
set_attribute + +
set_synctex_fields − +
setattributelist − +
setboth − +
setbox − +
setchar − +
setstate − +
setdata − +
setdepth − +
setdirection − +
setdisc − +
setexpansion − +
setfam − +
setfield + +
setfont − +
setglue + +
setheight − +
setkern − +
setlang − +
setleader − +
setlink − +
setlist − +
setnext − +
setnucleus − +
setoffsets − +
setorientation − +
setpenalty − +
setprev − +
setproperty + +
setshift − +
setsplit − +
setsub − +
setsubtype − +
setsup − +
setwhd − +
setwidth − +
slide − + +

143Nodes

reverse − +
exchange − +
start_of_par − +
subtype − −
tail + +
todirect − +
tonode − +
tostring + −
traverse + +
traverse_char + +
traverse_glyph + +
traverse_id + +
traverse_list + +
type + −
unprotect_glyphs − + +
unprotect_glyph − + +
unset_attribute + +
usedlist − + +
uses_font − + +
vpack − + +
write + +

The node.next and node.prev functions will stay but for consistency there are variants called

getnext and getprev. We had to use get because node.id and node.subtype are already taken

for providing meta information about nodes. Note: The getters do only basic checking for valid

keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some of the getters and setters handle multiple node types, given that the field is relevant. In

that case, some field names are considered similar (like kern and width, or data and value). In

retrospect we could have normalized field names better but we decided to stick to the original

(internal) names as much as possible. After all, at the LUA end one can easily create synonyms.

Some nodes have indirect references. For instance a math character refers to a family instead

of a font. In that case we provide a virtual font field as accessor. So, getfont and .font can be

used on them. The same is true for the width, height and depth of glue nodes. These actually

access the spec node properties, and here we can set as well as get the values.

In some places LUATEX can do a bit of extra checking for valid node lists and you can enable that

with:

node.fix_node_lists(<boolean> b)

You can set and query the SYNCTEX fields, a file number aka tag and a line number, for a glue,

kern, hlist, vlist, rule and math nodes as well as glyph nodes (although this last one is not used

in native SYNCTEX).

node.set_synctex_fields(<integer> f, <integer> l)

<integer> f, <integer> l =

node.get_synctex_fields(<node> n)

Nodes144

Of course you need to know what you’re doing as no checking on sane values takes place. Also,

the synctex interpreter used in editors is rather peculiar and has some assumptions (heuristics).

9.5 Normalization

As an experiment the lines resulting from paragraph construction can be normalized. There are

several modes, that can be set and queried with:

node.direct.setnormalize(<integer> n)

<integer> n = node.direct.getnormalize()

The state of a line (a hlist) can be queried with:

<integer> leftskip, <integer> rightskip,

<integer> lefthangskip, <integer> righthangskip,

<node> head, <node> tail,

<integer> parindent, <integer> parfillskip = node.direct.getnormalized()

The modes accumulate, so mode 4 includes 1 upto 3:

VALUE EXPLANATION

1 left and right skips and directions

2 indentation and parfill skip

3 hanging indentation and par shapes

4 idem but before left and right skips

5 inject compensation for overflow

This is experimental code and might take a while to become frozen.

9.6 Properties

Attributes are a convenient way to relate extra information to a node. You can assign them at

the TEX end as well as at the LUA end and consult them at the LUA end. One big advantage is that

they obey grouping. They are linked lists and normally checking for them is pretty efficient, even

if you use a lot of them. A macro package has to provide some way to manage these attributes

at the TEX end because otherwise clashes in their usage can occur.

Each node also can have a properties table and you can assign values to this table using the

setproperty function and get properties using the getproperty function. Managing properties

is way more demanding than managing attributes.

Take the following example:

\directlua {

local n = node.new("glyph")

node.setproperty(n,"foo")

print(node.getproperty(n))

145Nodes

node.setproperty(n,"bar")

print(node.getproperty(n))

node.free(n)

}

This will print foo and bar which in itself is not that useful when multiple mechanisms want to

use this feature. A variant is:

\directlua {

local n = node.new("glyph")

node.setproperty(n,{ one = "foo", two = "bar" })

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

This time we store two properties with the node. It really makes sense to have a table as property

because that way we can store more. But in order for that to work well you need to do it this

way:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.one = "foo"

t.two = "bar"

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

Here our own properties will not overwrite other users properties unless of course they use the

same keys. So, eventually you will end up with something:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

Nodes146

if not t then

t = { }

node.setproperty(n,t)

end

t.myself = { one = "foo", two = "bar" }

print(node.getproperty(n).myself.one)

print(node.getproperty(n).myself.two)

node.free(n)

}

This assumes that only you use myself as subtable. The possibilities are endless but care is

needed. For instance, the generic font handler that ships with CONTEXT uses the injections

subtable and you should not mess with that one!

There are a few helper functions that you normally should not touch as user: flush_proper-

ties_table will wipe the table (normally a bad idea), get_properties_table and will give the

table that stores properties (using direct entries) and you can best not mess too much with that

one either because LUATEX itself will make sure that entries related to nodes will get wiped when

nodes get freed, so that the LUA garbage collector can do its job. In fact, the main reason why

we have this mechanism is that it saves the user (or macro package) some work. One can easily

write a property mechanism in LUA where after a shipout properties gets cleaned up but it’s not

entirely trivial to make sure that with each freed node also its properties get freed, due to the

fact that there can be nodes left over for a next page. And having a callback bound to the node

deallocator would add way to much overhead.

When we copy a node list that has a table as property, there are several possibilities: we do the

same as a new node, we copy the entry to the table in properties (a reference), we do a deep copy

of a table in the properties, we create a new table and give it the original one as a metatable.

After some experiments (that also included timing) with these scenarios we decided that a deep

copy made no sense, nor did nilling. In the end both the shallow copy and the metatable variant

were both ok, although the second one is slower. The most important aspect to keep in mind is

that references to other nodes in properties no longer can be valid for that copy. We could use

two tables (one unique and one shared) or metatables but that only complicates matters.

When defining a new node, we could already allocate a table but it is rather easy to do that at

the lua end e.g. using a metatable __indexmethod. That way it is under macro package control.

When deleting a node, we could keep the slot (e.g. setting it to false) but it could make memory

consumption raise unneeded when we have temporary large node lists and after that only small

lists. Both are not done.

So in the end this is what happens now: when a node is copied, and it has a table as property, the

new node will share that table. If the second argument of set_properties_mode is true then a

metatable approach is chosen: the copy gets its own table with the original table as metatable.

If you use the generic font loader the mode is enabled that way.

A few more experiments were done. For instance: copy attributes to the properties so that we

have fast access at the LUA end. In the end the overhead is not compensated by speed and

convenience, in fact, attributes are not that slow when it comes to accessing them. So this was

rejected.

147Nodes

Another experiment concerned a bitset in the node but again the gain compared to attributes

was neglectable and given the small amount of available bits it also demands a pretty strong

agreement over what bit represents what, and this is unlikely to succeed in the TEX community.

It doesn’t pay off.

Just in case one wonders why properties make sense: it is not so much speed that we gain,

but more convenience: storing all kinds of (temporary) data in attributes is no fun and this

mechanismmakes sure that properties are cleaned up when a node is freed. Also, the advantage

of a more or less global properties table is that we stay at the LUA end. An alternative is to store

a reference in the node itself but that is complicated by the fact that the register has some

limitations (no numeric keys) and we also don’t want to mess with it too much.

Nodes148

149LUA callbacks

10 LUA callbacks

10.1 Registering callbacks

This library has functions that register, find and list callbacks. Callbacks are LUA functions

that are called in well defined places. There are two kinds of callbacks: those that mix with

existing functionality, and those that (when enabled) replace functionality. In mosty cases the

second category is expected to behave similar to the built in functionality because in a next step

specific data is expected. For instance, you can replace the hyphenation routine. The function

gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used

for constructing a paragraph. Another function can replace the ligature builder and/or kerner.

Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id = callback.register(<string> callback_name, <function> func)

id = callback.register(<string> callback_name, nil)

id = callback.register(<string> callback_name, false)

Here the callback_name is a predefined callback name, see below. The function returns the

internal id of the callback or nil, if the callback could not be registered.

LUATEX internalizes the callback function in such a way that it does not matter if you redefine a

function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function

for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,

doing so will prevent LUATEX from executing whatever it would execute by default (when no

callback function is registered at all). Be warned: this may cause all sorts of grief unless you

know exactly what you are doing!

<table> info =

callback.list()

The keys in the table are the known callback names, the value is a boolean where true means

that the callback is currently set (active).

<function> f = callback.find(callback_name)

If the callback is not set, find returns nil. The known function can be used to check if a callback

is supported.

if callback.known("foo") then ... end

10.2 File related callbacks

The behaviour documented in this subsection is considered stable in the sense that there will

not be backward-incompatible changes any more.

LUA callbacks150

10.2.1 find_read_file

Your callback function should have the following conventions:

<string> actual_name =

function (<number> id_number, <string> asked_name)

Arguments:

id_number

This number is zero for the log or \input files. For TEX’s \read or \write the number is

incremented by one, so \read0 becomes 1.

asked_name

This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

actual_name

This is the filename used. For the very first file that is read in by TEX, you have to make sure

you return an actual_name that has an extension and that is suitable for use as jobname. If

you don’t, you will have to manually fix the name of the log file and output file after LUATEX

is finished, and an eventual format filename will become mangled. That is because these file

names depend on the jobname.

You have to return nil if the file cannot be found.

10.2.2 find_data_file

Your callback function should have the following conventions:

<string> actual_name =

function (<string> asked_name)

Return nil if the file cannot be found.

10.2.3 find_format_file

Your callback function should have the following conventions:

<string> actual_name =

function (<string> asked_name)

The asked_name is a format file for reading (the format file for writing is always opened in the

current directory).

10.2.4 open_read_file

Your callback function should have the following conventions:

<table> env =

151LUA callbacks

function (<string> file_name)

Argument:

file_name

The filename returned by a previous find_read_file or the return value of

kpse.find_file() if there was no such callback defined.

Return value:

env

This is a table containing at least one required and one optional callback function for this file.

The required field is reader and the associated function will be called once for each new line

to be read, the optional one is close that will be called once when LUATEX is done with the

file.

LUATEX never looks at the rest of the table, so you can use it to store your private per-file

data. Both the callback functions will receive the table as their only argument.

10.2.4.1 reader

LUATEX will run this function whenever it needs a new input line from the file.

function(<table> env)

return <string> line

end

Your function should return either a string or nil. The value nil signals that the end of file has

occurred, and will make TEX call the optional close function next.

10.2.4.2 close

LUATEX will run this optional function when it decides to close the file.

function(<table> env)

end

Your function should not return any value.

10.3 Data processing callbacks

10.3.1 process_jobname

This callback allows you to change the jobname given by \jobname in TEX and tex.jobname in

Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)

return <string> adjusted_jobname

LUA callbacks152

end

The only argument is the actual job name; you should not use tex.jobname inside this function

or infinite recursion may occur. If you return nil, LUATEX will pretend your callback never

happened. This callback does not replace any internal code.

10.4 Node list processing callbacks

The description of nodes and node lists is in chapter 9.

10.4.1 contribute_filter

This callback is called when LUATEX adds contents to list:

function(<string> extrainfo)

end

The string reports the group code. From this you can deduce from what list you can give a treat.

VALUE EXPLANATION

pre_box interline material is being added

pre_adjust \vadjust material is being added

box a typeset box is being added (always called)

adjust \vadjust material is being added

10.4.2 buildpage_filter

This callback is called whenever LUATEX is ready to move stuff to the main vertical list. You can

use this callback to do specialized manipulation of the page building stage like imposition or

column balancing.

function(<string> extrainfo)

end

The string extrainfo gives some additional information about what TEX’s state is with respect

to the ‘current page’. The possible values for the buildpage_filter callback are:

VALUE EXPLANATION

alignment a (partial) alignment is being added

after_output an output routine has just finished

new_graf the beginning of a new paragraph

vmode_par \par was found in vertical mode

hmode_par \par was found in horizontal mode

insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts

153LUA callbacks

after_display a display is finished

end LUATEX is terminating (it’s all over)

10.4.3 build_page_insert

This callback is called when the pagebuilder adds an insert. There is not much control over this

mechanism but this callback permits some last minute manipulations of the spacing before an

insert, something that might be handy when for instance multiple inserts (types) are appended

in a row.

function(<number> n, <number> i)

return <number> register

end

with

VALUE EXPLANATION

n the insert class

i the order of the insert

The return value is a number indicating the skip register to use for the prepended spacing. This

permits for instance a different top space (when i equals one) and intermediate space (when i

is larger than one). Of course you can mess with the insert box but you need to make sure that

LUATEX is happy afterwards.

10.4.4 pre_linebreak_filter

This callback is called just before LUATEX starts converting a list of nodes into a stack of \hboxes,

after the addition of \parfillskip.

function(<node> head, <string> groupcode)

return true | false | <node> newhead

end

The string called groupcode identifies the nodelist’s context within TEX’s processing. The range

of possibilities is given in the table below, but not all of those can actually appear in pre_line-

break_filter, some are for the hpack_filter and vpack_filter callbacks that will be ex-

plained in the next two paragraphs.

VALUE EXPLANATION

<empty> main vertical list

hbox \hbox in horizontal mode

adjusted_hbox \hbox in vertical mode

vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

LUA callbacks154

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox

split_off top of a \vsplit

split_keep remainder of a \vsplit

align_set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

‣ boolean true signals successful processing

‣ <node> signals that the ‘head’ node should be replaced by the returned node

‣ boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

10.4.5 linebreak_filter

This callback replaces LUATEX’s line breaking algorithm.

function(<node> head, <boolean> is_display)

return <node> newhead

end

The returned node is the head of the list that will be added to the main vertical list, the boolean

argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LUATEX will apply the internal linebreak algorithm

on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head

of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent

an \hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up

in an unfixable ‘deadcycles loop’.

10.4.6 append_to_vlist_filter

This callback is called whenever LUATEX adds a box to a vertical list (the mirrored argument is

obsolete):

function(<node> box, <string> locationcode, <number> prevdepth)

return list [, prevdepth [, checkdepth]]

end

It is ok to return nothing or nil in which case you also need to flush the box or deal with it your-

self. The prevdepth is also optional. Locations are box, alignment, equation, equation_number

and post_linebreak. When the third argument returned is true the normal prevdepth correc-

tion will be applied, based on the first node.

155LUA callbacks

10.4.7 post_linebreak_filter

This callback is called just after LUATEX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)

return true | false | <node> newhead

end

This callback does not replace any internal code.

10.4.8 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math

items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,

<string> packtype [, <string> direction] [, <node> attributelist])

return true | false | <node> newhead

end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread

... argument. If exactly, then the size is a \hbox to In both cases, the number is in

scaled points.

The direction is either one of the three-letter direction specifier strings, or nil.

This callback does not replace any internal code.

10.4.9 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math

displays are ignored at the moment.

This function is very similar to the hpack_filter. Besides the fact that it is called at different

moments, there is an extra variable that matches TEX’s \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <string> direction] [, <node> attributelist]))

return true | false | <node> newhead

end

This callback does not replace any internal code.

10.4.10 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

LUA callbacks156

return <node> whatever

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed

(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return

a node, for instance an overfull rule indicator. That node will be appended to the list (just like

TEX’s own rule would).

10.4.11 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

10.4.12 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets

three arguments: the node, the width and the height. The callback can use pdf.print to write

code to the PDF file but beware of not messing up the final result. No checking is done.

10.4.13 pre_output_filter

This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <string> direction])

return true | false | <node> newhead

end

This callback does not replace any internal code.

10.4.14 hyphenate

function(<node> head, <node> tail)

end

No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

157LUA callbacks

10.4.15 ligaturing

function(<node> head, <node> tail)

end

No return values. This callback has to apply ligaturing to the node list it receives.

You don’t have to worry about return values because the head node that is passed on to the

callback is guaranteed not to be a glyph_node (if need be, a temporary node will be prepended),

and therefore it cannot be affected by the mutations that take place. After the callback, the

internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often

be ignored. It is provided for orthogonality, and because it can sometimes be handy when special

processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LUATEX into panic mode.

10.4.16 kerning

function(<node> head, <node> tail)

end

No return values. This callback has to apply kerning between the nodes in the node list it

receives. See ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LUATEX into panic mode.

10.4.17 insert_local_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You

can hook a callback into the creator:

function(<node> local_par, <string> location)

end

There is no return value and you should make sure that the node stays valid as otherwise TEX

can get confused.

10.4.18 mlist_to_hlist

This callback replaces LUATEX’s math list to node list conversion algorithm.

function(<node> head, <string> display_type, <boolean> need_penalties)

LUA callbacks158

return <node> newhead

end

The returned node is the head of the list that will be added to the vertical or horizontal list, the

string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean

argument is true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

10.5 Information reporting callbacks

10.5.1 pre_dump

function()

end

This function is called just before dumping to a format file starts. It does not replace any code

and there are neither arguments nor return values.

10.5.2 start_run

function()

end

This callback replaces the code that prints LUATEX’s banner. Note that for successful use, this

callback has to be set in the LUA initialization script, otherwise it will be seen only after the run

has already started.

10.5.3 stop_run

function()

end

This callback replaces the code that prints LUATEX’s statistics and ‘output written to’ messages.

The engine can still do housekeeping and therefore you should not rely on this hook for postpro-

cessing the PDF or log file.

10.5.4 show_error_hook

function()

end

This callback is run from inside the TEX error function, and the idea is to allow you to do some

extra reporting on top of what TEX already does (none of the normal actions are removed). You

may find some of the values in the status table useful. This callback does not replace any

internal code.

159LUA callbacks

10.5.5 show_error_message

function()

end

This callback replaces the code that prints the error message. The usual interaction after the

message is not affected.

10.5.6 show_lua_error_hook

function()

end

This callback replaces the code that prints the extra LUA error message.

10.5.7 start_file

function(category,filename)

end

This callback replaces the code that LUATEX prints when a file is opened like (filename for

regular files. The category is a number:

VALUE MEANING

1 a normal data file, like a TEX source

2 a font map coupling font names to resources

3 an image file (png, pdf, etc)

4 an embedded font subset

5 a fully embedded font

10.5.8 stop_file

function(category)

end

This callback replaces the code that LUATEX prints when a file is closed like the) for regular

files.

10.5.9 wrapup_run

This callback is called after the PDF and log files are closed. Use it at your own risk.

10.6 Font-related callbacks

10.6.1 define_font

function(<string> name, <number> size)

LUA callbacks160

return <number> id

end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

‣ If it is positive, it specifies an ‘at size’ in scaled points.

‣ If it is negative, its absolute value represents a ‘scaled’ setting relative to the design size of

the font.

The font can be defined with font.define which returns a font identifier that can be returned

in the callback. So, contrary to LUATEX, in LUAMETATEX we only accept a number.

The internal structure of the font table that is passed to font.define is explained in chapter 6.

That table is saved internally, so you can put extra fields in the table for your later LUA code

to use. In alternative, retval can be a previously defined fontid. This is useful if a previous

definition can be reused instead of creating a whole new font structure.

Setting this callback to false is pointless as it will prevent font loading completely but will

nevertheless generate errors.

161The TEX related libraries

11 The TEX related libraries

11.1 The lua library

11.1.1 Version information

This library contains two read-only items:

<string> v = lua.version

<string> s = lua.startupfile

This returns the LUA version identifier string. The value currently is Lua 5.4.

