
LuaMetaTEX

Reference

Manual

March 2022

Version 2.09.42

LuaMetaTEX

Reference

Manual

copyright : LuaMetaTEX development team

: LuaTEX development team

: ConTEXt development team

more info : www.luatex.org

: contextgarden.net

: build.contextgarden.net

version : March 10, 2022

1

Contents

Introduction 11

1 The internals 13

2 Differences with LuaTEX 17

3 The original engines 29

3.1 The merged engines 29

3.1.1 The rationale 29

3.1.2 Changes from TEX 3.1415926... 29

3.1.3 Changes from 𝜀-TEX 2.2 31

3.1.4 Changes from pdfTEX 1.40 31

3.1.5 Changes from Aleph RC4 32

3.1.6 Changes from standard web2c 33

3.2 Implementation notes 33

3.2.1 Memory allocation 33

3.2.2 Sparse arrays 33

3.2.3 Simple single-character csnames 33

3.2.4 Binary file reading 33

3.2.5 Tabs and spaces 34

3.2.6 Logging 34

3.2.7 Parsing 35

3.2.8 Changes in keyword scanning 35

4 Using LuaMetaTEX 37

4.1 Initialization 37

4.1.1 A bare bone engine 37

4.1.2 LuaMetaTEX as a Lua interpreter 37

4.1.3 Other commandline processing 37

4.2 Lua behaviour 39

4.2.1 The Lua version 39

4.2.2 Locales 39

4.3 Lua modules 39

4.4 Testing 40

5 Basic TEX enhancements 41

5.1 Introduction 41

5.1.1 Primitive behaviour 41

5.1.2 Rationale 41

5.1.3 Version information 42

5.2 Unicode text support 44

5.2.1 Extended ranges 44

5.2.2 \Uchar 44

5.2.3 Extended tables 44

2

5.3 Attributes 45

5.3.1 Nodes 45

5.3.2 Attribute registers 46

5.3.3 Box attributes 46

5.4 Lua related primitives 48

5.4.1 \directlua 48

5.4.2 \luaescapestring 49

5.4.3 \luafunction, \luafunctioncall and \luadef 49

5.4.4 \luabytecode and \luabytecodecall 50

5.5 Catcode tables 51

5.5.1 Catcodes 51

5.5.2 \catcodetable 51

5.5.3 \initcatcodetable 51

5.5.4 \savecatcodetable 52

5.6 Tokens, commands and strings 52

5.6.1 \scantextokens, \tokenized and \retokenized 52

5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp,

\gtokspre, \xtoksapp, \xtokspre 52

5.6.3 \csstring, \begincsname and \lastnamedcs 52

5.6.4 \clearmarks, \flushmarks, \currentmarks 53

5.6.5 \alignmark, \aligntab, \aligncontent, \tabsize and \everytab 53

5.6.6 \letcharcode 54

5.6.7 \lettonothing and \glettonothing 54

5.6.8 \glet 54

5.6.9 \defcsname, \edefcsname, \edefcsname and \xdefcsname 54

5.6.10 \expanded 55

5.6.11 \ignorepars 55

5.6.12 \futureexpand, \futureexpandis, \futureexpandisap 55

5.6.13 \aftergrouped 55

5.7 Conditions 56

5.7.1 \ifabsnum and \ifabsdim 56

5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and

\ifchkdim 56

5.7.3 \ifmathstyle and \ifmathparameter 57

5.7.4 \ifempty 57

5.7.5 \ifrelax 58

5.7.6 \ifboolean 58

5.7.7 \iftok and \ifcstok 58

5.7.8 \ifarguments, \ifparameters and \ifparameter 58

5.7.9 \ifcondition 59

5.7.10 \orelse and \orunless 60

5.7.11 \ifflags 61

5.8 Boxes, rules and leaders 61

5.8.1 \outputbox 61

5.8.2 \hrule, \vrule, \nohrule and \novrule 61

5.8.3 \vsplit 62

3

5.8.4 Images and reused box objects 62

5.8.5 \hpack, \vpack and \tpack 64

5.8.6 \gleaders 64

5.9 Languages 64

5.9.1 \hyphenationmin 64

5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary 64

5.10 Control and debugging 64

5.10.1 Tracing 64

5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype 65

5.11 Files 65

5.11.1 File syntax 65

5.11.2 Writing to file 66

5.12 Math 66

5.13 Fonts 66

5.14 Directions 66

5.14.1 Two directions 66

5.14.2 How it works 67

5.14.3 Normalizing lines 68

5.14.4 Orientations 69

5.15 Keywords 69

5.16 Expressions and \numericscale 70

5.17 Macro arguments 70

5.18 Overload protection 71

5.19 Constants with \integerdef and \dimensiondef 73

5.20 Serialization with \todimension, \toscaled and \tointeger 74

5.21 Expressions with \numexpression 74

5.22 Nodes 76

6 Fonts 77

6.1 Introduction 77

6.2 Defining fonts 77

6.3 Virtual fonts 81

6.4 Additional TEX commands 84

6.4.1 Font syntax 84

6.4.2 \fontid and \setfontid 84

6.4.3 \glyphoptions 85

6.4.4 \glyphscale, \glyphxscale, \glyphyscale and \scaledfontdimen 85

6.4.5 \fontspecdef, \fontspecid, \fontspecscale, , \fontspecxscale,

\fontspecyscale 85

6.4.6 \glyphxoffset, \glyphyoffset 86

6.4.7 \glyph 86

6.4.8 \nospaces 86

6.4.9 \protrusionboundary 87

4

6.5 The Lua font library 87

6.5.1 Introduction 87

6.5.2 Defining a font with define, addcharacters and setfont 88

6.5.3 Font ids: id, max and current 88

6.5.4 Glyph data: \glyphdatafield, \glyphscriptfield, \glyphstatefield 88

7 Languages, characters, fonts and glyphs 89

7.1 Introduction 89

7.2 Characters, glyphs and discretionaries 89

7.3 The main control loop 94

7.4 Loading patterns and exceptions 96

7.5 Applying hyphenation 98

7.6 Applying ligatures and kerning 99

7.7 Breaking paragraphs into lines 100

7.8 The language library 100

7.8.1 new and id 100

7.8.2 hyphenation 100

7.8.3 clearhyphenation and clean 101

7.8.4 patterns and clearpatterns 101

7.8.5 hyphenationmin 101

7.8.6 [pre|post][ex|]hyphenchar 101

7.8.7 hyphenate 102

7.8.8 [set|get]hjcode 102

8 Math 103

8.1 Traditional alongside OpenType 103

8.2 Unicode math characters 103

8.3 Setting up the engine 105

8.4 Math styles 106

8.4.1 \mathstyle 106

8.4.2 \Ustack 107

8.4.3 The new \cramped ...style commands 108

8.5 Math parameter settings 109

8.5.1 Many new \Umath* primitives 109

8.5.2 Font-based math parameters 111

8.6 Math spacing 115

8.6.1 Setting inline surrounding space with \mathsurround and

\mathsurroundskip 115

8.6.2 Pairwise spacing 116

8.6.3 Local \frozen settings with 117

8.6.4 Checking a state with \ifmathparameter 117

8.6.5 Skips around display math and \mathdisplayskipmode 118

8.6.6 Nolimit correction with \mathnolimitsmode 118

8.6.7 Influencing script kerning with \mathscriptboxmode 118

8.6.8 Forcing fixed scripts with \mathscriptsmode 119

8.6.9 Penalties: \mathpenaltiesmode 120

8.6.10 Equation spacing: \matheqnogapstep 120

5

8.7 Math constructs 120

8.7.1 Unscaled fences and \mathdelimitersmode 120

8.7.2 Accent handling with \Umathaccent 122

8.7.3 Building radicals with \Uradical and \Uroot 122

8.7.4 Super- and subscripts 123

8.7.5 Scripts on extensibles: \Uunderdelimiter, \Uoverdelimiter,

\Udelimiterover, \Udelimiterunder and \Uhextensible 123

8.7.6 Fractions and the new \Uskewed and \Uskewedwithdelims 124

8.7.7 Math styles: \Ustyle 125

8.7.8 Delimiters: \Uleft, \Umiddle and \Uright 126

8.7.9 Accents: \mathlimitsmode 126

8.8 Extracting values 127

8.8.1 Codes and using \Umathcode, \Umathcharclass, \Umathcharfam

and \Umathcharslot 127

8.8.2 Last lines and \predisplaygapfactor 127

8.9 Math mode 128

8.9.1 Verbose versions of single-character math commands like

\Usuperscript and \Usubscript 128

8.9.2 Script commands \Unosuperscript and \Unosubscript 128

8.9.3 Injecting primes with Uprimescript 128

8.9.4 Prescripts with \Usuperprescript and Usubprescript 128

8.9.5 Allowed math commands in non-math modes 129

8.10 Goodies 129

8.10.1 Less Tracing 129

8.11 Experiments 129

8.11.1 Forcing classes with \Umathclass 130

8.11.2 Scaling spacing with \Umathxscale and \Umathyscale 130

9 Building paragraphs and pages 131

9.1 Introduction 131

9.2 Paragraphs 131

9.3 Inserts 131

9.4 Marks 132

9.5 Adjusts 132

9.6 Migration 133

9.7 Pages 133

9.8 Local boxes 133

10 Nodes 135

10.1 Lua node representation 135

10.2 Main text nodes 136

10.2.1 hlist and vlist nodes 136

10.2.2 rule nodes 137

10.2.3 insert nodes 138

10.2.4 mark nodes 138

10.2.5 adjust nodes 138

10.2.6 disc nodes 139

6

10.2.7 math nodes 139

10.2.8 glue nodes 140

10.2.9 glue_spec nodes 140

10.2.10 kern nodes 141

10.2.11 penalty nodes 141

10.2.12 glyph nodes 142

10.2.13 boundary nodes 143

10.2.14 par nodes 143

10.2.15 dir nodes 143

10.2.16 Whatsits 144

10.2.17 Math noads 144

10.3 The node library 148

10.3.1 Introduction 148

10.3.2 Housekeeping 149

10.3.3 Manipulating lists 152

10.3.4 Glue handling 156

10.3.5 Attribute handling 157

10.3.6 Glyph handling 159

10.3.7 Packaging 160

10.3.8 Math 162

10.4 Two access models 162

10.5 Normalization 169

10.6 Properties 169

11 Lua callbacks 173

11.1 Registering callbacks 173

11.2 File related callbacks 174

11.2.1 find_format_file and find_log_file 174

11.2.2 open_data_file 174

11.3 Data processing callbacks 174

11.3.1 process_jobname 174

11.4 Node list processing callbacks 174

11.4.1 contribute_filter 174

11.4.2 buildpage_filter 175

11.4.3 build_page_insert 175

11.4.4 pre_linebreak_filter 176

11.4.5 linebreak_filter 177

11.4.6 append_to_vlist_filter 177

11.4.7 post_linebreak_filter 177

11.4.8 glyph_run 177

11.4.9 hpack_filter 178

11.4.10 vpack_filter 178

11.4.11 hpack_quality 178

11.4.12 vpack_quality 179

11.4.13 process_rule 179

11.4.14 pre_output_filter 179

11.4.15 hyphenate 179

7

11.4.16 ligaturing 179

11.4.17 kerning 180

11.4.18 insert_par 180

11.4.19 mlist_to_hlist 180

11.5 Information reporting callbacks 181

11.5.1 pre_dump 181

11.5.2 start_run 181

11.5.3 stop_run 181

11.5.4 intercept_tex_error, intercept_lua_error 181

11.5.5 show_error_message and show_warning_message 181

11.5.6 start_file 182

11.5.7 stop_file 182

11.5.8 wrapup_run 182

11.6 Font-related callbacks 182

11.6.1 define_font 182

11.6.2 show_whatsit 183

12 The TEX related libraries 185

12.1 The lua library 185

12.1.1 Version information 185

12.1.2 Table allocators 185

12.1.3 Bytecode registers 185

12.1.4 Introspection 186

12.2 The status library 186

12.3 The tex library 195

12.3.1 Introduction 195

12.3.2 Internal parameter values, set and get 195

12.3.3 Convert commands 198

12.3.4 Item commands 198

12.3.5 Accessing registers: set*, get* and is* 198

12.3.6 Character code registers: [get|set]*code[s] 200

12.3.7 Box registers: [get|set]box 201

12.3.8 triggerbuildpage 202

12.3.9 splitbox 202

12.3.10 Accessing math parameters: [get|set]math 202

12.3.11 Special list heads: [get|set]list 203

12.3.12 Semantic nest levels: getnest and ptr 204

12.3.13 Print functions 205

12.3.14 Helper functions 207

12.3.15 Functions for dealing with primitives 210

12.3.16 Core functionality interfaces 215

12.3.17 Functions related to synctex 217

12.4 The texconfig table 217

8

12.5 The texio library 218

12.5.1 write and writeselector 218

12.5.2 writenl and writeselectornl 219

12.5.3 setescape 219

12.5.4 closeinput 219

12.6 The token library 219

12.6.1 The scanner 219

12.6.2 Picking up one token 222

12.6.3 Creating tokens 222

12.6.4 Macros 223

12.6.5 Pushing back 224

12.6.6 Nota bene 225

13 The MetaPost library mplib 227

13.1 Introduction 227

13.2 Process management 227

13.2.1 new 227

13.2.2 getstatistics 229

13.2.3 execute 229

13.2.4 finish 230

13.2.5 settolerance and gettolerance 230

13.2.6 Errors 230

13.2.7 The scanner status 230

13.2.8 The hash 230

13.2.9 Callbacks 231

13.3 The end result 231

13.3.1 The figure 231

13.3.2 fill 232

13.3.3 outline 232

13.3.4 start_bounds, start_clip, start_group 232

13.3.5 stop_bounds, stop_clip, stop_group 233

13.4 Subsidiary table formats 233

13.4.1 Paths and pens 233

13.4.2 Colors 233

13.4.3 Transforms 233

13.4.4 Dashes 234

13.4.5 Pens and peninfo 234

13.4.6 Character size information 234

13.5 Scanners 235

13.6 Injectors 236

13.7 To be checked 237

14 The pdf related libraries 239

14.1 The pdfe library 239

14.1.1 Introduction 239

14.1.2 open, openfile, new, getstatus, close, unencrypt 239

14.1.3 getsize, getversion, getnofobjects, getnofpages 240

9

14.1.4 get[catalog|trailer|info] 240

14.1.5 getpage, getbox 240

14.1.6 get[string|integer|number|boolean|name] 240

14.1.7 get[dictionary|array|stream] 241

14.1.8 [open|close|readfrom|whole|]stream 241

14.1.9 getfrom[dictionary|array] 242

14.1.10 [dictionary|array]totable 242

14.1.11 getfromreference 242

14.2 Memory streams 243

14.3 The pdfscanner library 243

15 Extra libraries 245

15.1 Introduction 245

15.2 File and string readers: fio and type sio 245

15.3 md5 245

15.4 sha2 246

15.5 xzip 246

15.6 xmath 246

15.7 xcomplex 248

15.8 xdecimal 249

15.9 lfs 249

15.10 pngdecode 250

15.11 basexx 250

15.12 Multibyte string functions 251

15.13 Extra os library functions 252

15.14 The lua library functions 252

Primitive codes 255

Topics 275

Primitives 279

Callbacks 285

Nodes 287

Libraries 289

Statistics 297

Some remarks 299

10

11Introduction

Introduction

Around 2005 we started the LuaTEX project and it took about a decade to reach a state where

we could consider the experiments to have reached a stable state. Pretty soon LuaTEX could be

used in production, even if some of the interfaces evolved, but ConTEXt was kept in sync so that

was not really a problem. In 2018 the functionality was more or less frozen. Of course we might

add some features in due time but nothing fundamental will change as we consider version 1.10

to be reasonable feature complete. Among the reasons is that this engine is now used outside

ConTEXt too which means that we cannot simply change much without affecting other macro

packages.

In reaching that state some decisions were delayed because they didn't go well with a current

stable version. This is why at the 2018 ConTEXtmeeting those present agreed that we couldmove

on with a follow up tagged MetaTEX, a name we already had in mind for a while, but as Lua is an

important component, it got expanded to LuaMetaTEX. This follow up is a lightweight companion

to LuaTEX that will be maintained alongside. More about the reasons for this follow up as well as

the philosophy behind it can be found in the document(s) describing the development. During

LuaTEX development I kept track of what happened in a series of documents, parts of which

were published as articles in user group journals, but all are in the ConTEXt distribution. I did

the same with the development of LuaMetaTEX.

The LuaMetaTEX engine is, as said, a follow up on LuaTEX. Just as we have ConTEXt MkII for

pdfTEX and XƎTEX, we have MkIV for LuaTEX so for LuaMetaTEX we have yet another version

of ConTEXt: LMTX. By freezing MkII, and at some point freezing MkIV, we can move on as

we like, but we try to remain downward compatible where possible, something that the user

interface makes possible. Although LuaMetaTEX can be used for production we can also use it

for possibly drastic experiments but without affecting LuaTEX. Because we can easily adapt Con­

TEXt to support both, no other macro package will be harmed when (for instance) the interface

that the engine provides change as part of an experiment or cleanup of code. Of course, when

we consider something to be useful, it can be ported back to LuaTEX, but only when there are

good reasons for doing so and when no compatibility issues are involved.

By now the code of these two related engines differs a lot so in retrospect it makes less sense

to waste time on porting back. When considering this follow up one consideration was that a

lean and mean version with an extension mechanism is a bit closer to original TEX. Of course,

because we also have new primitives, this is not entirely true. The basic algorithms remain the

same but code got reshuffled and because we expose internal names of variables and such that

is reflected in the code base (like more granularity in nodes and token commands). Delegating

tasks to Lua alreadymeant that some aspects, especially system dependent ones, no longermade

sense and therefore had consequences for the interface at the system level. In LuaMetaTEXmore

got delegated, like all file related operations. The penalty of moving even more responsibility to

Lua has been compensated by (hopefully) harmless optimization of code in the engine and some

more core functionality. In the process system dependencies have been minimalized.

One side effect of opening up is that what normally is hidden gets exposed and this is also true

for all kind of codes that are used internally to distinguish states and properties of commands,

tokens, nodes and more. Especially during development these can change but the good news

is that they can be queried so on can write in code independent ways (in LuaTEX node id's are

Introduction12

an example). That also means more interface related commands, so again lean and mean is not

applicable here, especially because the detailed control over the text, math, font and language

subsystems also results in additional commands to query their state. And, as the MetaPost got

extended, that subsystem is on the one hand leaner and meaner because backend code was

dropped but on the other hand got a larger code base due to opening up the scanner and adding

a feedback mechanism.

This manual started as an adaptation of the LuaTEX manual and therefore looks similar. Some

chapters are removed, others were added and the rest has been (and will be further) adapted.

It also discusses the (main) differences. Some of the new primitives or functions that show up in

LuaMetaTEX might show up in LuaTEX at some point, but most will be exclusive to LuaMetaTEX,

so don't take this manual as reference for LuaTEX! As long as we're experimenting we can change

things at will but as we keep ConTEXt LMTX synchronized users normally won't notice this.

Often you can find examples of usage in ConTEXt related documents and the source code so that

serves a reference too. More detailed explanations can be found in documents in the ConTEXt

distribution, if only because there we can present features in the perspective of useability.

For ConTEXt users the LuaMetaTEX engine will become the default. As mentioned, the ConTEXt

variant for this engine is tagged LMTX. The pair can be used in production, just as with LuaTEX

and MkIV. In fact, most users will probably not really notice the difference. In some cases there

will be a drop in performance, due to more work being delegated to Lua, but on the average

performance is much be better, due to some changes below the hood of the engine. Memory

consumption is also less. The timeline of development is roughly: from 2018 upto 2020 engine

development, 2019 upto 2021 the stepwise code split between MkIV and LMTX, while in 2021

and 2022 we will (mostly) freeze MkIV and LMTX will be the default.

As this follow up is closely related to ConTEXt development, and because we expect stock LuaTEX

to be used outside the ConTEXt proper, there will be no special mailing list nor coverage (or

pollution) on the LuaTEX related mailing lists. We have the ConTEXt mailing lists for that. In

due time the source code will be part of the regular ConTEXt distribution so that is then also the

reference implementation: if needed users can compile the binary themselves.

This manual sometimes refers to LuaTEX, especially when we talk of features common to both

engine, as well as to LuaMetaTEX, when it is more specific to the follow up. A substantial amount

of timewent into the transition andmore will go in, so if you want to complain about LuaMetaTEX,

don't bother me. Of course, if you really need professional support with these engines (or TEX

in general), you can always consider contacting the developers.

Hans Hagen

LuaMetaTEX Banner : luametatex 2.0942 / 20220308

LuaMetaTEX Version : March 10, 2022

ConTEXt Version : LMTX 2022.03.10 17:22

LuaTEX Team : Hans Hagen, Hartmut Henkel, Taco Hoekwater, Luigi Scarso

LuaMetaTEX Team : Hans Hagen, Alan Braslau, Mojca Miklavec and Wolfgang Schuster

13The internals

1 The internals

This is a reference manual and not a tutorial. This means that we discuss changes relative to

traditional TEX and also present new (or extended) functionality. As a consequence we will refer

to concepts that we assume to be known or that might be explained later. Because the LuaTEX

and LuaMetaTEX engines open up TEX there's suddenly quite some more to explain, especially

about the way a (to be) typeset stream moves through the machinery. However, discussing all

that in detail makes not much sense, because deep knowledge is only relevant for those who

write code not possible with regular TEX and who are already familiar with these internals (or

willing to spend time on figuring it out).

So, the average user doesn't need to know much about what is in this manual. For instance fonts

and languages are normally dealt with in the macro package that you use. Messing around with

node lists is also often not really needed at the user level. If you do mess around, you'd better

know what you're dealing with. Reading “The TEX Book” by Donald Knuth is a good investment

of time then also because it's good to know where it all started. A more summarizing overview

is given by “TEX by Topic” by Victor Eijkhout. You might want to peek in “The 𝜀-TEX manual” too.

But . . . if you're here because of Lua, then all you need to know is that you can call it from

within a run. If you want to learn the language, just read the well written Lua book. The macro

package that you use probably will provide a few wrapper mechanisms but the basic \directlua

command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it's a lot you can also put it in a file and load that

file with the usual Lua commands. If you don't know what this means, you definitely need to

have a look at the Lua book first.

If you still decide to read on, then it's good to know what nodes are, so we do a quick introduction

here. If you input this text:

Hi There ...

eventually we will get a linked lists of nodes, which in ascii art looks like:

H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e ...

When we have a paragraph, we actually get something like this, where a par node stores some

metadata and is followed by a hlist flagged as indent box:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e ...

Each character becomes a so called glyph node, a record with properties like the current font,

the character code and the current language. Spaces become glue nodes. There are many node

types and nodes can have many properties but that will be discussed later. Each node points

back to a previous node or next node, given that these exist. Sometimes multiple characters are

represented by one glyph (shape), so one can also get:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

The internals14

And maybe some characters get positioned relative to each other, so we might see:

[par] <=> [hlist] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

Actually, the above representation is one view, because in LuaMetaTEX we can choose for this:

[par] <=> [glue] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

where glue (currently fixed) is used instead of an empty hlist (think of a \hbox). Options like this

are available because want a certain view on these lists from the Lua end and the result being

predicable is part of that.

It's also good to know beforehand that TEX is basically centered around creating paragraphs and

pages. The par builder takes a list and breaks it into lines. At some point horizontal blobs are

wrapped into vertical ones. Lines are so called boxes and can be separated by glue, penalties

and more. The page builder accumulates lines and when feasible triggers an output routine that

will take the list so far. Constructing the actual page is not part of TEX but done using primitives

that permit manipulation of boxes. The result is handled back to TEX and flushed to a (often pdf)

file.

\setbox\scratchbox\vbox\bgroup

line 1\par line 2

\egroup

\showbox\scratchbox

The above code produces the next log lines that reveal how the engines sees a paragraph

(wrapped in a \vbox):

1:4: > \box257=

1:4: \vbox[normal][16=1,17=1,47=1], width 483.69687, height 27.58083, depth 0.1416, direction l2r

1:4: .\list

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction l2r

1:4: ...\list

1:4:\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4:\glue[left][16=1,17=1,47=1] 0.0pt

1:4:\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4:\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemer­

its 10000, linepenalty 10, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty

2000, brokenpenalty 100, emergencystretch 12.0, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006C l

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000031 1

1:4:\penalty[line][16=1,17=1,47=1] 10000

1:4:\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

15The internals

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4:\glue[right hang][16=1,17=1,47=1] 0.0pt

1:4: ..\glue[par][16=1,17=1,47=1] 5.44995pt plus 1.81665pt minus 1.81665pt

1:4: ..\glue[baseline][16=1,17=1,47=1] 6.79396pt

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction l2r

1:4: ...\list

1:4:\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4:\glue[left][16=1,17=1,47=1] 0.0pt

1:4:\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4:\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemer­

its 10000, linepenalty 10, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty

2000, brokenpenalty 100, emergencystretch 12.0, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006C l

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30:

DejaVuSerif @ 10.0pt>, glyph U+000032 2

1:4:\penalty[line][16=1,17=1,47=1] 10000

1:4:\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4:\glue[right hang][16=1,17=1,47=1] 0.0pt

The LuaTEX engine provides hooks for Lua code at nearly every reasonable point in the process:

collecting content, hyphenating, applying font features, breaking into lines, etc. This means

that you can overload TEX's natural behaviour, which still is the benchmark. When we refer to

‘callbacks’ we means these hooks. The TEX engine itself is pretty well optimized but when you

kick in much Lua code, you will notices that performance drops. Don't blame and bother the

authors with performance issues. In ConTEXt over 50% of the time can be spent in Lua, but so

far we didn't get many complaints about efficiency. Adding more callbacks makes no sense, also

because at some point the performance hit gets too large. There are plenty of ways to achieve

goals. For that reason: take remarks about LuaTEX, features, potential, performance etc. with

a natural grain of salt.

Where plain TEX is basically a basic framework for writing a specific style, macro packages like

ConTEXt and L
ATEX provide the user a whole lot of additional tools to make documents look good.

They hide the dirty details of font management, language support, turning structure into typeset

results, wrapping pages, including images, and so on. You should be aware of the fact that when

you hook in your own code to manipulate lists, this can interfere with the macro package that

you use. Each successive step expects a certain result and if you mess around to much, the

engine eventually might bark and quit. It can even crash, because testing everywhere for what

users can do wrong is no real option.

When you read about nodes in the following chapters it's good to keep in mind what commands

relate to them. Here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

The internals16

\vbox vlist vertical box with the baseline at the bottom

\vtop vlist vertical box with the baseline at the top

\hskip glue horizontal skip with optional stretch and shrink

\vskip glue vertical skip with optional stretch and shrink

\kern kern horizontal or vertical fixed skip

\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdirection dir a change in text direction

Whatever we feed into TEX at some point becomes a token which is either interpreted directly or

stored in a linked list. A token is just a number that encodes a specific command (operator) and

some value (operand) that further specifies what that command is supposed to do. In addition

to an interface to nodes, there is an interface to tokens, as later chapters will demonstrate.

Text (interspersedwithmacros) comes from an inputmedium. This can be a file, token list, macro

body cq. arguments, some internal quantity (like a number), Lua, etc. Macros get expanded.

In the process TEX can enter a group. Inside the group, changes to registers get saved on a

stack, and restored after leaving the group. When conditionals are encountered, another kind

of nesting happens, and again there is a stack involved. Tokens, expansion, stacks, input levels

are all terms used in the next chapters. Don't worry, they loose their magic once you use TEX a

lot. You have access to most of the internals and when not, at least it is possible to query some

state we're in or level we're at.

When we talk about pack(ag)ing it can mean two things. When TEX has consumed some tokens

that represent text they are added to the current list. When the text is put into a so called \hbox

(for instance a line in a paragraph) it (normally) first gets hyphenated, next ligatures are build,

and finally kerns are added. Each of these stages can be overloaded using Lua code. When these

three stages are finished, the dimension of the content is calculated and the box gets its width,

height and depth. What happens with the box depends on what macros do with it.

The other thing that can happen is that the text starts a new paragraph. In that case some

information is stored in a leading par node. Then indentation is appended and the paragraph

ends with some glue. Again the three stages are applied but this time afterwards, the long line

is broken into lines and the result is either added to the content of a box or to the main vertical

list (the running text so to say). This is called par building. At some point TEX decides that

enough is enough and it will trigger the page builder. So, building is another concept we will

encounter. Another example of a builder is the one that turns an intermediate math list into

something typeset.

Wrapping something in a box is called packing. Adding something to a list is described in terms

of contributing. The more complicated processes are wrapped into builders. For now this should

be enough to enable you to understand the next chapters. The text is not as enlightening and

entertaining as Don Knuths books, sorry.

17Differences with LuaTEX

2 Differences with LuaTEX

As LuaMetaTEX is a leaner and meaner LuaTEX. This means that substantial parts and dependen­

cies are gone: quite some font code, all backend code with related frontend code and of course

image and font inclusion. There is also new functionality which makes for less lean but in the

end we still have less, also in terms of dependencies. This chapter will discuss what is gone. We

start with the primitives that were dropped.

fonts \letterspacefont \copyfont \expandglyphsinfont \ignoreligaturesin­

font \tagcode \leftghost \rightghost

backend \dviextension \dvivariable \dvifeedback \pdfextension \pdfvariable

\pdffeedback \dviextension \draftmode \outputmode

dimensions \pageleftoffset \pagerightoffset \pagetopoffset \pagebottomoffset

\pageheight \pagewidth

resources \saveboxresource \useboxresource \lastsavedboxresourceindex \saveim­

ageresource \useimageresource \lastsavedimageresourceindex \last­

savedimageresourcepages

positioning \savepos \lastxpos \lastypos

directions \textdir \linedir \mathdir \pardir \pagedir \bodydir \pagedirection

\bodydirection

randomizer \randomseed \setrandomseed \normaldeviate \uniformdeviate

utilities \synctex

extensions \latelua \lateluafunction \openout \write \closeout \openin \read

\readline \closein \ifeof

control \suppressfontnotfounderror \suppresslongerror \suppressprimitiveer­

ror \suppressmathparerror \suppressifcsnameerror \suppressoutererror

\mathoption

system \primitive \ifprimitive \formatname

ignored \long \outer \mag

The math machinery has been overhauled stepwise. In the process detailed control has been

added but later some of that got removed or replaced. The engine now assumes that OpenType

fonts are used but you do need to set up the engine properly, something that has to be done

with respect to fonts anyway. By enabling and/disabling certain features you can emulate the

traditional engine. Font parameters no longer are taken from the traditional parameters when

they are not set. We just assume properly passed so called math constants and quite a few new

ones have been added.

The resources and positioning primitives are actually useful but can be defined as macros that

(via Lua) inject nodes in the input that suit the macro package and backend. The three--letter

direction primitives are gone and the numeric variants are now leading. There is no need for

page and body related directions and they don't work well in LuaTEX anyway. We only have

two directions left. Because we can hook in Lua functions that get information about what is

expected (consumer or provider) there are plenty possibilities for adding functionality using this

scripting language.

Differences with LuaTEX18

The primitive related extensions were not that useful and reliable so they have been removed.

There are some new variants that will be discussed later. The \outer and \long prefixes are

gone as they don't make much sense nowadays and them becoming dummies opened the way to

something new: control sequence properties that permit protection against as well as controlled

overloading of definitions. I don't think that (ConTEXt) users will notice these prefixes being

gone. The definition and parsing related \suppress.. features are now default and can't be

changed so related primitives are gone.

The \shipout primitive does no ship out but just erases the content of the box unless of course

that has happened already in another way. A macro package should implement its own backend

and related shipout. Talking of backend, the extension primitives that relate to backends can

be implemented as part of a backend design using generic whatsits. There is only one type of

whatsit now. In fact we're now closer to original TEX with respect to the extensions.

The img library has been removed as it's rather bound to the backend. The slunicode library

is also gone. There are some helpers in the string library that can be used instead and one can

write additional Lua code if needed. There is no longer a pdf backend library but we have an

up to date pdf parsing library on board.

In the node, tex and status library we no longer have helpers and variables that relate to the

backend. The LuaMetaTEX engine is in principle dvi and pdf unaware. There are, as mentioned,

only generic whatsit nodes that can be used for some management related tasks. For instance

you can use them to implement user nodes. More extensive status information is provided in

the overhauled status library. All libraries have additional functionality and names of functions

have been normalized (for as far as possible).

The margin kern nodes are gone and we now use regular kern nodes for them. As a consequence

there are two extra subtypes indicating the injected left or right kern. The glyph field served no

real purpose so there was no reason for a special kind of node.

The kpse library is no longer built-in, but one can use an external kpse library, assuming that

it is present on the system, because the engine has a so called optional library interface to it.

Because there is no backend, quite some file related callbacks could go away. The following file

related callbacks remained (till now):

find_write_file find_format_file open_data_file

The callbacks related to errors are changed:

intercept_tex_error intercept_lua_error

show_error_message show_warning_message

There is a hook that gets called when one of the fundamental memory structures gets reallocated.

trace_memory

When you use the overload protect mechanisms, a callback can be plugged in to handle excep­

tions:

handle_overload

The (job) management hooks are kept:

19Differences with LuaTEX

process_jobname

start_run stop_run wrapup_run

pre_dump

start_file stop_file

Because we use a more generic whatsit model, there is a new callback:

show_whatsit

Because tracing boxes now reports a lot more information, we have a plug in for detail:

get_attribute

Being the core of extensibility, the typesetting callbacks of course stayed. This is what we ended

up with:

alignment_filter, append_line_filter, append_to_vlist_filter, begin_paragraph,

build_page_insert, buildpage_filter, define_font, find_format_file,

find_log_file, get_attribute, glyph_run, handle_overload, hpack_filter,

hpack_quality, hyphenate, insert_par, intercept_lua_error, intercept_tex_error,

kerning, ligaturing, linebreak_filter, local_box_filter, make_extensible,

math_rule, missing_character, mlist_to_hlist, open_data_file, paragraph_context,

post_linebreak_filter, pre_dump, pre_linebreak_filter, pre_output_filter,

process_jobname, register_extensible, show_error_message, show_lua_call,

show_warning_message, show_whatsit, start_file, start_run, stop_file, stop_run,

trace_memory, vpack_filter, vpack_quality, wrapup_run

As in LuaTEX font loading happens with the following callback. This time it really needs to be

set because there is no built-in font loader.

define_font

There are all kinds of subtle differences in the implementation, for instance we no longer inter­

cept * and & as these were already replaced long ago in TEX engines by command line options.

Talking of options, only a few are left. All input goes via Lua, even the console. One can program

a terminal if needed.

We took our time for reaching a stable state in LuaTEX. Among the reasons is the fact that most

was experimented with in ConTEXt, which we can adapt to the engine as we go. It took many

years to decide what to keep and how to do things. Of course there are places when things can

be improved but that most likely only happens in LuaMetaTEX. Contrary to what is sometimes

suggested, the LuaTEX-ConTEXt MkIV combination (assuming matched versions) has been quite

stable. It made no sense otherwise. Most ConTEXt functionality didn't change much at the user

level. Of course there have been issues, as is natural with everything new and beta, but we have

a fast update cycle.

The same is true for LuaMetaTEX and ConTEXt LMTX: it can be used for production as usual and

in practice ConTEXt users tend to use the beta releases, which proves this. Of course, if you use

low level features that are experimental you're on your own. Also, as with LuaTEX it might take

many years before a long term stable is defined. The good news is that, when the source code

Differences with LuaTEX20

has become part of the ConTEXt distribution, there is always a properly working, more or less

long term stable, snapshot.

The error reporting subsystem has been redone quite a bit but is still fundamentally the same.

We don't really assume interactive usage but if someone uses it, it might be noticed that it is not

possible to backtrack or inject something. Of course it is no big deal to implement all that in Lua

if needed. It removes a system dependency and makes for a bit cleaner code. In ConTEXt we

quit on an error simply because one has to fix source anyway and runs are fast enough. Logging

provides more detail and new primitives can be used to prevent clutter in tracing (the more

complex a macro package becomes, the more extreme tracing becomes).

There are new primitives as well as some extensions to existing primitive functionality. These

are described in following chapters but there might be hidden treasures in the binary. If you

locate them, don't automatically assume them to stay, some might be part of experiments! There

are for instance a few csname related definers, we have integer and dimension constants, the

macro argument parser can be brought in tolerant mode, the repertoire of conditionals has been

extended, some internals can be controlled (think of normalization of lines, hyphenation etc.),

and macros can be protected against user overload. Not all is discussed in detail in this manual

but there are introductions in the ConTEXt distribution that explain them. But the TEX kernel is

of course omnipresent.

The following primitives are available in LuaTEX but not in LuaMetaTEX. Some of these are

emulated in ConTEXt.

Umathbinbinspacing

Umathbinclosespacing

Umathbininnerspacing

Umathbinopenspacing

Umathbinopspacing

Umathbinordspacing

Umathbinpunctspacing

Umathbinrelspacing

Umathclosebinspacing

Umathcloseclosespacing

Umathcloseinnerspacing

Umathcloseopenspacing

Umathcloseopspacing

Umathcloseordspacing

Umathclosepunctspacing

Umathcloserelspacing

Umathinnerbinspacing

Umathinnerclosespacing

Umathinnerinnerspacing

Umathinneropenspacing

Umathinneropspacing

Umathinnerordspacing

Umathinnerpunctspacing

Umathinnerrelspacing

Umathopbinspacing

Umathopclosespacing

Umathopenbinspacing

Umathopenclosespacing

Umathopeninnerspacing

Umathopenopenspacing

Umathopenopspacing

Umathopenordspacing

Umathopenpunctspacing

Umathopenrelspacing

Umathopinnerspacing

Umathopopenspacing

Umathopopspacing

Umathopordspacing

Umathoppunctspacing

Umathoprelspacing

Umathordbinspacing

Umathordclosespacing

Umathordinnerspacing

Umathordopenspacing

Umathordopspacing

Umathordordspacing

Umathordpunctspacing

Umathordrelspacing

21Differences with LuaTEX

Umathpunctbinspacing

Umathpunctclosespacing

Umathpunctinnerspacing

Umathpunctopenspacing

Umathpunctopspacing

Umathpunctordspacing

Umathpunctpunctspacing

Umathpunctrelspacing

Umathrelbinspacing

Umathrelclosespacing

Umathrelinnerspacing

Umathrelopenspacing

Umathrelopspacing

Umathrelordspacing

Umathrelpunctspacing

Umathrelrelspacing

automatichyphenmode

bodydir

bodydirection

boxdir

breakafterdirmode

closein

closeout

compoundhyphenmode

copyfont

discretionaryligaturemode

draftmode

dviextension

dvifeedback

dvivariable

eTeXVersion

eTeXglueshrinkorder

eTeXgluestretchorder

eTeXminorversion

eTeXrevision

eTeXversion

expandglyphsinfont

fixupboxesmode

glyphdimensionsmode

hoffset

hyphenationbounds

hyphenpenaltymode

ifeof

ifprimitive

ignoreligaturesinfont

immediateassigned

immediateassignment

insertht

lastsavedboxresourceindex

lastsavedimageresourceindex

lastsavedimageresourcepages

lastxpos

lastypos

latelua

lateluafunction

leftghost

letterspacefont

linedir

mag

mathdefaultsmode

mathdir

mathflattenmode

mathitalicsmode

mathoption

mathrulethicknessmode

nokerns

noligs

nolocaldirs

nolocalwhatsits

normaldeviate

openin

openout

outputmode

pagebottomoffset

pagedir

pagedirection

pageheight

pageleftoffset

pagerightoffset

pagetopoffset

pagewidth

pardir

pdfextension

pdffeedback

pdfvariable

primitive

randomseed

read

readline

rightghost

saveboxresource

saveimageresource

Differences with LuaTEX22

savepos

setrandomseed

shapemode

special

suppressfontnotfounderror

suppressifcsnameerror

suppresslongerror

suppressmathparerror

suppressoutererror

suppressprimitiveerror

synctex

tagcode

textdir

tracingscantokens

uniformdeviate

useboxresource

useimageresource

voffset

write

The following primitives are available in LuaMetaTEX only. At some point in time some might be

added to LuaTEX.

Uabove

Uabovewithdelims

Uatop

Uatopwithdelims

Umathaccentbasedepth

Umathaccentbaseheight

Umathaccentbottomshiftdown

Umathaccenttopshiftup

Umathaccentvariant

Umathadapttoleft

Umathadapttoright

Umathbotaccentvariant

Umathclass

Umathdegreevariant

Umathdelimiterovervariant

Umathdelimiterundervariant

Umathdenominatorvariant

Umathextrasubpreshift

Umathextrasubprespace

Umathextrasubshift

Umathextrasubspace

Umathextrasuppreshift

Umathextrasupprespace

Umathextrasupshift

Umathextrasupspace

Umathflattenedaccentbasedepth

Umathflattenedaccentbaseheight

Umathflattenedaccentbottomshiftdown

Umathflattenedaccenttopshiftup

Umathfractionvariant

Umathhextensiblevariant

Umathlimits

Umathnoaxis

Umathnolimits

Umathnumeratorvariant

Umathopenupdepth

Umathopenupheight

Umathoverdelimitervariant

Umathoverlayaccentvariant

Umathoverlinevariant

Umathphantom

Umathpresubshiftdistance

Umathpresupshiftdistance

Umathprimeraise

Umathprimeshiftdrop

Umathprimeshiftup

Umathprimespaceafter

Umathprimevariant

Umathprimewidth

Umathradicalvariant

Umathruledepth

Umathruleheight

Umathskeweddelimitertolerance

Umathspacebeforescript

Umathstackvariant

Umathsubscriptvariant

Umathsubshiftdistance

Umathsuperscriptvariant

Umathsupshiftdistance

Umathtopaccentvariant

Umathunderdelimitervariant

Umathunderlinevariant

Umathuseaxis

Umathvextensiblevariant

Umathvoid

Umathxscale

23Differences with LuaTEX

Umathyscale

Unosubprescript

Unosuperprescript

Uoperator

Uover

Uoverwithdelims

Uprimescript

Ushiftedsubprescript

Ushiftedsubscript

Ushiftedsuperprescript

Ushiftedsuperscript

Ustyle

Usubprescript

Usuperprescript

adjustspacingshrink

adjustspacingstep

adjustspacingstretch

afterassigned

aftergrouped

aliased

aligncontent

allcrampedstyles

alldisplaystyles

allmathstyles

allscriptscriptstyles

allscriptstyles

allsplitstyles

alltextstyles

alluncrampedstyles

atendofgroup

atendofgrouped

automigrationmode

autoparagraphmode

beginlocalcontrol

beginmathgroup

beginsimplegroup

boxanchor

boxanchors

boxattribute

boxgeometry

boxorientation

boxshift

boxsource

boxtarget

boxtotal

boxxmove

boxxoffset

boxymove

boxyoffset

copymathatomrule

copymathparent

copymathspacing

currentloopiterator

currentloopnesting

currentmarks

defcsname

dimensiondef

dimexpression

edefcsname

endmathgroup

endsimplegroup

enforced

etoks

everybeforepar

everytab

expand

expandafterpars

expandafterspaces

expandcstoken

expandedafter

expandedloop

expandtoken

flushmarks

fontmathcontrol

fontspecdef

fontspecid

fontspecifiedname

fontspecifiedsize

fontspecscale

fontspecxscale

fontspecyscale

fonttextcontrol

frozen

futurecsname

futuredef

futureexpand

futureexpandis

futureexpandisap

gdefcsname

gletcsname

glettonothing

gluespecdef

Differences with LuaTEX24

glyph

glyphdatafield

glyphoptions

glyphscale

glyphscriptfield

glyphscriptscale

glyphscriptscriptscale

glyphstatefield

glyphtextscale

glyphxoffset

glyphxscale

glyphyoffset

glyphyscale

hccode

hyphenationmode

ifarguments

ifboolean

ifchkdim

ifchknum

ifcmpdim

ifcmpnum

ifcstok

ifdimexpression

ifdimval

ifempty

ifflags

ifhaschar

ifhastok

ifhastoks

ifhasxtoks

ifinsert

ifmathparameter

ifmathstyle

ifnumexpression

ifnumval

ifparameter

ifparameters

ifrelax

iftok

ignorearguments

ignorepars

immutable

inherited

insertbox

insertcopy

insertdepth

insertdistance

insertheight

insertheights

insertlimit

insertmaxdepth

insertmode

insertmultiplier

insertpenalty

insertprogress

insertstorage

insertstoring

insertunbox

insertuncopy

insertwidth

instance

integerdef

lastarguments

lastchkdim

lastchknum

lastleftclass

lastloopiterator

lastnodesubtype

lastparcontext

lastrightclass

letcsname

letfrozen

letmathatomrule

letmathparent

letmathspacing

letprotected

lettonothing

localcontrol

localcontrolled

localcontrolledloop

localleftboxbox

localmiddlebox

localmiddleboxbox

localrightboxbox

mathatom

mathatomskip

mathbackwardpenalties

mathfenced

mathfencesmode

mathfontcontrol

mathforwardpenalties

mathfrac

25Differences with LuaTEX

mathghost

mathlimitsmode

mathmiddle

mathrad

mathscale

mathslackmode

mathspacingmode

mathstackstyle

mathstylefontid

maththreshold

meaningasis

meaningfull

meaningless

mugluespecdef

mutable

noaligned

norelax

normalizelinemode

numericscale

numexpression

orelse

orphanpenalties

orphanpenalty

orunless

overloaded

overloadmode

overshoot

pageboundary

pageboundarypenalty

pagevsize

parametercount

parametermark

parattribute

parfillleftskip

permanent

postinlinepenalty

preinlinepenalty

quitloop

resetmathspacing

retokenized

scaledemwidth

scaledexheight

scaledextraspace

scaledfontdimen

scaledinterwordshrink

scaledinterwordspace

scaledinterwordstretch

scaledslantperpoint

semiexpanded

semiprotected

setdefaultmathcodes

setmathatomrule

setmathignore

setmathoptions

setmathpostpenalty

setmathprepenalty

setmathspacing

shapingpenaltiesmode

shapingpenalty

shownodedetails

skewed

skewedwithdelims

snapshotpar

srule

supmarkmode

swapcsvalues

tabsize

thewithoutunit

tinymuskip

todimension

tointeger

tokenized

tolerant

tomathstyle

toscaled

tracingadjusts

tracingalignments

tracingexpressions

tracingfullboxes

tracinghyphenation

tracinginserts

tracinglevels

tracingmarks

tracingmath

tracingnodes

uleaders

undent

unexpandedloop

unhpack

unletfrozen

unletprotected

untraced

Differences with LuaTEX26

unvpack

wrapuppar

xdefcsnamextoks

As part of a bit more consistency some function names also changed. Names with an _ got that

removed (as that was the minority). It's easy to provide a back mapping if needed (just alias the

functions).

Todo: only mention the LuaTEX ones.

LIBRARY OLD NAME NEW NAME COMMENT

language clear_patterns clearpatterns

clear_hyphenation clearhyphenation

mplib italcor italic

pen_info peninfo

solve_path solvepath

texio write_nl writenl old name stays

node protect_glyph protectglyph

protect_glyphs protectglyphs

unprotect_glyph unprotectglyph

unprotect_glyphs unprotectglyphs

end_of_math endofmath

mlist_to_hlist mlisttohlist

effective_glue effectiveglue

has_glyph hasglyph

first_glyph firstglyph

has_field hasfield

copy_list copylist

flush_node flushnode

flush_list flushlist

insert_before insertbefore

insert_after insertafter

last_node lastnode

is_zero_glue iszeroglue

make_extensible makeextensible

uses_font usesfont

is_char ischar

is_direct isdirect

is_glyph isglyph

is_node isnode

token scan_keyword scankeyword

scan_keywordcs scankeywordcs

scan_int scanint

scan_real scanreal

scan_float scanfloat

scan_dimen scandimen

scan_glue scanglue

scan_toks scantoks

scan_code scancode

27Differences with LuaTEX

scan_string scanstring

scan_argument scanargument

scan_word scanword

scan_csname scancsname

scan_list scanlist

scan_box scanbox

It's all part of trying to make the code base consistent but it is sometimes a bit annoying. How­

ever, that's why we develop this engine independent of the LuaTEX code base. It's anyway a

change that has been on my todo list for quite a while because those inconsistencies annoyed

me. It might take some years to get all done.

Differences with LuaTEX28

29The original engines

3 The original engines

3.1 The merged engines

3.1.1 The rationale

The first version of LuaTEX, made by Hartmut after we discussed the possibility of an extension

language, only had a few extra primitives and it was largely the same as pdfTEX. It was pre­

sented to the public in 2005. As part of the Oriental TEX project, Taco merged some parts of

Aleph into the code and some more primitives were added. Then we started more fundamental

experiments. After many years, when the engine had become more stable, the decision was

made to clean up the rather hybrid nature of the program. This means that some primitives

were promoted to core primitives, often with a different name, and that others were removed.

This also made it possible to start cleaning up the code base, which showed decades of stepwise

additions to original TEX. In chapter 5 we discuss some new primitives, here we will cover most

of the adapted ones.

During more than a decade stepwise new functionality was added and after 10 years the more of

less stable version 1.0 was presented. But we continued and after some 15 years the LuaMetaTEX

follow up entered its first testing stage. But before details about the engine are discussed in suc­

cessive chapters, we first summarize where we started from. Keep in mind that in LuaMetaTEX

we have a bit less than in LuaTEX, so this section differs from the one in the LuaTEX manual.

Besides the expected changes caused by new functionality, there are a number of not-so-ex­

pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often

than not, a change necessary to clean up the internal interfaces. These will also be mentioned.

Again we stress that this is not a TEX manual, nor a tutorial. If you are unfamiliar with TEX first

play a little with a macro package, take a look at the TEX book, make yourself familiar with the

concepts and macro language. That will likely take days and not hours. Also, many of the new

concepts introduced in LuaTEX and LuaMetaTEX are explained in documents that come with the

ConTEXt distribution, articles and presentations. It doesn't pay of to repeat that here, especially

not in a time when users often search instead of read from cover to cover.

Occasionally there are extensions to pdfTEX and LuaTEX but these are unlikely to en dup in

LuaMetaTEX. If needed one can add functionality using Lua. Another reason is that because

the way we handle files and generate output being compatible would only harm the engine. We

have some fundamental extensions that overcome limitations anyway. One area where the are

significate changes is in logging: at some point it no longer made sense to be compatible (with

LuaTEX) because we carry around more information.

3.1.2 Changes from TEX 3.1415926...

Of course it all starts with traditional TEX. Even if we started with pdfTEX, most still comes from

original Knuthian TEX. But we divert a bit.

The original engines30

‣ The current code base is written in C, not Pascal. The original web documentation is kept

when possible and not wrapped in tagged comments. As a consequence instead of one large

file plus change files, we now have multiple files organized in categories like tex, lua, lan­

guages, fonts, libraries, etc. There are some artifacts of the conversion to C, but these

got (and get) removed stepwise. The documentation, which actually comes from the mix of

engines (via so called change files), is a mix of what authors of the engines wove into the

source, and most is of course from Don Knuths original. In LuaMetaTEX we try to stay as

close as possible to the original so that the documentation of the fundamentals behind TEX by

Don Knuth still applies. However, because we use C, some documentation is a bit off. Also,

most global variables are now collected in structures, but the original names and level of

abstraction were mostly kept. On the other hand, opening up had its impact on the code, so

that makes some documentation a bit off too. Adapting that all will take time.

‣ See chapter 7 for many small changes related to paragraph building, language handling and

hyphenation. The most important change is that adding a brace group in the middle of a

word (like in of{}fice) does not prevent ligature creation. Also, the hyphenation, ligature

building and kerning has been split so that we can hook in alternative or extra code wherever

we like. There are various options to control discretionary injection and related penalties are

now integrated in these nodes. Language information is now bound to glyphs. The number

of languages in LuaMetaTEX is smaller than in LuaTEX. Control over discretionaries is more

granular and now managed by less variables.

‣ There is no pool file, all strings are embedded during compilation. This also removed some

memory constraints. We kept token and node memory management because it is convenient

and efficient but parts were reimplemented in order to remove some constraints. Token

memory management is largely the same. All the other large memory structures, like those

related to nesting, the save stack, input levels, the hash table and table of equivalents, etc.

now all start out small and are enlarged when needed, where maxima are controlled in the

usual way. In principle the initial memory footprint is smaller while at the same time we can

go real large. Because we have widememory words some data (arrays) used for housekeeping

could be reorganized a bit.

‣ The specifier plus 1 fillll does not generate an error. The extra ‘l’ is simply typeset.

‣ The upper limit to \endlinechar and \newlinechar is 127.

‣ Because the backend is not built-in, the magnification (\mag) primitive is gone. A \shipout

command just discards the content of the given box. The write related primitives have to be

implemented in the used macro package using Lua. None of the pdfTEX derived primitives is

present.

‣ Because there is no font loader, a Lua variant is free to either support or not the Omega ofm

file format. As there are hardly any such fonts it probably makes no sense. There is plenty of

control over the way glyphs get treated and scaling of fonts and glyphs is also more dynamic.

‣ There is more control over some (formerly hard-coded) math properties. In fact, there is a

whole extra bit of math related code because we need to deal with OpenType fonts. The math

processing has been adapted to the new (dynamic) font and glyph scaling features.

‣ The \outer and \long prefixed are silently ignored. It is permitted to use \par in math.

‣ The lack of a backend means that some primitives related to it are not implemented. This is

no big deal because it is possible to use the scanner library to implement them as needed,

which depends on the macro package and backend.

‣ The math style related primitives can use numbers as well as symbolic names. There is some

31The original engines

more (control over) math anyway, which is a side effect of supporting OpenType math.

3.1.3 Changes from 𝜀-TEX 2.2

Being the de-facto standard extension of course we provide the 𝜀-TEX features, but with a few
small adaptations.

‣ The 𝜀-TEX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTEX is not needed.

‣ The TEXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,

\endR and \endL are missing. Instead we used the Omega/Aleph approach to directionality

as starting point, albeit it has been changed quite a bit, so that we're probably not that far

from TEXXeT.

‣ Some of the tracing information that is output by 𝜀-TEX's \tracingassigns and \tracingre­
stores is not there. Also keep in mind that tracing doesn't involve what Lua does.

‣ Register management in LuaMetaTEX uses the Omega/Aleph model, so the maximum value

is 65535 and the implementation uses a flat array instead of the mixed flat & sparse model

from 𝜀-TEX.
‣ Because we have more nodes, conditionals, etc. the 𝜀-TEX status related variables are adapted
to LuaMetaTEX: we use different ‘constants’, but that should be no problem because any sane

macro package uses abstraction.

‣ The \scantokens primitive is now using the same mechanism as Lua print-to-TEX uses, which

simplifies the code. There is a little performance hit but it will not be noticed in ConTEXt,

because we never use this primitive.

‣ Because we don't use change files on top of original TEX, the integration of 𝜀-TEX functionality
is bit more natural, code wise.

‣ The \readline primitive has to be implemented in Lua. This is a side effect of delegating all

file io.

‣ Most of the code is rewritten but the original primitives are still tagged as coming from 𝜀-TEX.

3.1.4 Changes from pdfTEX 1.40

Because wewant to produce pdf themost natural starting point was the popular pdfTEX program.

We inherit the stable features, dropped most of the experimental code and promoted some func­

tionality to core LuaTEX functionality which in turn triggered renaming primitives. However, as

the backend was dropped, not that much from pdfTEX is present any more. Basically all we now

inherit from pdfTEX is expansion and protrusion but even that has been adapted. So don't expect

LuaMetaTEX to be compatible.