11.1.2 Table allocators

Sometimes performance (and memory usage) can benefit a little from it preallocating a table

with newtable:

<table> t = lua.newtable(100,5000)

This preallocates 100 hash entries and 5000 index entries. The newindex function create an

indexed table with preset values:

<table> t = lua.newindex(2500,true)

11.1.3 Bytecode registers

LUA registers can be used to store LUA code chunks. The accepted values for assignments are

functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f

lua.bytecode[<number> n]()

The contents of the lua.bytecode array is stored inside the format file as actual LUA bytecode,

so it can also be used to preload LUA code. The function must not contain any upvalues. The

associated function calls are:

<function> f = lua.getbytecode(<number> n)

lua.setbytecode(<number> n, <function> f)

Note: Since a LUA file loaded using loadfile(filename) is essentially an anonymous function,

a complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this

bytecode register:

The TEX related libraries162

lua.bytecode[n]()

Note that the path of the file is stored in the LUA bytecode to be used in stack backtraces and

therefore dumped into the format file if the above code is used in INITEX. If it contains private

information, i.e. the user name, this information is then contained in the format file as well. This

should be kept in mind when preloading files into a bytecode register in INITEX.

11.1.4 Chunk name registers

There is an array of 65536 (0–65535) potential chunk names for use with the \directlua and

\latelua primitives.

lua.name[<number> n] = <string> s

<string> s = lua.name[<number> n]

If you want to unset a LUA name, you can assign nil to it. The function accessors are:

lua.setluaname(<string> s,<number> n)

<string> s = lua.getluaname(<number> n)

11.1.5 Introspection

The getstacktop function return a number indicating how full the LUA stack is. This function

only makes sense as breakpoint when checking some mechanism going haywire.

There are four time related helpers. The getruntime function returns the time passed since

startup. The getcurrenttime does what its name says. Just play with them to see how it pays

off. The getpreciseticks returns a number that can be used later, after a similar call, to get a

difference. The getpreciseseconds function gets such a tick (delta) as argument and returns

the number of seconds. Ticks can differ per operating system, but one always creates a reference

first and then deltas to this reference.

11.2 The status library

This contains a number of run-time configuration items that you may find useful in message

reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. Almost all of the

values in status are fetched through a metatable at run-time whenever they are accessed, so

you cannot use pairs on status, but you can use pairs on info, of course. If you do not need

the full list, you can also ask for a single item by using its name as an index into status. The

current list is:

KEY EXPLANATION

banner terminal display banner

best_page_break the current best break (a node)

163The TEX related libraries

buf_size current allocated size of the line buffer

callbacks total number of executed callbacks so far

cs_count number of control sequences

dest_names_size PDF destination table size

dvi_gone written DVI bytes

dvi_ptr not yet written DVI bytes

dyn_used token (multi-word) memory in use

filename name of the current input file

fix_mem_end maximum number of used tokens

fix_mem_min minimum number of allocated words for tokens

fix_mem_max maximum number of allocated words for tokens

font_ptr number of active fonts

hash_extra extra allowed hash

hash_size size of hash

indirect_callbacks number of those that were themselves a result of other callbacks (e.g.

file readers)

ini_version true if this is an INITEX run

init_pool_ptr INITEX string pool index

init_str_ptr number of INITEX strings

input_ptr the level of input we’re at

inputid numeric id of the current input

largest_used_mark max referenced marks class

lasterrorcontext last error context string (with newlines)

lasterrorstring last TEX error string

lastluaerrorstring last LUA error string

lastwarningstring last warning tag, normally an indication of in what part

lastwarningtag last warning string

linenumber location in the current input file

log_name name of the log file

luabytecode_bytes number of bytes in LUA bytecode registers

luabytecodes number of active LUA bytecode registers

luastate_bytes number of bytes in use by LUA interpreters

luatex_engine the LUATEX engine identifier

luatex_hashchars length to which LUA hashes strings (2𝑛)
luatex_hashtype the hash method used (in LUAJITTEX)

luatex_version the LUATEX version number

luatex_revision the LUATEX revision string

max_buf_stack max used buffer position

max_in_stack max used input stack entries

max_nest_stack max used nesting stack entries

max_param_stack max used parameter stack entries

max_save_stack max used save stack entries

max_strings maximum allowed strings

nest_size nesting stack size

node_mem_usage a string giving insight into currently used nodes

obj_ptr max PDF object pointer

The TEX related libraries164

obj_tab_size PDF object table size

output_active true if the \output routine is active

output_file_name name of the PDF or DVI file

param_size parameter stack size

pdf_dest_names_ptr max PDF destination pointer

pdf_gone written PDF bytes

pdf_mem_ptr max PDF memory used

pdf_mem_size PDF memory size

pdf_os_cntr max PDF object stream pointer

pdf_os_objidx PDF object stream index

pdf_ptr not yet written PDF bytes

pool_ptr string pool index

pool_size current size allocated for string characters

save_size save stack size

shell_escape 0 means disabled, 1 means anything is permitted, and 2 is restricted

safer_option 1 means safer is enforced

kpse_used 1 means that kpse is used

stack_size input stack size

str_ptr number of strings

total_pages number of written pages

var_mem_max number of allocated words for nodes

var_used variable (one-word) memory in use

lc_collate the value of LC_COLLATE at startup time (becomes C at startup)

lc_ctype the value of LC_CTYPE at startup time (becomes C at startup)

lc_numeric the value of LC_NUMERIC at startup time

The error and warning messages can be wiped with the resetmessages function. A return value

can be set with setexitcode.

11.3 The tex library

11.3.1 Introduction

The tex table contains a large list of virtual internal TEX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in LUA, but are only

frontends that are handled by a metatable that operates on the actual TEX values. As a result,

most of the LUA table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that you can use after \the, is a

single token or is sort of special in TEX. This excludes parameters that need extra arguments, like

\the\scriptfont. The subset comprising simple integer and dimension registers are writable

as well as readable (like \tracingcommands and \parindent).

11.3.2 Internal parameter values, set and get

For all the parameters in this section, it is possible to access them directly using their names as

index in the tex table, or by using one of the functions tex.get and tex.set.

165The TEX related libraries

The exact parameters and return values differ depending on the actual parameter, and so does

whether tex.set has any effect. For the parameters that can be set, it is possible to use global

as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (["global",] <string> n, ...)

... = tex.get (<string> n)

Glue is kind of special because there are five values involved. The return value is a glue_spec

node but when you pass false as last argument to tex.get you get the width of the glue and

when you pass true you get all five values. Otherwise you get a node which is a copy of the

internal value so you are responsible for its freeing at the LUA end. When you set a glue quantity

you can either pass a glue_spec or upto five numbers.

11.3.2.1 Integer parameters

The integer parameters accept and return LUA numbers. These are read-write:

tex.adjdemerits

tex.binoppenalty

tex.brokenpenalty

tex.catcodetable

tex.clubpenalty

tex.day

tex.defaulthyphenchar

tex.defaultskewchar

tex.delimiterfactor

tex.displaywidowpenalty

tex.doublehyphendemerits

tex.endlinechar

tex.errorcontextlines

tex.escapechar

tex.exhyphenpenalty

tex.fam

tex.finalhyphendemerits

tex.floatingpenalty

tex.globaldefs

tex.hangafter

tex.hbadness

tex.holdinginserts

tex.hyphenpenalty

tex.interlinepenalty

tex.language

tex.lastlinefit

tex.lefthyphenmin

tex.linepenalty

tex.localbrokenpenalty

tex.localinterlinepenalty

tex.looseness

tex.mag

tex.maxdeadcycles

tex.month

tex.newlinechar

tex.outputpenalty

tex.pausing

tex.postdisplaypenalty

tex.predisplaydirection

tex.predisplaypenalty

tex.pretolerance

tex.relpenalty

tex.righthyphenmin

tex.savinghyphcodes

tex.savingvdiscards

tex.showboxbreadth

tex.showboxdepth

tex.time

tex.tolerance

tex.tracingassigns

tex.tracingcommands

tex.tracinggroups

tex.tracingifs

tex.tracinglostchars

tex.tracingmacros

tex.tracingnesting

tex.tracingonline

tex.tracingoutput

tex.tracingpages

tex.tracingparagraphs

The TEX related libraries166

tex.tracingrestores

tex.tracingscantokens

tex.tracingstats

tex.uchyph

tex.vbadness

tex.widowpenalty

tex.year

These are read-only:

tex.deadcycles

tex.insertpenalties

tex.parshape

tex.prevgraf

tex.spacefactor

11.3.2.2 Dimension parameters

The dimension parameters accept LUA numbers (signifying scaled points) or strings (with in-

cluded dimension). The result is always a number in scaled points. These are read-write:

tex.boxmaxdepth

tex.delimitershortfall

tex.displayindent

tex.displaywidth

tex.emergencystretch

tex.hangindent

tex.hfuzz

tex.hoffset

tex.hsize

tex.lineskiplimit

tex.mathsurround

tex.maxdepth

tex.nulldelimiterspace

tex.overfullrule

tex.pagebottomoffset

tex.pageheight

tex.pageleftoffset

tex.pagerightoffset

tex.pagetopoffset

tex.pagewidth

tex.parindent

tex.predisplaysize

tex.scriptspace

tex.splitmaxdepth

tex.vfuzz

tex.voffset

tex.vsize

tex.prevdepth

tex.prevgraf

tex.spacefactor

These are read-only:

tex.pagedepth

tex.pagefilllstretch

tex.pagefillstretch

tex.pagefilstretch

tex.pagegoal

tex.pageshrink

tex.pagestretch

tex.pagetotal

Beware: as with all LUA tables you can add values to them. So, the following is valid:

tex.foo = 123

When you access a TEX parameter a look up takes place. For read--only variables that means

that you will get something back, but when you set them you create a new entry in the table

thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space-

factor. These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth = p

tex.nest[tex.nest.ptr].spacefactor = s

However, the following also works:

tex.prevdepth = p

167The TEX related libraries

tex.spacefactor = s

Keep in mind that when you mess with node lists directly at the LUA end you might need to

update the top of the nesting stack’s prevdepth explicitly as there is no way LUATEX can guess

your intentions. By using the accessor in the tex tables, you get and set the values at the top of

the nesting stack.

11.3.2.3 Direction parameters

The direction states can be queried and set with:

tex.gettextdir()

tex.getlinedir()

tex.getmathdir()

tex.getpardir()

tex.settextdir(<number>)

tex.setlinedir(<number>)

tex.setmathdir(<number>)

tex.setpardir(<number>)

and also with:

tex.textdirection

tex.linedirection

tex.mathdirection

tex.pardirection

11.3.2.4 Glue parameters

The glue parameters accept and return a userdata object that represents a glue_spec node.

tex.abovedisplayshortskip

tex.abovedisplayskip

tex.baselineskip

tex.belowdisplayshortskip

tex.belowdisplayskip

tex.leftskip

tex.lineskip

tex.parfillskip

tex.parskip

tex.rightskip

tex.spaceskip

tex.splittopskip

tex.tabskip

tex.topskip

tex.xspaceskip

11.3.2.5 Muglue parameters

All muglue parameters are to be used read-only and return a LUA string.

tex.medmuskip tex.thickmuskip tex.thinmuskip

11.3.2.6 Tokenlist parameters

The tokenlist parameters accept and return LUA strings. LUA strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or other

(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it feels

bad to make exceptions in view of a coming extension that will accept full-blown token strings.

tex.errhelp

tex.everycr

tex.everydisplay

tex.everyeof

tex.everyhbox

tex.everyjob

tex.everymath

tex.everypar

tex.everyvbox

tex.output

The TEX related libraries168

11.3.3 Convert commands

All ‘convert’ commands are read-only and return a LUA string. The supported commands at this

moment are:

tex.formatname

tex.jobname

tex.luatexbanner

tex.luatexrevision

tex.fontname(number)

tex.uniformdeviate(number)

tex.number(number)

tex.romannumeral(number)

tex.fontidentifier(number)

If you are wondering why this list looks haphazard; these are all the cases of the ‘convert’ in-

ternal command that do not require an argument, as well as the ones that require only a simple

numeric value. The special (LUA-only) case of tex.fontidentifier returns the csname string

that matches a font id number (if there is one).

11.3.4 Last item commands

All ‘last item’ commands are read-only and return a number. The supported commands at this

moment are:

tex.lastpenalty

tex.lastkern

tex.lastskip

tex.lastnodetype

tex.inputlineno

tex.lastxpos

tex.lastypos

tex.randomseed

tex.luatexversion

tex.currentgrouplevel

tex.currentgrouptype

tex.currentiflevel

tex.currentiftype

tex.currentifbranch

11.3.5 Accessing registers: set*, get* and is*

TEX’s attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip, \muskip)

and token (\toks) registers can be accessed and written to using two times five virtual sub-tables

of the tex table:

tex.attribute

tex.count

tex.dimen

tex.skip

tex.glue

tex.muskip

tex.muglue

tex.toks

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or

\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0

enormous = tex.dimen['maxdimen']

In this case, LUATEX looks up the value for you on the fly. You have to use a valid \countdef (or

\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error

169The TEX related libraries

(the intent is to eventually also allow <chardef tokens> and even macros that expand into a

number).

‣ The count registers accept and return LUA numbers.

‣ The dimension registers accept LUA numbers (in scaled points) or strings (with an included

absolute dimension; em and ex and px are forbidden). The result is always a number in scaled

points.

‣ The token registers accept and return LUA strings. LUA strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or other

(12).

‣ The skip registers accept and return glue_spec userdata node objects (see the description

of the node interface elsewhere in this manual).

‣ The glue registers are just skip registers but instead of userdata are verbose.

‣ Like the counts, the attribute registers accept and return LUA numbers.

As an alternative to array addressing, there are also accessor functions defined for all cases, for

example, here is the set of possibilities for \skip registers:

tex.setskip (["global",] <number> n, <node> s)

tex.setskip (["global",] <string> s, <node> s)

<node> s = tex.getskip (<number> n)

<node> s = tex.getskip (<string> s)

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented

by numbers, skips and muskips by nodes, and toks by strings.

Again the glue variants are not using the glue-spec userdata nodes. The setglue function ac-

cepts upto five arguments: width, stretch, shrink, stretch order and shrink order. Non-numeric

values set the property to zero. The getglue function reports all five properties, unless the

second argument is false in which case only the width is returned.

Here is an example using a threesome:

local d = tex.getdimen("foo")

if tex.isdimen("bar") then

tex.setdimen("bar",d)

end

There are six extra skip (glue) related helpers:

tex.setglue (["global"], <number> n,

width, stretch, shrink, stretch_order, shrink_order)

tex.setglue (["global"], <string> s,

width, stretch, shrink, stretch_order, shrink_order)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<number> n)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<string> s)

The other two are tex.setmuglue and tex.getmuglue.

The TEX related libraries170

There are such helpers for dimen, count, skip, muskip, box and attribute registers but the

glue ones are special because they have to deal with more properties.

As with the general get and set function discussed before, for the skip registers getskip returns

a node and getglue returns numbers, while setskip accepts a node and setglue expects upto

5 numbers. Again, when you pass false as second argument to getglue you only get the width

returned. The same is true for the mu variants getmuskip, setmuskip, getmuskip andsetmuskip.

For tokens registers we have an alternative where a catcode table is specified:

tex.scantoks(0,3,"$e=mc^2$")

tex.scantoks("global",0,3,"$\int\limits^1_2$")

In the function-based interface, it is possible to define values globally by using the string global

as the first function argument.

11.3.6 Character code registers: [get|set]*code[s]

TEX’s character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can

be accessed and written to using six virtual subtables of the tex table

tex.lccode

tex.uccode

tex.sfcode

tex.catcode

tex.mathcode

tex.delcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the

simple ones:

tex.setsfcode (["global",] <number> n, <number> s)

<number> s = tex.getsfcode (<number> n)

The function call interface for lccode and uccode additionally allows you to set the associated

sibling at the same time:

tex.setlccode (["global"], <number> n, <number> lc)

tex.setlccode (["global"], <number> n, <number> lc, <number> uc)

<number> lc = tex.getlccode (<number> n)

tex.setuccode (["global"], <number> n, <number> uc)

tex.setuccode (["global"], <number> n, <number> uc, <number> lc)

<number> uc = tex.getuccode (<number> n)

The function call interface for catcode also allows you to specify a category table to use on

assignment or on query (default in both cases is the current one):

tex.setcatcode (["global"], <number> n, <number> c)

tex.setcatcode (["global"], <number> cattable, <number> n, <number> c)

<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

171The TEX related libraries

tex.setmathcode (["global"], <number> n, <table> mval)

<table> mval = tex.getmathcode (<number> n)

tex.setdelcode (["global"], <number> n, <table> dval)

<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{

<number> class,

<number> family,

<number> character

}

And the table for delcode is an array with 4 numbers, like this:

{

<number> small_fam,

<number> small_char,

<number> large_fam,

<number> large_char

}

You can also avoid the table:

tex.setmathcode (["global"], <number> n, <number> class,

<number> family, <number> character)

class, family, char =

tex.getmathcodes (<number> n)

tex.setdelcode (["global"], <number> n, <number> smallfam,

<number> smallchar, <number> largefam, <number> largechar)

smallfam, smallchar, largefam, largechar =

tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to

\Udelcode usage, but the returned table can have values there (if the delimiter code was set

using \delcode, for example). Unset delcode’s can be recognized because dval[1] is −1.

11.3.7 Box registers: [get|set]box

It is possible to set and query actual boxes, coming for instance from \hbox, \vbox or \vtop,

using the node interface as defined in the node library:

tex.box

for array access, or

tex.setbox(["global",] <number> n, <node> s)

tex.setbox(["global",] <string> cs, <node> s)

<node> n = tex.getbox(<number> n)

The TEX related libraries172

<node> n = tex.getbox(<string> cs)

for function-based access. In the function-based interface, it is possible to define values globally

by using the string global as the first function argument.

Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com-

mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,

always use node.copy_list unless you are assigning to a temporary variable:

tex.box[0] = node.copy_list(tex.box[2])

11.3.8 triggerbuildpage

You should not expect to much from the triggerbuildpage helpers because often TEX doesn’t

do much if it thinks nothing has to be done, but it might be useful for some applications. It just

does as it says it calls the internal function that build a page, given that there is something to

build.

11.3.9 splitbox

You can split a box:

local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is

comparable to the \vsplit operation. The mode can be additional or exactly and concerns

the split off box.

11.3.10 Accessing math parameters: [get|set]math

It is possible to set and query the internal math parameters using:

tex.setmath(["global",] <string> n, <string> t, <number> n)

<number> n = tex.getmath(<string> n, <string> t)

As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the

style name minus the trailing ‘style’. Just to be complete, the values for the math parameter

name are:

quad axis operatorsize

overbarkern overbarrule overbarvgap

underbarkern underbarrule underbarvgap

radicalkern radicalrule radicalvgap

173The TEX related libraries

radicaldegreebefore radicaldegreeafter radicaldegreeraise

stackvgap stacknumup stackdenomdown

fractionrule fractionnumvgap fractionnumup

fractiondenomvgap fractiondenomdown fractiondelsize

limitabovevgap limitabovebgap limitabovekern

limitbelowvgap limitbelowbgap limitbelowkern

underdelimitervgap underdelimiterbgap

overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown

subsupshiftdown subtopmax supshiftup

supbottommin supsubbottommax subsupvgap

spaceafterscript connectoroverlapmin

ordordspacing ordopspacing ordbinspacing ordrelspacing

ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing

opordspacing opopspacing opbinspacing oprelspacing

opopenspacing opclosespacing oppunctspacing opinnerspacing

binordspacing binopspacing binbinspacing binrelspacing

binopenspacing binclosespacing binpunctspacing bininnerspacing

relordspacing relopspacing relbinspacing relrelspacing

relopenspacing relclosespacing relpunctspacing relinnerspacing

openordspacing openopspacing openbinspacing openrelspacing

openopenspacing openclosespacing openpunctspacing openinnerspacing

closeordspacing closeopspacing closebinspacing closerelspacing

closeopenspacing closeclosespacing closepunctspacing closeinnerspacing

punctordspacing punctopspacing punctbinspacing punctrelspacing

punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing

innerordspacing inneropspacing innerbinspacing innerrelspacing

inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter are:

display crampeddisplay

text crampedtext

script crampedscript

scriptscript crampedscriptscript

The value is either a number (representing a dimension or number) or a glue spec node repre-

senting a muskip for ordordspacing and similar spacing parameters.