‣ The experimental primitives \ifabsnum and \ifabsdim have been promoted to core primi­

tives.

‣ The primitives \ifincsname, \expanded and \quitvmode have become core primitives.

‣ As the hz (expansion) and protrusion mechanism are part of the core the related prim­

itives \lpcode, \rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to

core primitives. The two commands \protrudechars and \adjustspacing control these

processes. The protrusion and kern related primitives are now dimensions while expansion

is still one of these 1000 based scales.

The original engines32

‣ In LuaMetaTEX three extra primitives can be used to overload the font specific settings: \ad­

justspacingstep (max: 100), \adjustspacingstretch (max: 1000) and \adjustspacing­

shrink (max: 500).

‣ The hz optimization code has been partially redone so that we no longer need to create extra

font instances. The front- and backend have been decoupled and the glyph and kern nodes

carry the used values. In LuaTEX that made a more efficient generation of pdf code possible.

It also resulted in much cleaner code. The backend code is gone, but of course the information

is still carried around.

‣ When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When

the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

‣ When \protrudechars has a value larger than zero characters at the edge of a line can

be made to hang out. A value of 2 will take the protrusion into account when breaking a

paragraph into lines. A value of 3 will try to deal with right-to-left rendering; this is a still

experimental feature.

‣ The pixel multiplier dimension \pxdimen has be inherited as core primitive.

‣ The primitive \tracingfonts is now a core primitive but doesn't relate to the backend.

3.1.5 Changes from Aleph RC4

In LuaTEX we took the 32 bit aspects and much of the directional mechanisms and merged it into

the pdfTEX code base as starting point for further development. Thenwe simplified directionality,

fixed it and opened it up. In LuaMetaTEX not that much of the later is left. We only have two

horizontal directions. Instead of vertical directions we introduce an orientation model bound to

boxes.

The already reduced-to-four set of directions now only has two members: left-to-right and right-

to-left. They don't do much as it is the backend that has to deal with them. When paragraphs

are constructed a change in horizontal direction is irrelevant for calculating the dimensions.

So, basically most that we do is registering state and passing that on till the backend can do

something with it.

Here is a summary of inherited functionality:

‣ The ^^ notation has been extended: after ^^^^ four hexadecimal characters are expected and

after ^^^^^^ six hexadecimal characters have to be given. The original TEX interpretation is

still valid for the ^^ case but the four and six variants do no backtracking, i.e. when they are

not followed by the right number of hexadecimal digits they issue an error message. Because

^^^ is a normal TEX case, we don't support the odd number of ^^^^^ either.

‣ Glues immediately after direction change commands are not legal breakpoints. There is a bit

more sanity testing for the direction state. This can be configured.

‣ The placement of math formula numbers is direction aware and adapts accordingly. Boxes

carry directional information but rules don't.

‣ There are no direction related primitives for page and body directions. The paragraph, text

and math directions are specified using primitives that take a number. The three letter codes

are dropped.

33The original engines

3.1.6 Changes from standard web2c

The LuaMetaTEX codebase is not dependent on the web2c framework. The interaction with the

file system and tds is up to Lua. There still might be traces but eventually the code base should

be lean and mean. The MetaPost library is coded in cweb and in order to be independent from

related tools, conversion to C is done with a Lua script ran by, surprise, LuaMetaTEX.

3.2 Implementation notes

3.2.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two

separate arrays. Each of these will grow dynamically when needed. Internally a token or node is

an index into these arrays. This permits for an efficient implementation and is also responsible

for the performance of the core. All other data structures are mostly the same but managed

dynamically too. Because we operate in a 64 bit world, the parallel table of equivalents needed

for managing levels, is gone. Anyhow, the original documentation in TEX The Program mostly

applies!

3.2.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)

tables are now sparse arrays that are implemented in C. They are no longer part of the TEX

‘equivalence table’ and because each had 1.1 million entries with a few memory words each,

this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don't show up when using

the 𝜀-TEX tracing routines \tracingassigns and \tracingrestores but we don't see that as a

real limitation. It also saves a lot of clutter.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up

to index 221 − 1 but these are never accessed directly so again users will not notice this.

3.2.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in

the hash just like the multiletter control sequences. This is a side effect of going Unicode and

utf. Where using 256 slots in an array add no burden supporting the whole Unicode range is a

waste of space. Therefore, also active characters are internally implemented as a special type

of multi-letter control sequences that uses a prefix that is otherwise impossible to obtain.

The code that displays control sequences explicitly checks if the length is one when it has to

decide whether or not to add a trailing space.

3.2.4 Binary file reading

All input now goes via Lua: files loaded with \input as well as files that are opened with \openin.

Actually the later has to be implemented in terms of macros and Lua calls. This also means that

compared to LuaTEX the internal handling of input has been changed but users won't notice that.

The original engines34

Setting a callback is expected now. Although reading input natively using getc calls is more

efficient, we now fetch lines from Lua, put them in a buffer and then pick successive bytes (keep

in mind that we read utf) from that. The performance is quite ok, also because Lua is fast, todays

operating systems cache, and storage media have become very fast. Also, TEX is spending more

time messing around with what it has input than actually reading input.

3.2.5 Tabs and spaces

We conform to the way other TEX engines handle trailing tabs and spaces. For decades trailing

tabs and spaces (before a newline) were removed from the input but this behaviour was changed

in September 2017 to only handle spaces. We are aware that this can introduce compatibility

issues in existing workflows but because we don't want too many differences with upstream

TEXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to

macro packages maintainers to deal with possible compatibility issues and in LuaMetaTEX they

can do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from

generated sources) it was normally dealt with by adding a comment token to the line in case the

spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts

some of our other choices but consistency with other engines. We still stick to our view that at

the log level we can (and might be) more incompatible. We already expose some more details

anyway.

3.2.6 Logging

When detailed logging is enabled more detail is output with respect to what nodes are involved.

This is a side effect of the core nodes having more detailed subtype information. The benefit

of more detail wins from any wish to be byte compatible in the logging. One can always write

additional logging in Lua.

The information that goes into the log file can be different from LuaTEX, and might even differ

a bit more in the future. The main reason is that inside the engine we have more granularity,

which for instance means that we output subtype and attribute related information when nodes

are printed. Of course we could have offered a compatibility mode but it serves no purpose. Over

time there have been many subtle changes to control logs in the TEX ecosystems so another one

is bearable.

In a similar fashion, there is a bit different behaviour when TEX expects input, which in turn is a

side effect of removing the interception of * and & which made for cleaner code (quite a bit had

accumulated as side effect of continuous adaptations in the TEX ecosystems). There was already

code that was never executed, simply as side effect of the way LuaTEX initializes itself (one needs

to enable classes of primitives for instance). Keep in mind that over time system dependencies

have been handles with TEX change files, the web2c infrastructure, kpse features, compilation

variables and flags, etc. In LuaMetaTEX we try to minimize all that.

When it became unavoidable that we output more detail, it also became clear that it made no

sense to stay log and trace compatible. Some is controlled by parameters in order to stay close

the original, but ConTEXt is configured such that we benefit from the new possibilities. Examples

are that in addition to \meaning we have \meaningfull that also exposes macro properties, and

35The original engines

\meaningless that only exposes the body. The \untraced prefix will suppress some in the log,

and we set \tracinglevels to 3 in order to get details about the input and grouping level. When

there's less shown than expected keep in mind that LuaMetaTEX has a somewhat optimized

saving and restoring of meanings so less can happen which is reflected in tracing. When node

lists are serialized (as with \showbox) some nodes, like discretionaries report more detail. The

compact serializer, used for instance to signal overfull boxes, also shows a bit more detail with

respect to non-content nodes. I math more is shown if only because we have more control and

additional mechanisms.

3.2.7 Parsing

Token parsers have been upgraded for the sake of Lua, \csname handling has been extended,

macro definitions can bemore flexible so there codewas adapted, more conditionals also brought

some changes. But we build upon the (reorganized) TEX foundation so the basics can definitely

be recognized.

Because of interfacing in Lua the internal token and node organization has been normalized

(read: we cannot cheat because all is kind of visible). On the one hand this can come with a

performance penalty but that is more than compensated by extensions, optimized parsers and

such. Still the fact that we are utf based (32 bit) makes the machinery slower than the 8 bit

original. The reworked LuaMetaTEX engine is substantially faster than the LuaTEX predecessor.

The handling of conditionals has been adapted so that we can have flatter branches (\orelse

cum suis). This again has some consequences for parsing. Because parsing alignments is rather

interwoven in general parsing and expansion the handling of related primitives has been slightly

adapted (also for the sake of Lua interfacing) and dealing with \noalign situations is a bit more

convenient.

This are just a few of the adaptations and most of this happened stepwise with testing in the Con­

TEXt code base. It will be clear that LuaMetaTEX is a quite different extension to the original.

You're warned.

3.2.8 Changes in keyword scanning

Some primitives accept (optional) keywords and in LuaMetaTEX there are more keywords than

in LuaTEX. Scanning can trigger error messages and lookahead side effects and in LuaMetaTEX

these can be different. This is no big deal because errors are still errors.

The original engines36

37Using LuaMetaTEX

4 Using LuaMetaTEX

4.1 Initialization

4.1.1 A bare bone engine

Although the LuaMetaTEX engine will start up when you call the program it will not do much

useful. You can compare it to computer hardware without (high level) operating system with a

TEX kernel being the bios. It can interpret TEX code but for typesetting you need a reasonable

setup. You also need to load fonts, and for output you need a backend, and both can be imple­

mented in Lua. If you don't like that and want to get up and running immediately, you will be

more happy with LuaTEX, pdfTEX or XƎTEX, combined with your favorite macro package.

If you just want to play around you can install the ConTEXt distribution which (including manuals

and some fonts) is tiny compared to a full TEXLive installation and can be run alongside it without

problems. If there are issues you can go to the usual ConTEXt support platforms and seek help

where you can find the people who made LuaTEX and LuaMetaTEX.

4.1.2 LuaMetaTEX as a Lua interpreter

Although LuaMetaTEX is primarily meant as a TEX engine, it can also serve as a stand alone Lua

interpreter. There are two ways to make LuaMetaTEX behave like a standalone Lua interpreter.

The first method uses the command line option --luaonly followed by a filename. The second is

more automatic: if the only non-option argument (file) on the commandline has the extension lmt

or lua. The luc extension has been dropped because bytecode compiled files are not portable

and one can always load indirect. The lmt suffix is more ConTEXt specific and makes it possible

to have files for LuaTEX and LuaMetaTEX alongside.

In this mode, it will set Lua's arg[0] to the found script name, pushing preceding options in neg­

ative values and the rest of the command line in the positive values, just like the Lua interpreter

does.

LuaMetaTEX will exit immediately after executing the specified Lua script and is, in effect, a

somewhat bulky stand alone Lua interpreter with a bunch of extra preloaded libraries. But we

really want to keep the binary small, if possible below the 3MB which is okay for a script engine.

When no argument is given, LuaMetaTEX will look for a Lua file with the same name as the binary

and run that one when present. This makes it possible to use the engine as a stub. For instance,

in ConTEXt a symlink from mtxrun to type luametatex will run the mtxrun.lmt or mtxrun.lua

script when present in the same path as the binary itself. As mentioned before first checking for

(ConTEXt) lmt files permits different files for different engines in the same path.

4.1.3 Other commandline processing

When the LuaMetaTEX executable starts, it looks for the --lua command line option. If there is

no --lua option, the command line is interpreted in a similar fashion as the other TEX engines.

All options are accepted but only some are understood by LuaMetaTEX itself:

Using LuaMetaTEX38

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--fmt=FORMAT load the format file FORMAT

--help display help and exit

--ini be iniluatex, for dumping formats

--jobname=STRING set the job name to STRING

--lua=FILE load and execute a Lua initialization script

--version display version and exit

There are less options than with LuaTEX, because one has to deal with them in Lua anyway. So

for instance there are no options to enter a safer mode or control executing programs because

this can easily be achieved with a startup Lua script.

Next the initialization script is loaded and executed. From within the script, the entire com­

mand line is available in the Lua table arg, beginning with arg[0], containing the name of the

executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX's initializa­

tions have taken place yet. The Lua libraries that don't deal with TEX are initialized rather soon

so you have these available.

LuaMetaTEX allows some of the command line options to be overridden by reading values from

the texconfig table at the end of script execution (see the description of the texconfig table

later on in this document for more details on which ones exactly).

The value to use for \jobname is decided as follows:

‣ If --jobname is given on the command line, its argument will be the value for \jobname,

without any changes. The argument will not be used for actual input so it need not exist. The

--jobname switch only controls the \jobname setting.

‣ Otherwise, \jobname will be the name of the first file that is read from the file system, with

any path components and the last extension (the part following the last .) stripped off.

‣ There is an exception to the previous point: if the command line goes into interactive mode

(by starting with a command) and there are no files input via \everyjob either, then the

\jobname is set to texput as a last resort.

So let's summarize this. The handling of what is called jobname is a bit complex. There can be

explicit names set on the command line but when not set they can be taken from the texconfig

table.

startup filename --lua a Lua file

startup jobname --jobname a TEX tex texconfig.jobname

startup dumpname --fmt a format file texconfig.formatname

These names are initialized according to --luaonly or the first filename seen in the list of op­

tions. Special treatment of & and * as well as interactive startup is gone but we still enter TEX

via an forced \input into the input buffer.1

1 This might change at some point into an explicit loading triggered via Lua.

39Using LuaMetaTEX

When we are in TEX mode at some point the engine needs a filename, for instance for opening a

log file. At that moment the set jobname becomes the internal one and when it has not been set

which internalized to jobname but when not set becomes texput. When you see a texput.log

file someplace on your system it normally indicates a bad run.

When running on MS Windows the command line, filenames, environment variable access etc.

internally uses the current code page but to the user is exposed as utf8. Normally users won't

notice this.

There is an extra options --permitloadlib that needs to be given when you load external li­

braries via Lua. Although you could manage this via Lua itself in a startup script, the reason for

having this as option is the wish for security (at some point that became a demand for LuaTEX),

so this might give an extra feeling of protection.

4.2 Lua behaviour

4.2.1 The Lua version

We currently use Lua 5.4 and will follow developments of the language but normally with some

delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of

the language. Here is an example of one aspect.

Luas tostring function (and string.format) may return values in scientific notation, thereby

confusing the TEX end of things when it is used as the right-hand side of an assignment to a

\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua

5.3 you can get different output than from 5.2. It is best not to depend the automatic cast from

string to number and vise versa as this can change in future versions.

4.2.2 Locales

In stock Lua, many things depend on the current locale. In LuaMetaTEX, we can't do that,

because it makes documents unportable. While LuaMetaTEX is running if forces the following

locale settings:

LC_CTYPE=C

LC_COLLATE=C

LC_NUMERIC=C

There is no way to change that as it would interfere badly with the often language specific

conversions needed at the TEX end.

4.3 Lua modules

Of course the regular Lua modules are present. In addition we provide the lpeg library by

Roberto Ierusalimschy, This library is not Unicode-aware, but interprets strings on a byte-per-

byte basis. This mainly means that lpeg.S cannot be used with utf8 characters that need more

than one byte, and thus lpeg.S will look for one of those two bytes when matching, not the

Using LuaMetaTEX40

combination of the two. The same is true for lpeg.R, although the latter will display an error

message if used with multibyte characters. Therefore lpeg.R('aä') results in the message bad

argument #1 to 'R' (range must have two characters), since to lpeg, ä is two 'characters'

(bytes), so aä totals three. In practice this is no real issue and with some care you can deal with

Unicode just fine.

There are some more libraries present. These are discussed on a later chapter. For instance we

embed luasocket but contrary to LuaTEX don't embed the related Lua code. The luafilesystem

module has been replaced by a more efficient one that also deals with the MS Windows file and

environment properties better (Unicode support in MS Windows dates from before utf8 became

dominant so we need to deal with wide Unicode16).

There are more extensive math libraries and there are libraries that deal with encryption and

compression. There are also some optional libraries that we do interface but that are loaded on

demand. The interfaces are as minimal as can be because we so much in Lua, which also means

that one can tune behaviour to usage better.

4.4 Testing

For development reasons you can influence the used startup date and time. By setting the

start_time variable in the texconfig table; as with other variables we use the internal name

there. When Universal Time is needed, set the entry use_utc_time in the texconfig table.

In ConTEXt we provide the command line argument --nodates that does a bit more than disabling

dates; it avoids time dependent information in the output file for instance.

41Basic TEX enhancements

5 Basic TEX enhancements

5.1 Introduction

5.1.1 Primitive behaviour

From day one, LuaTEX has offered extra features compared to the superset of pdfTEX, which

includes 𝜀-TEX, and Aleph. This has not been limited to the possibility to execute Lua code via
\directlua, but LuaTEX also adds functionality via new TEX-side primitives or extensions to

existing ones. The same is true for LuaMetaTEX. Some primitives have luatex in their name and

there will be no luametatex variants. This is because we consider LuaMetaTEX to be LuaTEX2
+.

Contrary to the LuaTEX engine LuaMetaTEX enables all its primitives. You can clone (a selection

of) primitives with a different prefix, like this:

\directlua { tex.enableprimitives('normal',tex.extraprimitives()) }

The extraprimitives function returns the whole list or a subset, specified by one or more key­

words tex, etex or luatex. When you clone all primitives you can also do this:

\directlua { tex.enableprimitives('normal',true) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this

early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before

the above line:

\catcode `\{ = 1

\catcode `\} = 2

More fine-grained primitives control is possible and you can look up the details in section 12.3.15.

There are only three kinds of primitives: tex, etex and luatex but a future version might drop

this and no longer make that distinction as it no longer serves a purpose apart from the fact that

it reveals some history.

5.1.2 Rationale

One can argue that TEX should stay as it is but over decades usage of this program has evolved

and resulted in large macro packages that often need to rely on what the TEX books calls ‘dirty

tricks’. When you look deep down in the code of ConTEXt MkII, MkIV and MkXL (aka LMTX) you

will see plenty of differences but quite a bit of the functionality in the most recent versions is

also available in MkII. Of course more has been added over time, and some mechanisms could

be made more efficient and reliable but plenty was possible.

So, when you see something done in ConTEXt LMTX using new LuaMetaTEX primitives you can

assume that somehow the same is done in ConTEXt MkIV. We don't really need LuaMetaTEX

instead of LuaTEX. Among the main reasons for still going for this new engine are:

Basic TEX enhancements42

‣ some new primitives make for less tracing and tracing has become rather verbose over years

(just try tracingall); examples are the new macro argument handling and some new hooks

‣ some new primitives permits more efficient coding and have a positive impact on performance

(this sort of compensates a performance hit due to delegating work to Lua)

‣ other primitives are there because they make the code look better; good examples are the

extensions to conditionals; they remove the necessity for all kind of (somewhat unnatural)

middle layers; take local control as example

‣ a few primitives make complex and demanding mechanism a bit easier to grasp and explain;

think of alignments, inserts and marks

‣ more access from the Lua end to TEX internals: a few more callbacks, more options, more

robust interfaces, etc

‣ somemechanisms are very specific but can bemademore generic (and powerful), like inserts,

marks, adjusts and local boxes

I realize that new primitives also can make some TEX code look less threatening to new users.

It removes a bit of hackery and limits the level of guru that comes with showing off the mastery

of expansion and lookahead. So be it. I wonder if those objecting to some of the extensions

(with the argument that they are not needed, and ConTEXt MkIV is proof of that) can resist using

them. I admit that it sometimes hurt to throw away good working but cumbersome code that

took a while to evolve, but I also admit that I favor long distance traveling by bike or car over

riding horseback.

It took a few years for LuaMetaTEX to evolve to what it is now and most extensions are not there

“because they were easy” or “could be done”. If that were the case, there would be plenty more.

In many aspects it has been a balancing act and much also relates to looking at the ConTEXt

source code (TEX as well as Lua) and wondering why it looks that way. It is also driven by the

fact that I want to be able to explain to users why things are done in a certain way. In fact, I

want users to be able to look at the code and understand it (apart from maybe a few real dirty

low level helpers that are also dirty because of performance reasons). Just take this into account

when reading on.

And yes, there are still a few possibilities I want to explore . . . some might show up temporarily

so don't be surprised. I'm also aware that some new features can have bugs or side effects that

didn't show up in ConTEXt, which after all is the benchmark and environment in which all this

evolves.

Over time, the other TEX engines might have an occasional feature (primitive) added and it is

very unlikely that LuaMetaTEX will follow up on that. First of all we have different internals but

most of all because plenty of time went into considering what got added and what not, apart

from the fact that we have callbacks. Decades of TEX development never really have lead to an

extensive wish list so there is no real need why there should be a demand on anything other

than we offer here. If TEX worked well for ages, it can as well do for more, so there is no need

to cripple the code base simply in order to be compatible with other engines; LuaMetaTEX is

already quite different anyway.

5.1.3 Version information

There are three primitives to test the version of LuaTEX (and LuaMetaTEX):

43Basic TEX enhancements

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaMetaTeX, Version 2.09.42 the banner reported on the console

\luatexversion 209 major and minor number combined

\luatexrevision 42 the revision number

A version is defined as follows:

‣ The major version is the integer result of \luatexversion divided by 100. The primitive is

an ‘internal variable’, so you may need to prefix its use with \the or \number depending on

the context.

‣ The minor version is a number running from 0 upto 99.

‣ The revision is reported by \luatexrevision. Contrary to other engines in LuaMetaTEX is

also a number so one needs to prefix it with \the or \number.2

‣ The full version number consists of the major version (X), minor version (YY) and revision (ZZ),

separated by dots, so X.YY.ZZ.

The LuaTEX binary has companions like LuajitTEX and a version that has a font rendering library

on board. Both introduce dependencies that don't fit into the LuaMetaTEX agenda: compilation

should be easy and future proof and not depend on code outside the source tree. It means that

for instance the ConTEXt runners don't really need to check much more than the basic name.

It also means that the context and mtxrun stubs can be symbolic links to the main program

that itself is about 3MB, so we can keep the binary footprint small. For normal ConTEXt LMTX

processing no other binaries are needed because whatever support we need is done in Lua.

The LuaMetaTEX version number starts at 2 in order to prevent a clash with LuaTEX, and the

version commands are the same. This is a way to indicate that these projects are related.

The status library also provides some information including what we get with the three men­

tioned primitives:

FIELD VALUE

filename E:/context/manuals/mkiv/external/luametatex/luametatex-enhancements.tex

banner This is LuaMetaTeX, Version 2.09.42

luatex_engine luametatex

luatex_version 209

luatex_revision 42

luatex_verbose 2.09.42

copyright Taco Hoekwater, Hans Hagen & Wolfgang Schuster

development_id 20220308

format_id 642

used_compiler gcc

2 In the past it always was good to prefix the revision with \number anyway, just to play safe, although there have for

instance been times that pdfTEX had funny revision indicators that at some point ended up as letters due to the internal

conversions.

Basic TEX enhancements44

5.2 Unicode text support

5.2.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the

full range of Unicode (220 + 216 − 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a

character is always converted to a suitable graphic representation of that character in a specific

font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as

a character. Inside the engine there is no clear separation between the two concepts. Because

the subtype of a glyph node can be changed in Lua it is up to the user. Subtypes larger than 255

indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate

for a larger range of acceptable numbers. For instance, \char now accepts values between 0

and 1,114,111. This should not be a problem for well-behaved input files, but it could create in­
compatibilities for input that would have generated an error when processed by older TEX-based

engines. The affected commands with an altered initial (left of the equal sign) or secondary (right

of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efcode,

\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. In­

put files can be pre-processed using the reader callback. This will be explained in section ??.

Normalization of the Unicode input is on purpose not built-in and can be handled by a macro

package during callback processing. We have made some practical choices and the user has to

live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode

range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
𝑐 >= 1,114,112, LuaTEX will actually print the single byte corresponding to 𝑐 minus 1,114,112.

Contrary to other TEX engines, the output to the terminal is as-is so there is no escaping with ^^.

We operate in a utf universe. Because we operate in a C universum, zero characters are special

but because we also live in a Unicode galaxy that is no real problem.

5.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

5.2.3 Extended tables

All traditional TEX and 𝜀-TEX registers can be 16-bit numbers. The affected commands are:

\count

\dimen

\skip

\muskip

\marks

\toks

\countdef

\dimendef

\skipdef

\muskipdef

\toksdef

\insert

45Basic TEX enhancements

\box

\unhbox

\unvbox

\copy

\unhcopy

\unvcopy

\wd

\ht

\dp

\setbox

\vsplit

Fonts are loaded via Lua and a minimal amount of information is kept at the TEX end. Sharing

resources is up to the loaders. The engine doesn't really care about what a character (or glyph)

number represents (a Unicode or index) as it only is interested in dimensions.

In TEX the number of registers is 256 and 𝜀-TEX bumped that to 32K. One reason for a fixed
number is that these registers are fast ways to store data and therefore are part of the main

lookup table (used for data and pointers to data as well as save and restore housekeeping). In

LuaTEX the number was bumped to 64K but one can argue that less would also do. In order to

keep the default memory footprint reasonable, in LuaMetaTEX the number of languages, fonts

andmarks is limited. The size of some tables can be limited by configuration settings, so they can

start out small and grow till configured maximum which is smaller than the absolute maximum.

Because we have additional ways to store integers, dimensions and glue, we might actually

decide to decrease the maximum of the registers: if 64K is not enough, and you work around it,

then likely 32K might do as well. Also, we have Lua to store massive amounts of data. One can

argue that saving some 1.5MB memory (when we go halfway) is not worth the effort in a time

when you have to close a browser in order to free the gigabytes it consumes, but there is no

reason not to be lean and mean: a more conservative approach to start with creates headroom

for going wild later.

5.3 Attributes

5.3.1 Nodes

When TEX reads input it will interpret the stream according to the properties of the characters.

Some signal a macro name and trigger expansion, others open and close groups, trigger math

mode, etc. What's left over becomes the typeset text. Internally we get a linked list of nodes.

Characters become glyph nodes that have for instance a font and char property and \kern

10pt becomes a kern node with a width property. Spaces are alien to TEX as they are turned

into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)

and glue nodes (spaces). A node can have a subtype so that it can be recognized as for instance

a space related glue.

The sequences of characters at some point are extended with disc nodes that relate to hy­

phenation. After that font logic can be applied and we get a list where some characters can

be replaced, for instance multiple characters can become one ligature, and font kerns can be

injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes with width, height, depth and shift

properties and a pointer list to its actual content. Boxes can be constructed explicitly or can

be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines

are a linked list of hlist nodes, possibly with glue and penalties in between.

Internally nodes have a number. This number is actually an index in the memory used to store

nodes.

Basic TEX enhancements46

So, to summarize: all that you enter as content eventually becomes a node, often as part of a

(nested) list structure. They have a relative small memory footprint and carry only the minimal

amount of information needed. In traditional TEX a character node only held the font and slot

number, in LuaTEX we also store some language related information, the expansion factor, etc.

Now that we have access to these nodes from Lua it makes sense to be able to carry more

information with a node and this is where attributes kick in.

It is important to keep in mind that there are situations where nodes get created in the current

context. For instance, when TEX builds a paragraph or page or constructs math formulas, it does

add nodes and giving these the current attributes makes no sense and can even give weird side

effects. In these cases, the attributes are inherited from neighbouring nodes.

5.3.2 Attribute registers

Attributes are a completely new concept in LuaTEX. Syntactically, they behave a lot like counters:

attributes obey TEX's nesting stack and can be used after \the etc. just like the normal \count

registers.

\attribute ⟨16-bit number⟩ ⟨optional equals⟩ ⟨32-bit number⟩
\attributedef ⟨csname⟩ ⟨optional equals⟩ ⟨16-bit number⟩

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value

to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,

a.k.a. −2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in

this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact

that the numbers and values of all ‘set’ attributes are attached to all nodes created in their

scope. These can then be queried from any Lua code that deals with node processing. Further

information about how to use attributes for node list processing from Lua is given in chapter 10.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits

efficient testing and updating. You can define many thousands of attributes but normally such a

large number makes no sense and is also not that efficient because each node carries a (possibly

shared) link to a list of currently set attributes. But they are a convenient extension and one of

the first extensions we implemented in LuaTEX.

In LuaMetaTEX we try to minimize the memory footprint and creation of these attribute lists

more aggressive sharing them. This feature is still somewhat experimental.

5.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment

can be quite asynchronous. For example: in paragraph building, the individual line boxes are

created after the \par command has been processed, so they will receive the list of attributes

that is in effect then, not the attributes that were in effect in, say, the first or third line of the

paragraph.

47Basic TEX enhancements

Similar situations happen in LuaTEX regularly. A few of the more obvious problematic cases are

dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur­

ing borrow their attributes from their surrounding glyphs, and it is possible to influence box

attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are

unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

same as characters that have been converted to references to glyphs in fonts. For instance,

when you use attributes to implement color support, each node carries information about its

eventual color. In that case, unless you implement mechanisms that deal with it, applying a color

to already boxed material will have no effect. Keep in mind that this incompatibility is mostly

due to the fact that separate specials and literals are a more unnatural approach to colors than

attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the

use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also

specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the

nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative

value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do

for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [a]))

tex.sprint("\\quad\\quad")

tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))

tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist

nodes that have a field list that points to the content. Because the attributes are a list them­

selves you can access them by indexing the node (here we do that with [a]). Running this snippet

gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123

box 0 : attr 998 : 456 list 0 : attr 998 : 456

box 0 : attr 999 : nil list 0 : attr 999 : nil

box 2 : attr 997 : 123 list 2 : attr 997 : 123

box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the

word nil.

Basic TEX enhancements48

A special kind of box is \vcenter. This one also can have attributes. When one or more are

set these plus the currently set attributes are bound to the resulting box. In regular TEX these

centered boxes are only permitted in math mode, but in LuaMetaTEX there is no error message

and the box the height and depth are equally divided. Of course in text mode there is no math

axis related offset applied.

It is possible to change or add to the attributes assigned to a box with \boxattribute:

\boxattribute 0 123 456

You can set attributes of the current paragraph specification node with \parattribute:

\parattribute 123 456

5.4 Lua related primitives

5.4.1 \directlua

In order to merge Lua code with TEX input, a few new primitives are needed. The primitive

\directlua is used to execute Lua code immediately. The syntax is

\directlua ⟨general text⟩

The ⟨general text⟩ is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the ⟨general text⟩, the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a

separate chunk. In such a chunk you can use the local directive to keep your variables from

interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments

(starting with --) within the argument. As there typically will be only one ‘line’ the first line com­

ment will run on until the end of the input. You will either need to use TEX-style line comments

(starting with %), or change the TEX category codes locally. Another possibility is to say:

\begingroup

\endlinechar=10

\directlua ...

\endgroup

Then Lua line comments can be used, since TEX does not replace line endings with spaces. Of

course such an approach depends on the macro package that you use.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its

expansion from the TEX viewpoint is usually empty. However, there are some Lua functions that

produce material to be read by TEX, the so called print functions. The most simple use of these

is tex.print(<string> s). The characters of the string s will be placed on the TEX input buffer,

that is, ‘before TEX's eyes’ to be read by TEX immediately. For example:

\count10=20

a\directlua{tex.print(tex.count[10]+5)}b

49Basic TEX enhancements

expands to

a25b

Here is another example:

$\pi = \directlua{tex.print(math.pi)}$

will result in

𝜋 = 3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all

TEX commands. So formally speaking its expansion is null, but it collects material in a new level

on the input stack to be immediately read by TEX after the Lua call as finished. It is a bit like

𝜀-TEX's \scantokens, which now uses the same mechanism. For a description of print functions
look at section 12.3.13.

Because the ⟨general text⟩ is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the con­

textual information is often suboptimal because it can come from deep down, and TEX has no

knowledge about what you do in Lua. Often, you will only see the line number of the right brace

at the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up

LuaMetaTEX pretty bad. If you are not careful while working with the node list interface, you

may even end up with errors or even crashes from within the TEX portion of the executable.

5.4.2 \luaescapestring

This primitive converts a TEX token sequence so that it can be safely used as the contents of a

Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns

are escaped. This is done by prepending an extra token consisting of a backslash with category

code 12, and for the line endings, converting them to n and r respectively. The token sequence

is fully expanded.

\luaescapestring ⟨general text⟩

Most often, this command is not actually the best way to deal with the differences between TEX

and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua

code it is easier to keep the code in a separate file and load it using Lua's dofile:

\directlua { dofile("mysetups.lua") }

5.4.3 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optional

name or number specification). The tokenlist is then converted into a string and given to Lua to

turn into a function that is called. The overhead is rather small but when you have millions of

calls it can have some impact. For this reason there is a variant call available: \luafunction.

This command is used as follows:

Basic TEX enhancements50

\directlua {

local t = lua.get_functions_table()

t[1] = function() tex.print("!") end

t[2] = function() tex.print("?") end

}

\luafunction1

\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of

functions apart from normal Lua limitations. Of course there is the limitation of no arguments

but that would involve parsing and thereby give no gain. The function, when called in fact gets

one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get_functions_table()

t[8] = function(slot) tex.print(slot) end

}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.

In addition LuaTEX provides a definer:

\luadef\MyFunctionA 1

\global\luadef\MyFunctionB 2

\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens and

assume that the function is available when that token expands. On the other hand, as we have

tested this functionality in relative complex situations normal usage should not give problems.

It makes sense to delegate the implementation of the primitives to Lua.

5.4.4 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code callers.

Again the call variant is unexpandable.

\directlua {

lua.bytecode[9998] = function(s)

tex.sprint(s*token.scan_int())

end

lua.bytecode[5555] = function(s)

tex.sprint(s*token.scan_dimen())

end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp

51Basic TEX enhancements

\luabytecodecall9998 5 \luabytecodecall5555 5sp

The variable s in the code is the number of the byte code register that can be used for diagnostic

purposes. The advantage of bytecode registers over function calls is that they are stored in the

format (but without upvalues).

It makes sense to delegate the implementation of the primitives to Lua.

5.5 Catcode tables

5.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regime in a

single statement. You can have lots of different tables, but if you need a dozen you might wonder

what you're doing. This subsystem is backward compatible: if you never use the following

commands, your document will not notice any difference in behaviour compared to traditional

TEX. The contents of each catcode table is independent from any other catcode table, and its

contents is stored and retrieved from the format file.

5.5.2 \catcodetable

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ­

ously created using one of the two primitives below, or it has to be zero. Table zero is initialized

by iniTEX.

\catcodetable ⟨15-bit number⟩

5.5.3 \initcatcodetable

\initcatcodetable ⟨15-bit number⟩

The primitive \initcatcodetable creates a new table with catcodes identical to those defined

by iniTEX. The new catcode table is allocated globally: it will not go away after the current group

has ended. If the supplied number is identical to the currently active table, an error is raised.

The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 ^^M return car_ret

9 ^^@ null ignore

10 <space> space spacer

11 a – z letter

11 A – Z letter

12 everything else other

14 % comment

15 ^^? delete invalid_char

Basic TEX enhancements52

5.5.4 \savecatcodetable

\savecatcodetable ⟨15-bit number⟩

\savecatcodetable copies the current set of catcodes to a new table with the requested number.

The definitions in this new table are all treated as if they weremade in the outermost level. Again,

the new table is allocated globally: it will not go away after the current group has ended. If the

supplied number is the currently active table, an error is raised.

5.6 Tokens, commands and strings

5.6.1 \scantextokens, \tokenized and \retokenized

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted

version of 𝜀-TEX's \scantokens. The differences are:

‣ The last (and usually only) line does not have a \endlinechar appended.

‣ \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

‣ There are no ‘. . . while end of file . . .’ error tests executed. This allows the expansion to end

on a different grouping level or while a conditional is still incomplete.

The implementation in LuaMetaTEX is different in the sense that it uses the same methods as

printing from Lua to TEX does. Therefore, in addition to the two commands we also have this

expandable command:

\tokenized ... \tokenized catcodetable ⟨number⟩ ...

The \retokenized variant differs in that it doesn't check for a keyword and just used the current

catcode regime.

The 𝜀-TEX command \tracingscantokens has been dropped in the process as that was interwo­
ven with the old code.

5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\xtoksapp, \xtokspre

Instead of:

\toks0\expandafter{\the\toks0 foo}

you can use:

\etoksapp0{foo}

The pre variants prepend instead of append, and the e variants expand the passed general text.

The g and x variants are global.

5.6.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading

escape character. This can be somewhat more efficient than stripping it afterwards.

53Basic TEX enhancements

The \begincsname primitive is like \csname but doesn't create a relaxed equivalent when there

is no such name. It is equivalent to

\ifcsname foo\endcsname

\csname foo\endcsname

\fi

The advantage is that it saves a lookup (don't expect much speedup) but more important is that

it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above

example could be written as:

\ifcsname foo\endcsname

\lastnamedcs

\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTEX this also

involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can

make code a bit more readable.

5.6.4 \clearmarks, \flushmarks, \currentmarks

The \clearmarks primitive complements the 𝜀-TEX mark primitives and clears a mark class
completely, resetting all three connected mark texts to empty. It is an immediate command

(no synchronization node is used).

\clearmarks ⟨16-bit number⟩

The \flushmarks variant is delayed but puts a (mark) node in the list as signal (we could have

gone for a keyword to \marks instead).

\flushmarks ⟨16-bit number⟩

In addition to the three mark fetch commands, we also have access to the last set mark in the

given class.

\currentmarks ⟨16-bit number⟩

Marks can be traced with \tracingmarks. When set to 1 the page builder shows the set values,

and when set to a higher value details about collecting them are shown.

5.6.5 \alignmark, \aligntab, \aligncontent, \tabsize and \everytab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while

\aligntab duplicates the functionality of &. The \aligncontent primitive directly refers to an

entry so that one does not get repeated.

Alignments can be traced with \tracingalignments. When set to 1 basics usage is shown, for

instance of \noalign but more interesting is 2 or more: you then get the preambles reported.

The \halign (tested) and \valign (yet untested) primitives accept a few keywords in addition

to to and spread:

Basic TEX enhancements54

KEYWORD EXPLANATION

attr set the given attribute to the given value

callback trigger the alignment_filter callback

discard discard zero \tabskip's

noskips don't even process zero \tabskip's

reverse reverse the final rows

In the preamble the \tabsize primitive can be used to set the width of a column. By doing so

one can avoid using a box in the preamble which, combined with the sparse tabskip features, is

a bit easier on memory when you produce tables that span hundreds of pages and have a dozen

columns.

The \everytab complements the \everycr token register but is sort of experimental as it might

become more selective and powerful some day.

5.6.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

\def\foo{bar} \letcharcode123=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase that

it treats active characters special).

5.6.7 \lettonothing and \glettonothing

This primitive is equivalent to:

\protected\def\lettonothing#1{\def#1{}}

and although it might feel faster (only measurable with millions of calls) it's mostly there because

it is easier on tracing (less clutter). An advantage over letting to an empty predefined macro is

also that in tracing we keep seeing the name (relaxing would show the relax equivalent).

5.6.8 \glet

This primitive is similar to:

\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all we

also have \gdef).

5.6.9 \defcsname, \edefcsname, \edefcsname and \xdefcsname

Although we can implement these primitives easily using macros it makes sense, given the pop­

ularity of \csname to have these as primitives. It also saves some \expandafter usage and it

looks a bit better in the source.

55Basic TEX enhancements

\def\gdefcsname foo\endcsname{oof}

5.6.10 \expanded

The \expanded primitive takes a token list and expands its content which can come in handy:

it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happens

inside the body of an \edef. The \immediateassignment and \immediateassigned commands

are gone because we have the more powerful local control commands. They are a tad slower

but this mechanism isn't used that much anyway. Inside an \edef you can use the \immediate

prefix anyway, so if you really want these primitives back you can say:

\let\immediateassignment\immediate

\let\immediateassigned \localcontrolled

5.6.11 \ignorepars

This primitive is like \ignorespaces but also skips paragraph ending commands (normally \par

and empty lines).

5.6.12 \futureexpand, \futureexpandis, \futureexpandisap

These commands are used as:

\futureexpand\sometoken\whenfound\whennotfound

When there is no match and a space was gobbled a space will be put back. The is variant

doesn't do that while the isap even skips \pars, These characters stand for ‘ignorespaces’ and

‘ignorespacesandpars’.

5.6.13 \aftergrouped

There is a new experimental feature that can inject multiple tokens to after the group ends. An

example demonstrate its use:

{

\aftergroup A \aftergroup B \aftergroup C

test 1 : }

{

\aftergrouped{What comes next 1}

\aftergrouped{What comes next 2}

\aftergrouped{What comes next 3}

test 2 : }

{

\aftergroup A \aftergrouped{What comes next 1}

Basic TEX enhancements56

\aftergroup B \aftergrouped{What comes next 2}

\aftergroup C \aftergrouped{What comes next 3}

test 3 : }

{

\aftergrouped{What comes next 1} \aftergroup A

\aftergrouped{What comes next 2} \aftergroup B

\aftergrouped{What comes next 3} \aftergroup C

test 4 : }

This gives:

test 1 : ABC

test 2 : What comes next 1What comes next 2What comes next 3

test 3 : AWhat comes next 1BWhat comes next 2CWhat comes next 3

test 4 : What comes next 1AWhat comes next 2BWhat comes next 3C

5.7 Conditions

5.7.1 \ifabsnum and \ifabsdim

There are two tests that we took from pdfTEX:

\ifabsnum -10 = 10

the same number

\fi

\ifabsdim -10pt = 10pt

the same dimension

\fi

This gives

the same number the same dimension

5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and

\ifchkdim

New are the ones that compare two numbers or dimensions:

\ifcmpnum 5 8 less \or equal \else more \fi

\ifcmpnum 5 5 less \or equal \else more \fi

\ifcmpnum 8 5 less \or equal \else more \fi

less equal more

and

\ifcmpdim 5pt 8pt less \or equal \else more \fi

57Basic TEX enhancements

\ifcmpdim 5pt 5pt less \or equal \else more \fi

\ifcmpdim 8pt 5pt less \or equal \else more \fi

less equal more

There are also some number and dimension tests. All four expose the \else branch when there

is an error, but two also report if the number is less, equal or more than zero.

\ifnumval -123 \or < \or = \or > \or ! \else ? \fi

\ifnumval 0 \or < \or = \or > \or ! \else ? \fi

\ifnumval 123 \or < \or = \or > \or ! \else ? \fi

\ifnumval abc \or < \or = \or > \or ! \else ? \fi

\ifdimval -123pt \or < \or = \or > \or ! \else ? \fi

\ifdimval 0pt \or < \or = \or > \or ! \else ? \fi

\ifdimval 123pt \or < \or = \or > \or ! \else ? \fi

\ifdimval abcpt \or < \or = \or > \or ! \else ? \fi

< = > !

< = > !

\ifchknum -123 \or okay \else bad \fi

\ifchknum 0 \or okay \else bad \fi

\ifchknum 123 \or okay \else bad \fi

\ifchknum abc \or okay \else bad \fi

\ifchkdim -123pt \or okay \else bad \fi

\ifchkdim 0pt \or okay \else bad \fi

\ifchkdim 123pt \or okay \else bad \fi

\ifchkdim abcpt \or okay \else bad \fi

okay okay okay bad

okay okay okay bad

The last checked values are available in \lastchknum and \lastchkdim. These don't obey group­

ing.

5.7.3 \ifmathstyle and \ifmathparameter

These two are variants on \ifcase where the first one operates with values in ranging from zero

(display style) to seven (cramped script script style) and the second one can have three values:

a parameter is zero, has a value or is unset. The \ifmathparameter primitive takes a proper

parameter name and a valid style identifier (a primitive identifier or number). The \ifmathstyle

primitive is equivalent to \ifcase\mathstyle.

5.7.4 \ifempty

This primitive tests for the following token (control sequence) having no content. Assuming that

\empty is indeed empty, the following two are equivalent:

Basic TEX enhancements58

\ifempty\whatever

\ifx\whatever\empty

There is no real performance gain here, it's more one of these extensions that lead to less clutter

in tracing.

5.7.5 \ifrelax

This primitive complements \ifdefined, \ifempty and \ifcsname so that we have all reasonable

tests directly available.

5.7.6 \ifboolean

This primitive tests for non-zero, so the next variants are similar

\ifcase <integer>.F.\else .T.\fi

\unless\ifcase <integer>.T.\else .F.\fi

\ifboolean<integer>.T.\else .F.\fi

5.7.7 \iftok and \ifcstok

Comparing tokens and macros can be done with \ifx. Two extra test are provided in

LuaMetaTEX:

\def\ABC{abc} \def\DEF{def} \def\PQR{abc} \newtoks\XYZ \XYZ {abc}

\iftok{abc}{def}\relax (same) \else [different] \fi

\iftok{abc}{abc}\relax [same] \else (different) \fi

\iftok\XYZ {abc}\relax [same] \else (different) \fi

\ifcstok\ABC \DEF\relax (same) \else [different] \fi

\ifcstok\ABC \PQR\relax [same] \else (different) \fi

\ifcstok{abc}\ABC\relax [same] \else (different) \fi

[different][same][same]

[different][same][same]

You can check if a macro is defined as protected with \ifprotected while frozen macros can

be tested with \iffrozen. A provisional \ifusercmd tests will check if a command is defined at

the user level (and this one might evolve).

5.7.8 \ifarguments, \ifparameters and \ifparameter

These are part of the extended macro argument parsing features. The \ifarguments condition

is like an \ifcasewhere the number is the picked up number of arguments. The number reflects

the last count, so successive macro expansions will adapt the value. The \ifparameters counts

till the first empty parameter and the \ifparameter (singular) takes a parameter reference (like

59Basic TEX enhancements

#2) and again is an \ifcase where zero means a bad reference, one a non-empty argument and

two an empty one. A typical usage is:

\def\foo#1#2%

{\ifparameter#1\or one\fi

\ifparameter#2\or two\fi}

No expansion of arguments takes place here but you can use a test like this:

\def\foo#1#2%

{\iftok{#1}{}\else one\fi

\iftok{#2}{}\else two\fi}

5.7.9 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balanced

in order to let TEX's fast branch skipping work well. This new primitive is basically a no--op

flagged as a condition so that the scanner can recognize it as an if-test. However, when a real

test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%

{\edef\tempa{#1}%

\edef\tempb{#2}

\ifx\tempa\tempb}

\ifcondition\something{a}{b}%

\ifcondition\something{a}{a}%

true 1

\else

false 1

\fi

\else

\ifcondition\something{a}{a}%

true 2

\else

false 2

\fi

\fi

If you are familiar with MetaPost, this is a bit like vardef where the macro has a return value.

Here the return value is a test.

Experiments with something \ifdef actually worked ok but were rejected because in the end it

gave no advantage so this generic one has to do. The \ifcondition test is basically is a no-op

except when branches are skipped. However, when a test is expected, the scanner gobbles it

and the next test result is used. Here is an other example:

\def\mytest#1%

Basic TEX enhancements60

{\ifabsdim#1>0pt\else

\expandafter \unless

\fi

\iftrue}

\ifcondition\mytest{10pt}\relax non-zero \else zero \fi

\ifcondition\mytest {0pt}\relax non-zero \else zero \fi

non-zero zero

The last expansion in a macro like \mytest has to be a condition and here we use \unless to

negate the result.

5.7.10 \orelse and \orunless

Sometimes you have successive tests that, when laid out in the source lead to deep trees. The

\ifcase test is an exception. Experiments with \ifcasex worked out fine but eventually were

rejected because we have many tests so it would add a lot. As LuaMetaTEX permitted more

experiments, eventually an alternative was cooked up, one that has some restrictions but is

relative lightweight. It goes like this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\else

more

\fi

The \orelse has to be followed by one of the if test commands, except \ifcondition, and there

can be an \unless in front of such a command. These restrictions make it possible to stay in

the current condition (read: at the same level). If you need something more complex, using

\orelse is probably unwise anyway. In case you wonder about performance, there is a little

more checking needed when skipping branches but that can be neglected. There is some gain

due to staying at the same level but that is only measurable when you runs tens of millions of

complex tests and in that case it is very likely to drown in the real action. It's a convenience

mechanism, in the sense that it can make your code look a bit easier to follow.

There is a nice side effect of this mechanism. When you define:

\def\quitcondition{\orelse\iffalse}

you can do this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\quitcondition

61Basic TEX enhancements

indeed

\else

more

\fi

Of course it is only useful at the right level, so you might end up with cases like

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\ifnum\count2=30

\expandafter\quitcondition

\fi

indeed

\else

more

\fi

The \orunless variant negates the next test, just like \unless. In some cases these commands

look at the next token to see if it is an if-test so a following negation will not work (read: making

that work would complicate the code and hurt efficiency too). Side note: interesting is that in

ConTEXt we hardly use this kind of negation.

5.7.11 \ifflags

This checker deal with control sequences. You can check if a command is a protected one, that

is, defined with the \protected prefix. A command is frozen when it has been defined with the

\frozen prefix. Beware: only macros can be frozen. A user command is a command that is not

part of the predefined set of commands. This is an experimental command. The flag values can

be queried with tex.getflagvalues.

5.8 Boxes, rules and leaders

5.8.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the

page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to

65535.

\outputbox = 12345

5.8.2 \hrule, \vrule, \nohrule and \novrule

Both rule drawing commands take an optional xoffset and yoffset parameter. The displace­

ment is virtual and not taken into account when the dimensions are calculated. A rule is specified

in the usual way:

Basic TEX enhancements62

There is however a catch. The keyword scanners in LuaMetaTEX are implemented slightly differ­

ent. When TEX scans a keyword it will (case insensitive) scan for a whole keyword. So, it scans

for height and when it doesn't find it it will scan for depth etc. When it does find a keyword

in this case it expects a dimension next. When that criterium is not met it will issue an error

message.

In order to avoid look ahead failures like that it is recommended to end the specification with

\relax. A glue specification is an other example where a \relax makes sense when look ahead

issues are expected and actually there in traditional scanning the order of keywords can also

matter. In any case, when no valid keyword is seen the characters scanned so far are pushed

back in the input.

The main reason for using an adapted scanner is that we always permit repetition (consistency)

and accept an arbitrary order. Because we have more keywords to process the scanner quits at

a partial failure. This prevents some push back and also gives an earlier warning. Interesting

is that some ConTEXt users ran into error messages due to a missing \relax and found out that

their style has a potential flaw with respect to look ahead. One can be lucky for years.

Back to rules, there are some extra keywords, two deal with an offset, and four provide margins.

The margins are a bit special because left and top are the same as are right and bottom. They

influence the edges and these depend on it being a horizontal or vertical rule.

Two new primitives were introduced: \nohrule and \novrule. These can be used to reserve

space. This is often more efficient than creating an empty box with fake dimensions. Of course

this assumes that the backend implements them being invisible but still taking space.

5.8.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative

for the to keyword you can use upto to get a split of the given size but result has the natural

dimensions then.

\vsplit 123 to 10cm % final box has the required height

\vsplit 123 upto 10cm % final box has its natural height

5.8.4 Images and reused box objects

In original TEX image support is dealt with via specials. It's not a native feature of the engine. All

that TEX cares about is dimensions, so in practice that meant: using a box with known dimensions

that wraps a special that instructs the backend to include an image. The wrapping is needed

because a special itself is a whatsit and as such has no dimensions.

In pdfTEX a special whatsit for images was introduced and that one has dimensions. As a con­

sequence, in several places where the engine deals with the dimensions of nodes, it now has

to check the details of whatsits. By inheriting code from pdfTEX, the LuaTEX engine also had

that property. However, at some point this approach was abandoned and a more natural trick

63Basic TEX enhancements

was used: images (and box resources) became a special kind of rules, and as rules already have

dimensions, the code could be simplified.

When direction nodes and (formerly local) par nodes also became first class nodes, whatsits

again became just that: nodes representing whatever you want, but without dimensions, and

therefore they could again be ignored when dimensions mattered. And, because images were

disguised as rules, as mentioned, their dimensions automatically were taken into account. This

separation between front and backend cleaned up the code base already quite a bit.

In LuaMetaTEX we still have the image specific subtypes for rules, but the engine never looks at

subtypes of rules. That was up to the backend. This means that image support is not present in

LuaMetaTEX. When an image specification was parsed the special properties, like the filename,

or additional attributes, were stored in the backend and all that LuaTEX does is registering a

reference to an image's specification in the rule node. But, having no backend means nothing is

stored, which in turn would make the image inclusion primitives kind of weird.

Therefore you need to realize that contrary to LuaTEX, in LuaMetaTEX support for images and

box reuse is not built in! However, we can assume that an implementation uses rules in a similar

fashion as LuaTEX does. So, you can still consider images and box reuse to be core concepts.

Here we just mention the primitives that LuaTEX provides. They are not available in the engine

but can of course be implemented in Lua.

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later

\saveimageresource save the image as an object to be included later

\useboxresource include the saved box object here (by index)

\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object

\lastsavedimageresourceindex the index of the last saved image object

\lastsavedimageresourcepages the number of pages in the last saved image object

An implementation probably should accept the usual optional dimension parameters for

\use...resource in the same format as for rules. With images, these dimensions are then used

instead of the ones given to \useimageresource but the original dimensions are not overwrit­

ten, so that a \useimageresource without dimensions still provides the image with dimensions

defined by \saveimageresource. These optional parameters are not implemented for \save­

boxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex

\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

Examples or optional entries are attr and resources that accept a token list, and the type key.

When set to non-zero the /Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or

3 will write a /Matrix. But, as said: this is entirely up to the backend. Generic macro packages

(like tikz) can use these assumed primitives so one can best provide them. It is probably, for

historic reasons, the only more or less standardized image inclusion interface one can expect to

work in all macro packages.

Basic TEX enhancements64

5.8.5 \hpack, \vpack and \tpack

These three primitives are the equivalents of \hbox, \vbox and \vtop but they don't trigger the

packaging related callbacks. Of course one never know if content needs a treatment so using

them should be done with care. Apart from accepting more keywords (and therefore options)

the normal box behave the same as before. The \vcenter builder also works in text mode.

5.8.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal

\leaders in that they align nicely, except that the alignment is based on the largest enclosing

box instead of the smallest. The g stresses this global nature.

5.9 Languages

5.9.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of

the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive

accepts a number and stores the value with the language.

5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary command is used to inject a whatsit node but now injects a normal node with

type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig­

ature builder still sees this as a cancel boundary directive but at the Lua end you can implement

different behaviour. The added benefit of passing this value is a side effect of the generalization.

The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and

have related primitives.

5.10 Control and debugging

5.10.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the

nodes as well as set attributes (these can be made verbose by a callback). We have only a generic

whatsit but again a callback can be used to provide detail. So, when a box is shown in ConTEXt

you will see quite a lot more than in other engines. Because nodes have more fields, more is

shown anyway, and for nodes that have sublists (like discretionaries) these are also shown. All

that could have been delegated to Lua but it felt wrong to not made that a core engine feature.

65Basic TEX enhancements

When bit 1 of \tracinglevels is set the current level is prepended to tracing lines in the log

and when bit 2 is set the input level is prepended. You can set both bits and get both numbers

prepended. In ConTEXt we default to the value 3, so you get prefixes like 3:4: followed by a

space.

When \tracingcommands is larger than 3 the mode switch will be not be prefixed to the {com­

mand} but get its own [line].

When \tracinglevels variable is set to 3 the group and input level are shown, a value of 1 or

2 shows only one of them (in ConTEXt we default to 3).

When \tracinghyphenation is set to 1 duplicate patterns are reported (in ConTEXt we default

to that) and higher values will also show details about the Lua hyphenation (exception) feedback

loop discussed elsewhere.