11.3.11 Special list heads: [get|set]list

The virtual table tex.lists contains the set of internal registers that keep track of building

page lists.

FIELD EXPLANATION

page_ins_head circular list of pending insertions

contrib_head the recent contributions

The TEX related libraries174

page_head the current page content

hold_head used for held-over items for next page

adjust_head head of the current \vadjust list

pre_adjust_head head of the current \vadjust pre list

page_discards_head head of the discarded items of a page break

split_discards_head head of the discarded items in a vsplit

The getter and setter functions are getlist and setlist. You have to be careful with what you

set as TEX can have expectations with regards to how a list is constructed or in what state it is.

11.3.12 Semantic nest levels: getnest and ptr

The virtual table nest contains the currently active semantic nesting state. It has twomain parts:

a zero-based array of userdata for the semantic nest itself, and the numerical value ptr, which

gives the highest available index. Neither the array items in nest[] nor ptr can be assigned to

(as this would confuse the typesetting engine beyond repair), but you can assign to the individual

values inside the array items, e.g. tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, nest[0] the outermost (main vertical list)

level. The getter function is getnest. You can pass a number (which gives you a list), nothing or

top, which returns the topmost list, or the string ptr which gives you the index of the topmost

list.

The known fields are:

KEY TYPE MODES EXPLANATION

mode number all the meaning of these numbers depends on the engine and

sometimes even the version; you can use tex.getmodeval-

ues() to get the mapping: positive values signal vertical,

horizontal and math mode, while negative values indicate in-

ner and inline variants

modeline number all source input line where this mode was entered in, negative

inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

prevdepth number vmode depth of the previous paragraph

spacefactor number hmode the current space factor

dirs node hmode used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,

for \over etc.

delimptr node mmode used for temporary storage of the previous math delimiter,

for \middle

mathdir boolean mmode true when during math processing the \mathdir is not the

same as the surrounding \textdir

mathstyle number mmode the current \mathstyle

175The TEX related libraries

When a second string argument is given to the getnest, the value with that name is returned.

Of course the level must be valid. When setnest gets a third argument that value is assigned

to the field given as second argument.

11.3.13 Print functions

The tex table also contains the three print functions that are the major interface from LUA

scripting to TEX. The arguments to these three functions are all stored in an in-memory virtual

file that is fed to the TEX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available

system RAM. However, each separate printed string has to fit completely in TEX’s input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

11.3.13.1 print

tex.print(<string> s, ...)

tex.print(<number> n, <string> s, ...)

tex.print(<table> t)

tex.print(<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument

instead of a list of strings, this has to be a consecutive array of strings to print (the first non-string

value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by

\catcodetable n. If n is −1, the currently active catcode regime is used. If n is −2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space

character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it

is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print command in a \directlua will not have the

\endlinechar appended, all others do.

11.3.13.2 sprint

tex.sprint(<string> s, ...)

tex.sprint(<number> n, <string> s, ...)

tex.sprint(<table> t)

tex.sprint(<number> n, <table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a partial line input mechanism:

‣ TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

‣ No \endlinechar is inserted.

‣ Trailing spaces are not removed. Note that this does not prevent TEX itself from eating spaces

as result of interpreting the line. For example, in

The TEX related libraries176

before\directlua{tex.sprint("\\relax")tex.sprint(" in between")}after

the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

The optional argument sets the catcode regime, as with tex.print. This influences the string

arguments (or numbers turned into strings).

Although this needs to be used with care, you can also pass token or node userdata objects.

These get injected into the stream. Tokens had best be valid tokens, while nodes need to be

around when they get injected. Therefore it is important to realize the following:

‣ When you inject a token, you need to pass a valid token userdata object. This object will

be collected by LUA when it no longer is referenced. When it gets printed to TEX the token

itself gets copied so there is no interference with the LUA garbage collection. You manage the

object yourself. Because tokens are actually just numbers, there is no real extra overhead at

the TEX end.

‣ When you inject a node, you need to pass a valid node userdata object. The node related

to the object will not be collected by LUA when it no longer is referenced. It lives on at the

TEX end in its own memory space. When it gets printed to TEX the node reference is used

assuming that node stays around. There is no LUA garbage collection involved. Again, you

manage the object yourself. The node itself is freed when TEX is done with it.

If you consider the last remark you might realize that we have a problem when a printed mix

of strings, tokens and nodes is reused. Inside TEX the sequence becomes a linked list of input

buffers. So, "123" or "\foo{123}" gets read and parsed on the fly, while <token userdata>

already is tokenized and effectively is a token list now. A <node userdata> is also tokenized into

a token list but it has a reference to a real node. Normally this goes fine. But now assume that

you store the whole lot in a macro: in that case the tokenized node can be flushed many times.

But, after the first such flush the node is used and its memory freed. You can prevent this by

using copies which is controlled by setting \luacopyinputnodes to a non-zero value. This is one

of these fuzzy areas you have to live with if you really mess with these low level issues.

11.3.13.3 tprint

tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>

s, ...), once for each of the supplied argument tables.

11.3.13.4 cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or

an argument list of strings that will be pushed into the input stream.

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

177The TEX related libraries

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters

tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

11.3.13.5 write

tex.write(<string> s, ...)

tex.write(<table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a quick way to dump information:

‣ All catcodes on that line are either ‘space’ (for ’ ’) or ‘character’ (for all others).

‣ There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

11.3.14 Helper functions

11.3.14.1 round

<number> n = tex.round(<number> o)

Rounds LUA number o, and returns a number that is in the range of a valid TEX register value.

If the number starts out of range, it generates a ‘number too big’ error as well.

11.3.14.2 scale

<number> n = tex.scale(<number> o, <number> delta)

<table> n = tex.scale(table o, <number> delta)

Multiplies the LUA numbers o and delta, and returns a rounded number that is in the range of

a valid TEX register value. In the table version, it creates a copy of the table with all numeric

top--level values scaled in that manner. If the multiplied number(s) are of range, it generates

‘number too big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer’s architecture

and operating system, so use with care! An interface to LUATEX’s internal, 100% portable scale

function will be added at a later date.

11.3.14.3 number and romannumeral

These are the companions to the primitives \number and \romannumeral. They can be used like:

tex.print(tex.romannumeral(123))

The TEX related libraries178

11.3.14.4 fontidentifier and fontname

The first one returns the name only, the second one reports the size too.

tex.print(tex.fontname(tex.fontname))

tex.print(tex.fontname(tex.fontidentidier))

11.3.14.5 sp

<number> n = tex.sp(<number> o)

<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number

of scaled points.

For parsing the string, the same scanning and conversion rules are used that LUATEX would use

if it was scanning a dimension specifier in its TEX-like input language (this includes generating

errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled

2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)

11.3.14.6 tex.getlinenumber and tex.setlinenumber

You can mess with the current line number:

local n = tex.getlinenumber()

tex.setlinenumber(n+10)

which can be shortcut to:

tex.setlinenumber(10,true)

This might be handy when you have a callback that reads numbers from a file and combines

them in one line (in which case an error message probably has to refer to the original line).

Interference with TEX’s internal handling of numbers is of course possible.

11.3.14.7 error, show_context and gethelptext

tex.error(<string> s)

tex.error(<string> s, <table> help)

<string> s = tex.gethelptext()

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur-

ing this error, deletions are disabled.

The array part of the help table has to contain strings, one for each line of error help.

In case of an error the show_context function will show the current context where we’re at (in

the expansion).

179The TEX related libraries

11.3.14.8 getfamilyoffont

When you pass a proper family identifier the next helper will return the font currently associated

with it.

<integer> id = font.getfamilyoffont(<integer> fam)

11.3.14.9 [set|get]interaction

The engine can be in one of four modes:

VALUE mode MEANING

0 batch omits all stops and omits terminal output

1 nonstop omits all stops

2 scroll omits error stops

3 errorstop stops at every opportunity to interact

The mode can be queried and set with:

<integer> i = tex.getinteraction()

tex.setinteraction(<integer> i)

11.3.14.10 runtoks and quittoks

Because of the fact that TEX is in a complex dance of expanding, dealing with fonts, typesetting

paragraphs, messing around with boxes, building pages, and so on, you cannot easily run a

nested TEX run (read nested main loop). However, there is an option to force a local run with

runtoks. The content of the given token list register gets expanded locally after which we return

to where we triggered this expansion, at the LUA end. Instead a function can get passed that

does some work. You have to make sure that at the end TEX is in a sane state and this is not

always trivial. A more complex mechanism would complicate TEX itself (and probably also harm

performance) so this simple local expansion loop has to do.

tex.runtoks(<token register>)

tex.runtoks(<lua function>)

tex.runtoks(<macro name>)

tex.runtoks(<register name>)

When the \tracingnesting parameter is set to a value larger than 2 some information is re-

ported about the state of the local loop. The return value indicates an error:

VALUE meaning

0 no error

1 bad register number

2 unknown macro or register name

3 macro is unsuitable for runtoks (has arguments)

This function has two optional arguments in case a token register is passed:

The TEX related libraries180

tex.runtoks(<token register>,force,grouped)

Inside for instance an \edef the runtoks function behaves (at least tries to) like it were an \the.

This prevents unwanted side effects: normally in such an definition tokens remain tokens and

(for instance) characters don’t become nodes. With the second argument you can force the local

main loop, no matter what. The third argument adds a level of grouping.

You can quit the local loop with \endlocalcontrol or from the LUA end with tex.quittoks. In

that case you end one level up! Of course in the end that can mean that you arrive at the main

level in which case an extra end will trigger a redundancy warning (not an abort!).

11.3.14.11 forcehmode

An example of a (possible error triggering) complication is that TEX expects to be in some state,

say horizontal mode, and you have to make sure it is when you start feeding back something

from LUA into TEX. Normally a user will not run into issues but when you start writing tokens or

nodes or have a nested run there can be situations that you need to run forcehmode. There is

no recipe for this and intercepting possible cases would weaken LUATEX’s flexibility.

11.3.14.12 hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

Returns a list of names. This can be useful for debugging, but note that this also reports control

sequences that may be unreachable at this moment due to local redefinitions: it is strictly a

dump of the hash table. You can use token.create to inspect properties, for instance when the

command key in a created table equals 123, you have the cmdname value undefined_cs.

11.3.14.13 definefont

tex.definefont(<string> csname, <number> fontid)

tex.definefont(<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)

global is specified and true (the setting of globaldefs is not taken into account).

11.3.15 Functions for dealing with primitives

11.3.15.1 enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names. For each combination of

‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’ is an actual primitive

(it must be returned by one of the tex.extraprimitives calls explained below, or part of TEX82,

or \directlua). If it is not, tex.enableprimitives does nothing and skips to the next pair.

181The TEX related libraries

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,

unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the

‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un-

defined (note: that is not the same as \relax), it will globally define the csname to have the

meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already

defined, it does nothing and tries the next pair.

An example:

tex.enableprimitives('LuaTeX', {'formatname'})

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive

\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LUATEX is run with --ini only the TEX82 primitives and \directlua are available, so no

extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,

you will have to add

\ifx\directlua\undefined \else

\directlua {tex.enableprimitives('',tex.extraprimitives ())}

\fi

near the beginning of your format generation file. Or you can choose different prefixes for

different subsets, as you see fit.

Calling some form of tex.enableprimitives is highly important though, because if you do not,

you will end up with a TEX82-lookalike that can run LUA code but not do much else. The defined

csnames are (of course) saved in the format and will be available at runtime.

11.3.15.2 extraprimitives

<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the re-

quested string value(s). The possible values and their (current) return values are given in the

following table. In addition the somewhat special primitives ‘\ ’, ‘\/’ and ‘-’ are defined.

NAME VALUES

tex above abovedisplayshortskip abovedisplayskip abovewithdelims accent adjde-

merits advance afterassignment aftergroup atop atopwithdelims badness base-

lineskip batchmode begingroup belowdisplayshortskip belowdisplayskip binop-

penalty botmark box boxmaxdepth brokenpenalty catcode char chardef cleaders

closein clubpenalty copy count countdef cr crcr csname day deadcycles def de-

faulthyphenchar defaultskewchar delcode delimiter delimiterfactor delim-

itershortfall dimen dimendef discretionary displayindent displaylimits dis-

playstyle displaywidowpenalty displaywidth divide doublehyphendemerits dp

dump edef else emergencystretch end endcsname endgroup endinput endlinechar

The TEX related libraries182

eqno errhelp errmessage errorcontextlines errorstopmode escapechar everycr

everydisplay everyhbox everyjob everymath everypar everytab everyvbox ex-

hyphenchar exhyphenpenalty expandafter fam fi finalhyphendemerits first-

mark floatingpenalty font fontdimen fontname futurelet gdef global glob-

aldefs halign hangafter hangindent hbadness hbox hfil hfill hfilneg hfuzz

hoffset holdinginserts hrule hsize hskip hss ht hyphenation hyphenchar hy-

phenpenalty if ifcase ifcat ifdim ifeof iffalse ifhbox ifhmode ifinner ifm-

mode ifnum ifodd iftrue ifvbox ifvmode ifvoid ifx ignorespaces indent input

inputlineno insert insertpenalties interlinepenalty jobname kern language

lastbox lastkern lastpenalty lastskip lccode leaders left lefthyphenmin

leftskip leqno let limits linepenalty lineskip lineskiplimit long looseness

lower lowercase mag mark mathaccent mathbin mathchar mathchardef mathchoice

mathclose mathcode mathinner mathop mathopen mathord mathpunct mathrel math-

surround maxdeadcycles maxdepth meaning medmuskip message middle mkern month

moveleft moveright mskip multiply muskip muskipdef newlinechar noalign no-

expand noindent nolimits nonscript nonstopmode nulldelimiterspace nullfont

number omit openin or ordlimits orelse outer output outputpenalty over over-

fullrule overline overwithdelims pagedepth pagefilllstretch pagefillstretch

pagefilstretch pagegoal pageshrink pagestretch pagetotal par parfillskip

parindent parshape parskip patterns pausing penalty postdisplaypenalty

predisplaypenalty predisplaysize pretolerance prevdepth prevgraf radical

raise read relax relpenalty right righthyphenmin rightskip romannumeral

scriptfont scriptscriptfont scriptscriptstyle scriptspace scriptstyle

scrollmode setbox setlanguage sfcode shipout show showbox showboxbreadth

showboxdepth showlists shownodedetails showthe skewchar skip skipdef space-

factor spaceskip span splitbotmark splitfirstmark splitmaxdepth splittop-

skip string tabskip textfont textstyle the thickmuskip thinmuskip time toks

toksdef tolerance topmark topskip tracingcommands tracinglostchars trac-

ingmacros tracingonline tracingoutput tracingpages tracingparagraphs trac-

ingrestores tracingstats uccode uchyph underline unhbox unhcopy unkern un-

penalty unskip unvbox unvcopy uppercase vadjust valign vbadness vbox vcenter

vfil vfill vfilneg vfuzz voffset vrule vsize vskip vsplit vss vtop wd widow-

penalty xdef xleaders xspaceskip year

core

etex botmarks clubpenalties currentgrouplevel currentgrouptype currentifbranch

currentiflevel currentiftype detokenize dimexpr displaywidowpenalties

everyeof firstmarks fontchardp fontcharht fontcharic fontcharwd glueexpr

glueshrink glueshrinkorder gluestretch gluestretchorder gluetomu ifc-

sname ifdefined iffontchar interactionmode interlinepenalties lastlinefit

lastnodetype marks muexpr mutoglue numexpr pagediscards parshapedimen par-

shapeindent parshapelength predisplaydirection protected readline savinghy-

phcodes savingvdiscards scantokens showgroups showifs showtokens splitbot-

marks splitdiscards splitfirstmarks topmarks tracingassigns tracinggroups

tracingifs tracingnesting tracingscantokens unexpanded unless widowpenal-

ties

183The TEX related libraries

luatex UUskewed UUskewedwithdelims Uabove Uabovewithdelims Uatop Uatopwithde-

lims Uchar Udelcode Udelcodenum Udelimiter Udelimiterover Udelimiterunder

Uhextensible Uleft Umathaccent Umathaxis Umathbinbinspacing Umathbinclos-

espacing Umathbininnerspacing Umathbinopenspacing Umathbinopspacing Umath-

binordspacing Umathbinpunctspacing Umathbinrelspacing Umathchar Umath-

charclass Umathchardef Umathcharfam Umathcharnum Umathcharnumdef Umath-

charslot Umathclosebinspacing Umathcloseclosespacing Umathcloseinnerspac-

ing Umathcloseopenspacing Umathcloseopspacing Umathcloseordspacing Umath-

closepunctspacing Umathcloserelspacing Umathcode Umathcodenum Umathcon-

nectoroverlapmin Umathfractiondelsize Umathfractiondenomdown Umathfrac-

tiondenomvgap Umathfractionnumup Umathfractionnumvgap Umathfractionrule

Umathinnerbinspacing Umathinnerclosespacing Umathinnerinnerspacing Umath-

inneropenspacing Umathinneropspacing Umathinnerordspacing Umathinner-

punctspacing Umathinnerrelspacing Umathlimitabovebgap Umathlimitabovek-

ern Umathlimitabovevgap Umathlimitbelowbgap Umathlimitbelowkern Umathlim-

itbelowvgap Umathnolimitsubfactor Umathnolimitsupfactor Umathopbinspac-

ing Umathopclosespacing Umathopenbinspacing Umathopenclosespacing Umath-

openinnerspacing Umathopenopenspacing Umathopenopspacing Umathopenordspac-

ing Umathopenpunctspacing Umathopenrelspacing Umathoperatorsize Umath-

opinnerspacing Umathopopenspacing Umathopopspacing Umathopordspacing

Umathoppunctspacing Umathoprelspacing Umathordbinspacing Umathordclos-

espacing Umathordinnerspacing Umathordopenspacing Umathordopspacing Umath-

ordordspacing Umathordpunctspacing Umathordrelspacing Umathoverbarkern

Umathoverbarrule Umathoverbarvgap Umathoverdelimiterbgap Umathoverde-

limitervgap Umathpunctbinspacing Umathpunctclosespacing Umathpunctin-

nerspacing Umathpunctopenspacing Umathpunctopspacing Umathpunctordspac-

ing Umathpunctpunctspacing Umathpunctrelspacing Umathquad Umathradicalde-

greeafter Umathradicaldegreebefore Umathradicaldegreeraise Umathradi-

calkern Umathradicalrule Umathradicalvgap Umathrelbinspacing Umathrel-

closespacing Umathrelinnerspacing Umathrelopenspacing Umathrelopspacing

Umathrelordspacing Umathrelpunctspacing Umathrelrelspacing Umathskewed-

fractionhgap Umathskewedfractionvgap Umathspaceafterscript Umathspacing-

mode Umathstackdenomdown Umathstacknumup Umathstackvgap Umathsubshift-

down Umathsubshiftdrop Umathsubsupshiftdown Umathsubsupvgap Umathsubtop-

max Umathsupbottommin Umathsupshiftdrop Umathsupshiftup Umathsupsubbottom-

max Umathunderbarkern Umathunderbarrule Umathunderbarvgap Umathunderde-

limiterbgap Umathunderdelimitervgap Umiddle Unosubscript Unosuperscript

Uover Uoverdelimiter Uoverwithdelims Uradical Uright Uroot Uskewed Uskewed-

withdelims Ustack Ustartdisplaymath Ustartmath Ustopdisplaymath Ustopmath

Ustyle Usubscript Usuperscript Uunderdelimiter Uvextensible adjustspac-

ing adjustspacingshrink adjustspacingstep adjustspacingstretch after-

grouped alignmark aligntab attribute attributedef automaticdiscretionary

automatichyphenmode automatichyphenpenalty begincsname beginlocalcontrol

boundary boxattr boxdirection boxorientation boxtotal boxxmove boxxoffset

boxymove boxyoffset breakafterdirmode catcodetable clearmarks compoundhy-

phenmode crampeddisplaystyle crampedscriptscriptstyle crampedscriptstyle

The TEX related libraries184

crampedtextstyle csstring directlua efcode endlocalcontrol etoksapp etok-

spre exceptionpenalty expanded explicitdiscretionary explicithyphenpenalty

firstvalidlanguage fixupboxesmode fontid formatname frozen futureexpand

futureexpandis futureexpandisap gleaders glet glyphdatafield glyphdimen-

sionsmode gtoksapp gtokspre hjcode hpack hyphenationbounds hyphenation-

min hyphenpenaltymode ifabsdim ifabsnum ifchkdim ifchknum ifcmpdim ifcmp-

num ifcondition ifcstok ifdimval iffrozen ifincsname ifnumval ifprotected

iftok ifusercmd ignorepars immediateassigned immediateassignment initcat-

codetable insertht internalcodesmode lastnamedcs lastnodesubtype leftmar-

ginkern letcharcode letfrozen letprotected linedirection localbrokenpenalty

localinterlinepenalty localleftbox localrightbox lpcode luabytecode lu-

abytecodecall luacopyinputnodes luadef luaescapestring luafunction luafunc-

tioncall luatexbanner luatexrevision luatexversion mathdelimitersmode math-

direction mathdisplayskipmode matheqnogapstep mathflattenmode mathital-

icsmode mathnolimitsmode matholdmode mathpenaltiesmode mathrulesfam math-

rulesmode mathrulethicknessmode mathscriptboxmode mathscriptcharmode math-

scriptsmode mathstyle mathsurroundmode mathsurroundskip noboundary nohrule

nokerns noligs nospaces novrule outputbox pardirection postexhyphenchar

posthyphenchar prebinoppenalty predisplaygapfactor preexhyphenchar prehy-

phenchar prerelpenalty protrudechars protrusionboundary pxdimen quitvmode

rightmarginkern rpcode savecatcodetable scantextokens setfontid shapemode

textdirection toksapp tokspre tpack tracingfonts unletfrozen unletprotected

vpack wordboundary xtoksapp xtokspre

Note that luatex does not contain directlua, as that is considered to be a core primitive, along

with all the TEX82 primitives, so it is part of the list that is returned from 'core'.