When set to 1 the \tracingmath variable triggers the reporting of the mode (inline or display)

an mlist is processed. Other new tracing commands are discussed where the mechanisms that

they relate to are introduced.

Because in LuaTEX the saving and restoring of locally redefined macros and set variables is

optimized a bit in order to prevent redundant stack usage, there will be less tracing visible.

Also, because we have a more extensive macro argument parser, a fast path (and less storage

demands) for macros with no arguments, and flags that can be set for macros the way macros

are traced can be different in details (we therefore have for instance \meaningfull (double l's

indeed) and \meaningless as variants of \meaning as well as \meaningasis for more literal

alternative).

5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype

The 𝜀-TEX command \lastnodetype returns the node codes as used in the engine. You can query
the numbers at the Lua end if you need the actual values. The parameter \internalcodesmode

is no longer provided as compatibility switch because LuaTEX has more cq. some different nodes

and it makes no sense to be incompatible with the Lua end of the engine. The same is true for

\currentiftype, as we have more conditionals and also use a different order. The \lastn­

odesubtype is a bonus and again reports the codes used internally. During development these

might occasionally change, but eventually they will be stable.

5.11 Files

5.11.1 File syntax

LuaMetaTEX will accept a braced argument as a file name:

\input {plain}

\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument. Keep in mind that as side effect of delegating io to Lua the \openin

Basic TEX enhancements66

primitive is not provided by the engine and has to be implemented by the macro package. This

also means that the limit on the number of open files is not enforced by the engine.

The \tracingfonts primitive that has been inherited from pdfTEX has been adapted to support

variants in reporting the font. The reason for this extension is that a csname not always makes

sense. The zero case is the default.

VALUE REPORTED

0 \foo xyz

1 \foo (bar)

2 <bar> xyz

3 <bar @ ..pt> xyz

4 <id>

5 <id: bar>

6 <id: bar @ ..pt> xyz

5.11.2 Writing to file

Writing to a file in TEX has two forms: delayed and immediate. Delayed writing means that the

to be written text is anchored in the node list and flushed by the backend. As all io is delegated

to Lua, this also means that it has to deal with distinction. In LuaTEX the number of open files

was already bumped to 127, but in LuaMetaTEX it depends on the macro package. The special

meaning of channel 18 was already dropped in LuaTEX because we have os.execute.

5.12 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac­

ing model have been enhanced (thereby introducing many new primitives) but also because

some more control has been added to existing functionality. Much of this relates to the different

approaches of traditional TEX fonts and OpenType math.

5.13 Fonts

Like math, we will cover fonts extensions in its own chapter. Here we stick to mentioning that

loading fonts is different in LuaMetaTEX. As in LuaTEX we have the extra primitives \fontid and

\setfontid, \noligs and \nokerns, and \nospaces. The other new primitives in LuaTEX have

been dropped.

5.14 Directions

5.14.1 Two directions

The directional model in LuaMetaTEX is a simplified version the the model used in LuaTEX. In

fact, not much is happening at all: we only register a change in direction.

67Basic TEX enhancements

5.14.2 How it works

The approach is that we try to make node lists balanced but also try to avoid some side effects.

What happens is quite intuitive if we forget about spaces (turned into glue) but even there what

happens makes sense if you look at it in detail. However that logic makes in-group switching

kind of useless when no properly nested grouping is used: switching from right to left several

times nested, results in spacing ending up after each other due to nested mirroring. Of course

a sane macro package will manage this for the user but here we are discussing the low level

injection of directional information.

This is what happens:

\textdirection 1 nur {\textdirection 0 run \textdirection 1 NUR} nur

This becomes stepwise:

injected: [push 1]nur {[push 0]run [push 1]NUR} nur

balanced: [push 1]nur {[push 0]run [pop 0][push 1]NUR[pop 1]} nur[pop 0]

result : run {RUNrun } run

And this:

\textdirection 1 nur {nur \textdirection 0 run \textdirection 1 NUR} nur

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur

balanced: [+TRT]nur {nur [+TLT]run [-TLT][+TRT]NUR[-TRT]} nur[-TRT]

result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:

\textdirection 1 nur {{\textdirection 0 run} {\textdirection 1 NUR}} nur

This becomes:

nurrunNURnur

Compare this to:

\textdirection 1 nur {{\textdirection 0 run }{\textdirection 1 NUR}} nur

Which renders as:

nurrunNURnur

So how do we deal with the next?

\def\ltr{\textdirection 0\relax}

\def\rtl{\textdirection 1\relax}

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

Basic TEX enhancements68

It gets typeset as:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir

node. But that way we loose the subtype information that for some applications can be handy to

be kept as-is. This is why we now have a variant of \textdirection which injects the balanced

node before the skip. Instead of the previous definition we can use:

\def\ltr{\linedirection 0\relax}

\def\rtl{\linedirection 1\relax}

and this time:

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be

handled in the input or macro package because there is no way we can predict the expected

behaviour. In fact, the \linedirection is just a convenience extra which could also have been

implemented using node list parsing.

Directions are complicated by the fact that they often need to work over groups so a separate

grouping related stack is used. A side effect is that there can be paragraphs with only a local

par node followed by direction synchronization nodes. Paragraphs like that are seen as empty

paragraphs and therefore ignored. Because \noindent doesn't inject anything but a \indent

injects an box, paragraphs with only an indent and directions are handles and paragraphs with

content. When indentation is normalized a paragraph with an indentation skip is seen as content.

5.14.3 Normalizing lines

The original TEX machinery was never meant to be opened up. As a consequence a constructed

line can have different layouts. There can be left- and/or right skips and hanging indentation

or parshape can result in a shift and adapted width. In LuaTEX glue got subtypes so we can

recognize the left-, right and parfill skips, but still there is no hundred percent certainty about

the shape.

In LuaMetaTEX lines can be normalized. This is optional because wewant to preserve the original

(for comparison) and is controlled by \normalizelinemode. That variable actually drives some

more. An earlier version provided a few more granular options (for instance: does a leftskip

comes before or after a left hanging indentation) but in the end that was dropped. Because this

normalization only is seen at the Lua end there is no need to go into much detail here.

69Basic TEX enhancements

At this moment a line has this pattern: left parfill, left hang, left skip, indentation, content, right

hang, right skip, right parfill. Of course the indentation and fill skips are not present in every

line.

Control over normalization happens via thementionedmode variable and here is what the engine

provides right now. We use a bitmap:

VALUE REPORTED

0x0001 normalize line as described above

0x0002 use a skip for parindent instead of a box

0x0004 swap hangindent in l2r mode

0x0008 swap parshape in l2r mode

0x0010 put breaks after dir in l2r mode

0x0020 remove margin kerns (pdfTEX left-over)

0x0040 if needed clip width and use correction kern

Setting the bit enables the related normalization. More features might be added in future re­

leases.

5.14.4 Orientations

As mentioned, the difference with LuaTEX is that we only have numeric directions and that there

are only two: left-to-right (0) and right-to-left (1). The direction of a box is set with direction.

In addition to that boxes can now have an orientation keyword followed by optional xoffset

and/or yoffset keywords. The offsets don't have consequences for the dimensions. The alter­

natives xmove and ymove on the contrary are reflected in the dimensions. Just play with them.

The offsets and moves only are accepted when there is also an orientation, so no time is wasted

on testing for these rarely used keywords. There are related primitives \box... that set these

properties.

As these are experimental it will not be explained here (yet). They are covered in the descriptions

of the development of LuaMetaTEX: articles and/or documents in the ConTEXt distribution. For

now it is enough to know that the orientation can be up, down, left or right (rotated) and that it

has some anchoring variants. Combined with the offsets this permits macro writers to provide

solutions for top-down and bottom-up writing directions, something that is rather macro package

specific and used for scripts that need manipulations anyway. The ‘old’ vertical directions were

never okay and therefore not used.

There are a couple of properties in boxes that you can set and query but that only really take

effect when the backend supports them. When usage on ConTEXt shows that is't okay, they

will become official, so we just mention them: \boxdirection, \boxattr, \boxorientation,

\boxxoffset, \boxyoffset, \boxxmove, \boxymove and \boxtotal.

This is still somewhat experimental and will be documented in more detail when I've used it

more in ConTEXt and the specification is frozen. This might take some time (and user input).

5.15 Keywords

Some primitives accept one or more keywords and LuaMetaTEX adds some more. In order to

deal with this efficiently the keyword scanner has been optimized, where even the context was

Basic TEX enhancements70

taken into account. As a result the scanner was quite a bit faster. This kind of optimization was

a graduate process the eventually ended up in what we have now. In traditional TEX (and also

LuaTEX) the order of keywords is sometimes mixed and sometimes prescribed. In most cases

only one occurrence is permitted. So, for instance, this is valid in LuaTEX:

\hbox attr 123 456 attr 123 456 spread 10cm { }

\hrule width 10cm depth 3mm

\hskip 3pt plus 2pt minus 1pt

The attr comes before the spread, rules can have multiple mixed dimension specifiers, and in

glue the optional minus part always comes last. The last two commands are famous for look

ahead side effects which is why macro packages will end them with something not keyword, like

\relax, when needed.

In LuaMetaTEX the following is okay. Watch the few more keywords in box and rule specifica­

tions.

\hbox reverse to 10cm attr 123 456 orientation 4 xoffset 10pt spread 10cm { }

\hrule xoffset 10pt width 10cm depth 3mm

\hskip 3pt minus 1pt plus 2pt

Here the order is not prescribed and, as demonstrated with the box specifier, for instance di­

mensions (specified by to or spread can be overloaded by later settings. In case you wonder if

that breaks compatibility: in some way it does but bad or sloppy keyword usage breaks a run

anyway. For instance minuscule results in minus with no dimension being seen. So, in the end

the user should not noticed it and when a user does, the macro package already had an issue

that had to be fixed.

5.16 Expressions and \numericscale

The *expr parsers now accept : as operator for integer division (the / operators does rounding.

This can be used for division compatible with \divide. I'm still wondering if adding a couple of

bit operators makes sense (for integers).

The \numericscale parser is kind of special (and might evolve). For now it converts a following

number in a scale value as often used in TEX, where 1000 means scaling by 1.0. The trick is

in the presence of a digit (or comma): 1.234 becomes 1234 but 1234 stays 1234 and from this

you can deduce that 12.34 becomes 123400. Internally TEX calculates with integers, but this

permits the macro package to provide an efficient mix.

5.17 Macro arguments

Again this is experimental and (used and) discussed in document that come with the ConTEXt

distribution. When defining a macro you can do this:

\def\foo(#1)#2{...}

Here the first argument between parentheses is mandate. But themagic prefix \tolerantmakes

that limitation go away:

71Basic TEX enhancements

\tolerant\def\foo(#1)#2{...}

A variant is this:

\tolerant\def\foo(#1)#*(#2){...}

Here we have two optional arguments, possibly be separated by spaces. There are more parsing

options:

+ keep the braces

- discard and don't count the argument

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

. ignore pars and spaces

, push back space when no match

: pick up scanning here

; quit scanning

For the moment we leave it to your fantasy what these options do. Most probably only make

sense when you write a bit more complex macros. Just try to imagine what this does:

\permanent\tolerant\global\protected\def\foo(#1)#*#;[#2]#:#3{...}

Of course complex combinations can be confusing because after all TEX is parsing for (multi-

token) delimiters and will happily gobble the whole file if you are not careful. You can quit

scanning if you want:

\mymacro 123\ignorearguments

which of course only makes sense when used in a nested call where an already picked up argu­

ments is processed further. A not (yet) discussed feature of the parser is that it will happily skip

tokens that have the (probably seldom used) ignored characters property.

When you use tracing or see error messages arguments defined using for instance #= will have

their usual number in the macro body, so you need to keep track of the numbers.

All this is rather easy on the engine and although it might have a little impact on performance

this has been compensated by some more efficiency in the macro parser and engine in general

and of course you can gain back some by using these features.

5.18 Overload protection

There is an experimental overload protection mechanism that we will test for a while before

declaring it stable. The reason for that is that we need to adapt the ConTEXt code base in

Basic TEX enhancements72

order to test its usefulness. Protection is achieved via prefixes. Depending on the value of the

\overloadmode variable warnings or errors will be triggered. Examples of usage can be found

in some documents that come with ConTEXt, so here we just stick to the basics.

\mutable \def\foo{...}

\immutable\def\foo{...}

\permanent\def\foo{...}

\frozen \def\foo{...}

\aliased \def\foo{...}

A \mutablemacro can always be changed contrary to an \immutable one. For instance a macro

that acts as a variable is normally \mutable, while a constant can best be immutable. It makes

sense to define a public core macro as \permanent. Primives start out a \permanent ones but

with a primitive property instead.

\let\relaxone \relax 1: \meaningfull\relaxone

\aliased \let\relaxtwo \relax 2: \meaningfull\relaxtwo

\permanent\let\relaxthree\relax 3: \meaningfull\relaxthree

The \meaningfull primitive is like \meaning but report the properties too. The \meaningless

companion reports the body of a macro. Anyway, this typesets:

1: \relax

2: primitive \relax

3: permanent \relax

So, the \aliased prefix copies the properties. Keep in mind that a macro package can redefine

primitives, but \relax is an unlikely candidate.

There is an extra prefix \noaligned that flags a macro as being valid for \noalign compatible

usage (which means that the body must contain that one. The idea is that we then can do this:

\permanent\protected\noaligned\def\foo{\noalign{...}} % \foo is unexpandable

that is: we can have protected macros that don't trigger an error in the parser where there is

a look ahead for \noalign which is why normally protection doesn't work well. So: we have

macro flagged as permanent (overload protection), being protected (that is, not expandable by

default) and a valid equivalent of the noalign primitive. Of course we can also apply the \global

and \tolerant prefixes here. The complete repertoire of extra prefixes is:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant

mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted

73Basic TEX enhancements

enforced all is permitted (but only in zero mode or ini mode)

aliased the macro gets the same flags as the original

untraced the macro gets a different treatment in tracing

The not yet discussed \instance is just a flag with no special meaning which can be used as

classifier. The \frozen also protects against overload which brings amount of blockers to four.

To what extent the engine will complain when a property is changed in a way that violates the

flags depends on the parameter \overloadmode. When this parameter is set to zero no checking

takes place. More interesting are values larger than zero. If that is the case, when a control

sequence is flagged as mutable, it is always permitted to change. When it is set to immutable

one can never change it. The other flags determine the kind of checking done. Currently the

following overload values are used:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. A value of 255 will freeze this parameter. At

level five and above the \instance flag is also checked but no drastic action takes place. We use

this to signal to the user that a specific instance is redefined (of course the definition macros

can check for that too).

The \overloaded prefix can be used to overload a frozenmacro. The \enforced is more powerful

and forces an overload but that prefix is only effective in ini mode or when it's embedded in the

body of a macro or token list at ini time unless of course at runtime the mode is zero.

So far for a short explanation. More details can be found in the ConTEXt documentation where

we can discuss it in a more relevant perspective. It must be noted that this feature only makes

sense a controlled situation, that is: usermodules ormacros of unpredictable origin will probably

suffer from warnings and errors when de mode is set to non zero. In ConTEXt we're okay unless

of course users redefine instances but there a warning or error is kind of welcome.

There is an extra prefix \untraced that will suppress the meaning when tracing so that the

macro looks more like a primitive. It is still somewhat experimental so what gets displayed

might change.

5.19 Constants with \integerdef and \dimensiondef

It is rather common to store constant values in a register or character definition.

\newcount\MyConstantA \MyConstantA 123

\newdimen\MyConstantB \MyConstantB 123pt

\chardef \MyConstantC \MyConstantC 123

But in LuaMetaTEX we also can do this:

Basic TEX enhancements74

\integerdef \MyConstantC 456

\dimensiondef\MyConstantD 456pt

These two are stored as efficient as a register but don't occupy a register slot. They can be set

as above, need \the for serializations and are seen as valid number or dimension when needed.

Experiments with constant strings made the engine source more complex than I wanted so that

features was rejected. Of course we can use the prefixes mentioned in a previous section.

5.20 Serialization with \todimension, \toscaled and

\tointeger

These three serializers take a verbose or symbolic quantity:

\todimension 10pt \todimension \scratchdimen % with unit

\toscaled 10pt \toscaled \scratchdimen % without unit

\tointeger 10 \tointeger \scratchcounter

This is particularly handy in cases where you don't know what you deal with, for instance when

a value is stored in a macro. Using \the could fail there while:

\the\dimexpr10pt\relax

is often overkill and gives more noise in a trace.

5.21 Expressions with \numexpression

The 𝜀-TEX expression primitives are handy but have some limitations. Although the parsers
have been rewritten in LuaMetaTEX and somewhat more efficient the only extension we have is

support for an integer division with :. After experimenting for a while and pondering how to

make \dimexpr and \numexprmore powerful I decided to come up with alternatives in order not

to introduce incompatibilities.

The \numexpression and \dimexpression primitives are equivalent but offer more. The first

one operates in the integer domain and the second one assumes scaled values. Often the second

one can act like the first when serialized with \number in front. This is because when TEX sees

a symbolic reference to an integer or dimension it can treat them as it likes.

The set of operators that we have to support is the following. Most have alternatives so that we

can get around catcode issues.

ACTION SYMBOL KEYWORD

add +

subtract -

multiply *

divide / :

mod % mod

band & band

75Basic TEX enhancements

bxor ^ bxor

bor | v bor

and && and

or || or

setbit <undecided> bset

resetbit <undecided> breset

left <<

right >>

less <

lessequal <=

equal = ==

moreequal >=

more >

unequal <> != ~=

not ! ~ not

Here are some things that \numexpr is not suitable for:

\scratchcounter = \numexpression

"00000 bor "00001 bor "00020 bor "00400 bor "08000 bor "F0000

\relax

\ifcase \numexpression

(\scratchcounterone > 5) && (\scratchcountertwo > 5)

\relax yes\else nop\fi

You can get an idea what the engines sees by setting \tracingexpressions to a value larger

than zero. It shows the expression in rpn form.

\dimexpression 4pt * 2 + 6pt \relax

\dimexpression 2 * 4pt + 6pt \relax

\dimexpression 4pt * 2.5 + 6pt \relax

\dimexpression 2.5 * 4pt + 6pt \relax

\numexpression 2 * 4 + 6 \relax

\numexpression (1 + 2) * (3 + 4) \relax

The \relax is mandate simply because there are keywords involved so the parser needs to

know where to stop scanning. It made no sense to be more clever and introduce fuzziness (so

there is no room for exposing in-depth TEX insight and expertise here). In case you wonder:

the difference in performance between the 𝜀-TEX expression mechanism and the more extended
variant will normally not be noticed, probably because they both use a different approach and

because the 𝜀-TEX variant also has been optimized.3

The if-test shown before can be done using the new primitives \ifdimexpression and \ifnum­

expression which are boolean tests with zero being false.

3 I might add some features in the future.

Basic TEX enhancements76

5.22 Nodes

The 𝜀-TEX primitive \lastnodetype is not honest in reporting the internal numbers as it uses its
own values. But you can set \internalcodesmode to a non-zero value to get the real id's instead.

In addition there is \lastnodesubtype.

Another last one is \lastnamedcs which holds the last match but this one should be used with

care because one never knows if in the meantime something else ‘last’ has been seen.

77Fonts

6 Fonts

6.1 Introduction

The traditional TEX ligature and kerning routines are build in but anything more (like OpenType

rendering) has to be implemented in Lua. In ConTEXt we call the former base mode and the

later node mode (we have some more modes). This conforms to the LuaTEX philosophy. When

you pass a font to the frontend only the dimensions matter, as these are used in typesetting, and

optionally ligatures and kerns when you rely on the built-in font handler. For math some extra

data is needed, like information about extensibles and next in size glyphs. You can of course put

more information in your Lua tables because when such a table is passed to TEX only that what

is needed is filtered from it.

Because there is no built-in backend, virtual font information is not used. If you want to be

compatible you'd better make sure that your tables are okay, and in that case you can best

consult the LuaTEX manual. For instance, parameters like extend are backend related and the

standard LuaTEX backend sets the standard here.

6.2 Defining fonts

All TEX fonts are represented to Lua code as tables, and internally as C structures. All keys in

the table below are saved in the internal font structure if they are present in the table passed to

font.define. When the callback is set, which is needed for \font to work, its function gets the

name and size passed, and it has to return a valid font identifier (a positive number).

For the engine to work well, the following information has to be present at the font level:

KEY VALUE TYPE DESCRIPTION

name string metric (file) name

original string the name used in logging and feedback

designsize number expected size (default: 655360 == 10pt)

size number the required scaling (by default the same as designsize)

characters table the defined glyphs of this font

fonts table locally used fonts

parameters hash default: 7 parameters, all zero

stretch number the ‘stretch’

shrink number the ‘shrink’

step number the ‘step’

textcontrol bitset this controls various code paths in the text engine

hyphenchar number default: TEX's \hyphenchar

skewchar number default: TEX's \skewchar

nomath boolean this key allows a minor speedup for text fonts; if it is

present and true, then LuaTEX will not check the charac­

ter entries for math-specific keys

Fonts78

oldmath boolean this key flags a font as representing an old school TEX

math font and disables the OpenType code path

mathcontrol bitset this controls various code paths in the math engine, like

enforcing the traditional code path

compactmath boolean experimental: use the smaller chain to locate a character

textscale number scale applied to math text

scriptscale number scale applied to math script

scriptscriptscale number scale applied to math script script

The parameters is a hash with mixed key types. There are seven possible string keys, as well as

a number of integer indices (these start from 8 up). The seven strings are actually used instead

of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

NAME REMAPPING

slant 1

space 2

spacestretch 3

spaceshrink 4

xheight 5

quad 6

extraspace 7

The characters table is a Lua hash table where the keys are integers. When a character in the

input is turned into a glyph node, it gets a character code that normally refers to an entry in that

table. For proper paragraph building and math rendering the following fields can be present

in an entry in the characters table. You can of course add all kind of extra fields. The engine

only uses those that it needs for typesetting a paragraph or formula. The subtables that define

ligatures and kerns are also hashes with integer keys, and these indices should point to entries

in the main characters table.

Providing ligatures and kerns this way permits TEX to construct ligatures and add inter-character

kerning. However, normally you will use an OpenType font in combination with Lua code that

does this. In ConTEXt we have base mode that uses the engine, and node mode that uses Lua. A

monospaced font normally has no ligatures and kerns and is normally not processed at all.

KEY TYPE DESCRIPTION

width number width in sp (default 0)

height number height in sp (default 0)

depth number depth in sp (default 0)

italic number italic correction in sp (default 0)

topaccent number top accent alignment place in sp (default zero)

botaccent number bottom accent alignment place, in sp (default zero)

leftprotruding number left protruding factor (\lpcode)

rightprotruding number right protruding factor (\rpcode)

expansion number expansion factor (\efcode)

next number ‘next larger’ character index

79Fonts

extensible table constituent parts of an extensible (traditional) recipe

vparts table constituent parts of a vertical (OpenType) recipe

hparts table constituent parts of a horizontal (OpenType)recipe

kerns table kerning information

ligatures table ligaturing information

mathkern table math cut-in specifications

smaller number the next smaller math size character

For example, here is the character ‘f’ (decimal 102) in the font cmr10 at 10pt. The numbers

that represent dimensions are in scaled points.

[102] = {

["width"] = 200250,

["height"] = 455111,

["depth"] = 0,

["italic"] = 50973,

["kerns"] = {

[63] = 50973,

[93] = 50973,

[39] = 50973,

[33] = 50973,

[41] = 50973

},

["ligatures"] = {

[102] = { ["char"] = 11, ["type"] = 0 },

[108] = { ["char"] = 13, ["type"] = 0 },

[105] = { ["char"] = 12, ["type"] = 0 }

}

}

Two very special string indexes can be used also: leftboundary is a virtual character whose

ligatures and kerns are used to handle word boundary processing. rightboundary is similar but

not actually used for anything (yet).

The values of topaccent, botaccent and mathkern are used only for math accent and super­

script placement, see page 103 in this manual for details. The values of leftprotrusion and

rightprotrusion are used only when \protrudechars is non-zero. Whether or not expansion is

used depends on the font's global expansion settings, as well as on the value of \adjustspacing.

A math character can have a next field that points to a next larger shape. However, the presence

of extensible will overrule next, if that is also present. The extensible field in turn can be

overruled by vparts, the OpenType version. The extensible table is very simple:

KEY TYPE DESCRIPTION

top number top character index

mid number middle character index

bot number bottom character index

rep number repeatable character index

Fonts80

The hparts and vparts are arrays of components. Each of those components is itself a hash of

up to five keys:

KEY TYPE EXPLANATION

glyph number The character index. Note that this is an encoding number, not a name.

extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the

natural size of the glyph for character component is used.

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either

a non-negative integer or the string value rightboundary), with the values of the kerning to be

applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as

either a non-negative integer or the string value rightboundary), with the values being yet

another small hash, with two fields:

KEY TYPE DESCRIPTION

type number the type of this ligature command, default 0

char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or

string value of one of the eight possible ligature types supported by TEX. When TEX inserts a

new ligature, it puts the new glyph in the middle of the left and right glyphs. The original left

and right glyphs can optionally be retained, and when at least one of them is kept, it is also

possible to move the new ‘insertion point’ forward one or two places. The glyph that ends up to

the right of the insertion point will become the next ‘left’.

TEXTUAL (KNUTH) NUMBER STRING RESULT

l + r =: n 0 =: |n

l + r =:| n 1 =:| |nr

l + r |=: n 2 |=: |ln

l + r |=:| n 3 |=:| |lnr

l + r =:|> n 5 =:|> n|r

l + r |=:> n 6 |=:> l|n

l + r |=:|> n 7 |=:|> l|nr

l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature

replaces both original glyphs. In this table the | indicates the final insertion point.

The mathcontrol bitset is mostly there for experimental purposes. Because there is inconsis­

tency in the OpenType math fonts with respect to for instance glyph dimensions, it is possible

to force the traditional code path. We just mention the possible flags:

VALUE EFFECT

0x0001 usefontcontrol

81Fonts

0x0002 overrule

0x0004 underrule

0x0008 radicalrule

0x0010 fractionrule

0x0020 accentskewhalf

0x0040 accentskewapply

0x0080 checkligatureandkern

0x0100 applyverticalitalickern

0x0200 applyordinaryitalickern

0x0400 applycharitalickern

0x0800 reboxcharitalickern

0x1000 applyboxeditalickern

0x2000 staircasekern

0x4000 applytextitalickern

0x8000 checktextitalickern

0x10000 checkspaceitalickern

0x20000 applyscriptitalickern

0x40000 italicshapekern

Compact math is an experimental feature. The smaller field in a character definition of a text

character can point to a script character that itself can point to a scriptscript one. When set the

textscale, scriptscale and scriptscriptscale is applied to those.

The textcontrol field is used to control some aspects of text processing. More options might

be added in the future.

VALUE EFFECT

0x0001 collapsehyphens

In ConTEXt these are interfaced via pseudo features. The math control flags of a font can be

overloaded by \mathcontrolmode on the spot and the set controls of a font can be queried by

\fontmathcontrol. The text control flags in a font always win over the ones set by other para­

meters, like \hyphenationmode. They can be queried with \fonttextcontrol.

6.3 Virtual fonts

Virtual fonts have been introduced to overcome limitations of good old TEX. They were mostly

used for providing a direct mapping from for instance accented characters onto a glyph. The

backend was responsible for turning a reference to a character slot into a real glyph, possibly

constructed from other glyphs. In our case there is no backend so there is also no need to pass

this information through TEX. But it can of course be part of the font information and because it

is a kind of standard, we describe it here.

A character is virtual when it has a commands array as part of the data. A virtual character can

itself point to virtual characters but be careful with nesting as you can create loops and overflow

the stack (which often indicates an error anyway).