Running tex.extraprimitives will give you the complete list of primitives -ini startup. It is

exactly equivalent to tex.extraprimitives("etex","luatex").

11.3.15.3 primitives

<table> t = tex.primitives()

This function returns a list of all primitives that LUATEX knows about.

11.3.16 Core functionality interfaces

11.3.16.1 badness

<number> b = tex.badness(<number> t, <number> s)

This helper function is useful during linebreak calculations. t and s are scaled values; the

function returns the badness for when total t is supposed to be made from amounts that sum to

s. The returned number is a reasonable approximation of 100(𝑡/𝑠)3;

185The TEX related libraries

11.3.16.2 tex.resetparagraph

This function resets the parameters that TEX normally resets when a new paragraph is seen.

11.3.16.3 linebreak

local <node> nodelist, <table> info =

tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

NAME TYPE EXPLANATION

pardir string

pretolerance number

tracingparagraphs number

tolerance number

looseness number

hyphenpenalty number

exhyphenpenalty number

pdfadjustspacing number

adjdemerits number

pdfprotrudechars number

linepenalty number

lastlinefit number

doublehyphendemerits number

finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal-

ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue_spec node

rightskip glue_spec node

parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice

for widowpenalties yourself.

It is your own job to make sure that listhead is a proper paragraph list: this function does

not add any nodes to it. To be exact, if you want to replace the core line breaking, you may

have to do the following (when you are not actually working in the pre_linebreak_filter or

linebreak_filter callbacks, or when the original list starting at listhead was generated in

horizontal mode):

The TEX related libraries186

‣ add an ‘indent box’ and perhaps a local_par node at the start (only if you need them)

‣ replace any found final glue by an infinite penalty (or add such a penalty, if the last node is

not a glue)

‣ add a glue node for the \parfillskip after that penalty node

‣ make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox. The

returned info table contains four values that are all numbers:

NAME EXPLANATION

prevdepth depth of the last line in the broken paragraph

prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph

demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font

expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.

The same is true for hbadness and hfuzz etc. All these are in the hpack routine, and that fetches

its own variables via globals.

11.3.16.4 shipout

tex.shipout(<number> n)

Ships out box number n to the output file, and clears the box register.

11.3.16.5 getpagestate

This helper reports the current page state: empty, box_there or inserts_only as integer value.

11.3.16.6 getlocallevel

This integer reports the current level of the local loop. It’s only useful for debugging and the

(relative state) numbers can change with the implementation.

11.3.17 Randomizers

For practical reasons LUATEX has its own random number generator. The original LUA random

function is available as tex.lua_math_random. You can initialize with a new seed with init_rand

(lua_math_randomseed is equivalent to this one).

There are three generators: normal_rand (no argument is used), uniform_rand (takes a number

that will get rounded before being used) and uniformdeviate which behaves like the primitive

and expects a scaled integer, so

tex.print(tex.uniformdeviate(65536)/65536)

will give a random number between zero and one.

187The TEX related libraries

11.3.18 Functions related to synctex

The next helpers only make sense when you implement your own synctex logic. Keep in mind

that the library used in editors assumes a certain logic and is geared for plain and LATEX, so after

a decade users expect a certain behaviour.

NAME EXPLANATION

set_synctex_mode 0 is the default and used normal synctex logic, 1 uses the values set

by the next helpers while 2 also sets these for glyph nodes; 3 sets

glyphs and glue and 4 sets only glyphs

set_synctex_tag set the current tag (file) value (obeys save stack)

set_synctex_line set the current line value (obeys save stack)

set_synctex_no_files disable synctex file logging

get_synctex_mode returns the current mode (for values see above)

get_synctex_tag get the currently set value of tag (file)

get_synctex_line get the currently set value of line

force_synctex_tag overload the tag (file) value (0 resets)

force_synctex_line overload the line value (0 resets)

The last one is somewhat special. Due to the way files are registered in SYNCTEX we need to

explicitly disable that feature if we provide our own alternative if we want to avoid that overhead.

Passing a value of 1 disables registering.

11.4 The texconfig table

This is a table that is created empty. A startup LUA script could fill this table with a number of

settings that are read out by the executable after loading and executing the startup file.

KEY TYPE DEFAULT

max_strings number 100000

strings_free number 100

nest_size number 50

max_in_open number 100

param_size number 60

save_size number 5000

stack_size number 500

expand_depth number 1000

function_size number 0

error_line number 79

half_error_line number 50

hash_extra number 0

formatname string

jobname string

If no format name or jobname is given on the command line, the related keys will be tested first

instead of simply quitting.

The TEX related libraries188

11.5 The texio library

This library takes care of the low-level I/O interface: writing to the log file and/or console.

11.5.1 write

texio.write(<string> target, <string> s, ...)

texio.write(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes mes-

sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes

to the log and the terminal. The optional target can be one of three possibilities: term, log or

term and log.

Note: If several strings are given, and if the first of these strings is or might be one of the targets

above, the target must be specified explicitly to prevent LUA from interpreting the first string

as the target.

11.5.2 write_nl

texio.write_nl(<string> target, <string> s, ...)

texio.write_nl(<string> s, ...)

This function behaves like texio.write, but makes sure that the given strings will appear at the

beginning of a new line. You can pass a single empty string if you only want to move to the next

line.

11.5.3 setescape

You can disable ^^ escaping of control characters by passing a value of zero.

11.5.4 closeinput

This function should be used with care. It acts as \endinput but at the LUA end. You can use it

to (sort of) force a jump back to TEX. Normally a LUA call will just collect prints and at the end

bump an input level and flush these prints. This function can help you stay at the current level

but you need to know what you’re doing (or more precise: what TEX is doing with input).

11.6 The token library

11.6.1 The scanner

The token library provides means to intercept the input and deal with it at the LUA level. The

library provides a basic scanner infrastructure that can be used to write macros that accept a

wide range of arguments. This interface is on purpose kept general and as performance is quite

189The TEX related libraries

okay so one can build additional parsers without too much overhead. It’s up to macro package

writers to see how they can benefit from this as the main principle behind LUATEX is to provide

a minimal set of tools and no solutions. The scanner functions are probably the most intriguing.

FUNCTION ARGUMENT RESULT

scan_keyword string returns true if the given keyword is gobbled; as with the

regular TEX keyword scanner this is case insensitive (and

ASCII based)

scan_keywordcs string returns true if the given keyword is gobbled; this variant

is case sensitive and also suitable for UTF8

scan_int returns an integer

scan_real returns a number from e.g. 1, 1.1, .1 with optional col-

lapsed signs

scan_float returns a number from e.g. 1, 1.1, .1, 1.1E10, , .1e-10

with optional collapsed signs

scan_dimen infinity, mu-units returns a number representing a dimension or two num-

bers being the filler and order

scan_glue mu-units returns a glue spec node

scan_toks definer, expand returns a table of tokens

scan_code bitset returns a character if its category is in the given bitset

(representing catcodes)

scan_string returns a string given between {}, as \macro or as se-

quence of characters with catcode 11 or 12

scan_argument this one is simular to scanstring but also accepts a \cs

(which then get expanded)

scan_word returns a sequence of characters with catcode 11 or 12

as string

scan_csname returns foo after scanning \foo

scan_list picks up a box specification and returns a [h|v]list node

The scanners can be considered stable apart from the one scanning for a token. The scan_code

function takes an optional number, the scan_keyword function a normal LUA string. The infin-

ity boolean signals that we also permit fill as dimension and the mu-units flags the scanner

that we expect math units. When scanning tokens we can indicate that we are defining a macro,

in which case the result will also provide information about what arguments are expected and in

the result this is separated from the meaning by a separator token. The expand flag determines

if the list will be expanded.

The string scanner scans for something between curly braces and expands on the way, or when

it sees a control sequence it will return its meaning. Otherwise it will scan characters with

catcode letter or other. So, given the following definition:

\def\bar{bar}

\def\foo{foo-\bar}

we get:

NAME RESULT

\directlua{token.scan_string()}{foo} foo full expansion

The TEX related libraries190

\directlua{token.scan_string()}foo foo letters and others

\directlua{token.scan_string()}\foo foo-bar meaning

The \foo case only gives themeaning, but one can pass an already expanded definition (\edef’d).

In the case of the braced variant one can of course use the \detokenize and \unexpanded prim-

itives since there we do expand.

The scan_word scanner can be used to implement for instance a number scanner:

function token.scan_number(base)

return tonumber(token.scan_word(),base)

end

This scanner accepts any valid LUA number so it is a way to pick up floats in the input.

You can use the LUA interface as follows:

\directlua {

function mymacro(n)

...

end

}

\def\mymacro#1{%

\directlua {

mymacro(\number\dimexpr#1)

}%

}

\mymacro{12pt}

\mymacro{\dimen0}

You can also do this:

\directlua {

function mymacro()

local d = token.scan_dimen()

...

end

}

\def\mymacro{%

\directlua {

mymacro()

}%

}

\mymacro 12pt

\mymacro \dimen0

191The TEX related libraries

It is quite clear from looking at the code what the first method needs as argument(s). For the

second method you need to look at the LUA code to see what gets picked up. Instead of passing

from TEX to LUA we let LUA fetch from the input stream.

In the first case the input is tokenized and then turned into a string, then it is passed to LUA

where it gets interpreted. In the second case only a function call gets interpreted but then the

input is picked up by explicitly calling the scanner functions. These return proper LUA variables

so no further conversion has to be done. This is more efficient but in practice (given what TEX

has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit

but for passing strings conversion to and from tokens has to be done anyway (although we can

probably speed up the process in later versions if needed).

11.6.2 Picking up one token

The scanners look for a sequence. When you want to pick up one token from the input you use

get_next. This creates a token with the (low level) properties as discussed next. This token

is just the next one. If you want to enforce expansion first you can use scan_token. Internally

tokens are characterized by a number that packs a lot of information. In order to access the bits

of information a token is wrapped in a userdata object.

The expand function will trigger expansion of the next token in the input. This can be quite

unpredictable but when you call it you probably know enough about TEX not to be too worried

about that. It basically is a call to the internal expand related function.

11.6.3 Creating tokens

The creator function can be used as follows:

local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible

properties of tokens are:

NAME EXPLANATION

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the

classifier that determines the internal treatment)

csname the associated control sequence (if applicable)

id the unique id of the token

tok the full token number as stored in TEX

active a boolean indicating the active state of the token

expandable a boolean indicating if the token (macro) is expandable

protected a boolean indicating if the token (macro) is protected

mode a number either representing a character or another entity

index a number running from 0x0000 upto 0xFFFF indicating a TEX register index

Alternatively you can use a getter get_<fieldname> to access a property of a token.

The TEX related libraries192

The numbers that represent a catcode are the same as in TEX itself, so using this information

assumes that you know a bit about TEX’s internals. The other numbers and names are used

consistently but are not frozen. So, when you use them for comparing you can best query a

known primitive or character first to see the values.

You can ask for a list of commands:

local t = token.commands()

The id of a token class can be queried as follows:

local id = token.command_id("math_shift")

If you really know what you’re doing you can create character tokens by not passing a string but

a number:

local letter_x = token.create(string.byte("x"))

local other_x = token.create(string.byte("x"),12)

Passing weird numbers can give side effects so don’t expect too much help with that. As said,

you need to know what you’re doing. The best way to explore the way these internals work is

to just look at how primitives or macros or \chardef’d commands are tokenized. Just create a

known one and inspect its fields. A variant that ignores the current catcode table is:

local whatever = token.new(123,12)

You can test if a control sequence is defined with is_defined, which accepts a string and returns

a boolean:

local okay = token.is_defined("foo")

The largest character possible is returned by biggest_char, just in case you need to know that

boundary condition.

11.6.4 Macros

The set_macro function can get upto 4 arguments:

set_macro("csname","content")

set_macro("csname","content","global")

set_macro("csname")

You can pass a catcodetable identifier as first argument:

set_macro(catcodetable,"csname","content")

set_macro(catcodetable,"csname","content","global")

set_macro(catcodetable,"csname")

The results are like:

\def\csname{content}

193The TEX related libraries

\gdef\csname{content}

\def\csname{}

The get_macro function can be used to get the content of a macro while the get_meaning func-

tion gives the meaning including the argument specification (as usual in TEX separated by ->).

The set_char function can be used to do a \chardef at the LUA end, where invalid assignments

are silently ignored:

set_char("csname",number)

set_char("csname",number,"global")

A special one is the following:

set_lua("mycode",id)

set_lua("mycode",id,"global","protected")

This creates a token that refers to a LUA function with an entry in the table that you can access

with lua.get_functions_table. It is the companion to \luadef. When the first (and only)

argument is true the size will preset to the value of texconfig.function_size.

11.6.5 Pushing back

There is a (for now) experimental putter:

local t1 = token.get_next()

local t2 = token.get_next()

local t3 = token.get_next()

local t4 = token.get_next()

-- watch out, we flush in sequence

token.put_next { t1, t2 }

-- but this one gets pushed in front

token.put_next (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of

tokens. The token.expand function will trigger expansion but what happens really depends on

what you’re doing where.

This putter is actually a bit more flexible because the following input also works out okay:

\def\foo#1{[#1]}

\directlua {

local list = { 101, 102, 103, token.create("foo"), "{abracadabra}" }

token.put_next("(the)")

token.put_next(list)

token.put_next("(order)")

token.put_next(unpack(list))

token.put_next("(is reversed)")

}

The TEX related libraries194

We get this:

(is reversed)efg[abracadabra](order)efg[abracadabra](the)

So, strings get converted to individual tokens according to the current catcode regime and num-

bers become characters also according to this regime.

11.6.6 Nota bene

When scanning for the next token you need to keep in mind that we’re not scanning like TEX

does: expanding, changing modes and doing things as it goes. When we scan with LUA we just

pick up tokens. Say that we have:

\bar

but \bar is undefined. Normally TEX will then issue an error message. However, when we have:

\def\foo{\bar}

We get no error, unless we expand \foo while \bar is still undefined. What happens is that as

soon as TEX sees an undefined macro it will create a hash entry and when later it gets defined

that entry will be reused. So, \bar really exists but can be in an undefined state.

bar : bar

foo : foo

myfirstbar :

This was entered as:

bar : \directlua{tex.print(token.scan_csname())}\bar

foo : \directlua{tex.print(token.scan_csname())}\foo

myfirstbar : \directlua{tex.print(token.scan_csname())}\myfirstbar

The reason that you see bar reported and not myfirstbar is that \bar was already used in a

previous paragraph.

If we now say:

\def\foo{}

we get:

bar : bar

foo : foo

myfirstbar :

And if we say

\def\foo{\bar}

we get:

195The TEX related libraries

bar : bar

foo : foo

myfirstbar :

When scanning from LUA we are not in a mode that defines (undefined) macros at all. There we

just get the real primitive undefined macro token.

767105 537001995

773321 537001995

767677 537001995

This was generated with:

\directlua{local t = token.get_next() tex.print(t.id.." "..t.tok)}\myfirstbar

\directlua{local t = token.get_next() tex.print(t.id.." "..t.tok)}\mysecondbar

\directlua{local t = token.get_next() tex.print(t.id.." "..t.tok)}\mythirdbar

So, we do get a unique token because after all we need some kind of LUA object that can be

used and garbage collected, but it is basically the same one, representing an undefined control

sequence.

The TEX related libraries196

197The METAPOST library mplib

12 The METAPOST library mplib

12.1 Process management

The METAPOST library interface registers itself in the table mplib. It is based on MPLIB version

3.03.

12.1.1 new

To create a new METAPOST instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument is a hash table that can have a number of

different fields, as follows:

NAME TYPE DESCRIPTION DEFAULT

error_line number error line width 79

print_line number line length in ps output 100

random_seed number the initial random seed variable

math_mode string the number system to use: scaled

scaled, double or decimal

interaction string the interaction mode: batch, errorstop

nonstop, scroll or errorstop

job_name string a compatibility value mpout

find_file function a function to find files only local files

utf8_mode boolean permit characters in the range false

128 upto 255 to be part of names

text_mode boolean permit characters 2 and 3 as false

fencing string literals

The binarymode is no longer available in the LUATEX version ofMPLIB. It offers no real advantage

and brings a ton of extra libraries with platform specific properties that we can now avoid.

We might introduce a high resolution scaled variant at some point but only when it pays of

performance wise.

The find_file function should be of this form:

<string> found = finder (<string> name, <string> mode, <string> type)

with:

NAME THE REQUESTED FILE

mode the file mode: r or w

type the kind of file, one of: mp, tfm, map, pfb, enc

Return either the full path name of the found file, or nil if the file cannot be found.

The METAPOST library mplib198

Note that the new version of MPLIB no longer uses binary mem files, so the way to preload a set

of macros is simply to start off with an input command in the first execute call.

When you are processing a snippet of text starting with btex or verbatimtex and ending with

etex, the METAPOST texscriptmode parameter controls how spaces and newlines get honoured.

The default value is 1. Possible values are:

NAME MEANING

0 no newlines

1 newlines in verbatimtex

2 newlines in verbatimtex and etex

3 no leading and trailing strip in verbatimtex

4 no leading and trailing strip in verbatimtex and btex

That way the LUA handler (assigned to make_text) can do what it likes. An etex has to be

followed by a space or ; or be at the end of a line and preceded by a space or at the beginning

of a line.

12.1.2 statistics

You can request statistics with:

<table> stats = mp:statistics()

This function returns the vital statistics for an MPLIB instance. There are four fields, giving the

maximum number of used items in each of four allocated object classes:

FIELD TYPE EXPLANATION

main_memory number memory size

hash_size number hash size

param_size number simultaneous macro parameters

max_in_open number input file nesting levels

Note that in the new version of MPLIB, this is informational only. The objects are all allocated

dynamically, so there is no chance of running out of space unless the available system memory

is exhausted.

12.1.3 execute

You can ask the METAPOST interpreter to run a chunk of code by calling

<table> rettable = execute(mp,"metapost code")

for various bits of METAPOST language input. Be sure to check the rettable.status (see be-

low) because when a fatal METAPOST error occurs the MPLIB instance will become unusable

thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey

proper syntax, like each of them is a small file. For instance, you cannot split a single statement

over multiple chunks.

199The METAPOST library mplib

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start

of the first chunk.

12.1.4 finish

<table> rettable = finish(mp)

If for some reason you want to stop using an MPLIB instance while processing is not yet actually

done, you can call finish. Eventually, used memory will be freed and open files will be closed

by the LUA garbage collector, but an explicit finish is the only way to capture the final part of

the output streams.

12.2 The end result

The return value of execute and finish is a table with a few possible keys (only status is always

guaranteed to be present).

FIELD TYPE EXPLANATION

log string output to the ‘log’ stream

term string output to the ‘term’ stream

error string output to the ‘error’ stream (only used for ‘out of memory’)

status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error

fig table an array of generated figures (if any)

When status equals 3, you should stop using this MPLIB instance immediately, it is no longer

capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,

and each of those has a number of object methods you can call:

FIELD TYPE EXPLANATION

boundingbox function returns the bounding box, as an array of 4 values

postscript function returns a string that is the ps output of the fig. this function ac-

cepts two optional integer arguments for specifying the values of

prologues (first argument) and procset (second argument)

svg function returns a string that is the svg output of the fig. This function ac-

cepts an optional integer argument for specifying the value of pro-

logues

objects function returns the actual array of graphic objects in this fig

copy_objects function returns a deep copy of the array of graphic objects in this fig

filename function the filename this fig’s POSTSCRIPT output would have written to in

stand alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italcorr function the fontcharit value

charcode function the (rounded) charcode value

The METAPOST library mplib200

Note: you can call fig:objects() only once for any one fig object!

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is

larger than the second set, the picture is empty.

Graphical objects come in various types: fill, outline, text, start_clip, stop_clip,

start_bounds, stop_bounds, special. Each type has a different list of accessible values.

There is a helper function (mplib.fields(obj)) to get the list of accessible values for a particular

object, but you can just as easily use the tables given below.

All graphical objects have a field type that gives the object type as a string value; it is not explicit

mentioned in the following tables. In the following, numbers are POSTSCRIPT points represented

as a floating point number, unless stated otherwise. Field values that are of type table are

explained in the next section.

12.2.1 fill

FIELD TYPE EXPLANATION

path table the list of knots

htap table the list of knots for the reversed trajectory

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)

miterlimit number miterlimit

prescript string the prescript text

postscript string the postscript text

The entries htap and pen are optional.

12.2.2 outline

FIELD TYPE EXPLANATION

path table the list of knots

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)

miterlimit number miterlimit

linecap number line cap style (bare number)

dash table representation of a dash list

prescript string the prescript text

postscript string the postscript text

The entry dash is optional.

12.2.3 text

FIELD TYPE EXPLANATION

text string the text

201The METAPOST library mplib

font string font tfm name

dsize number font size

color table the object’s color

width number

height number

depth number

transform table a text transformation

prescript string the prescript text

postscript string the postscript text

12.2.4 special

FIELD TYPE EXPLANATION

prescript string special text

12.2.5 start_bounds, start_clip

FIELD TYPE EXPLANATION

path table the list of knots

12.2.5.1 stop_bounds, stop_clip

Here are no fields available.

12.3 Subsidiary table formats

12.3.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as MPLIB is concerned) are

represented by an array where each entry is a table that represents a knot.

FIELD TYPE EXPLANATION

left_type string when present: endpoint, but usually absent

right_type string like left_type

x_coord number X coordinate of this knot

y_coord number Y coordinate of this knot

left_x number X coordinate of the precontrol point of this knot

left_y number Y coordinate of the precontrol point of this knot

right_x number X coordinate of the postcontrol point of this knot

right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra key type

with value elliptical besides the array part containing the knot list.

The METAPOST library mplib202

12.3.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

FIELD TYPE EXPLANATION

0 marking only no values

1 greyscale one value in the range (0, 1), ‘black’ is 0
3 RGB three values in the range (0, 1), ‘black’ is 0, 0, 0
4 CMYK four values in the range (0, 1), ‘black’ is 0, 0, 0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values

representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the

shipout.

12.3.3 Transforms

Each transform is a six-item array.

INDEX TYPE EXPLANATION

1 number represents x

2 number represents y

3 number represents xx

4 number represents yx

5 number represents xy

6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in POST-

SCRIPT, where the translation comes last.

12.3.4 Dashes

Each dash is a hash with two items. We use the samemodel as POSTSCRIPT for the representation

of the dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

FIELD TYPE EXPLANATION

dashes hash an array of on-off numbers

offset number the starting offset value

12.3.5 Pens and pen_info

There is helper function (pen_info(obj)) that returns a table containing a bunch of vital char-

acteristics of the used pen (all values are floats):

FIELD TYPE EXPLANATION

width number width of the pen

sx number 𝑥 scale

203The METAPOST library mplib

rx number 𝑥𝑦 multiplier
ry number 𝑦𝑥 multiplier
sy number 𝑦 scale
tx number 𝑥 offset
ty number 𝑦 offset

12.3.6 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the

argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

<number> w = char_width(mp,<string> fontname, <number> char)

<number> h = char_height(mp,<string> fontname, <number> char)

<number> d = char_depth(mp,<string> fontname, <number> char)

12.4 Scanners

After a relative long period of testing the scanners are now part of the interface. That doesn’t

mean that there will be no changes: depending on the needs and experiences details might

evolve. The summary below is there still preliminary and mostly provided as reminder.

SCANNER ARGUMENT RETURNS

scan_next instance, keep token, mode, type

scan_expression instance, keep type

scan_token instance, keep token, mode, kind

scan_symbol instance, keep, expand string

scan_numeric instance, type number

scan_integer instance, type integer

scan_boolean instance, type boolean

scan_string instance, type string

scan_pair instance, hashed, type table or two numbers

scan_color instance, hashed, type table or three numbers

scan_cmykcolor instance, hashed, type table or four numbers

scan_transform instance, hashed, type table or six numbers

scan_path instance, hashed, type table with hashes or arrays

scan_pen instance, hashed, type table with hashes or arrays

The types and token codes are numbers but they actually depend on the implementation (al-

though changes are unlikely). The types of data structures can be queried with mplib.types():

0: undefined, 1: vacuous, 2: boolean, 3: unknownboolean, 4: string, 5: unknownstring, 6: pen,

7: unknownpen, 8: path, 9: unknownpath, 10: picture, 11: unknownpicture, 12: transform, 13:

color, 14: cmykcolor, 15: pair, 16: numeric, 17: known, 18: dependent, 19: protodependent, 20:

independent, 21: tokenlist, 22: structured, 23: unsuffixedmacro, 24: suffixedmacro.

The command codes are available with mplib.codes():

The METAPOST library mplib204

0: undefined, 1: btex, 2: etex, 3: if, 4: fi_or_else, 5: input, 6: iteration, 7: repeat_loop, 8: exitif,

9: relax, 10: scantokens, 11: runscript, 12: maketext, 13: expandafter, 14: definedmacro, 15:

save, 16: interim, 17: let, 18: newinternal, 19: def, 20: shipout, 21: addto, 22: setbounds,

23: scope, 24: show, 25: mode, 26: randomseed, 27: message, 28: everyjob, 29: delimiters,

30: special, 31: write, 32: declare, 33: leftdelimiter, 34: begingroup, 35: nullary, 36: unary,

37: str, 38: void, 39: cycle, 40: ofbinary, 41: capsule, 42: string, 43: internal, 44: tag, 45:

numeric, 46: plus_or_minus, 47: secondarydef, 48: tertiarybinary, 49: leftbrace, 50: join, 51:

ampersand, 52: tertiarydef, 53: primarybinary, 54: equals, 55: and, 56: primarydef, 57: slash,

58: secondarybinary, 59: parametertype, 60: controls, 61: tension, 62: atleast, 63: curl, 64:

macrospecial, 65: rightdelimiter, 66: leftbracket, 67: rightbracket, 68: rightbrace, 69: with,

70: thingstoadd, 71: of, 72: to, 73: step, 74: until, 75: within, 76: assignment, 77: skip, 78:

colon, 79: comma, 80: semicolon, 81: endgroup, 82: stop, 83: outertag, 84: undefinedcs.

Now, if you really want to use these, keep in mind that the internals of METAPOST are not trivial,

especially because expression scanning can be complex. So you need to experiment a bit. In

CONTEXT all is (and will be) hidden below an abstraction layer so users are not bothered by all

these look-ahead and push-back issues that originate in the way METAPOST scans its input.

12.5 Injectors

It is important to know that piping code into the library is pretty fast and efficient. Most pro-

cessing time relates to memory management, calculations and generation of output can not be

neglected either. Out of curiousity I added some functions that directly push data into the library

but the gain is not that large.5

SCANNER ARGUMENT

inject_numeric instance, number

inject_integer instance, number

inject_boolean instance, boolean

inject_string instance, string

inject_pair instance, (table with) two numbers

inject_color instance, (table with) three numbers

inject_cmykcolor instance, (table with) four numbers

inject_transform instance, (table with) six numbers

inject_path instance, table with hashes or arrays, cycle, variant

The path injector takes a table with subtables that are either hashed (like the path solver) or

arrays with two, four or six entries. When the third argument has the value true the path is

closed. When the fourth argument is true the path is constructed out of straight lines (as with

--) by setting the curl values to 1 automatically.6

5 The main motivation was checking of huge paths could be optimized. The other data structures were then added for

completeness.
6 This is all experimental so future versions might provide more control.

205The PDF related libraries

13 The PDF related libraries

13.1 The pdfe library

13.1.1 Introduction

The pdfe library replaces the epdf library and provides an interface to PDF files. It uses the

same code as is used for PDF image inclusion. The pplib library by Paweł Jackowski replaces

the poppler (derived from xpdf) library.

A PDF file is basically a tree of objects and one descends into the tree via dictionaries (key/value)

and arrays (index/value). There are a few topmost dictionaries that start at root that are accessed

more directly.

Although everything in PDF is basically an object we only wrap a few in so called userdata LUA

objects.

TYPE MAPPING

PDF LUA

null nil

boolean boolean

integer integer

float number

name string

string string

array array userdatum

dictionary dictionary userdatum

stream stream userdatum (with related dictionary)

reference reference userdatum

The regular getters return these LUA data types but one can also get more detailed information.

13.1.2 open, openfile, new, getstatus, close, unencrypt

A document is loaded from a file (by name or handle) or string:

<pdfe document> = pdfe.open(filename)

<pdfe document> = pdfe.openfile(filehandle)

<pdfe document> = pdfe.new(somestring,somelength)

Such a document is closed with:

pdfe.close(<pdfe document>)

You can check if a document opened well by:

pdfe.getstatus(<pdfe document>)

The PDF related libraries206

The returned codes are:

VALUE EXPLANATION

-2 the document failed to open

-1 the document is (still) protected

0 the document is not encrypted

2 the document has been unencrypted

An encrypted document can be unencrypted by the next command where instead of either pass-

word you can give nil:

pdfe.unencrypt(<pdfe document>,userpassword,ownerpassword)

13.1.3 getsize, getversion, getnofobjects, getnofpages

A successfully opened document can provide some information:

bytes = getsize(<pdfe document>)

major, minor = getversion(<pdfe document>)

n = getnofobjects(<pdfe document>)

n = getnofpages(<pdfe document>)

bytes, waste = getnofpages(<pdfe document>)

13.1.4 get[catalog|trailer|info]

For accessing the document structure you start with the so called catalog, a dictionary:

<pdfe dictionary> = pdfe.getcatalog(<pdfe document>)

The other two root dictionaries are accessed with:

<pdfe dictionary> = pdfe.gettrailer(<pdfe document>)

<pdfe dictionary> = pdfe.getinfo(<pdfe document>)

13.1.5 getpage, getbox

A specific page can conveniently be reached with the next command, which returns a dictionary.

<pdfe dictionary> = pdfe.getpage(<pdfe document>,pagenumber)

Another convenience command gives you the (bounding) box of a (normally page) which can be

inherited from the document itself. An example of a valid box name is MediaBox.

pages = pdfe.getbox(<pdfe dictionary>,boxname)

13.1.6 get[string|integer|number|boolean|name]

Common values in dictionaries and arrays are strings, integers, floats, booleans and names

(which are also strings) and these are also normal LUA objects:

207The PDF related libraries

s = getstring (<pdfe array|dictionary>,index|key)

i = getinteger(<pdfe array|dictionary>,index|key)

n = getnumber (<pdfe array|dictionary>,index|key)

b = getboolean(<pdfe array|dictionary>,index|key)

n = getname (<pdfe array|dictionary>,index|key)

The getstring function has two extra variants:

s, h = getstring (<pdfe array|dictionary>,index|key,false)

s = getstring (<pdfe array|dictionary>,index|key,true)

The first call returns the original string plus a boolean indicating if the string is hex encoded.

The second call returns the unencoded string.

13.1.7 get[dictionary|array|stream]

Normally you will use an index in an array and key in a dictionary but dictionaries also accept

an index. The size of an array or dictionary is available with the usual # operator.

<pdfe dictionary> = getdictionary(<pdfe array|dictionary>,index|key)

<pdfe array> = getarray (<pdfe array|dictionary>,index|key)

<pdfe stream>,

<pdfe dictionary> = getstream (<pdfe array|dictionary>,index|key)

These commands return dictionaries, arrays and streams, which are dictionaries with a blob of

data attached.

Before we come to an alternative access mode, we mention that the objects provide access in a

different way too, for instance this is valid:

print(pdfe.open("foo.pdf").Catalog.Type)

At the topmost level there are Catalog, Info, Trailer and Pages, so this is also okay:

print(pdfe.open("foo.pdf").Pages[1])

13.1.8 [open|close|readfrom|whole|]stream

Streams are sort of special. When your index or key hits a stream you get back a stream object

and dictionary object. The dictionary you can access in the usual way and for the stream there

are the following methods:

okay = openstream(<pdfe stream>,[decode])

closestream(<pdfe stream>)

str, n = readfromstream(<pdfe stream>)

str, n = readwholestream(<pdfe stream>,[decode])

You either read in chunks, or you ask for the whole. When reading in chunks, you need to open

and close the stream yourself. The n value indicates the length read. The decode parameter

controls if the stream data gets uncompressed.

The PDF related libraries208

As with dictionaries, you can access fields in a stream dictionary in the usual LUA way too. You

get the content when you ‘call’ the stream. You can pass a boolean that indicates if the stream

has to be decompressed.

13.1.9 getfrom[dictionary|array]

In addition to the interface described before, there is also a bit lower level interface available.

key, type, value, detail = getfromdictionary(<pdfe dictionary>,index)

type, value, detail = getfromarray(<pdfe array>,index)

TYPE MEANING VALUE DETAIL

0 none nil

1 null nil

2 boolean boolean

3 integer integer

4 number float

5 name string

6 string string hex

7 array arrayobject size

8 dictionary dictionaryobject size

9 stream streamobject dictionary size

10 reference integer

A hex string is (in the PDF file) surrounded by <> while plain strings are bounded by <>.

13.1.10 [dictionary|array]totable

All entries in a dictionary or table can be fetched with the following commands where the return

values are a hashed or indexed table.

hash = dictionarytotable(<pdfe dictionary>)

list = arraytotable(<pdfe array>)

You can get a list of pages with:

{ { <pdfe dictionary>, size, objnum }, ... } = pagestotable(<pdfe document>)

13.1.11 getfromreference

Because you can have unresolved references, a reference object can be resolved with:

type, <pdfe dictionary|array|stream>, detail = getfromreference(<pdfe refer-

ence>)

So, as second value you get back a new pdfe userdata object that you can query.

209The PDF related libraries

13.2 Memory streams

The pdfe.new function takes three arguments:

VALUE EXPLANATION

stream this is a (in low level LUA speak) light userdata object, i.e. a pointer to a sequence of

bytes

length this is the length of the stream in bytes (the stream can have embedded zeros)

name optional, this is a unique identifier that is used for hashing the stream

The third argument is optional. When it is not given the function will return a pdfe document

object as with a regular file, otherwise it will return a filename that can be used elsewhere (e.g.

in the image library) to reference the stream as pseudo file.

Instead of a light userdata stream (which is actually fragile but handy when you come from a

library) you can also pass a LUA string, in which case the given length is (at most) the string

length.

The function returns a pdfe object and a string. The string can be used in the img library instead

of a filename. You need to prevent garbage collection of the object when you use it as image (for

instance by storing it somewhere).

Both the memory stream and it’s use in the image library is experimental and can change. In

case you wonder where this can be used: when you use the swiglib library for graphicmagick,

it can return such a userdata object. This permits conversion in memory and passing the result

directly to the backend. This might save some runtime in one-pass workflows. This feature is

currently not meant for production and we might come up with a better implementation.

13.3 The pdfscanner library

This library is not available in LUAMETATEX.

The PDF related libraries210

211Extra libraries

14 Extra libraries

14.1 Introduction

The libraries can be grouped in categories like fonts, languages, TEX, METAPOST, PDF, etc. There

are however also some that are more general purpose and these are discussed here.

14.2 File and string readers: fio and type sio

This library provides a set of functions for reading numbers from a file and in addition to the

regular io library functions. The following work on normal LUA file handles.

NAME ARGUMENTS RESULTS

readcardinal1 (f) a 1 byte unsigned integer

readcardinal2 (f) a 2 byte unsigned integer

readcardinal3 (f) a 3 byte unsigned integer

readcardinal4 (f) a 4 byte unsigned integer

readcardinaltable (f,n,b) n cardinals of b bytes

readinteger1 (f) a 1 byte signed integer

readinteger2 (f) a 2 byte signed integer

readinteger3 (f) a 3 byte signed integer

readinteger4 (f) a 4 byte signed integer

readintegertable (f,n,b) n integers of b bytes

readfixed2 (f) a float made from a 2 byte fixed format

readfixed4 (f) a float made from a 4 byte fixed format

read2dot14 (f) a float made from a 2 byte in 2dot4 format

setposition (f,p) goto position p

getposition (f) get the current position

skipposition (f,n) skip n positions

readbytes (f,n) n bytes

readbytetable (f,n) n bytes

When relevant there are also variants that end with le that do it the little endian way. The fixed

and dot floating points formats are found in font files and return LUA doubles.

A similar set of function as in the fio library is available in the sio library: sio.readcardi-

nal1, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltable,

sio.readinteger1, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.readin-

tegertable, sio.readfixed2, sio.readfixed4, sio.read2dot14, sio.setposition, sio.get-

position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first argu-

ment is a string instead of a file handle.