At the font level there can be a an (indexed) fonts table. The values are one- or two-key hashes

themselves, each entry indicating one of the base fonts in a virtual font. In case your font is

Fonts82

referring to itself in for instance a virtual font, you can use the slot command with a zero font

reference, which indicates that the font itself is used. So, a table looks like this:

fonts = {

{ name = "ptmr8a", size = 655360 },

{ name = "psyr", size = 600000 },

{ id = 38 }

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second

is psyr loaded at a little over 9pt. The third one is a previously defined font that is known to

LuaTEX as font id 38. The array index numbers are used by the character command definitions

that are part of each character.

The commands array is a hash where each item is another small array, with the first entry repre­

senting a command and the extra items being the parameters to that command. The frontend

is only interested in the dimensions, ligatures and kerns of a font, which is the reason why the

TEX engine didn't have to be extended when virtual fonts showed up: dealing with it is up to the

driver that comes after the backend. In pdfTEX and LuaTEX that driver is integrated so there

the backend also deals with virtual fonts. The first block in the next table is what the standard

mentions. The special command is indeed special because it is an extension container. The

mentioned engines only support pseudo standards where the content starts with pdf:. The last

block is LuaTEX specific and will not be found in native fonts. These entries can be used in virtual

fonts that are constructed in Lua.

But . . . in LuaMetaTEX there is no backend built in but we might assume that the one provided

deals with these entries. However, a provided backend can provide more and that is indeed

what happens in ConTEXt. There, because we no longer have compacting (of passed tables) and

unpacking (when embedding) of these tables going on we stay in the Lua domain. None of the

virtual specification is ever seen in the engine.

COMMAND ARGUMENTS TYPE DESCRIPTION

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,

and move right by the character's width

push 0 save current position

pop 0 pop position

rule 2 2 numbers output a rule ℎ𝑡 ∗𝑤𝑑, and move right.
down 1 number move down on the page

right 1 number move right on the page

special 1 string output a driver directive

nop 0 do nothing

slot 2 2 numbers a shortcut for the combination of a font and char com­

mand

node 1 node output this node (list), and move right by the width

of this list

83Fonts

pdf 2 2 strings output a pdf literal, the first string is one of ori­

gin, page, text, font, direct or raw; if you have one

string only origin is assumed

lua 1 string, function execute a Lua script when the glyph is embedded; in

case of a function it gets the font id and character

code passed

image 1 image depends on the backend

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This prevents

the need for hackery with future id's.

The pdf option also accepts a mode keyword in which case the third argument sets the mode.

That option will change the mode in an efficient way (passing an empty string would result in

an extra empty lines in the pdf file. This option only makes sense for virtual fonts. The font

mode only makes sense in virtual fonts. Modes are somewhat fuzzy and partially inherited from

pdfTEX.

MODE DESCRIPTION

origin enter page mode and set the position

page enter page mode

text enter text mode

font enter font mode (kind of text mode, only in virtual fonts)

always finish the current string and force a transform if needed

raw finish the current string

You always need to check what pdf code is generated because there can be all kind of inter­

ferences with optimization in the backend and fonts are complicated anyway. Here is a rather

elaborate glyph commands example using such keys:

...

commands = {

{ "push" }, -- remember where we are

{ "right", 5000 }, -- move right about 0.08pt

{ "font", 3 }, -- select the fonts[3] entry

{ "char", 97 }, -- place character 97 (ASCII 'a')

-- { "slot", 2, 97 }, -- an alternative for the previous two

{ "pop" }, -- go all the way back

{ "down", -200000 }, -- move upwards by about 3pt

{ "special", "pdf: 1 0 0 rg" } -- switch to red color

-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)

{ "rule", 500000, 20000 } -- draw a bar

{ "special", "pdf: 0 g" } -- back to black

-- { "pdf", "origin", "0 g" } -- back to black (alternative)

}

...

Fonts84

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual

font is essentially only a re-encoding, then you do usually not have created an explicit ‘font’

command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.

For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will

always move by exactly the width that was given in the width key of the character hash. Any

movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When

you have to concatenate strings using the pdf command might be more efficient.

For the record: in ConTEXt LMTX we no longer support the pdf, image and special keywords.

6.4 Additional TEX commands

6.4.1 Font syntax

LuaTEX will accept a braced argument as a font name:

\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

6.4.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. The currently used font id is 13. Here are some more:4

STYLE COMMAND FONT ID

normal \tf 13

bold \bf 17

italic \it 22

bold italic \bi 24

These numbers depend on the macro package used because each one has its own way of dealing

with fonts. They can also differ per run, as they can depend on the order of loading fonts. For

instance, when in ConTEXt virtual math Unicode fonts are used, we can easily get over a hundred

ids in use. Not all ids have to be bound to a real font, after all it's just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs

to be a valid one.

4 Contrary to LuaTEX this is now a number so you need to use \number or \the. The same is true for some other numbers

and dimensions that for some reason ended up in the serializer that produced a sequence of tokens.

85Fonts

6.4.3 \glyphoptions

In LuaTEX the \noligs and \nokerns primitives suppress these features but in LuaMetaTEX these

primitives are gone. They are replace by a more generic control primitive \glyphoptions. This

numerical parameter is a bitset with the following fields:

VALUE EFFECT

0x01 prevent left ligature

0x02 prevent right ligature

0x04 block left kern

0x08 block right kern

0x10 don't apply expansion

0x20 don't apply protrusion

0x40 apply xoffset to width

0x80 apply yoffset to height and depth

The effects speak for themselves. They provide detailed control over individual glyph, this be­

cause the current value of this option is stored with glyphs.

6.4.4 \glyphscale, \glyphxscale, \glyphyscale and \scaledfontdimen

The three scale parameters control the current scaling. They are traditional TEX integer para­

meters that operate independent of each other. The scaling is reflected in the dimensions of

glyphs as well as in the related font dimensions, which means that units like ex and em work

as expected. If you query a font dimensions with \fontdimen you get the raw value but with

\scaledfontdimen you get the useable value.

6.4.5 \fontspecdef, \fontspecid, \fontspecscale, , \fontspecxscale,

\fontspecyscale

Because we have three scale related primitives \glyphscale, \glyphxscale and \glyphyscale,

we also have a way to quickly set them all.

\fontspecdef \MyFontA 2 all 1000

\fontspecdef \MyFontB \MyFontA xscale 1200

The defined control sequence will set the font id (which is 2 in the case of \MyFontA) as well as

the scale(s). Possible keywords are scale, xscale, yscale and all. By default the values are

1000. Instead of an id an already defined specification can be given in which case we start from

a copy. This mechanism is still somewhat experimental and might evolve. The main reason for

introducing it is that it gives less tracing.

Say that we have:

\fontspecdef\MyFoo\font xscale 1200 \relax

The four properties of such a specification can then be queried as follows:

Fonts86

[\the\fontspecid \MyFoo]

[\the\fontspecscale \MyFoo]

[\the\fontspecxscale\MyFoo]

[\the\fontspecyscale\MyFoo]

[13] [1000] [1200] [1000]

A font specification obeys grouping but is not a register. Like \integerdef and \dimendef it is

just a control sequence with a special meaning.

6.4.6 \glyphxoffset, \glyphyoffset

These two parameters control the horizontal and vertical shift of glyphs with, when applied to a

stretch of them, the horizontal offset probably being the least useful.

6.4.7 \glyph

This command is a variation in \char that takes keywords:

KEYWORD EFFECT type

xoffset (virtual) horizontal shift dimension

yoffset (virtual) vertical shift dimension

xscale horizontal scaling integer

yscale vertical scaling integer

options glyph options bitset

font font identifier

id font integer

The values default to the currently set values. Here is a ConTEXt example:

\ruledhbox{

\ruledhbox{\glyph yoffset 1ex options 0 123}

\ruledhbox{\glyph xoffset .5em yoffset 1ex options "C0 125}

\ruledhbox{baseline\glyphyoffset 1ex \glyphxscale 800 \glyphyscale\glyphxs­

cale raised}

}

Visualized:
{ }

baseline
raised

6.4.8 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space

character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a

zero skip. In figure 6.1 we see the results for four characters separated by a space.

87Fonts

x x x x xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 6.1 The \nospaces options.

6.4.9 \protrusionboundary

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.

When protrusion characters are identified some nodes are skipped:

‣ zero glue

‣ penalties

‣ empty discretionaries

‣ normal zero kerns

‣ rules with zero dimensions

‣ math nodes with a surround of zero

‣ dir nodes

‣ empty horizontal lists

‣ local par nodes

‣ inserts, marks and adjusts

‣ boundaries

‣ whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next

node being ignored. When the value is 1 or 3, the next node will be ignored in the test when

locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored

when locating a right boundary condition (the search goes from right to left). This permits

protrusion combined with for instance content moved into the margin:

\protrusionboundary1\llap{!\quad}«Who needs protrusion?»

6.5 The Lua font library

6.5.1 Introduction

The Lua font library is reduced to a few commands. Contrary to LuaTEX there is no loading of

tfm or vf files. The explanation of the following commands is in the LuaTEX manual.

FUNCTION DESCRIPTION

current returns the id of the currently active font

max returns the last assigned font identifier

setfont enables a font setfont (sets the current font id)

addcharacters adds characters to a font

define defined a font

id returns the id that relates to a command name

For practical reasons the management of font identifiers is still done by TEX but it can become

an experiment to delegate that to Lua as well.

Fonts88

6.5.2 Defining a font with define, addcharacters and setfont

Normally you will use a callback to define a font but there's also a Lua function that does the

job.

id = font.define(<table> f)

Within reasonable bounds you can extend a font after it has been defined. Because some prop­

erties are best left unchanged this is limited to adding characters.

font.addcharacters(<number n>, <table> f)

The table passed can have the fields characterswhich is a (sub)table like the one used in define,

and for virtual fonts a fonts table can be added. The characters defined in the characters table

are added (when not yet present) or replace an existing entry. Keep in mind that replacing can

have side effects because a character already can have been used. Instead of posing restrictions

we expect the user to be careful. The setfont helper is a more drastic replacer and only works

when a font has not been used yet.

6.5.3 Font ids: id, max and current

<number> i = font.id(<string> csname)

This returns the font id associated with csname, or −1 if csname is not defined.

<number> i = font.max()

This is the largest used index so far. The currently active font id can be queried or set with:

<number> i = font.current()

font.current(<number> i)

6.5.4 Glyph data: \glyphdatafield, \glyphscriptfield,

\glyphstatefield

These primitives can be used to set an additional glyph properties. Of course it's very macro

package dependant what is done with that. It started with just the first one as experiment, simply

because we had some room left in the glyph data structure. It's basically an single attribute.

Then, when we got rid of the ligature pointer we could either drop it or use that extra field for

some more, and because ConTEXt already used the data field, that is what happened. The script

and state fields are shorts, that is, they run from zero to 0xFFFF where we assume that zero

means ‘unset’. Although they can be used for whatever purpose their use in ConTEXt is fixed.

89Languages, characters, fonts and glyphs

7 Languages, characters, fonts and

glyphs

7.1 Introduction

LuaTEX's internal handling of the characters and glyphs that eventually become typeset is quite

different from the way TEX82 handles those same objects. The easiest way to explain the differ­

ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later

on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char node records when they are encoun­

tered by the main control loop. TEX attaches and processes the font information while creating

those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im­

plicit kerning. This packaging is needed because we may want to get the effective width of for

instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time)

the char node records into a string by replacing ligatures with their components and ignoring

the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated

result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.

Keep in mind that the paragraph may contain unboxed horizontal material, which then already

contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,

and therefore not really ‘characters’ in the linguistic sense. There is no language information in­

side the char node records at all. Instead, language information is passed along using language

whatsit nodes inside the horizontal list.

In LuaTEX, the situation is quite different. The characters you type are always converted into

glyph node records with a special subtype to identify them as being intended as linguistic char­

acters. LuaTEX stores the needed language information in those records, but does not do any

font-related processing at the time of node creation. It only stores the index of the current font

and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points

right into thewhole node list. Next, it processes all the font information in thewhole list (creating

ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the

records are ‘glyph nodes’ from now on.

7.2 Characters, glyphs and discretionaries

TEX82 (including pdfTEX) differentiates between char nodes and lig nodes. The former are

simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the

same memory as tokens did. The latter also contained a list of components, and a subtype

indicating whether this ligature was the result of a word boundary, and it was stored in the

same place as other nodes like boxes and kerns and glues. In LuaMetaTEX we no longer keep

the list of components with the glyph node.

Languages, characters, fonts and glyphs90

In LuaTEX, these two types are merged into one, somewhat larger structure called a glyph node.

Besides having the old character, font, and component fields there are a few more, like ‘attr’ that

we will see in section 10.2.12, these nodes also contain a subtype, that codes four main types

and two additional ghost types. For ligatures, multiple bits can be set at the same time (in case

of a single-glyph word).

‣ character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

‣ glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

‣ ligature, for constructed ligatures bit 1 is set.

The glyph nodes also contain language data, split into four items that were current when the

node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin

(8 bits), and \uchyph (1 bit).

Incidentally, LuaTEX allows 16383 separate languages, and words can be 256 characters long.

The language is stored with each character. You can set \firstvalidlanguage to for instance 1

and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This

value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from

TEX82: changes to \uchyph become effective immediately, not at the end of the current partial

paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,

so there is no longer a possible dependency on the surrounding language settings. In TEX82, a

mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan­

guage unless there was a \setlanguage issued inside the box. In LuaTEX, all language variables

are already frozen.

In traditional TEX the process of hyphenation is driven by lccodes. In LuaTEX we made this de­

pendency less strong. There are several strategies possible. When you do nothing, the currently

used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of lccodes will be

saved with the language. In that case changing a lccode afterwards has no effect. However,

you can adapt the set with:

\hjcode`a=`a

This change is global which makes sense if you keep in mind that the moment that hyphenation

happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy­

phcodes was zero when the language got initialized you start out with nothing, otherwise you

already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the

following example we map a character (x) onto another one in the patterns and tell the engine

that œ counts as two characters. Because traditionally zero itself is reserved for inhibiting hy­

phenation, a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

91Languages, characters, fonts and glyphs

foobar foo-bar

\hjcode `x=`o fxxbar fxx-bar

\lefthyphenmin 3 œdipus œdi-pus

\lefthyphenmin 4 œdipus œdipus

\hjcode `œ=2 œdipus œdi-pus

\hjcode `i=32 \hjcode `d=32 œdipus œdipus

Carrying all this information with each glyph would give too much overhead and also make the

process of setting up these codes more complex. A solution with hjcode sets was considered but

rejected because in practice the current approach is sufficient and it would not be compatible

anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph­

codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance

discretionary injection. For this you can use the \wordboundary as a trigger. Here are a few

examples of usage:

discrete---discrete

dis­

crete—

dis­

crete

discrete\discretionary{}{}{---}discrete

discrete

discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis­

crete

discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis­

crete

dis­

crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis­

crete—

dis­

crete

Languages, characters, fonts and glyphs92

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of

explicit hyphens since that normally indicates a -- or --- ligature in which case we can in a

worse case usage get bad node lists later on due to messed up ligature building as these dashes

are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing and

kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary

node. But by default also a hlist, vlist, rule, dir, whatsit, insert, and adjust node indicate

a start or end. You can omit the last set from the test by setting flags in \hyphenationmode:

VALUE BEHAVIOUR

not strict

64 strict start

128 strict end

192 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when the start bit is set

vlist when the start bit is set

rule when the start bit is set

dir when the start bit is set

whatsit when the start bit is set

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no – —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language

glue yes

penalty yes

kern yes when not italic (for some historic reason)

hlist when the end bit is set

vlist when the end bit is set

rule when the end bit is set

dir when the end bit is set

whatsit when the end bit is set

ins when the end bit is set

adjust when the end bit is set

Figures 7.1 upto 7.5 show some examples. In all cases we set the min values to 1 and make sure

that the words hyphenate at each character.

93Languages, characters, fonts and glyphs

o­

n­

e

o­

n­

e

o­

n­

e

o­

n­

e

0 64 128 192

Figure 7.1 one

o­

n­

et­

w­

o

o­

n­

et­

w­

o

onet­

w­

o

onet­

w­

o

0 64 128 192

Figure 7.2 one\null two

o­

n­

et­

w­

o

o­

n­

et­

w­

o

onet­

w­

o

onet­

w­

o

0 64 128 192

Figure 7.3 \null one\null two

o­

n­

et­

w­

o

o­

n­

et­

w­

o

onetwo onetwo

0 64 128 192

Figure 7.4 one\null two\null

In traditional TEX ligature building and hyphenation are interwoven with the line break mech­

anism. In LuaTEX these phases are isolated. As a consequence we deal differently with (a se­

quence of) explicit hyphens. We already have added some control over aspects of the hyphen­

ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

Hyphenation and discretionary injection is driven by a mode parameter which is a bitset made

from the following values, some of which we saw in the previous examples.

1 honour (normal) \discretionary's

2 turn - into (automatic) discretionaries

4 turn \- into (explicit) discretionaries

8 hyphenate (syllable) according to language

16 hyphenate uppercase characters too (replaces \uchyph

32 permit break at an explicit hyphen (border cases)

64 traditional TEX compatibility wrt the start of a word

128 traditional TEX compatibility wrt the end of a word

256 use \automatichyphenpenalty

Languages, characters, fonts and glyphs94

o­

n­

et­

w­

o

o­

n­

et­

w­

o

onetwo onetwo

0 64 128 192

Figure 7.5 \null one\null two\null

512 use \explicithyphenpenalty

1024 turn glue in discretionaries into kerns

2048 okay, let's be even more tolerant in discretionaries

4096 and again we're more permissive

16384 controls how successive explicit discretionaries are handled in base mode

8192 treat all discretionaries equal when breaking lines (in all three passes)

32768 kick in the handler (experiment)

65536 feedback compound snippets

Some of these options are still experimental, simply because not all aspects and side effects have

been explored. You can find some experimental use cases in ConTEXt.

7.3 The main control loop

In LuaTEX's main loop, almost all input characters that are to be typeset are converted into glyph

node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the

actual accent and one for the accentee. The primary reason for this is that \accent in TEX82

is explicitly dependent on the current font encoding, so it would not make much sense to

attach a new meaning to the primitive's name, as that would invalidate many old documents

and macro packages. A secondary reason is that in TEX82, \accent prohibits hyphenation of

the current word. Since in LuaTEX hyphenation only takes place on ‘character’ nodes, it is

possible to achieve the same effect. Of course, modern Unicode aware macro packages will

not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a

character subtype. In traditional TEX there was a strong relationship between the 8-bit input

encoding, hyphenation and glyphs taken from a font. In LuaTEX we have utf input, and in

most cases this maps directly to a character in a font, apart from glyph replacement in the

font engine. If you want to access arbitrary glyphs in a font directly you can always use Lua

to do so, because fonts are available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.

In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalties,

boxes etc.

3. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after

sensing an input character that matches the \hyphenchar in the current font. This test is

95Languages, characters, fonts and glyphs

wrong in our opinion: whether or not hyphenation takes place should not depend on the

current font, it is a language property.5

In LuaTEX, it works like this: if LuaTEX senses a string of input characters that matches the

value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary

after that series of nodes. Initially TEX sets the \exhyphenchar=`\-. Incidentally, this is a

global parameter instead of a language-specific one because it may be useful to change the

value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same

time as the other hyphenation processing, not inside the main control loop.

The only use LuaTEX has for \hyphenchar is at the check whether a word should be consid­

ered for hyphenation at all. If the \hyphenchar of the font attached to the first character node

in a word is negative, then hyphenation of that word is abandoned immediately. This behav­

iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of

preventing hyphenation should not be used in new LuaTEX documents.

4. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is

changed so that it is now an integer parameter like all others. That integer parameter is used

in \glyph_node creation to add language information to the glyph nodes. In conjunction, the

\language primitive is extended so that it always also updates the value of \setlanguage.

5. The \noboundary command (that prohibits word boundary processing where that would nor­

mally take place) now does create nodes. These nodes are needed because the exact place

of the \noboundary command in the input stream has to be retained until after the ligature

and font processing stages.

6. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of

processing while adding char_nodes to the horizontal list? For speed reasons, it handled

that processing code outside of the ‘main control’ loop, and only the first character of any

‘word’ was handled by that ‘main control’ loop. In LuaTEX, there is no longer a need for that

(all hard work is done later), and the (now very small) bits of character-handling code have

been moved back inline. When \tracingcommands is on, this is visible because the full word

is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have been

added:

\hyphenpenaltymode

\automatichyphenpenalty

\explicithyphenpenalty

The usage of these penalties is controlled by the \hyphenationmode flags 256 and 512 and when

these are not set \exhyphenpenalty is used.

You can use the \tracinghyphenation variable to get a bit more information about what hap­

pens.

VALUE EFFECT

1 report redundant pattern (happens by default in LuaTEX)

5 When TEX showed up we didn't have Unicode yet and being limited to eight bits meant that one sometimes had to

compromise between supporting character input, glyph rendering, hyphenation.

Languages, characters, fonts and glyphs96

2 report words that reach the hyphenator and got treated

3 show the result of a hyphenated word (a node list)

7.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the

implementation of the hyphenation algorithm in LuaTEX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep­

arated by spaces, no \char or \chardefd commands are allowed. The current implementation

is quite strict and will reject all non-Unicode characters. Likewise, the expanded argument for

\hyphenation also has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary,

with arguments as in \discretionary's command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal

document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,

but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the

internal command names. This string is then converted into a dictionary by a routine that creates

key-value pairs by converting the other listed items. It is important to note that the keys in an

exception dictionary can always be generated from the values. Here are a few examples:

VALUE IMPLIED KEY (INPUT) EFFECT

ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)

ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is

the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the

command is optional in the TEX-based input syntax. The underlying reason for that is that it is

conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTEX

using one of the functions in the Lua language library. This loading method is quite a bit faster

than going through the TEX language primitives, but some (most?) of that speed gain would be

lost if it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the

explicit hyphen character (replace - by the actual explicit hyphen character if needed). For

example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween

‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the 𝜀-TEX extension \savinghyphcodes was that hyphenation heavily de­
pended on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is

97Languages, characters, fonts and glyphs

basically ignored. Because we now have \hjcode, the case related codes can be used exclusively

for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try

to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the

pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text

(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax now

also can take a penalty specification. The value between square brackets is a multiplier for

\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xxa­

­bxa­

­bxa­

­bxx

123

123

xa­

­bxa­

­bxa­

­bxa­

­bxx

123

123 xxxxxx

xxxxxx xxa­

­bxxxx xxa­

­bxxxx 123

x{a-}{-b}{}x{a-}{-b}{}[3]x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xa­

­bxxxa­

­bxx

123

123

xa­

­bxxxa­

­bxx

123

123 xxxxa­

­bxx xxxxxx

xxxxxx xa­

­bxxxxx 123

z{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za­

­bza­

­bza­

­b

123

123

za­

­bza­

­bza­

­b

a­

­b23

123 zzzzzz

zzzzzz zzza­

­bzz zzzzzz

123

z{a-}{-b}{z}{a-}{-b}{z}[3]{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za­

­bzzzz

123

123

za­

­bzzzz

a­

­b23

123 zzzzzz

zzzzzz za­

­bzzzz a­

­bzzzzz 123

Languages, characters, fonts and glyphs98

7.5 Applying hyphenation

The internal structures LuaTEX uses for the insertion of discretionaries in words is very different

from the ones in TEX82, and that means there are some noticeable differences in handling as

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still

reads pattern files generated by Patgen, but LuaTEX uses a finite state hash to match the pat­

terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OpenOffice, which in turn is inspired by TEX.

There are a few differences between LuaTEX and TEX82 that are a direct result of the implemen­

tation:

‣ LuaTEX happily hyphenates the full Unicode character range.

‣ Pattern and exception dictionary size is limited by the available memory only, all allocations

are done dynamically. The trie-related settings in texmf.cnf are ignored.

‣ Because there is no ‘trie preparation’ stage, language patterns never become frozen. This

means that the primitive \patterns (and its Lua counterpart language.patterns) can be

used at any time, not only in iniTEX.

‣ Only the string representation of \patterns and \hyphenation is stored in the format file.

At format load time, they are simply re-evaluated. It follows that there is no real reason to

preload languages in the format file. In fact, it is usually not a good idea to do so. It is much

smarter to load patterns no sooner than the first time they are actually needed.

‣ LuaTEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the

creation of implicit discretionaries, instead of TEX82's \hyphenchar, and the values of the

language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre­

tionaries (instead of TEX82's empty discretionary).

‣ The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen­

penalty, are now stored in the discretionary nodes. This permits a local overload for explicit

\discretionary commands. The value current when the hyphenation pass is applied is used.

When no callbacks are used this is compatible with traditional TEX. When you apply the Lua

language.hyphenate function the current values are used.

‣ The hyphenation exception dictionary is maintained as key-value hash, and that is also dy­

namic, so the hyph_size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended

to accept an optional penalty specification, so you can do the following:

\hsize1mm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par

2:foo\discretionary penalty 10000 {}{}{}bar\par

3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar

2:foobar

99Languages, characters, fonts and glyphs

3:foo

bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu­

ally the preceding one, but the following one for the items inserted at the left-hand side of a

word).

Word boundaries are no longer implied by font switches, but by language switches. One word

can have two separate fonts and still be hyphenated correctly (but it can not have two different

languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar=`\-, \posthyphenchar=0, \preexhyphenchar=0

and \postexhyphenchar=0. When you assign the values of one of these four parameters, you

are actually changing the settings for the current \language, this behaviour is compatible with

\patterns and \hyphenation.

LuaTEX also hyphenates the first word in a paragraph. Words can be up to 256 characters long

(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitation

will be removed or perhaps it will become possible to silently ignore the excess characters (this

is what happens in TEX82, but there the behaviour cannot be controlled).

If you are using the Lua function language.hyphenate, you should be aware that this function

expects to receive a list of ‘character’ nodes. It will not operate properly in the presence of

‘glyph’, ‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

7.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list

to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two

stages: first all ligatures are processed, then all kerning information is applied to the result list.

But those two stages are somewhat dependent on each other: If the used font makes it possible

to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.

While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those

word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,

at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This separation is worth mentioning because, if you overrule from Lua only one of the two call­

backs related to font handling, then you have to make sure you perform the tasks normally

done by LuaTEX itself in order to make sure that the other, non-overruled, routine continues to

function properly.

Although we could improve the situation the reality is that in modern OpenType fonts ligatures

can be constructed in many ways: by replacing a sequence of characters by one glyph, or by

selectively replacing individual glyphs, or by kerning, or any combination of this. Add to that

contextual analysis and it will be clear that we have to let Lua do that job instead. The generic

font handler that we provide (which is part of ConTEXt) distinguishes between base mode (which

essentially is what we describe here and which delegates the task to TEX) and node mode (which

deals with more complex fonts.

In so called base mode, where TEX does the work, the ligature construction (normally) goes

in small steps. An f followed by an f becomes an ff ligatures and that one followed by an i

Languages, characters, fonts and glyphs100

can become a ffi ligature. The situation can be complicated by hyphenation points between

these characters. When there are several in a ligature collapsing happens. Flag "4000 in the

\hyphenationmode variable determines if this happens lazy or greedy, i.e. the first hyphen wins

or the last one does. In practice a ConTEXt user won't have to deal with this because most fonts

are processed in node mode.

7.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to

discretionaries and ligatures, line breaking will potentially be different from traditional TEX.

The actual line breaking code is still based on the TEX82 algorithms, and there can be no dis­

cretionaries inside of discretionaries. But, as patterns evolve and font handling can influence

discretionaries, you need to be aware of the fact that long term consistency is not an engine

matter only.

But that situation is now fairly common in LuaTEX, due to the changes to the ligaturing mech­

anism. And also, the LuaTEX discretionary nodes are implemented slightly different from the

TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these

nodes kept their place in the horizontal list. In traditional TEX the discretionary node contains

a counter indicating how many nodes to skip, but in LuaTEX we store the pre, post and replace

text in the discretionary node.

The combined effect of these two differences is that LuaTEX does not always use all of the poten­

tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course

kerning also complicates matters here.