14.3 md5

NAME ARGUMENTS RESULTS

sum

Extra libraries212

hex

HEX

14.4 sha2

NAME ARGUMENTS RESULTS

digest256

digest384

digest512

14.5 xzip

NAME ARGUMENTS RESULTS

compress

decompress

adler32

crc32

14.6 xmath

This library just opens up standard C math library and the main reason for it being there is that

it permits advanced graphics in METAPOST (via the LUA interface). There are three constant

values:

NAME ARGUMENTS RESULTS

inf — inf

nan — nan

pi — 3.1415926535898

and a lot of functions:

NAME ARGUMENTS RESULTS

acos (a)

acosh (a)

asin (a)

asinh (a)

atan (a[,b])

atan2 (a[,b])

atanh (a)

cbrt (a)

ceil (a)

copysign (a,b)

cos (a)

cosh (a)

213Extra libraries

deg (a)

erf (a)

erfc (a)

exp (a)

exp2 (a)

expm1 (a)

fabs (a)

fdim (a,b)

floor (a)

fma (a,b,c)

fmax (...)

fmin (...)

fmod (a,b)

frexp (a,b)

gamma (a)

hypot (a,b)

isfinite (a)

isinf (a)

isnan (a)

isnormal (a)

j0 (a)

j1 (a)

jn (a,b)

ldexp (a,b)

lgamma (a)

l0 (a)

l1 (a)

ln (a,b)

log (a[,b])

log10 (a)

log1p (a)

log2 (a)

logb (a)

modf (a,b)

nearbyint (a)

nextafter (a,b)

pow (a,b)

rad (a)

remainder (a,b)

remquo (a,b)

round (a)

scalbn (a,b)

sin (a)

sinh (a)

sqrt (a)

tan (a)

Extra libraries214

tanh (a)

tgamma (a)

trunc (a)

y0 (a)

y1 (a)

yn (a)

14.7 xcomplex

LUAMETATEX also provides a complex library xcomplex. The complex number is a userdatum:

NAME ARGUMENTS RESULTS

new (r,i) a complex userdata type

tostring (z) a string representation

topair (z) two numbers

There is a bunch of functions that take a complex number:

NAME ARGUMENTS RESULTS

abs (a)

arg (a)

imag (a)

real (a)

onj (a)

proj (a)

exp" (a)

log (a)

sqrt (a)

pow (a,b)

sin (a)

cos (a)

tan (a)

asin (a)

acos (a)

atan (a)

sinh (a)

cosh (a)

tanh (a)

asinh (a)

acosh (a)

atanh (a)

These are accompanied by libcerf functions:

NAME ARGUMENTS RESULTS

erf (a) The complex error function erf(z)

215Extra libraries

erfc (a) The complex complementary error function erfc(z) = 1 - erf(z)

erfcx (a) The underflow-compensating function erfcx(z) = exp(z^2) erfc(z)

erfi (a) The imaginary error function erfi(z) = -i erf(iz)

dawson (a) Dawson's integral D(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)

voigt (a,b,c) The convolution of a Gaussian and a Lorentzian

voigt_hwhm (a,b) The half width at half maximum of the Voigt profile

14.8 xdecimal

As an experiment LUAMETATEX provides an interface to the decNumber library that we have

on board for METAPOST anyway. Apart from the usual support for operators there are some

functions.

NAME ARGUMENTS RESULTS

abs (a)

new ([n or s])

copy (a)

trim (a)

tostring (a)

tonumber (a)

setprecision (n)

getprecision ()

conj (a)

abs (a)

pow (a,b)

sqrt (a)

ln (a)

log (a)

exp (a)

bor (a,b)

bxor (a,b)

band (a,b)

shift (a,b)

rotate (a,b)

minus (a)

plus (a)

min (a,b)

max (a,b)

14.9 lfs

The original lfs module has been adapted a bit to our needs but for practical reasons we kept

the namespace. This module will probably evolve a bit over time.

NAME ARGUMENTS RESULTS

attributes (name)

Extra libraries216

chdir (name)

currentdir ()

dir (name) name, mode, size and mtime

mkdir (name)

rmdir (name)

touch (name)

link (name)

symlinkattributes (name)

isdir (name)

isfile (name)

iswriteabledir (name)

iswriteablefile (name)

isreadabledir (name)

isreadablefile (name)

The dir function is a traverser which in addition to the name returns some more properties.

Keep in mind that the traverser loops over a directory and that it doesn’t run well when used

nested. This is a side effect of the operating system. It is also the reason why we return some

properties because querying them via attributes would interfere badly.

The following attributes are returned by attributes:

NAME VALUE

mode

size

modification

access

change

permissions

nlink

14.10 pngdecode

This module is experimental and used in image inclusion. It is not some general purpose module

and is supposed to be used in a very controlled way. The interfaces might evolve.

NAME ARGUMENTS RESULTS

applyfilter (str,nx,ny,slice) string

splitmask (str,nx,ny,bpp,bytes) string

interlace (str,nx,ny,slice,pass) string

expand (str,nx,ny,parts,xline,factor) string

14.11 basexx

Some more experimental helpers:

217Extra libraries

NAME ARGUMENTS RESULTS

encode16 (str[,newline]) string

decode16 (str) string

encode64 (str[,newline]) string

decode64 (str) string

encode85 (str[,newline]) string

decode85 (str) string

encodeRL (str) string

decodeRL (str) string

encodeLZW (str[,defaults]) string

decodeLZW (str[,defaults]) string

14.12 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function takes

upto two arguments: string.explode(s[,m]) and returns an array containing the string argu-

ment s split into sub-strings based on the value of the string argument m. The second argument is

a string that is either empty (this splits the string into characters), a single character (this splits

on each occurrence of that character, possibly introducing empty strings), or a single character

followed by the plus sign + (this special version does not create empty sub-strings). The default

value for m is ‘ +’ (multiple spaces). Note: m is not hidden by surrounding braces as it would be

if this function was written in TEX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfval-

ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes and

string.bytepairs.

‣ string.utfvalues(s): an integer value in the UNICODE range

‣ string.utfcharacters(s): a string with a single UTF-8 token in it

‣ string.characters(s): a string containing one byte

‣ string.characterpairs(s): two strings each containing one byte or an empty second string

if the string length was odd

‣ string.bytes(s): a single byte value

‣ string.bytepairs(s): two byte values or nil instead of a number as its second return value

if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the

conversion of UTF16 encoded data into UTF8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,

if true, strips the symbols from the dumped data. This matches an extension made in luajit.

This is typically a function that gets adapted as LUA itself progresses.

The string library functions len, lower, sub etc. are not UNICODE-aware. For strings in the

UTF8 encoding, i.e., strings containing characters above code point 127, the corresponding func-

tions from the slnunicode library can be used, e.g., unicode.utf8.len, unicode.utf8.lower

etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and

unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are

Extra libraries218

UNICODE-aware, they fall-back to non-UNICODE-aware behavior when using the empty capture

() but other captures work as expected. For the interpretation of character classes in uni-

code.utf8 functions refer to the library sources at http://luaforge.net/projects/sln.

Version 5.3 of LUA provides some native UTF8 support but we have added a few similar helpers

too: string.utfvalue, string.utfcharacter and string.utflength.

‣ string.utfvalue(s): returns the codepoints of the characters in the given string

‣ string.utfcharacter(c,...): returns a string with the characters of the given code points

‣ string.utflength(s): returns the length of the given string

These three functions are relative fast and don’t do much checking. They can be used as building

blocks for other helpers.

14.13 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.selfarg, os.setenv,

os.env, os.gettimeofday, os.type, os.name and os.uname, that we will discuss here. There

are also some time related helpers in the lua namespace.

‣ os.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

‣ os.selfarg is a table with the command line arguments.

‣ os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value

string will remove the variable.

‣ os.env is a hash table containing a dump of the variables and values in the process envi-

ronment at the start of the run. It is writeable, but the actual environment is not updated

automatically.

‣ os.gettimeofday returns the current ‘UNIX time’, but as a float. Keep in mind that there

might be platforms where this function is not available.

‣ os.type is a string that gives a global indication of the class of operating system. The possible

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

‣ os.name is a string that gives a more precise indication of the operating system. These pos-

sible values are not yet fixed, and for os.type values windows and msdos, the os.name values

are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but BSD-like), sysv,

generic (unknown). But . . . we only provide LUAMETATEX binaries for the mainstream vari-

ants.

Officially we only support mainstream systems: MSWINDOWS, LINUX, FREEBSD and OS-X. Of

course one can build LUAMETATEX for other systems, in which case on has to check the above.

‣ os.uname returns a table with specific operating system information acquired at runtime.

The keys in the returned table are all string values, and their names are: sysname, machine,

release, version, and nodename.

14.14 The lua library functions

The lua library provides some general helpers.

219Extra libraries

‣ The newtable and newindex functions can be used to create tables with space reserved be-

forehand for the given amount of entries.

‣ The getstacktop function returns a number that can be used for diagnostic purposes.

‣ The functions getruntime, getcurrenttime, getpreciseticks and getpreciseseconds re-

turn what their name suggests.

‣ On MSWINDOWS the getcodepage function returns two numbers, one for the command han-

dler and one for the graphical user interface.

‣ The name of the startup file is reported by getstartupfile.

‣ The LUA version is reported by getversion.

‣ The lua.openfile function can be used instead of io.open. On MSWINDOWS it will convert

the filename to a so called wide one which means that filenames in UTF8 encoding will work

ok. On the other hand, names given in the codepage won’t.

Extra libraries220

221Primitives aka commands

15 Primitives aka commands

15.1 Introduction

The starting point of LUATEX is PDFTEX, which itself contains regular TEX and 𝜀-TEX. Because
directional support was needed we also took some code from ALEPH (OMEGA). In a later stage the

backend specific commands were isolated in its own namespace which resulted in a cleaner code

base where the backend code no longer was interwoven with the normal frontend primitives. We

also promoted some generic constructs (like box resources and directions) to core functionality.

Some of the PDFTEX support primitives have been around from the start but when LUA integration

became better and when a token scanner library was added, not all of those made sense as

primitives. In previous chapters we already mentioned what is gone from the core. Deep down

some more has changed but not all is reflected at the primitive level. Because there is still a

considerable amount of new primitives, a summary is given below.

15.2 Languages

automatichyphenmode integer

automatichyphenpenalty integer

hyphenpenaltymode integer

compoundhyphenmode integer

exceptionpenalty integer

explicithyphenpenalty integer

hyphenationbounds integer

hjcode charactercode

hyphenationmin charactercode

postexhyphenchar charactercode

posthyphenchar charactercode

preexhyphenchar charactercode

prehyphenchar charactercode

15.3 Fonts

tracingfonts integer

suppressfontnotfounderror integer

setfontid integer

fontid font

efcode font charactercode

lpcode font charactercode

rpcode font charactercode

Primitives aka commands222

15.4 Math

matholdmode integer

mathstyle integer

matheqnogapstep integer

Uskewed

Uskewedwithdelims

Ustartdisplaymath

Ustartmath

Ustopdisplaymath

Ustopmath

crampeddisplaystyle

crampedtextstyle

crampedscriptstyle

crampedscriptscriptstyle

Umathchardef

Umathcharnumdef

mathdisplayskipmode integer

mathscriptsmode integer

mathnolimitsmode integer

mathitalicsmode integer

mathrulesmode integer

mathrulesfam integer

mathdelimitersmode integer

mathflattenmode integer

mathpenaltiesmode integer

mathrulethicknessmode integer

mathscriptboxmode integer

mathscriptcharmode integer

mathsurroundmode integer

nokerns integer

noligs integer

prebinoppenalty integer

predisplaygapfactor integer

prerelpenalty integer

Usuperscript command

Usubscript command

Unosuperscript command

Unosubscript command

Umathcode

Umathcodenum

Udelcode

Udelcodenum

Umathaxis family dimension

Umathbinbinspacing family dimension

Umathbinclosespacing family dimension

223Primitives aka commands

Umathbininnerspacing family dimension

Umathbinopenspacing family dimension

Umathbinopspacing family dimension

Umathbinordspacing family dimension

Umathbinpunctspacing family dimension

Umathbinrelspacing family dimension

Umathclosebinspacing family dimension

Umathcloseclosespacing family dimension

Umathcloseinnerspacing family dimension

Umathcloseopenspacing family dimension

Umathcloseopspacing family dimension

Umathcloseordspacing family dimension

Umathclosepunctspacing family dimension

Umathcloserelspacing family dimension

Umathconnectoroverlapmin family dimension

Umathfractiondelsize family dimension

Umathfractiondenomdown family dimension

Umathfractiondenomvgap family dimension

Umathfractionnumup family dimension

Umathfractionnumvgap family dimension

Umathfractionrule family dimension

Umathinnerbinspacing family dimension

Umathinnerclosespacing family dimension

Umathinnerinnerspacing family dimension

Umathinneropenspacing family dimension

Umathinneropspacing family dimension

Umathinnerordspacing family dimension

Umathinnerpunctspacing family dimension

Umathinnerrelspacing family dimension

Umathlimitabovebgap family dimension

Umathlimitabovekern family dimension

Umathlimitabovevgap family dimension

Umathlimitbelowbgap family dimension

Umathlimitbelowkern family dimension

Umathlimitbelowvgap family dimension

Umathnolimitsubfactor family dimension

Umathnolimitsupfactor family dimension

Umathopbinspacing family dimension

Umathopclosespacing family dimension

Umathopenbinspacing family dimension

Umathopenclosespacing family dimension

Umathopeninnerspacing family dimension

Umathopenopenspacing family dimension

Umathopenopspacing family dimension

Umathopenordspacing family dimension

Umathopenpunctspacing family dimension

Primitives aka commands224

Umathopenrelspacing family dimension

Umathoperatorsize family dimension

Umathopinnerspacing family dimension

Umathopopenspacing family dimension

Umathopopspacing family dimension

Umathopordspacing family dimension

Umathoppunctspacing family dimension

Umathoprelspacing family dimension

Umathordbinspacing family dimension

Umathordclosespacing family dimension

Umathordinnerspacing family dimension

Umathordopenspacing family dimension

Umathordopspacing family dimension

Umathordordspacing family dimension

Umathordpunctspacing family dimension

Umathordrelspacing family dimension

Umathoverbarkern family dimension

Umathoverbarrule family dimension

Umathoverbarvgap family dimension

Umathoverdelimiterbgap family dimension

Umathoverdelimitervgap family dimension

Umathpunctbinspacing family dimension

Umathpunctclosespacing family dimension

Umathpunctinnerspacing family dimension

Umathpunctopenspacing family dimension

Umathpunctopspacing family dimension

Umathpunctordspacing family dimension

Umathpunctpunctspacing family dimension

Umathpunctrelspacing family dimension

Umathquad family dimension

Umathradicaldegreeafter family dimension

Umathradicaldegreebefore family dimension

Umathradicaldegreeraise family dimension

Umathradicalkern family dimension

Umathradicalrule family dimension

Umathradicalvgap family dimension

Umathrelbinspacing family dimension

Umathrelclosespacing family dimension

Umathrelinnerspacing family dimension

Umathrelopenspacing family dimension

Umathrelopspacing family dimension

Umathrelordspacing family dimension

Umathrelpunctspacing family dimension

Umathrelrelspacing family dimension

Umathskewedfractionhgap family dimension

Umathskewedfractionvgap family dimension

225Primitives aka commands

Umathspaceafterscript family dimension

Umathstackdenomdown family dimension

Umathstacknumup family dimension

Umathstackvgap family dimension

Umathsubshiftdown family dimension

Umathsubshiftdrop family dimension

Umathsubsupshiftdown family dimension

Umathsubsupvgap family dimension

Umathsubtopmax family dimension

Umathsupbottommin family dimension

Umathsupshiftdrop family dimension

Umathsupshiftup family dimension

Umathsupsubbottommax family dimension

Umathunderbarkern family dimension

Umathunderbarrule family dimension

Umathunderbarvgap family dimension

Umathunderdelimiterbgap family dimension

Umathunderdelimitervgap family dimension

Udelimiter

Umathaccent

Umathchar

Umathcharnum

Ustack

Uradical

Uroot

Uunderdelimiter

Uoverdelimiter

Udelimiterunder

Udelimiterover

Uhextensible

Uchar

Umathcharclass

Umathcharfam

Umathcharslot

Uleft

Umiddle

Uright

Uvextensible

15.5 Boxes and directions

pardirection direction

textdirection direction

mathdirection direction

linedirection direction

breakafterdirmode integer

Primitives aka commands226

shapemode integer

fixupboxesmode integer

boxdirection box direction

boxorientation box orientation rotation over 90, 180, 270 degrees

boxxoffset box xoffset leaves dimensions untounched

boxyoffset box yoffset leaves dimensions untounched

boxxmove box xmove offsets that reflect on dimensions

boxymove box ymove offsets that reflect on dimensions

boxtotal box ht+dp height plus depth (and when assigned halfs)

boxattr box attr value (sets) a specific attribute to a value

15.6 Scanning

aftergrouped text like aftergroup but for given list

alignmark equivalent to hash token

aligntab equivalent to tab token

begincsname command variant of \csname that ignores unde-

fined commands

catcodetable integer switch to catcode table

csstring command the command without preceding es-

cape character

endlocalcontrol command switches back to themain control loop

etoksapp tokenregister text append expanded text to given token-

register

etokspre tokenregister text prepend expanded text to given token-

register

expanded text expands the given text

frozen

futureexpand command command expands second ot third token depend-

ing on first match

futureexpandis command command as futureexpand but also skips pars

futureexpandisap command command same as idem but doesn’t push back

skipped spaces

gtoksapp tokenregister text globally append text to given token-

register

gtokspre tokenregister text globally prepend text to given token-

register

ifabsdim dimension <=> dimension test the absolute value of the given di-

mension

ifabsnum integer <=> integer test the absolute value of the given in-

teger

ifcondition command assume the next token is a test (so skip

as if)

ifdimen possibly a dimension acts like an \ifcase with 1 for valid

and 2 for invalid

227Primitives aka commands

ifincsname command check if we’re inside a csname expan-

sion

ifnumval

ifdimval

ifchknum

ifchkdim

ifcmpnum

ifcmpdim

ifusercmd command

ifprotected command

iffrozen command

iftok

ifcstok

internalcodesmode integer

immediateassigned command (todo) expand the following assignment

now

immediateassignment command (todo) expand the following assignment

now

initcatcodetable integer initialize catcode table

lastnamedcs command last found command of \ifcsname con-

struction

nospaces integer don’t inject spaces

orelse condition

pxdimen dimension multiplier for the px unit

savecatcodetable integer save catcode table

scantextokens text \scantokens without file side effects

suppressifcsnameerror integer recover from issues in csname testing

suppresslongerror integer make \long a nop

suppressmathparerror integer accepts \par and empty lines in math

suppressoutererror integer make \outer a nop

suppressprimitiveerror integer don’t report an invalid \primitive

toksapp tokenregister text append text to given tokenregister

tokspre tokenregister text prepend text to given tokenregister

xtoksapp tokenregister text globally append expanded text to given

tokenregister

xtokspre tokenregister text globally prepend expanded text to given

tokenregister

letfrozen macro sets the frozen property of a macro

letprotected macro sets the protected property of amacro

unletfrozen macro unsets the frozen property of a macro

unletprotected macro unsets the protected property of amacro

15.7 Typesetting

protrudechars integer

localbrokenpenalty integer

Primitives aka commands228

localinterlinepenalty integer

adjustspacing integer

boundary command

noboundary command

protrusionboundary command

wordboundary command

nohrule command

novrule command

insertht number

quitvmode command

leftmarginkern dimension

rightmarginkern dimension

localleftbox box

localrightbox box

gleaders command

15.8 LUA

luacopyinputnodes integer

luadef

luabytecodecall

luafunctioncall

latelua

lateluafunction

luabytecode

luaescapestring

luafunction

15.9 Management

outputbox integer

clearmarks

attribute

glet

letcharcode

attributedef

15.10 Miscellaneous

luatexversion

formatname

luatexbanner

luatexrevision

229Topics

Topics

a

ALEPH 23, 52

adjust 115

attributes 34, 35, 132, 168

b

banner 32

boundaries 64

boundary 119

boxes 13, 35, 171

split 172

bytecodes 161

c

callbacks 149

building pages 152

closing files 151

contributions 152, 154

data files 150

dump 158

errors 158, 159

files 159

fonts 159

format file 150

hyphenation 156

inserts 153

job run 158

jobname 151

kerning 157

ligature building 157

linebreaks 153, 154, 155

math 157

opening files 150

output 156

packing 155, 156

reader 151

rules 156

wrapping up 159

catcodes 39

characters 67

codes 170

command line 27

conditions 46

dimensions 44

numbers 44

tokens 45

configuration 187

convert commands 168

csnames 25

d

dimensions 44

direct nodes 138

directions 52, 120

discretionaries 77, 81, 115

e

𝜀-TEX 22

engines 21

errors 178

escaping 37

exceptions 75

expansion 42

f

files

binary 25

names 51

writing 52

fonts 52, 63

current 65

define 65

defining 180

extend 65

id 65

used 249

format 32

g

glue 116

gluespec 117

glyphs 67, 118

Topics230

h

hash 180

helpers 177

history 21

hyphenation 50, 67, 73, 75

discretionaries 77

exceptions 75

how it works 77

patterns 75

i

IO 188

images

METAPOST 197

mplib 197

initialization 27, 180

insertions 114

k

kerning 79

kerns 117

suppress 63

l

LUA 13

extensions 28

interpreter 27

libraries 28, 29

modules 29

languages 50, 67

library 81

last items 168

leaders 50

libraries

lua 161

status 162

tex 164

texconfig 187

texio 188

token 188

ligatures 79

suppress 63

linebreaks 81, 185

lists 113, 173

m

METAPOST 197

mplib 197

macros 192

main loop 73

marks 41, 114

math 52, 85

accents 102, 107

codes 107

cramped 88

delimiters 103, 106

extensibles 103

fences 101

flattening 108

fractions 104

italics 98

kerning 98

last line 107

limits 98

nodes 116, 120

parameters 89, 91, 172

penalties 100

radicals 103

scripts 98, 103, 108

spacing 88, 95, 96, 97

stacks 88

styles 86, 88, 108

text 108

tracing 109

UNICODE 85

memory 24

n

nesting 174, 186

newline 25

nodes 13, 34, 111

adjust 115

attributes 132

boundary 119

direct 138

direction 120

discretionaries 115

functions 127

glue 116, 117

glyph 118

231Topics

insertions 114

kerns 117

lists 113

marks 114

math 116, 120

paragraphs 119

penalty 117

properties 144

rules 113

text 112

numbers 44

o

OMEGA 52

output 48

p

PDF

analyze 205

memory streams 209

objects 205

pdfe 205

PDFTEX 23

pages 172, 186

paragraphs 81, 119

reset 185

parameters

internal 164

math 172

patterns 75

penalty 117

primitives 180

printing 175

properties 144

protrusion 64

r

registers 168, 171

bytecodes 161

rules 50, 113

s

shipout 186

space 25

spaces

suppress 63

splitting 48

startupfile 161

synctex 187

t

TEX 21

tables 161

testing 29

text

math 108

tokens 45, 188

scanning 40

tracing 51

u

UNICODE 32, 33

math 85

v

vcentering 35

version 32, 161

w

WEB2C 24

Topics232

233Primitives

Primitives

This register contains the primitives that are mentioned in the manual. There are of course

many more primitives. The LUATEX primitives are typeset in bold. The primitives from PDFTEX

are not supported that way but mentioned anyway.

\abovedisplayskip 97

\abovewithdelims 104

\accent 43, 73, 74

\adjustspacing 23, 59

\adjustspacingshrink 23

\adjustspacingstep 23

\adjustspacingstretch 23

\aftergrouped 43

\alignmark 41

\aligntab 41

\atop 88, 90

\atopwithdelims 88

\attribute 168

\attributedef 168

\automaticdiscretionary 73

\automatichyphenmode 71

\automatichyphenpenalty 75

\batchmode 188

\begincsname 40, 41

\begingroup 88

\belowdisplayskip 97

\boundary 50, 119

\box 33

\breakafterdirmode 54

\catcode 24, 31, 33, 170

\catcodetable 39, 175

\char 14, 33, 74, 75, 118

\chardef 33, 75, 192, 193

\clearmarks 41

\clubpenalties 185

\copy 33

\count 29, 33, 34, 168

\countdef 33, 168

\crampedscriptstyle 89

\csname 41

\csstring 40

\currentiftype 51

\currentiftype 111

\delcode 24, 85, 170, 171

\delimiter 85

\detokenize 190

\dimen 29, 33, 168

\dimendef 33, 168

\directlua 13

\directlua 31, 36, 37, 38, 162, 175, 180,

181

\discretionary 14, 75, 76, 78, 115

\displaystyle 95

\displaywidowpenalties 185

\dp 33

\edef 38, 42, 190

\efcode 23, 33, 58

\endgroup 88

\endinput 188

\endlinechar 22, 40, 175, 177

\errhelp 178

\errmessage 178

\etoksapp 40

\etokspre 40

\everyeof 40

\everyjob 28

\exceptionpenalty 76

\exhyphenchar 74, 75

\exhyphenpenalty 75, 78, 115

\expandafter 42

\expanded 23, 42

\explicitdiscretionary 73

\explicithyphenpenalty 75

\firstvalidlanguage 68

\fontid 63

\formatname 32, 181

\frozen 48

\futureexpand 43

Primitives234

\futureexpandis 43

\futureexpandisap 43

\gleaders 50

\glet 41

\global 24

\glyphdimensionsmode 64

\gtoksapp 40

\gtokspre 40

\halign 154

\hangindent 54, 55

\hbox 14, 34, 48, 98, 153, 154, 155, 171

\hjcode 24, 33, 68, 76

\hpack 48

\hpack 50

\hrule 14

\hsize 72

\hskip 14, 116

\ht 33

\hyphenation 75, 78

\hyphenationbounds 70

\hyphenationmin 50, 68

\hyphenchar 57, 74, 78

\hyphenpenalty 75, 78, 115

\if 41

\ifabsdim 23, 44

\ifabsnum 23, 44

\ifchkdim 44

\ifchknum 44

\ifcmpdim 44

\ifcmpnum 44

\ifcondition 46

\ifcstok 45

\ifdimval 44

\iffrozen 48

\ifincsname 23

\ifnumval 44

\ifprotected 48

\iftok 45

\ifusercmd 48

\ignorepars 43

\ignorespaces 43

\immediateassigned 42

\immediateassignment 42

\initcatcodetable 39

\input 150

\insert 33, 114

\interlinepenalties 185

\internalcodesmode 51

\internalcodesmode 111

\jobname 27, 28, 32, 151

\kern 14, 117

\language 74, 76, 78, 82

\lastnamedcs 40, 41

\lastnodesubtype 51

\lastnodetype 51

\lastnodetype 111

\lastsavedboxresourceindex 49

\lastsavedimageresourceindex 49

\lastsavedimageresourcepages 49

\latelua 162

\lccode 24, 33, 170

\leaders 50

\left 101

\lefthyphenmin 50, 68

\leftmarginkern 23

\letcharcode 41

\linedir 54

\localbrokenpenalty 119

\localinterlinepenalty 119

\localleftbox 119, 154

\localrightbox 119, 154

\lowercase 76

\lpcode 23, 33, 58

\luabytecode 38

\luabytecodecall 38

\luacopyinputnodes 176

\luadef 38, 193

\luaescapestring 37

\luafunction 38

\luafunctioncall 38

\luatexbanner 32

\luatexrevision 32

\luatexversion 32

\mag 22

\mark 114

235Primitives

\marks 33, 136

\mathaccent 85

\mathchar 85, 108

\mathchardef 85, 108

\mathchoice 87

\mathcode 24, 85, 170

\mathdelimitersmode 101

\mathdir 174

\mathdisplayskipmode 97

\matheqnogapstep 100

\mathflattenmode 108, 109

\mathitalicsmode 98, 101

\mathnolimitsmode 98

\mathpenaltiesmode 100

\mathscriptboxmode 98, 99

\mathscriptcharmode 99

\mathscriptsmode 99, 100

\mathstyle 86, 87, 88, 106, 174

\mathsurround 95, 116

\mathsurroundmode 95

] 95

\mathsurroundskip 95

\maxdepth 155

\medmuskip 97

\middle 174

\muskip 33, 96, 97, 168

\muskipdef 33

\newlinechar 22

\noboundary 50, 74, 79, 119

\noexpand 42

\nohrule 50

\nokerns 63

\noligs 63

\nospaces 63, 64

\novrule 50

\number 32, 63, 177

\openin 150

\openout 52, 150

\orelse 47

\output 156, 164

\outputbox 48

\over 88, 90, 174

\overline 89

\overwithdelims 88

\par 35, 43, 153

\parfillskip 153, 186

\parindent 164

\parshape 54, 55

\patterns 75, 77, 78

\penalty 117

\postexhyphenchar 73, 78

\posthyphenchar 78

\predisplaygapfactor 107

\preexhyphenchar 73, 78

\prehyphenchar 78

\protrudechars 23, 59

\protrusionboundary 50

\protrusionboundary 64

\protrusionboundary 119

\pxdimen 23

\quitvmode 23

\radical 85

\read 150

\relax 75, 176, 181, 191

\right 101

\righthyphenmin 50, 68

\rightmarginkern 23

\romannumeral 87, 177

\rpcode 23, 33, 58

\rule 113

\saveboxresource 49

\savecatcodetable 40

\saveimageresource 49

\savinghyphcodes 68, 69, 76, 83

\scantextokens 40

\scantokens 37, 40

\scriptfont 91

\scriptscriptfont 91

\scriptscriptstyle 103

\scriptspace 94

\scriptstyle 89

\setbox 33

\setfontid 63

\setlanguage 68, 74, 78

\sfcode 24, 33, 170

\shapemode 54

\skewchar 57, 102

Primitives236

\skip 33, 168, 169

\skipdef 33, 168

\spaceskip 63

\special 61

\string 40

\textdir 120

\textdir 174

\textdirection 14

\textdirection 53

\textfont 91, 108

\textstyle 87

\the 32, 34, 63, 164, 167, 169, 175

\thickmuskip 97

\thinmuskip 97

\toks 33, 167, 168, 169, 175

\toksapp 40

\toksdef 33, 168

\tokspre 40

\tpack 48

\tpack 50

\tracingassigns 22, 24

\tracingcommands 75, 164

\tracingfonts 23, 51

\tracingnesting 179

\tracingonline 51

\tracingrestores 22, 24

\Uabove 105

\Uabovewithdelims 105

\Uatop 105

\Uatopwithdelims 105

\Uchar 33

\Udelcode 86, 171

\Udelcodenum 86

\Udelimiter 86

\Udelimiterover 86, 103

\Udelimiterunder 86, 103

\Uhextensible 103, 104

\Umathaccent 86, 102

\Umathaxis 90

\Umathbinbinspacing 96

\Umathbinclosespacing 96

\Umathbininnerspacing 96

\Umathbinopenspacing 96

\Umathbinopspacing 96

\Umathbinordspacing 96

\Umathbinpunctspacing 96

\Umathbinrelspacing 96

\Umathchar 86, 108

\Umathcharclass 107

\Umathchardef 86, 108

\Umathcharfam 107

\Umathcharnum 86

\Umathcharnumdef 85, 86

\Umathcharslot 107

\Umathclosebinspacing 96

\Umathcloseclosespacing 96

\Umathcloseinnerspacing 96

\Umathcloseopenspacing 96

\Umathcloseopspacing 96

\Umathcloseordspacing 96

\Umathclosepunctspacing 96

\Umathcloserelspacing 96

\Umathcode 86, 107

\Umathcodenum 86

\Umathconnectoroverlapmin 91, 94

\Umathfractiondelsize 90

\Umathfractiondenomdown 90

\Umathfractiondenomvgap 90

\Umathfractionnumup 90

\Umathfractionnumvgap 90

\Umathfractionrule 90

\Umathinnerbinspacing 96

\Umathinnerclosespacing 96

\Umathinnerinnerspacing 96

\Umathinneropenspacing 96

\Umathinneropspacing 96

\Umathinnerordspacing 96

\Umathinnerpunctspacing 96

\Umathinnerrelspacing 96

\Umathlimitabovebgap 90

\Umathlimitabovekern 90, 94

\Umathlimitabovevgap 90

\Umathlimitbelowbgap 90

\Umathlimitbelowkern 90, 94

\Umathlimitbelowvgap 90

\Umathnolimitsubfactor 98

\Umathnolimitsupfactor 98

\Umathopbinspacing 96

\Umathopclosespacing 96

\Umathopenbinspacing 96

237Primitives

\Umathopenclosespacing 96

\Umathopeninnerspacing 96

\Umathopenopenspacing 96

\Umathopenopspacing 96

\Umathopenordspacing 96

\Umathopenpunctspacing 96

\Umathopenrelspacing 96

\Umathoperatorsize 86, 90, 95

\Umathopinnerspacing 96

\Umathopopenspacing 96

\Umathopopspacing 96

\Umathopordspacing 96

\Umathoppunctspacing 96

\Umathoprelspacing 96

\Umathordbinspacing 96

\Umathordclosespacing 96

\Umathordinnerspacing 96

\Umathordopenspacing 96

\Umathordopspacing 96

\Umathordordspacing 96

\Umathordpunctspacing 96

\Umathordrelspacing 96

\Umathoverbarkern 90

\Umathoverbarrule 90

\Umathoverbarvgap 90

\Umathoverdelimiterbgap 90, 104

\Umathoverdelimitervgap 90, 104

\Umathpunctbinspacing 96

\Umathpunctclosespacing 96

\Umathpunctinnerspacing 96

\Umathpunctopenspacing 96

\Umathpunctopspacing 96

\Umathpunctordspacing 96

\Umathpunctpunctspacing 96

\Umathpunctrelspacing 96

\Umathquad 90, 94

\Umathradicaldegreeafter 90, 94, 103

\Umathradicaldegreebefore 90, 94, 103

\Umathradicaldegreeraise 90, 94, 95, 103

\Umathradicalkern 90

\Umathradicalrule 90, 94

\Umathradicalvgap 90, 94

\Umathrelbinspacing 96

\Umathrelclosespacing 96

\Umathrelinnerspacing 96

\Umathrelopenspacing 96

\Umathrelopspacing 96

\Umathrelordspacing 96

\Umathrelpunctspacing 96

\Umathrelrelspacing 96

\Umathskewedfractionhgap 105

\Umathskewedfractionvgap 105

\Umathspaceafterscript 91, 94

\Umathstackdenomdown 90

\Umathstacknumup 90

\Umathstackvgap 90

\Umathsubshiftdown 90, 99

\Umathsubshiftdrop 90

\Umathsubsupshiftdown 90, 100

\Umathsubsupvgap 91

\Umathsubtopmax 91

\Umathsupbottommin 91

\Umathsupshiftdrop 90

\Umathsupshiftup 90, 100

\Umathsupsubbottommax 91

\Umathunderbarkern 90

\Umathunderbarrule 90

\Umathunderbarvgap 90

\Umathunderdelimiterbgap 90, 104

\Umathunderdelimitervgap 90, 104

\Umath* 89

\Umath...spacing 96

\Umiddle 106

\Unosubscript 108

\Unosuperscript 108

\Uover 105

\Uoverdelimiter 86, 103, 104

\Uoverwithdelims 105

\Uradical 86, 103

\Uright 106

\Uroot 86, 103, 123

\Uskewed 104

\Uskewedwithdelims 104

\Ustack 88

\Ustartdisplaymath 108

\Ustartmath 108

\Ustopdisplaymath 108

\Ustopmath 108

\Ustyle 106

\Usubscript 108

\Usuperscript 108

\UUskewed 105

Primitives238

\UUskewedwithdelims 105

\Uunderdelimiter 86, 103, 104

\uccode 24, 33, 170

\uchyph 68, 118

\unexpanded 190

\unhbox 33

\unhcopy 33

\unvbox 33

\unvcopy 33

\uppercase 41, 76

\useboxresource 49

\useimageresource 49

\vadjust 115, 152, 174

\valign 153

\vbox 14, 34, 48, 154, 171, 186

\vcenter 36, 154

\vpack 48

\vpack 50

\vrule 14

\vskip 14, 116

\vsplit 33, 48, 154, 172

\vtop 14, 48, 154, 171

\wd 33

\widowpenalties 185

\wordboundary 50, 69, 119

\write 150

\xtoksapp 40

\xtokspre 40

\- 73, 75, 115

239Callbacks

Callbacks

b

buildpage_filter 152

build_page_insert 153

c

contribute_filter 152

d

define_font 159

f

find_data_file 150

find_format_file 150

find_read_file 150, 151

h

hpack_filter 153, 155

hyphenate 156

k

kerning 157

l

ligaturing 157

linebreak_filter 154, 185

m

mlist_to_hlist 100, 138, 157

o

open_read_file 150

p

post_linebreak_filter 155

pre_dump 158

pre_linebreak_filter 153, 185

process_jobname 151

process_rule 156

s

show_error_hook 158

show_error_message 159

show_lua_error_hook 159

start_file 159

start_run 158

stop_file 159

stop_run 158

v

vpack_filter 153, 155

w

wrapup_run 159

Callbacks240

241Nodes

Nodes

This register contains the nodes that are known to LUATEX. The primary nodes are in bold,

whatsits that are determined by their subtype are normal. The names prefixed by pdf_ are

backend specific.

a

accent 122

adjust 70, 115

attr 132

attribute_list 132

b

boundary 50, 70, 119

c

choice 123

d

delim 121

delta 177

dir 14, 70, 120

disc 14, 34, 115

f

fence 124

fraction 102, 123

g

glue 14, 34, 70, 116

glue-spec 169

glue_spec 116, 117, 165, 167, 169

glyph 14, 34, 67, 68, 73, 118, 131

h

hlist 14, 34, 36, 70, 113, 131

i

ins 70, 114

k

kern 14, 34, 70, 117

l

local_par 119, 186

m

mark 114

math 116

math_char 121

math_text_char 121

n

noad 122

p

parameter 123

penalty 70, 117

r

radical 123

rule 14, 70, 113

s

style 122

sub_box 121

sub_mlist 121

t

temp 112

v

vlist 14, 34, 70, 113, 131

w

whatsit 70

Nodes242

243Libraries

Libraries

This register contains the functions available in libraries. Not all functions are documented, for

instance because they can be experimental or obsolete.