7.8 The language library

7.8.1 new and id

This library provides the interface to LuaTEX's structure representing a language, and the asso­

ciated functions.

<language> l = language.new()

<language> l = language.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument

to most of the other functions in the language library. These functions can also be used as if they

were object methods, using the colon syntax. Without an argument, the next available internal

id number will be assigned to this object. With argument, an object will be created that links to

the internal language with that id number.

<number> n = language.id(<language> l)

The number returned is the internal \language id number this object refers to.

7.8.2 hyphenation

You can load exceptions with:

101Languages, characters, fonts and glyphs

<string> n = language.hyphenation(<language> l)

language.hyphenation(<language> l, <string> n)

When no string is given (the first example) a string with all exceptions is returned.

7.8.3 clearhyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones. The

syntax of the string is explained in section 7.4.

language.clearhyphenation(<language> l)

This call clears the exception dictionary (string) for this language.

<string> n = language.clean(<language> l, <string> o)

<string> n = language.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the

argument string is explained in section 7.4. This function is useful if you want to do something

else based on the words in a dictionary file, like spell-checking.

7.8.4 patterns and clearpatterns

<string> n = language.patterns(<language> l)

language.patterns(<language> l, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntax of

this string is explained in section 7.4.

language.clearpatterns(<language> l)

This can be used to clear the pattern dictionary for a language.

7.8.5 hyphenationmin

This function sets (or gets) the value of the TEX parameter \hyphenationmin.

n = language.hyphenationmin(<language> l)

language.hyphenationmin(<language> l, <number> n)

7.8.6 [pre|post][ex|]hyphenchar

<number> n = language.prehyphenchar(<language> l)

language.prehyphenchar(<language> l, <number> n)

<number> n = language.posthyphenchar(<language> l)

language.posthyphenchar(<language> l, <number> n)

Languages, characters, fonts and glyphs102

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit

hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal 0 (indicat­

ing emptiness).

<number> n = language.preexhyphenchar(<language> l)

language.preexhyphenchar(<language> l, <number> n)

<number> n = language.postexhyphenchar(<language> l)

language.postexhyphenchar(<language> l, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in

this language. Both are initially decimal 0 (indicating emptiness).

7.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as

argument, processing stops on that node. Currently, success is always true if head (and tail,

if specified) are proper nodes, regardless of possible other errors.

<boolean> success = language.hyphenate(<node> head)

<boolean> success = language.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node

subtype having the value 1. Glyph modes with different subtypes are not processed. See sec­

tion 7.2 for more details.

7.8.8 [set|get]hjcode

The following two commands can be used to set or query hj codes:

language.sethjcode(<language> l, <number> char, <number> usedchar)

<number> usedchar = language.gethjcode(<language> l, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due

to \savinghyphcodes being larger than zero.

103Math

8 Math

8.1 Traditional alongside OpenType

End 2021 this chapter started with this:

“At this point there is no difference between LuaMetaTEX and LuaTEX with respect to math.
6

The handling of mathematics in LuaTEX differs quite a bit from how TEX82 (and therefore

pdfTEX) handles math. First, LuaTEX adds primitives and extends some others so that Uni­

code input can be used easily. Second, all of TEX82's internal special values (for example

for operator spacing) have been made accessible and changeable via control sequences.

Third, there are extensions that make it easier to use OpenType math fonts. And finally,

there are some extensions that have been proposed or considered in the past that are now

added to the engine.

You might be surprised that we don't use all these new control features in ConTEXt LMTX

but who knows what might happen because users drive it. The main reason for adding so

much is that I decided it made more sense to be complete now than gradually add more

and more. At some point we should be able to say ‘This is it’. Also, when looking at these

features, you need to keep in mind that when it comes to math, LATEX is the dominant

macro package and it never needed these engine features, so most are probably just here

for exploration purposes.””

Although we still process math as TEX does, there have been some fundamental changes to

the machinery. Most of that is discussed in documents that come with ConTEXt and in Mikael

Sundqvist math manual. Together we explored some new ways to deal with math spacing, penal­

ties, fencing, operators, fractions, atoms and other features of the TEX engine. We started from

the way ConTEXt used the already present functionality combine with sometimes somewhat dirty

(but on the average working well) tricks.

It will take a while before this chapter is updated. If you find errors or things missing, let

me know. A lot of pairwise spacing primitives were dropped but also quite a bit of new ones

introduced to control matters. Much in LuaMetaTEX math handling is about micro-typography

and for us the results are quite visible. But, as far as we know, there have never been complaints

or demands in the direction of the features discussed here. Also, TEX math usage outside Con­

TEXt is rather chiselled in stone (already for nearly three decades) so we don't expect other

macro packages to use the new features anyway.

8.2 Unicode math characters

For various reasons we need to encode a math character in a 32 bit number and because we

often also need to keep track of families and classes the range of characters is limited to 20

bits. There are upto 64 classes (more than in LuaTEX) and 64 families (less than in LuaTEX). The

upper limit of characters is less that what Unicode offers but for math we're okay. If needed we

can provide less families.

6 This might no longer be true because we have more control options that define default behavior and also have a more

extensive scaling model. Anyway, it should not look worse, and maybe even a bit better.

Math104

The math primitives from TEX are kept as they are, except for the ones that convert from input to

math commands: mathcode, and delcode. These two now allow for the larger character codes

argument on the left hand side of the equals sign. The number variants of some primitives might

be dropped in favor of the primitives that read more than one separate value (class, family and

code), for instance:

\def\overbrace{\Umathaccent 0 1 "23DE }

The altered TEX82 primitives are:

PRIMITIVE MIN MAX MIN MAX

\mathcode 0 10FFFF = 0 8000

\delcode 0 10FFFF = 0 FFFFFF

The unaltered ones are:

PRIMITIVE MIN MAX

\mathchardef 0 8000

\mathchar 0 7FFF

\mathaccent 0 7FFF

\delimiter 0 7FFFFFF

\radical 0 7FFFFFF

In LuaTEX we support the single number primitives *with num in their name) conforming the

XƎTEX method. For the moment that still works but you need to figure out the number your­

self. The split number variants are more future safe with respect to classes and families. Wd

don't document \Umathcharnumdef, \Umathcharnum, \Umathcodenum and \Udelcodenum here

any longer.

PRIMITIVE CLASS FAMILY CHARACTER

\Umathchardef csname "40 "40 "FFFFF

\Umathcode "40 "40 "FFFFF

\Udelcode "FFFFF "40 "40 "FFFFF

\Umathchar "40 "40 "FFFFF

\Umathaccent "40 "40 "FFFFF

\Udelimiter "40 "40 "FFFFF

\Uradical "40 "40 "FFFFF

So, there are upto 64 classes of which at this moment about 20 are predefined so, taking some

future usage by the engine into account,you can assume 32 upto 63 to be available for any

purpose. The number of families has been reduced from 256 to 64 which is plenty for daily use

in an OpenType setup. If we ever need to expand the Unicode range there will be less families.

The values of begin and end classes and the number of classes can be fetched from the Lua

status table.

Given the above, specifications typically look like:

\Umathchardef \xx = "1 "0 "456

105Math

\Umathcode 123 = "1 "0 "789

The new primitives that deal with delimiter-style objects do not set up a ‘large family’. Selecting

a suitable size for display purposes is expected to be dealt with by the font via the \Umathoper­

atorsize parameter. Old school fonts can still be handled but you need to set up the engine to

do that; this can be done per font. In principle we assume that OpenType fonts are used, which

is no big deal because loading fonts is already under Lua control. At that moment the distinction

between small and large delimiters will be gone. Of course an alternative is to support a specific

large size but that is unlikely to happen.

The \Umathaccent command accepts optional keywords to control various details regarding

math accents. See section 8.7.2 below for details.

There are more new primitives and all of these will be explained in following sections. For

instance these are variants of radicals and delimiters all are set the same::

PRIMITIVE CLASS FAMILY character

\Uroot "40 "40 "FFFFF

\Uoverdelimiter "40 "40 "FFFFF

\Uunderdelimiter "40 "40 "FFFFF

\Udelimiterover "40 "40 "FFFFF

\Udelimiterunder "40 "40 "FFFFF

In addition there are \UVextensible and \Uoperator and extended versions of fenced: \Uleft,

\Uright and \Umiddle. There is also \Uover and similar primitives that expect the numerator

and denominator after the primitive. In addition to regular scripts there are prescripts and a

dedicated prime script. Many of these U primitives can be controlled by options and keywords.

8.3 Setting up the engine

Processing math is controlled by \mathfontcontrol, a numeric bitset parameter. The recom­

mended bits are marked with a star but it really depends on the macro package to set up the

machinery well. Of course one can just enable all and see what happens.

BIT NAME

0x00001 usefontcontrol ⋆
0x00002 overrule ⋆
0x00004 underrule ⋆
0x00008 radicalrule ⋆
0x00010 fractionrule ⋆
0x00020 accentskewhalf ⋆
0x00040 accentskewapply ⋆
0x00080 checkligatureandkern

0x00100 applyverticalitalickern ⋆
0x00200 applyordinaryitalickern ⋆
0x00400 applycharitalickern

0x00800 reboxcharitalickern

0x01000 applyboxeditalickern ⋆

Math106

0x02000 staircasekern ⋆
0x04000 applytextitalickern ⋆
0x08000 checktextitalickern ⋆
0x10000 checkspaceitalickern

0x20000 applyscriptitalickern ⋆
0x40000 italicshapekern ⋆

One reason for this approach is that traditional and OpenType fonts have different approaches

(especially when it comes to dealing with the width and italic corrections) and is even more

complicated by the fact that the fonts are often inconsistent (within and between). In ConTEXt

we deal with this by runtime fixes to fonts. In any case the Cambria font is taken as reference.

8.4 Math styles

8.4.1 \mathstyle

It is possible to discover the math style that will be used for a formula in an expandable fashion

(while the math list is still being read). To make this possible, LuaTEX adds the new primitive:

\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,

not set. Beware that contrary to LuaTEX this is now a proper number so you need to use \number

o r\the in order to serialize it.

The returned value is between 0 and 7 (in math mode), or −1 (all other modes). For easy testing,
the eight math style commands have been altered so that they can be used as numeric values,

so you can write code like this:

\ifnum\mathstyle=\textstyle

\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle

\message{cramped text style}

\fi \fi

Sometimes you won't get what you expect so a bit of explanation might help to understand what

happens. When math is parsed and expanded it gets turned into a linked list. In a second pass

the formula will be build. This has to do with the fact that in order to determine the automatically

chosen sizes (in for instance fractions) following content can influence preceding sizes. A side

effect of this is for instance that one cannot change the definition of a font family (and thereby

reusing numbers) because the number that got used is stored and used in the second pass (so

changing \fam 12 mid-formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are

frozen. The \mathchoice primitive results in four lists being constructed of which one is used

in the second pass. The fact that some automatic styles are not yet known also means that the

\mathstyle primitive expands to the current style which can of course be different from the one

really used. It's a snapshot of the first pass state. As a consequence in the following example

you get a style number (first pass) typeset that can actually differ from the used style (second

pass). In the case of a math choice used ungrouped, the chosen style is used after the choice

too, unless you group.

107Math

[a:\number\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (x:d :\number\mathstyle)}

{\bf \scriptscriptstyle (x:t :\number\mathstyle)}

{\bf \scriptscriptstyle (x:s :\number\mathstyle)}

{\bf \scriptscriptstyle (x:ss:\number\mathstyle)}

\egroup

\quad[b:\number\mathstyle]\quad

\mathchoice

{\bf \scriptstyle (y:d :\number\mathstyle)}

{\bf \scriptscriptstyle (y:t :\number\mathstyle)}

{\bf \scriptscriptstyle (y:s :\number\mathstyle)}

{\bf \scriptscriptstyle (y:ss:\number\mathstyle)}

\quad[c:\number\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (z:d :\number\mathstyle)}

{\bf \scriptscriptstyle (z:t :\number\mathstyle)}

{\bf \scriptscriptstyle (z:s :\number\mathstyle)}

{\bf \scriptscriptstyle (z:ss:\number\mathstyle)}

\egroup

\quad[d:\number\mathstyle]

This gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏 : 0] (𝐲:𝐝:𝟒) [𝑐:0] (𝐳:𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏 : 2] (𝐲:𝐭:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

Using \begingroup . . . \endgroup instead gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏:0] (𝐲:𝐬:𝟔) [𝑐:0] (𝐳:𝐬𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏:2] (𝐲:𝐬𝐬:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

This might look wrong but it's just a side effect of \mathstyle expanding to the current (first

pass) style and the number being injected in the list that gets converted in the second pass. It all

makes sense and it illustrates the importance of grouping. In fact, the math choice style being

effective afterwards has advantages. It would be hard to get it otherwise.

8.4.2 \Ustack

There are a few math commands in TEX where the style that will be used is not known straight

from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would

therefore normally return wrong values for \mathstyle. To fix this, LuaTEX introduces a special

prefix command: \Ustack:

$\Ustack {a \over b}$

Math108

The \Ustack command will scan the next brace and start a new math group with the correct

(numerator) math style.

8.4.3 The new \cramped ...style commands

LuaTEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle

\crampedtextstyle

\crampedscriptstyle

\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as

arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TEX by Topic” the rules for handling styles in scripts are described as follows:

‣ In any style superscripts and subscripts are taken from the next smaller style. Exception: in

display style they are in script style.

‣ Subscripts are always in the cramped variant of the style; superscripts are only cramped if

the original style was cramped.

‣ In an ..\over.. formula in any style the numerator and denominator are taken from the next

smaller style.

‣ The denominator is always in cramped style; the numerator is only in cramped style if the

original style was cramped.

‣ Formulas under a \sqrt or \overline are in cramped style.

In LuaTEX one can set the styles in more detail which means that you sometimes have to set

both normal and cramped styles to get the effect you want. (Even) if we force styles in the script

using \scriptstyle and \crampedscriptstyle we get this:

STYLE EXAMPLE

default 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
script 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

Now we set the following parameters

\setmathspacing 0 3 \scriptstyle = 30mu

\setmathspacing 0 3 \scriptstyle = 30mu

This gives a different result:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

But, as this is not what is expected (visually) we should say:

109Math

\setmathspacing 0 3 \scriptstyle = 30mu

\setmathspacing 0 3 \scriptstyle = 30mu

\setmathspacing 0 3 \crampedscriptstyle = 30mu

\setmathspacing 0 3 \crampedscriptstyle = 30mu

Now we get:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

script 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

crampedscript 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

8.5 Math parameter settings

8.5.1 Many new \Umath* primitives

In LuaTEX, the font dimension parameters that TEX used in math typesetting are now accessible

via primitive commands. In fact, refactoring of the math engine has resulted in turning some

hard codes properties into parameters.

PRIMITIVE NAME DESCRIPTION

\Umathquad the width of 18 mu's

\Umathaxis height of the vertical center axis of the math formula above the

baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

\Umathradicaldegreebefore the forward kern that takes place before placement of the rad­

ical degree

\Umathradicaldegreeafter the backward kern that takes place after placement of the rad­

ical degree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical

sign that the degree is raised by; it is expressed in percents,

so 60% is expressed as the integer 60
\Umathstackvgap vertical clearance between the two elements in an \atop stack

\Umathstacknumup numerator shift upward in \atop stack

\Umathstackdenomdown denominator shift downward in \atop stack

\Umathfractionrule the width of the rule in a \over

Math110

\Umathfractionnumvgap vertical clearance between the numerator and the rule

\Umathfractionnumup numerator shift upward in \over

\Umathfractiondenomvgap vertical clearance between the denominator and the rule

\Umathfractiondenomdown denominator shift downward in \over

\Umathfractiondelsize minimum delimiter size for \...withdelims

\Umathlimitabovevgap vertical clearance for limits above operators

\Umathlimitabovebgap vertical baseline clearance for limits above operators

\Umathlimitabovekern space reserved at the top of the limit

\Umathlimitbelowvgap vertical clearance for limits below operators

\Umathlimitbelowbgap vertical baseline clearance for limits below operators

\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters

\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters

\Umathunderdelimitervgap vertical clearance for limits below delimiters

\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas

\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas

\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

\Umathsubtopmax the top of standalone subscripts cannot be higher than this

above the baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this

above the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and sub­

script be at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

In addition to the above official OpenType font parameters we have these:

PRIMITIVE NAME DESCRIPTION

\Umathprimeraisepercent the percentage that the vertical position is scaled

\Umathprimeshiftup the prime variant of \SuperscriptShiftUp

\Umathprimebaselinedropmax the prime variant of \SuperscriptBaselineDrop­

Max

\Umathprimeshiftupcramped the prime variant of \SuperscriptShiftUpCramped

\Umathprimespaceafter the prime variant of \UmathSpaceAfterScript

\Umathprimewidthpercent the percentage of width that gets added

\Umathspacebeforescript the prescript variant of \UmathSpaceAfterScript

\Umathnolimitsupfactor a multiplier for the way limits are shifted up and

down

\Umathnolimitsubfactor a multiplier for the way limits are shifted up and

down

\Umathaccenttopshiftup the amount that a top accent is shifted up

\Umathaccentbottomshiftdown the amount that a bottom accent is shifted down

111Math

\Umathflattenedaccenttopshiftup the amount that a wide top accent is shifted up

\Umathflattenedaccentbottomshiftdown the amount that a wide bottom accent is shifted

down

\Umathaccentbasedepth the complement of \UmathAccentBaseHeight

\Umathaccentflattenedbasedepth the complement of \UmathFlattenedAccentBase­

Height

These parameters not only provide a bit more control over rendering, they also can be used in

compensating issues in font, because no font is perfect. Some are the side effects of experiments

and they have CamelCase companions in the MathConstants table.

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1em

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

There are quite some parameters that can be set and there are eight styles, which means a lot

of keying in. For that reason is is possible to set parameters groupwise

PRIMITIVE NAME DESCRIPTION

\alldisplaystyles set both display styles

\alltextstyles set both text styles

\allscriptstyles set both script styles

\allscriptscriptstyles set both scriptscript styles

\allmathstyles set all eight styles

\allsplitstyles set all display and text styles, and reset all script(script) styles

\alluncrampedstyles set all four uncramped styles

\allcrampedstyles set all four cramped styles

These groups are especially handy when you set up inter atom spacing, pre- and post atom

penalties and atom rules.

8.5.2 Font-based math parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have

to set each of them by hand. For this reason, LuaTEX initializes a bunch of these parameters

whenever you assign a font identifier to a math family based on either the traditional math font

dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy

and cmex), or based on the named values in a potential MathConstants table when the font is

loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,

and in that case no attention is paid to which family is being assigned to: the MathConstants

tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names

match those used in the TEXbook. Assignments to \textfont set the values for the cramped and

uncramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont

sets the scriptscript styles, so we have eight parameters for three font sizes. In the tfm case,

Math112

assignments only happen in family 2 and family 3 (and of course only for the parameters for

which there are font dimensions).

Besides the parameters below, LuaTEX also looks at the ‘space’ font dimension parameter. For

math fonts, this should be set to zero.

VARIABLE / STYLE TFM / OPENTYPE

\Umathaxis axis_height

AxisHeight

6 \Umathoperatorsize —

D, D' DisplayOperatorMinHeight

9 \Umathfractiondelsize delim1

D, D' FractionDelimiterDisplayStyleSize

9 \Umathfractiondelsize delim2

T, T', S, S', SS, SS' FractionDelimiterSize

\Umathfractiondenomdown denom1

D, D' FractionDenominatorDisplayStyleShiftDown

\Umathfractiondenomdown denom2

T, T', S, S', SS, SS' FractionDenominatorShiftDown

\Umathfractiondenomvgap 3*default_rule_thickness

D, D' FractionDenominatorDisplayStyleGapMin

\Umathfractiondenomvgap default_rule_thickness

T, T', S, S', SS, SS' FractionDenominatorGapMin

\Umathfractionnumup num1

D, D' FractionNumeratorDisplayStyleShiftUp

\Umathfractionnumup num2

T, T', S, S', SS, SS' FractionNumeratorShiftUp

\Umathfractionnumvgap 3*default_rule_thickness

D, D' FractionNumeratorDisplayStyleGapMin

\Umathfractionnumvgap default_rule_thickness

T, T', S, S', SS, SS' FractionNumeratorGapMin

\Umathfractionrule default_rule_thickness

FractionRuleThickness

\Umathskewedfractionhgap math_quad/2

SkewedFractionHorizontalGap

\Umathskewedfractionvgap math_x_height

SkewedFractionVerticalGap

\Umathlimitabovebgap big_op_spacing3

UpperLimitBaselineRiseMin

1 \Umathlimitabovekern big_op_spacing5

0

\Umathlimitabovevgap big_op_spacing1

UpperLimitGapMin

\Umathlimitbelowbgap big_op_spacing4

113Math

LowerLimitBaselineDropMin

1 \Umathlimitbelowkern big_op_spacing5

0

\Umathlimitbelowvgap big_op_spacing2

LowerLimitGapMin

\Umathoverdelimitervgap big_op_spacing1

StretchStackGapBelowMin

\Umathoverdelimiterbgap big_op_spacing3

StretchStackTopShiftUp

\Umathunderdelimitervgap big_op_spacing2

StretchStackGapAboveMin

\Umathunderdelimiterbgap big_op_spacing4

StretchStackBottomShiftDown

\Umathoverbarkern default_rule_thickness

OverbarExtraAscender

\Umathoverbarrule default_rule_thickness

OverbarRuleThickness

\Umathoverbarvgap 3*default_rule_thickness

OverbarVerticalGap

1 \Umathquad math_quad

<font_size(f)>

\Umathradicalkern default_rule_thickness

RadicalExtraAscender

2 \Umathradicalrule <not set>

RadicalRuleThickness

3 \Umathradicalvgap default_rule_thickness+abs(math_x_height)/4

D, D' RadicalDisplayStyleVerticalGap

3 \Umathradicalvgap default_rule_thickness+abs(default_rule_thickness)/4

T, T', S, S', SS, SS' RadicalVerticalGap

2 \Umathradicaldegreebefore <not set>

RadicalKernBeforeDegree

2 \Umathradicaldegreeafter <not set>

RadicalKernAfterDegree

2,7 \Umathradicaldegreeraise <not set>

RadicalDegreeBottomRaisePercent

4 \Umathspaceafterscript script_space

SpaceAfterScript

\Umathstackdenomdown denom1

D, D' StackBottomDisplayStyleShiftDown

\Umathstackdenomdown denom2

T, T', S, S', SS, SS' StackBottomShiftDown

\Umathstacknumup num1

Math114

D, D' StackTopDisplayStyleShiftUp

\Umathstacknumup num3

T, T', S, S', SS, SS' StackTopShiftUp

\Umathstackvgap 7*default_rule_thickness

D, D' StackDisplayStyleGapMin

\Umathstackvgap 3*default_rule_thickness

T, T', S, S', SS, SS' StackGapMin

\Umathsubshiftdown sub1

SubscriptShiftDown

\Umathsubshiftdrop sub_drop

SubscriptBaselineDropMin
8 \Umathsubsupshiftdown —

SubscriptShiftDownWithSuperscript

\Umathsubtopmax abs(math_x_height*4)/5

SubscriptTopMax

\Umathsubsupvgap 4*default_rule_thickness

SubSuperscriptGapMin

\Umathsupbottommin abs(math_x_height/4)

SuperscriptBottomMin

\Umathsupshiftdrop sup_drop

SuperscriptBaselineDropMax

\Umathsupshiftup sup1

D SuperscriptShiftUp

\Umathsupshiftup sup2

T, S, SS, SuperscriptShiftUp

\Umathsupshiftup sup3

D', T', S', SS' SuperscriptShiftUpCramped

\Umathsupsubbottommax abs(math_x_height*4)/5

SuperscriptBottomMaxWithSubscript

\Umathunderbarkern default_rule_thickness

UnderbarExtraDescender

\Umathunderbarrule default_rule_thickness

UnderbarRuleThickness

\Umathunderbarvgap 3*default_rule_thickness

UnderbarVerticalGap
5 \Umathconnectoroverlapmin 0

MinConnectorOverlap

Todo: add the extra ones.

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set

\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: Traditional tfm fonts do not set \Umathradicalrule because TEX82 uses the height of

the radical instead. When this parameter is indeed not set when LuaTEX has to typeset a radi­

115Math

cal, a backward compatibility mode will kick in that assumes that an oldstyle TEX font is used.

Also, they do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umath­

radicaldegreeraise. These are then automatically initialized to 5/18quad, −10/18quad, and
60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTEX

has to typeset a formula because this needs parameters from both family 2 and family 3. This

provides a partial backward compatibility with TEX82, but that compatibility is only partial: once

the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When tfm fonts are used a similar situation arises with respect to \Umathspaceafter­

script: it is not set until the first time LuaTEX has to typeset a formula. This provides some

backward compatibility with TEX82. But once the \Umathspaceafterscript is set, \script­

space will never be looked at again.

Note 5: Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TEX82 always

stacks extensibles without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType

fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt's

size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that

is expressed in a percentage instead of a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open­

Type math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex­

ist in the ‘standard’ OpenType math font Cambria, but were useful enough to be added.

8.6 Math spacing

8.6.1 Setting inline surrounding space with \mathsurround and

\mathsurroundskip

Inline math is surrounded by (optional) \mathsurround spacing but that is a fixed dimension.

There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or zero

with some stretch or shrink) this parameter will replace \mathsurround. By using an additional

parameter instead of changing the nature of \mathsurround, we can remain compatible. In the

meantime a bit more control has been added via \mathsurroundmode. This directive can take 6

values with zero being the default behaviour.

\mathsurround 10pt

\mathsurroundskip20pt

MODE XXX X X X EFFECT

0 x 𝑥 x x 𝑥 x obey \mathsurround when \mathsurroundskip is 0pt

1 x 𝑥x x 𝑥 x only add skip to the left

2 x𝑥 x x 𝑥 x only add skip to the right

Math116

3 x 𝑥 x x 𝑥 x add skip to the left and right

4 x 𝑥 x x 𝑥 x ignore the skip setting, obey \mathsurround

5 x𝑥x x 𝑥 x disable all spacing around math

6 x 𝑥 x x 𝑥 x only apply \mathsurroundskip when also spacing

7 x 𝑥 x x 𝑥 x only apply \mathsurroundskip when no spacing

Anything more fancy, like checking the beginning or end of a paragraph (or edges of a box)

would not be robust anyway. If you want that you can write a callback that runs over a list and

analyzes a paragraph. Actually, in that case you could also inject glue (or set the properties of

a math node) explicitly. So, these modes are in practice mostly useful for special purposes and

experiments (they originate in a tracker item). Keep in mind that this glue is part of the math

node and not always treated as normal glue: it travels with the begin and end math nodes. Also,

method 6 and 7 will zero the skip related fields in a node when applicable in the first occasion

that checks them (linebreaking or packaging).

8.6.2 Pairwise spacing

Besides the parameters mentioned in the previous sections, there are also primitives to control

the math spacing table (as explained in Chapter 18 of the TEXbook). This happens per class pair.

Because we have many possible classes, we no longer hand the many primitives that LuaTEX has

but you can define then using the generic \setmathspacing primitive:

\def\Umathordordspacing {\setmathspacing 0 0 }

\def\Umathordordopenspacing {\setmathspacing 0 4 }

These parameters are of type \muskip, so setting a parameter can be done like this:

\setmathspacing 1 0 \displaystyle=4mu plus 2mu % op ord Umathopordspacing

The atom pairs known by the engine are all initialized by initex to the values mentioned in the

table in Chapter 18 of the TEXbook.

For ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and \thick­

muskip are treated specially. In their case a pointer to the corresponding internal parameter is

saved, not the actual \muskip value. This means that any later changes to one of these three

parameters will be taken into account. As a bonus we also introduced a \tinymuskip primitive.

In LuaMetaTEX we go a bit further. Any named dimension, glue and mu glue register as well

as the constants with these properties can be bound to a pair by prefixing \setmathspacing by

\inherited.