char_depth 203

char_height 203

char_width 203

fields 199

pen_info 202

callback

find 149

known 149

list 149

register 149

lang

clean 82

clear_hyphenation 82

clear_patterns 82

gethjcode 83

hyphenate 83

hyphenation 82

hyphenationmin 82

id 81

new 81

patterns 82

postexhyphenchar 82

posthyphenchar 82

preexhyphenchar 82

prehyphenchar 82

sethjcode 83

lua

bytecode 161

getbytecode 161

getcurrenttime 162

getluaname 162

getpreciseseconds 162

getpreciseticks 162

getruntime 162

getstacktop 162

name 162

newindex 161

newtable 161

setbytecode 161

setluaname 162

startupfile 161

version 161

mplib

execute 198

finish 199

new 197

statistics 198

version 197

node

check_discretionaries 135

check_discretionary 135

copy 127, 140

copy_list 127, 140

count 128

current_attr 133, 140

dimensions 137

end_of_math 138

fields 111, 126

find_attribute 133

find_node 131

first_glyph 134

flatten_discretionaries 136

flush_list 127, 140

flush_node 127, 140

flush_properties_table 144

free 127, 140

getfield 141

getglue 132

getproperty 141

get_attribute 133, 140

get_properties_table 140, 144

has_attribute 133, 141

has_field 126, 141

has_glyph 134

hpack 136

id 126

insert_after 129, 141

insert_before 129, 141

is_char 134

is_glyph 134

Libraries244

is_node 127, 141

is_zero_glue 132

kerning 135

last_node 129

length 128

ligaturing 134

mlist_to_hlist 138

new 127, 142

prepend_prevdepth 137

protect_glyph 135

protect_glyphs 135

protrusion_skippable 135

rangedimensions 137

remove 129, 142

setfield 142

setglue 131, 142

setproperty 142

set_attribute 134, 142

set_properties_mode 144

slide 128

subtypes 111

tail 128, 143

todirect 138

tonode 138

tostring 138, 143

traverse 129, 143

traverse_char 131, 143

traverse_glyph 131, 143

traverse_id 130, 143

traverse_list 131, 143

type 126, 143

types 125

unprotect_glyph 135

unprotect_glyphs 135

unset_attribute 134, 143

values 111

vpack 136

write 128, 143

node.direct

check_discretionaries 140

check_discretionary 140

copy 140

copy_list 140

count 140

current_attr 140

dimensions 140

effective_glue 140

end_of_math 140

exchange 143

find_attribute 140

first_glyph 140

flatten_discretionaries 140

flush_list 140

flush_node 140

free 140

getattributelist 140

getboth 140

getbox 140

getchar 140

getdata 140

getdepth 140

getdirection 140

getdisc 140

getexpansion 141

getfam 141

getfield 141

getfont 141

getglue 141

getheight 141

getid 141

getkern 141

getlang 141

getleader 141

getlist 141

getnext 141

getnormalizedline 141

getnucleus 141

getoffsets 141

getorientation 141

getpenalty 141

getpost 141

getpre 141

getprev 141

getproperty 141

getreplace 141

getshift 141

getstate 140

getsub 141

getsubtype 141

getsup 141

getwhd 141

getwidth 141

245Libraries

get_attribute 140

get_properties_table 140

get_synctex_fields 140

has_attribute 141

has_dimensions 141

has_field 141

has_glyph 141

hpack 141

insert_after 141

insert_before 141

is_char 141

is_direct 141

is_glyph 141

is_node 141

is_valid 141

is_zero_glue 141

kerning 141

last_node 141

length 141

ligaturing 141

make_extensible 141

mlist_to_hlist 142

naturalwidth 142

new 142

prepend_prevdepth 142

protect_glyph 142

protect_glyphs 142

protrusion_skippable 142

rangedimensions 142

remove 142

reverse 143

setattributelist 142

setboth 142

setbox 142

setchar 142

setdata 142

setdepth 142

setdirection 142

setdisc 142

setexpansion 142

setfam 142

setfield 142

setfont 142

setglue 142

setheight 142

setkern 142

setlang 142

setleader 142

setlink 142

setlist 142

setnext 142

setnucleus 142

setoffsets 142

setorientation 142

setpenalty 142

setprev 142

setproperty 142

setshift 142

setsplit 142

setstate 142

setsub 142

setsubtype 142

setsup 142

setwhd 142

setwidth 142

set_attribute 142

set_synctex_fields 142

slide 142

start_of_par 143

tail 143

todirect 143

tonode 143

traverse 143

traverse_char 143

traverse_glyph 143

traverse_id 143

traverse_list 143

unprotect_glyph 143

unprotect_glyphs 143

unset_attribute 143

usedlist 143

uses_font 143

vpack 143

write 143

os

env 218

gettimeofday 218

name 218

selfarg 218

selfdir 218

setenv 218

type 218

Libraries246

uname 218

pdfe

arraytotable 208

close 205

closestream 207

dictionarytotable 208

getarray 207

getboolean 206

getbox 206

getcatalog 206

getdictionary 207

getfromarray 207, 208

getfromdictionary 207, 208

getfromreference 208

getfromstream 207

getinfo 206

getinteger 206

getname 206

getnofobjects 206

getnofpages 206

getnumber 206

getpage 206

getsize 206

getstatus 205

getstream 207

getstring 206

gettrailer 206

getversion 206

new 205, 209

open 205

openstream 207

readfromstream 207

readfromwholestream 207

unencrypt 205

sio

getposition 211

readbytes 211

readbytetable 211

readcardinaltable 211

readcardinal1 211

readcardinal2 211

readcardinal3 211

readcardinal4 211

readfixed2 211

readfixed4 211

readintegertable 211

readinteger1 211

readinteger2 211

readinteger3 211

readinteger4 211

read2dot14 211

setposition 211

skipposition 211

status

list 162

resetmessages 162

setexitcode 162

string

bytepairs 217

bytes 217

characterpairs 217

characters 217

explode 217

utfcharacter 218

utfcharacters 217

utflength 218

utfvalue 218

utfvalues 217

tex

attribute 168

badness 184

box 168, 171

catcode 170

count 168

cprint 176

definefont 180

delcode 170

dimen 168

enableprimitives 180

error 178

extraprimitives 181

fontidentifier 178

fontname 178

forcehmode 180

force_synctex_line 187

force_synctex_tag 187

get 164

getattribute 168

getbox 168, 171

getcatcode 170

getcount 168

getdelcode 170

247Libraries

getdelcodes 170

getdimen 168

getfamilyoffont 179

getglue 168

gethelptext 178

getinteraction 179

getlccode 170

getlinenumber 178

getlist 173

getlocallevel 186

getmath 172

getmathcode 170

getmathcodes 170

getmuglue 168

getmuskip 168

getnest 174

getpagestate 186

getsfcode 170

getskip 168

gettoks 168

getuccode 170

get_synctex_line 187

get_synctex_mode 187

get_synctex_tag 187

glue 168

hashtokens 180

init_rand 186

isattribute 168

isbox 168

iscount 168

isdimen 168

isglue 168

ismuglue 168

ismuskip 168

isskip 168

istoks 168

lccode 170

linebreak 185

lists 173

lua_math_random 186

lua_math_randomseed 186

mathcode 170

muglue 168

muskip 168

nest 174

normal_rand 186

number 177

primitives 184

print 175

ptr 174

resetparagraph 185

romannumeral 177

round 177

scale 177

scantoks 168

set 164

setattribute 168

setbox 168, 171

setcatcode 170

setcount 168

setdelcode 170

setdelcodes 170

setdimen 168

setglue 168

setinteraction 179

setlccode 170

setlinenumber 178

setlist 173

setmath 172

setmathcode 170

setmathcodes 170

setmuglue 168

setmuskip 168

setsfcode 170

setskip 168

settoks 168

setuccode 170

set_synctex_line 187

set_synctex_mode 187

set_synctex_no_files 187

set_synctex_tag 187

sfcode 170

shipout 186

show_context 178

skip 168

sp 178

splitbox 172

sprint 175

toks 168

tprint 176

triggerbuildpage 172

uccode 170

Libraries248

uniformdeviate 186

uniform_rand 186

write 177

texio

closeinput 188

setescape 188

write 188

write_nl 188

token

biggest_char 191

commands 191

command_id 191

create 191

expand 191

get_active 191

get_cmdname 191

get_command 191

get_csname 191

get_expandable 191

get_functions_table 192

get_id 191

get_index 191

get_macro 192

get_meaning 192

get_mode 191

get_next 191, 193

get_protected 191

get_tok 191

is_defined 191

is_token 191

new 191

put_next 193

scan_argument 188

scan_code 188

scan_csname 188

scan_dimen 188

scan_float 188

scan_glue 188

scan_int 188

scan_keyword 188

scan_keywordcs 188

scan_list 188

scan_real 188

scan_string 188

scan_token 191

scan_toks 188

scan_word 188

set_char 192

set_lua 192

set_macro 192

249Statistics

Statistics

The following fonts are used in this document:

used filesize version filename

22 988.684 5.000 cambmath.ttf

4 927.280 5.020 cambria.ttf

11 163.452 1.802 LucidaBrightMathOT-Demi.otf

11 348.296 1.802 LucidaBrightMathOT.otf

4 73.284 1.801 LucidaBrightOT.otf

22 733.500 1.958 latinmodern-math.otf

1 64.684 2.004 lmmono10-regular.otf

1 64.160 2.004 lmmonoltcond10-regular.otf

4 111.536 2.004 lmroman10-regular.otf

22 525.008 1.106 texgyredejavu-math.otf

22 601.220 1.632 texgyrepagella-math.otf

4 218.100 2.501 texgyrepagella-regular.otf

1 693.876 2.340 DejaVuSans-Bold.ttf

1 741.536 2.340 DejaVuSans.ttf

5 318.392 2.340 DejaVuSansMono-Bold.ttf

1 245.948 2.340 DejaVuSansMono-Oblique.ttf

4 335.068 2.340 DejaVuSansMono.ttf

13 345.364 2.340 DejaVuSerif-Bold.ttf

1 336.884 2.340 DejaVuSerif-BoldItalic.ttf

2 343.388 2.340 DejaVuSerif-Italic.ttf

6 367.260 2.340 DejaVuSerif.ttf

162 8.546.920 21 files loaded

Statistics250

	Introduction
	1 The internals
	2 Differences with LUATEX
	3 The original engines
	3.1 The merged engines
	3.1.1 The rationale
	3.1.2 Changes from TEX 3.1415926
	3.1.3 Changes from ETEX 2.2
	3.1.4 Changes from PDFTEX 1.40
	3.1.5 Changes from ALEPH RC4
	3.1.6 Changes from standard WEBC

	3.2 Implementation notes
	3.2.1 Memory allocation
	3.2.2 Sparse arrays
	3.2.3 Simple single-character csnames
	3.2.4 Binary file reading
	3.2.5 Tabs and spaces
	3.2.6 Logging

	4 Using LUAMETATEX
	4.1 Initialization
	4.1.1 LUAMETATEX as a LUA interpreter
	4.1.2 Other commandline processing

	4.2 LUA behaviour
	4.2.1 The LUA version
	4.2.2 Locales

	4.3 LUA modules
	4.4 Testing

	5 Basic TEX enhancements
	5.1 Introduction
	5.1.1 Primitive behaviour
	5.1.2 Experiments
	5.1.3 Version information

	5.2 UNICODE text support
	5.2.1 Extended ranges
	5.2.2 Uchar
	5.2.3 Extended tables

	5.3 Attributes
	5.3.1 Nodes
	5.3.2 Attribute registers
	5.3.3 Box attributes

	5.4 LUA related primitives
	5.4.1 directlua
	5.4.2 luaescapestring
	5.4.3 luafunction, luafunctioncall and luadef
	5.4.4 luabytecode and luabytecodecall

	5.5 Catcode tables
	5.5.1 Catcodes
	5.5.2 catcodetable
	5.5.3 initcatcodetable
	5.5.4 savecatcodetable

	5.6 Tokens, commands and strings
	5.6.1 scantextokens
	5.6.2 toksapp, tokspre, etoksapp, etokspre, gtoksapp, gtokspre, xtoksapp, xtokspre
	5.6.3 csstring, begincsname and lastnamedcs
	5.6.4 clearmarks
	5.6.5 alignmark and aligntab
	5.6.6 letcharcode
	5.6.7 glet
	5.6.8 expanded, immediateassignment and immediateassigned
	5.6.9 ignorepars
	5.6.10 futureexpand, futureexpandis, futureexpandisap
	5.6.11 aftergrouped

	5.7 Conditions
	5.7.1 ifabsnum and ifabsdim
	5.7.2 ifcmpnum, ifcmpdim, ifnumval, ifdimval, ifchknum and ifchkdim
	5.7.3 iftok and ifcstok
	5.7.4 ifcondition
	5.7.5 orelse
	5.7.6 ifprotected, frozen, iffrozen and ifusercmd

	5.8 Boxes, rules and leaders
	5.8.1 outputbox
	5.8.2 vpack, hpack and tpack
	5.8.3 vsplit
	5.8.4 Images and reused box objects
	5.8.5 hpack, vpack and tpack
	5.8.6 nohrule and novrule
	5.8.7 gleaders

	5.9 Languages
	5.9.1 hyphenationmin
	5.9.2 boundary, noboundary, protrusionboundary and wordboundary

	5.10 Control and debugging
	5.10.1 Tracing
	5.10.2 lastnodetype, lastnodesubtype, currentiftype and internalcodesmode.

	5.11 Files
	5.11.1 File syntax
	5.11.2 Writing to file

	5.12 Math
	5.13 Fonts
	5.14 Directions
	5.14.1 Two directions
	5.14.2 How it works
	5.14.3 Controlling glue with breakafterdirmode
	5.14.4 Controlling parshapes with shapemode
	5.14.5 Orientations

	5.15 Expressions
	5.16 Nodes

	6 Fonts
	6.1 Introduction
	6.2 Defining fonts
	6.3 Virtual fonts
	6.4 Additional TEX commands
	6.4.1 Font syntax
	6.4.2 fontid and setfontid
	6.4.3 noligs and nokerns
	6.4.4 nospaces
	6.4.5 protrusionboundary
	6.4.6 glyphdimensionsmode

	6.5 The LUA font library
	6.5.1 Introduction
	6.5.2 Defining a font with define, addcharacters and setfont
	6.5.3 Font ids: id, max and current

	7 Languages, characters, fonts and glyphs
	7.1 Introduction
	7.2 Characters, glyphs and discretionaries
	7.3 The main control loop
	7.4 Loading patterns and exceptions
	7.5 Applying hyphenation
	7.6 Applying ligatures and kerning
	7.7 Breaking paragraphs into lines
	7.8 The lang library
	7.8.1 new and id
	7.8.2 hyphenation
	7.8.3 clear_hyphenation and clean
	7.8.4 patterns and clear_patterns
	7.8.5 hyphenationmin
	7.8.6 [pre|post][ex|]hyphenchar
	7.8.7 hyphenate
	7.8.8 [set|get]hjcode

	8 Math
	8.1 Traditional alongside OPENTYPE
	8.2 Unicode math characters
	8.3 Math styles
	8.3.1 mathstyle
	8.3.2 Ustack
	8.3.3 The new cramped...style commands

	8.4 Math parameter settings
	8.4.1 Many new Umath* primitives
	8.4.2 Font-based math parameters

	8.5 Math spacing
	8.5.1 Setting inline surrounding space with mathsurround[skip]
	8.5.2 Pairwise spacing and Umath...spacing commands
	8.5.3 Local settings
	8.5.4 Skips around display math and mathdisplayskipmode
	8.5.5 Nolimit correction with mathnolimitsmode
	8.5.6 Controlling math italic mess with mathitalicsmode
	8.5.7 Influencing script kerning with mathscriptboxmode
	8.5.8 Forcing fixed scripts with mathscriptsmode
	8.5.9 Penalties: mathpenaltiesmode
	8.5.10 Equation spacing: matheqnogapstep

	8.6 Math constructs
	8.6.1 Unscaled fences and mathdelimitersmode
	8.6.2 Accent handling with Umathaccent
	8.6.3 Building radicals with Uradical and Uroot
	8.6.4 Super- and subscripts
	8.6.5 Scripts on extensibles: Uunderdelimiter, Uoverdelimiter, Udelimiterover, Udelimiterunder and Uhextensible
	8.6.6 Fractions and the new Uskewed and Uskewedwithdelims
	8.6.7 Math styles: Ustyle
	8.6.8 Delimiters: Uleft, Umiddle and Uright
	8.6.9 Accents: mathlimitsmode

	8.7 Extracting values
	8.7.1 Codes and using Umathcode, Umathcharclass, Umathcharfam and Umathcharslot
	8.7.2 Last lines and predisplaygapfactor

	8.8 Math mode
	8.8.1 Verbose versions of single-character math commands like Usuperscript and Usubscript
	8.8.2 Script commands Unosuperscript and Unosubscript
	8.8.3 Allowed math commands in non-math modes

	8.9 Goodies
	8.9.1 Flattening: mathflattenmode
	8.9.2 Less Tracing

	9 Nodes
	9.1 LUA node representation
	9.2 Main text nodes
	9.2.1 hlist and vlist nodes
	9.2.2 rule nodes
	9.2.3 ins nodes
	9.2.4 mark nodes
	9.2.5 adjust nodes
	9.2.6 disc nodes
	9.2.7 math nodes
	9.2.8 glue nodes
	9.2.9 glue_spec nodes
	9.2.10 kern nodes
	9.2.11 penalty nodes
	9.2.12 glyph nodes
	9.2.13 boundary nodes
	9.2.14 local_par nodes
	9.2.15 dir nodes
	9.2.16 Whatsits
	9.2.17 Math noads

	9.3 The node library
	9.3.1 Introduction
	9.3.2 Housekeeping
	9.3.3 Manipulating lists
	9.3.4 Glue handling
	9.3.5 Attribute handling
	9.3.6 Glyph handling
	9.3.7 Packaging
	9.3.8 Math

	9.4 Two access models
	9.5 Normalization
	9.6 Properties

	10 LUA callbacks
	10.1 Registering callbacks
	10.2 File related callbacks
	10.2.1 find_read_file
	10.2.2 find_data_file
	10.2.3 find_format_file
	10.2.4 open_read_file

	10.3 Data processing callbacks
	10.3.1 process_jobname

	10.4 Node list processing callbacks
	10.4.1 contribute_filter
	10.4.2 buildpage_filter
	10.4.3 build_page_insert
	10.4.4 pre_linebreak_filter
	10.4.5 linebreak_filter
	10.4.6 append_to_vlist_filter
	10.4.7 post_linebreak_filter
	10.4.8 hpack_filter
	10.4.9 vpack_filter
	10.4.10 hpack_quality
	10.4.11 vpack_quality
	10.4.12 process_rule
	10.4.13 pre_output_filter
	10.4.14 hyphenate
	10.4.15 ligaturing
	10.4.16 kerning
	10.4.17 insert_local_par
	10.4.18 mlist_to_hlist

	10.5 Information reporting callbacks
	10.5.1 pre_dump
	10.5.2 start_run
	10.5.3 stop_run
	10.5.4 show_error_hook
	10.5.5 show_error_message
	10.5.6 show_lua_error_hook
	10.5.7 start_file
	10.5.8 stop_file
	10.5.9 wrapup_run

	10.6 Font-related callbacks
	10.6.1 define_font

	11 The TEX related libraries
	11.1 The lua library
	11.1.1 Version information
	11.1.2 Table allocators
	11.1.3 Bytecode registers
	11.1.4 Chunk name registers
	11.1.5 Introspection

	11.2 The status library
	11.3 The tex library
	11.3.1 Introduction
	11.3.2 Internal parameter values, set and get
	11.3.3 Convert commands
	11.3.4 Last item commands
	11.3.5 Accessing registers: set*, get* and is*
	11.3.6 Character code registers: [get|set]*code[s]
	11.3.7 Box registers: [get|set]box
	11.3.8 triggerbuildpage
	11.3.9 splitbox
	11.3.10 Accessing math parameters: [get|set]math
	11.3.11 Special list heads: [get|set]list
	11.3.12 Semantic nest levels: getnest and ptr
	11.3.13 Print functions
	11.3.14 Helper functions
	11.3.15 Functions for dealing with primitives
	11.3.16 Core functionality interfaces
	11.3.17 Randomizers
	11.3.18 Functions related to synctex

	11.4 The texconfig table
	11.5 The texio library
	11.5.1 write
	11.5.2 write_nl
	11.5.3 setescape
	11.5.4 closeinput

	11.6 The token library
	11.6.1 The scanner
	11.6.2 Picking up one token
	11.6.3 Creating tokens
	11.6.4 Macros
	11.6.5 Pushing back
	11.6.6 Nota bene

	12 The METAPOST library mplib
	12.1 Process management
	12.1.1 new
	12.1.2 statistics
	12.1.3 execute
	12.1.4 finish

	12.2 The end result
	12.2.1 fill
	12.2.2 outline
	12.2.3 text
	12.2.4 special
	12.2.5 start_bounds, start_clip

	12.3 Subsidiary table formats
	12.3.1 Paths and pens
	12.3.2 Colors
	12.3.3 Transforms
	12.3.4 Dashes
	12.3.5 Pens and pen_info
	12.3.6 Character size information

	12.4 Scanners
	12.5 Injectors

	13 The PDF related libraries
	13.1 The pdfe library
	13.1.1 Introduction
	13.1.2 open, openfile, new, getstatus, close, unencrypt
	13.1.3 getsize, getversion, getnofobjects, getnofpages
	13.1.4 get[catalog|trailer|info]
	13.1.5 getpage, getbox
	13.1.6 get[string|integer|number|boolean|name]
	13.1.7 get[dictionary|array|stream]
	13.1.8 [open|close|readfrom|whole|]stream
	13.1.9 getfrom[dictionary|array]
	13.1.10 [dictionary|array]totable
	13.1.11 getfromreference

	13.2 Memory streams
	13.3 The pdfscanner library

	14 Extra libraries
	14.1 Introduction
	14.2 File and string readers: fio and type {sio}
	14.3 md5
	14.4 sha2
	14.5 xzip
	14.6 xmath
	14.7 xcomplex
	14.8 xdecimal
	14.9 lfs
	14.10 pngdecode
	14.11 basexx
	14.12 Multibyte string functions
	14.13 Extra os library functions
	14.14 The lua library functions

	15 Primitives aka commands
	15.1 Introduction
	15.2 Languages
	15.3 Fonts
	15.4 Math
	15.5 Boxes and directions
	15.6 Scanning
	15.7 Typesetting
	15.8 LUA
	15.9 Management
	15.10 Miscellaneous

	Topics
	Primitives
	Callbacks
	Nodes
	Libraries
	Statistics