Careful readers will realize that there are also primitives for the items marked * in the TEXbook.

These will actually be used because we pose no restrictions. However, you can enforce the

remapping rules to conform to the rules of TEX (or yourself).

Todo: explain rules.

Todo: explain penalties.

Todo: explain let, set and copy primitives.

117Math

8.6.3 Local \frozen settings with

Math is processed in two passes. The first pass is needed to intercept for instance \over, one

of the few TEX commands that actually has a preceding argument. There are often lots of curly

braces used in math and these can result in a nested run of the math sub engine. However, you

need to be aware of the fact that some properties are kind of global to a formula and the last

setting (for instance a family switch) wins. This also means that a change (or again, the last one)

in math parameters affects the whole formula. In LuaMetaTEX we have changed this model a

bit. One can argue that this introduces an incompatibility but it's hard to imagine a reason for

setting the parameters at the end of a formula run and assume that they also influence what

goes in front.

$

x \Usubscript {-}

\frozen\Umathsubshiftdown\textstyle 0pt x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 5pt x \Usubscript {5}}

x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 15pt x \Usubscript {15}}

x \Usubscript {0}

{\frozen\Umathsubshiftdown\textstyle 20pt x \Usubscript {20}}

x \Usubscript {0}

\frozen\Umathsubshiftdown\textstyle 10pt x \Usubscript {10}

x \Usubscript {0}

$

The \frozen prefix does themagic: it injects information in themath list about the set parameter.

In LuaTEX 1.10+ the last setting, the 10pt drop wins, but in LuaMetaTEX you will see each local

setting taking effect. The implementation uses a new node type, parameters nodes, so you might

encounter these in an unprocessed math list. The result looks as follows:

𝑥−𝑥0𝑥5𝑥0𝑥
15

𝑥0𝑥

20

𝑥0𝑥
10
𝑥
0

8.6.4 Checking a state with \ifmathparameter

When you adapt math parameters it might make sense to see if they are set at all. When a para­

meter is unset its value has the maximum dimension value and you might for instance mistakenly

multiply that value to open up things a bit, which gives unexpected side effects. For that reason

there is a convenient checker: \ifmathparameter. This test primitive behaves like an \ifcase,

with:

VALUE MEANING

0 the parameter value is zero

1 the parameter is set

2 the parameter is unset

Math118

8.6.5 Skips around display math and \mathdisplayskipmode

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one

is always inserted, also when zero, but the below is only inserted when larger than zero. Espe­

cially the latter makes it sometimes hard to fully control spacing. Therefore LuaTEX comes with

a new directive: \mathdisplayskipmode. The following values apply:

VALUE MEANING

0 normal TEX behaviour

1 always (same as 0)

2 only when not zero

3 never, not even when not zero

8.6.6 Nolimit correction with \mathnolimitsmode

There are two extra math parameters \Umathnolimitsupfactor and \Umathnolimitsubfactor

that were added to provide some control over how limits are spaced (for example the position

of super and subscripts after integral operators). They relate to an extra parameter \mathno­

limitsmode. The half corrections are what happens when scripts are placed above and below.

The problem with italic corrections is that officially that correction italic is used for above/be­

low placement while advanced kerns are used for placement at the right end. The question is:

how often is this implemented, and if so, do the kerns assume correction too. Anyway, with this

parameter one can control it.

0
∫
1

0
∫
1

0
∫
1

0
∫
1

0
∫
1

0
∫
1

mode 0 1 2 3 4 8000

superscript 0 font 0 0 +ic/2 0

subscript -ic font 0 -ic/2 -ic/2 8000ic/1000

When the mode is set to one, the math parameters are used. This way a macro package writer

can decide what looks best. Given the current state of fonts in ConTEXt we currently use mode

1 with factor 0 for the superscript and 750 for the subscripts. Positive values are used for both

parameters but the subscript shifts to the left. A \mathnolimitsmode larger that 15 is considered

to be a factor for the subscript correction. This feature can be handy when experimenting.

8.6.7 Influencing script kerning with \mathscriptboxmode

If you want to typeset text in math macro packages often provide something \text which obeys

the script sizes. As the definition can be anything there is a good chance that the kerning doesn't

come out well when used in a script. Given that the first glyph ends up in an \hbox we have

some control over this. And, as a bonus we also added control over the normal sublist kerning.

The \mathscriptboxmode parameter defaults to 1.

VALUE MEANING

0 forget about kerning

119Math

1 kern math sub lists with a valid glyph

2 also kern math sub boxes that have a valid glyph

3 only kern math sub boxes with a boundary node present

Here we show some examples. Of course this doesn't solve all our problems, if only because

some fonts have characters with bounding boxes that compensate for italics, while other fonts

can lack kerns.

$T_{\tf fluff}$ $T_{\tf fluff}$ T_{fluff} T_{fluff} $T_{\text{\boundary1 fluff}}$

mode 0 mode 1 mode 1 mode 2 mode 3

modern 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff
lucidaot 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

pagella 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

cambria 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

dejavu 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

Kerning between a character subscript is controlled by \mathscriptcharmode which also de­

faults to 1.

Here is another example. Internally we tag kerns as italic kerns or font kerns where font kerns

result from the staircase kern tables. In 2018 fonts like Latin Modern and Pagella rely on cheats

with the boundingbox, Cambria uses staircase kerns and Lucida a mixture. Depending on how

fonts evolve we might add some more control over what one can turn on and off.

normal modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.956

l
0.061

u
0.085

f
0.956

f
0.956

pagella 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.461l 0.102u 0.077f 0.461f 0.461

cambria 𝑇 -2.365

𝑓 𝛾 -1.656

𝑒 𝛾 -1.656

𝑒
0.277

𝑒
0.277 𝑇 -2.365

fluff
lucidaot 𝑇 -2.403

𝑓 𝛾 -1.107

𝑒 𝛾 -1.107

𝑒𝑒 𝑇 -2.403

fluff
bold modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 1.100

l
0.070

u
0.097

f
1.100

f
1.100

pagella 𝑇 𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.530l 0.118u 0.088f 0.530f 0.530

cambria 𝑇 -2.330

𝑓 𝛾 -1.631

𝑒 𝛾 -1.631

𝑒
0.319

𝑒
0.319 𝑇 -2.330

fluff
lucidaot 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.375𝑒 0.375𝑇f 0.750luf 0.750f 0.750

8.6.8 Forcing fixed scripts with \mathscriptsmode

We have three parameters that are used for this fixed anchoring:

PARAMETER REGISTER

𝑑 \Umathsubshiftdown

𝑢 \Umathsupshiftup

𝑠 \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed

positions. This is something that is needed for instance for chemistry. You can manipulate the

mentioned variables to achieve different effects.

Math120

MODE DOWN UP EXAMPLE

0 dynamic dynamic CH2+CH+
2 +CH2

2
1 𝑑 𝑢 CH2 +CH+

2 +CH2
2

2 𝑠 𝑢 CH2 +CH+
2 +CH2

2
3 𝑠 𝑢 + 𝑠 − 𝑑 CH2+CH+

2 +CH2
2

4 𝑑+ (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 +CH+
2 +CH2

2
5 𝑑 𝑢+ 𝑠 − 𝑑 CH2+CH+

2 +CH2
2

The value of this parameter obeys grouping but applies to the whole current formula.

8.6.9 Penalties: \mathpenaltiesmode

Only in inline math penalties will be added in a math list. You can force penalties (also in display

math) by setting:

\mathpenaltiesmode = 1

This primnitive is not really needed in LuaTEX because you can use the callback mlist_to_hlist

to force penalties by just calling the regular routine with forced penalties. However, as part

of opening up and control this primitive makes sense. As a bonus we also provide two extra

penalties:

\prebinoppenalty = -100 % example value

\prerelpenalty = 900 % example value

They default to inifinite which signals that they don't need to be inserted. When set they are

injected before a binop or rel noad. This is an experimental feature.

8.6.10 Equation spacing: \matheqnogapstep

By default TEX will add one quad between the equation and the number. This is hard coded. A

new primitive can control this:

\matheqnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to

control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the

usual way to mimmick floating point factors in TEX.

8.7 Math constructs

8.7.1 Unscaled fences and \mathdelimitersmode

The \mathdelimitersmode primitive is experimental and deals with the following (potential)

problems. Three bits can be set. The first bit prevents an unwanted shift when the fence symbol

is not scaled (a cambria side effect). The second bit forces italic correction between a preceding

121Math

character ordinal and the fenced subformula, while the third bit turns that subformula into an

ordinary so that the same spacing applies as with unfenced variants.

\mathdelimitersmode = 0 𝑓
0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 1 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 2 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 3 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 4 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 5 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 6 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)
\mathdelimitersmode = 7 𝑓

0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)

So, when set to 7 fenced subformulas with unscaled delimiters come out the same as unfenced

ones. This can be handy for cases where one is forced to use \left and \right always be­

cause of unpredictable content. As said, it's an experimental feature (which somehow fits in the

exceptional way fences are dealt with in the engine). The full list of flags is given in the next

table:

VALUE MEANING

"01 don't apply the usual shift

"02 apply italic correction when possible

"04 force an ordinary subformula

"08 no shift when a base character

"10 only shift when an extensible

The effect can depend on the font (and for Cambria one can use for instance "16).

Sometimes you might want to act upon the size of a delimiter, something that is not really possi­

ble because of the fact that they are calculated after most has been typeset already. For this we

have two keyword: phantom and void. In both cases the symbol is replaced by an empty rule,

in the first case all three dimensions are preserved in the last case only the height and depth.

\startformula

x\mathlimop{\Uvextensible \Udelimiter 5 0 "222B}_1^2 x

\stopformula

\vskip-9ex

\startformula \red

x\mathlimop{\Uvextensible phantom \Udelimiter 5 0 "222B}_1^2 x

\stopformula

\vskip-9ex

\startformula \blue

x\mathlimop{\Uvextensible void \Udelimiter 5 0 "222B}_1^2 x

\stopformula

In typeset form this looks like:

𝑥
2
∫
1
𝑥𝑥

2
∫
1
𝑥𝑥

2
∫
1
𝑥

Math122

8.7.2 Accent handling with \Umathaccent

LuaTEX supports both top accents and bottom accents in math mode, and math accents stretch

automatically (if this is supported by the font the accent comes from, of course). Bottom and

combined accents as well as fixed-width math accents are controlled by optional keywords fol­

lowing \Umathaccent.

The keyword bottom after \Umathaccent signals that a bottom accent is needed, and the keyword

both signals that both a top and a bottom accent are needed (in this case two accents need to

be specified, of course).

Then the set of three integers defining the accent is read. This set of integers can be prefixed by

the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,

this step is repeated).

A simple example:

\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top_ac­

cent value, then this value will be used to place the accent instead of the \skewchar kern used

by TEX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be

shifted horizontally such that its own top_accent line coincides with the one from the accentee.

If the top_accent value of the accent is zero, then half the width of the accent followed by its

italic correction is used instead.

The vertical placement of a top accent depends on the x_height of the font of the accentee (as

explained in the TEXbook), but if a value turns out to be zero and the font had a MathConstants

table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes

place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.

An additional parameter fraction can be specified followed by a number; a value of for instance

1200 means that the criterium is 1.2 times the width of the nucleus. The fraction only applies

to the stepwise selected shapes and is mostly meant for the overlay location. It also works for

the other locations but then it concerns the width.

8.7.3 Building radicals with \Uradical and \Uroot

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its

syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>

\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by themath parameters \Umathradicaldegreebefore,

\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in

\scriptscriptstyle.

123Math

8.7.4 Super- and subscripts

The character fields in a Lua-loaded OpenType math font can have a ‘mathkern’ table. The

format of this table is the same as the ‘mathkern’ table that is returned by the fontloader

library, except that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTEX checks whether the

super- or subscript and the nucleus are both simple character items. If they are, and if the

fonts of both character items are OpenType fonts (as opposed to legacy TEX fonts), then LuaTEX

will use the OpenType math algorithm for deciding on the horizontal placement of the super- or

subscript.

This works as follows:

‣ The vertical position of the script is calculated.

‣ The default horizontal position is flat next to the base character.

‣ For superscripts, the italic correction of the base character is added.

‣ For a superscript, two vertical values are calculated: the bottom of the script (after shifting

up), and the top of the base. For a subscript, the two values are the top of the (shifted down)

script, and the bottom of the base.

‣ For each of these two locations:

– find the math kern value at this height for the base (for a subscript placement, this is the

bottom_right corner, for a superscript placement the top_right corner)

– find the math kern value at this height for the script (for a subscript placement, this is the

top_left corner, for a superscript placement the bottom_left corner)

– add the found values together to get a preliminary result.

‣ The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher

height and kern pair, or the highest one in the character (if there is no value high enough in the

character), or simply zero (if the character has no math kern pairs at all).

8.7.5 Scripts on extensibles: \Uunderdelimiter, \Uoverdelimiter,

\Udelimiterover, \Udelimiterunder and \Uhextensible

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or

superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover

allow the placement of an automatically extensible item as a subscript or superscript on a nu­

cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$

$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$

$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$

$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter

underdelimiter
delimiterover delimiterunder

Math124

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim­

itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit

placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable

scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an optional width specification. When used the also optional keywords

left, middle and right will determine what happens when a requested size can't be met (which

can happen when we step to successive larger variants).

An extra primitive \Uhextensible is available that can be used like this:

$\Uhextensible width 10cm 0 "2194$

This will render this:

⟷

Here you can also pass options, like:

$\Uhextensible width 1pt middle 0 "2194$

This gives:

↔

LuaTEX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten­

sible recipes’. In most cases where font metrics are involved we have a different code path for

traditional fonts end OpenType fonts.

8.7.6 Fractions and the new \Uskewed and \Uskewedwithdelims

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela­

tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com­

mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap

for skewed fractions. Of course some guessing is needed in order to implement something that

uses them. And so we now provide a primitive similar to the other fraction related ones but with

a few options so that one can influence the rendering. Of course a user can also mess around a

bit with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }

{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by

default we zero the width of the middle character. For Latin Modern the result looks as follows:

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

125Math

noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

The \over and related primitives have the form:

{{top}\over{bottom}}

For convenience, which also avoids some of the trickery that makes this ‘looking back’ possible,

the LuaMetaTEX also provides this variant:

\Uover{top}{bottom}

The optional arguments are also supported but we have one extra option: style. The style is

applied to the numerator and denominator.

\Uover style \scriptstyle {top} {bottom}

The complete list of these commands is: \Uabove, \Uatop, \Uover, \Uabovewithdelims, \Uatop­

withdelims, \Uoverwithdelims, \UUskewed, \UUskewedwithdelims. As with other extensions

we use a leading U and because we already had extra skew related primitives we end up with a

UU there. This obscurity is not that big an issue because normally such primitives are wrapped

in a macro. Here are a few examples:

$\Uover { 1234} { 5678} $\quad

$\Uover {\textstyle 1234} {\textstyle 5678} $\quad

$\Uover {\scriptstyle 1234} {\scriptstyle 5678} $\quad

$\Uover {\scriptscriptstyle 1234} {\scriptscriptstyle 5678} $\blank

$\Uover {1234} {5678} $\quad

$\Uover style \textstyle {1234} {5678} $\quad

$\Uover style \scriptstyle {1234} {5678} $\quad

$\Uover style \scriptscriptstyle {1234} {5678} $\blank

These render as: 12345678
1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

1234
5678

8.7.7 Math styles: \Ustyle

This primitive accepts a style identifier:

\Ustyle \displaystyle

This in itself is not spectacular because it is equivalent to

\displaystyle

Both commands inject a style node and change the current style. However, as in other places

where LuaMetaTEX expects a style you can also pass a number in the range zero upto seven (like

the ones reported by the primitive \mathstyle). So, the next few lines give identical results:

Math126

Like: 07 07 07. Values outside the valid range are ignored.

There is an extra option norule that can be used to suppress the rule while keeping the spacing

compatible.

8.7.8 Delimiters: \Uleft, \Umiddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it.

The resulting delimiter will either be a character from the stepwise size range or an extensible.

The latter can be quite differently positioned than the characters as it depends on the fit as well

as the fact whether the used characters in the font have depth or height. Commands like (plain

TEXs) \big need to use this feature. In LuaTEX we provide a bit more control by three variants

that support optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

(

𝑥
∥

𝑥
)

(

𝑥
∥

𝑥
)

The keyword exact can be used as directive that the real dimensions should be applied when

the criteria can't be met which can happen when we're still stepping through the successively

larger variants. When no dimensions are given the noaxis command can be used to prevent

shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing. The

numbers are the same as for character classes.

8.7.9 Accents: \mathlimitsmode

When you use \limits or \nolimits without scripts spacing might get messed up. This can be

prevented by setting \mathlimitsmode to a non-zero value.

127Math

8.8 Extracting values

8.8.1 Codes and using \Umathcode, \Umathcharclass, \Umathcharfam and

\Umathcharslot

You can extract the components of a math character. Say that we have defined:

\Umathcode 1 2 3 4

then

[\Umathcharclass1] [\Umathcharfam1] [\Umathcharslot1]

will return:

[2] [3] [4]

These commands are provided as convenience. Before they come available you could do the

following:

\def\Umathcharclass{\numexpr

\directlua{tex.print(tex.getmathcode(token.scan_int())[1])}

\relax}

\def\Umathcharfam{\numexpr

\directlua{tex.print(tex.getmathcode(token.scan_int())[2])}

\relax}

\def\Umathcharslot{\numexpr

\directlua{tex.print(tex.getmathcode(token.scan_int())[3])}

\relax}

8.8.2 Last lines and \predisplaygapfactor

There is a new primitive to control the overshoot in the calculation of the previous line in mid-

paragraph display math. The default value is 2 times the em width of the current font:

\predisplaygapfactor=2000

If you want to have the length of the last line independent of math i.e. you don't want to revert

to a hack where you insert a fake display math formula in order to get the length of the last line,

the following will often work too:

\def\lastlinelength{\dimexpr

\directlua {tex.sprint (

(nodes.dimensions(node.tail(tex.lists.page_head).list))

)}sp

\relax}

Math128

8.9 Math mode

8.9.1 Verbose versions of single-character math commands like

\Usuperscript and \Usubscript

LuaTEX defines six new primitives that have the same function as ^, _, $, and $$:

PRIMITIVE EXPLANATION

\Usuperscript duplicates the functionality of ^

\Usubscript duplicates the functionality of _

\Ustartmath duplicates the functionality of $, when used in non-math mode.

\Ustopmath duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath duplicates the functionality of $$, when used in non-math mode.

\Ustopdisplaymath duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor­

rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands

with explicit dollar sign(s).

8.9.2 Script commands \Unosuperscript and \Unosubscript

These two commands result in super- and subscripts but with the current style (at the time of

rendering). So,

$

x\Usuperscript {1}\Usubscript {2} =

x\Unosuperscript{1}\Unosubscript{2} =

x\Usuperscript {1}\Unosubscript{2} =

x\Unosuperscript{1}\Usubscript {2}

$

results in 𝑥12 = 𝑥12 = 𝑥12 = 𝑥12.

8.9.3 Injecting primes with Uprimescript

Todo: explain this one.

8.9.4 Prescripts with \Usuperprescript and Usubprescript

\hbox{$

{\tf X}^1_2^^3__4 \quad

{\tf X}^1 ^^3 \quad

{\tf X} _1 __4 \quad

{\tf X} ^^3 \quad

{\tf X} __4 \quad

129Math

{\tf X}^^3 __4

$}

The question is: are these double super and subscript triggers the way to go? Anyway, you

need to have them either being active (which in ConTEXt then boils down to them being other

characters), or say \supmarkmode = 1 to disable the normal multiple ^ treatment (a value larger

than 1 will also disable that in text mode).

X3 1
4 2 X3 1 X4 1 X3 X4 X34

The more explicit commands are:

\hbox{$

{\tf X}\Usuperscript{1} \quad

{\tf X} \Usubscript{2} \quad

{\tf X}\Usuperscript{1}\Usubscript{2} \quad

{\tf X}\Usuperscript{1} \Usuperprescript{3} \quad

{\tf X} \Usubscript{2} \Usubprescript{4}\quad

{\tf X}\Usuperscript{1}\Usubscript{2}\Usuperprescript{3}\Usubprescript{4}\quad

{\tf X} \Usuperprescript{3} \quad

{\tf X} \Usubprescript{4}\quad

{\tf X} \Usuperprescript{3}\Usubprescript{4}

$}

These more verbose triggers can be used to build interfaces:

X1 X2 X12 X3 1 X4 2 X3 1
4 2 X3 X4 X34

8.9.5 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math­

chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those

cases, the \textfont from the requested math family is used.

8.10 Goodies

8.10.1 Less Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.

Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

8.11 Experiments

There are a couple of experimental features. They will stay but details might change, for instance

more control over spacing. We just show some examples and let your imagination work it out.

Math130

8.11.1 Forcing classes with \Umathclass

You can change the class of a math character on the fly:

$x\mathopen {!}+123+\mathclose {!}x$

$x\Umathclass4 ! +123+\Umathclass5 ! x$

$x ! +123+ ! x$

$x\mathclose {!}+123+\mathopen {!}x$

$x\Umathclass5 ! +123+\Umathclass4 ! x$

Watch how the spacing changes:

𝑥!+123 +!𝑥
𝑥!+123 +!𝑥
𝑥! + 123 + !𝑥
𝑥! + 123 + !𝑥
𝑥! + 123 + !𝑥

8.11.2 Scaling spacing with \Umathxscale and \Umathyscale

These two primitives scale the horizontal and vertical scaling related parameters. They are set

by style. There is no combined scaling primitive.

$\Umathxscale\textstyle 800 a + b + x + d + e = f $\par

$\Umathxscale\textstyle 1000 a + b + x + d + e = f $\par

$\Umathxscale\textstyle 1200 a + b + x + d + e = f $\blank

$\Umathyscale\textstyle 800 \sqrt[2]{x+1}$\quad

$\Umathyscale\textstyle 1000 \sqrt[2]{x+1}$\quad

$\Umathyscale\textstyle 1200 \sqrt[2]{x+1}$\blank

Normally only small deviations from 1000 make sense but here we want to show the effect and

use a 20% scaling:

𝑎+𝑏+𝑥+𝑑+𝑒=𝑓

𝑎+ 𝑏+ 𝑥+𝑑+ 𝑒 = 𝑓

𝑎 + 𝑏 + 𝑥 + 𝑑 + 𝑒 = 𝑓

2√𝑥 + 1 2√𝑥 + 1 2√𝑥 + 1

131Building paragraphs and pages

9 Building paragraphs and pages

9.1 Introduction

There are some enhancements that relate to the way paragraphs and pages are built. In this

chapter we will cover those. There can be a bit of overlap with other chapters. These enhance­

ments are still somewhat experimental.

9.2 Paragraphs

This section will describe \autoparagraphmode, \shapingpenaltiesmode, \shapingpenalty­

mode, \everybeforepar, \snapshotpar, \wrapuppar, \orphanpenalties, \orphanpenalty, enz.

For the moment the manuals that come with ConTEXt have to do.

9.3 Inserts

Inserts are tightly integrated into the page builder. Depending on penalties and available space

they end up on the same page as were they got injected or they move to following pages, either

or not split.

In traditional TEX inserts are controlled by registers. A quadruple of box, skip, dimen and count

registers with the same number acts as an insert class. Details can be found in the TEXbook.

A side effect of this is that we only have these four properties bound to class, other properties

of inserts are driven by shared parameters. Another side effect is that register management

has to make sure that these foursome get ‘allocates’ as set and not clashes with other register

allocations.

In LuaMetaTEX you can set the \insertmode to a non zero value in which case inserts are not

using the register pool but have their own (global) resources. For now this is mode driven (for

compatibility reasons) and once set or when an insert has been accessed, this mode is frozen,

so this parameter can be set very early in the macro package loading process.

PRIMITIVE TRADITIONAL EXPLANATION

\insertdistance skip the space before the first instance (on a page)

\insertmultiplier count a factor that is used to calculate the height used

\insertlimit dimen themaximum amount of space on a page to be taken

\insertpenalty \insertpenalties the floating penalty (used when set)

\insertmaxdepth \maxdepth the maximum split depth (used when set)

\insertstorage signals that the insert has to be stored for later

\insertheight \ht box the accumulated height of the inserts so far

\insertdepth \dp box the current depth of the inserts so far

\insertwidth \wd box the width of the inserts

These primitives takes an insert class number. The \insertpenalties primitives is unchanged,

as is the LuaTEX \insertheights one. When \insertstoring is set 1, all inserts that have their

Building paragraphs and pages132

storage flag set will be saved. Think of a multi column setup where inserts have to end up in

the last column. If there are three columns, the first two will store inserts. Then when the last

column is dealt with \insertstoring can be set to 2 and that will signal the builder that we will

inject the inserts. In both cases, the value of this register will be set to zero so that it doesn't

influence further processing. You can use \ifinsert to check if an insert box is void. More

details about these (probably experimental for a while) features can be found in documents that

come with ConTEXt.

A limitation of inserts is that when they are buried too deep, a property they share with inserts,

they become invisible This can be dealt with by the migration feature described in an upcoming

section.

The LuaMetaTEX engine has some tracing built in that is enabled by setting \tracinginserts

to a positive value.

9.4 Marks

Marks are kind of signal nodes in the list that refer to stored token lists. When a page has been

split off and is handed over to the output routine these signals are resolved into first, top and

bottom mark references that can (for instance) be used for running headers.

In 𝜀-TEX the standard TEX primitives \mark, \firstmark, \topmark, \botmark, \splitfirstmark
and \splitbotmark have been extended with plural forms that accent a number before the token

list. That number indicates a mark class.

A problem with marks is that one cannot really reset them. Mark states are kept in the node lists

and only periodically the state is snapshot into the global state variables. The LuaTEX engine

can reset these global states with \clearmarks but that's only half a solution. In LuaMetaTEX

we have \flushmarks which, like \marks, puts a node in the list that does a reset. This permits

implementing controlled resets of specific marks at the cost of a possible interfering mode, but

that can normally be dealt with rather well.

Another problem with marks is that when they are buried too deep, a property they share with

inserts, they become invisible. This can be dealt with by the migration feature described in the

next section.

The LuaMetaTEX engine has some tracing built in that is enabled by setting \tracingmarks to

a positive value.

9.5 Adjusts

The \vadjust primitive injects something in the vertical list after the line where it ends up. In

pdfTEX the pre keyword was added so that one could force something before a previous line

(actually this was something that we needed in ConTEXt MkII). The LuaMetaTEX engine also

supports the post keyword.

We support a few more keywords: before will prepend the adjustment to the already given one,

and after will append it. The index keyword expects an integer and relates that to the current

adjustment. This index is passed to an (optional) callback when the adjustment is finally moved

to the vertical list. That move is actually delayed because like inserts and marks these (vertical)

adjustments can migrate to the ‘outer’ vertical level.

133Building paragraphs and pages

The main reason for the index having no influence on the order is that this primitive already

could be used multiple times and order is determined by usage.7

The LuaMetaTEX engine has some tracing built in that is enabled by setting \tracingadjusts

to a positive value. Currently there is not that much tracing which is why the value has to be at

least 2 in order to be compatible with other (detailed) tracers.

9.6 Migration

A new primitive \automigrationmode can be used to let deeply burried marks and inserts bubble

up to the outer level.

VALUE EXPLANATION

1 migrate marks in the par builder

2 migrate inserts in the par builder

4 migrate adjusts in the par builder

8 migrate prebox material in the page builder

16 migrate postbox material in the page builder

If you want to migrate marks and inserts you need to set all these flags. Migrated marks and

inserts end up as post-box properties and will be handled in the page builder as such. At the

Lua end you can add pre- and post-box material too.

9.7 Pages

The page builder can be triggered by (for instance) a penalty but you can also use \pagebound­

ary. This will trigger the page builder but not leave anything behind.

9.8 Local boxes

As far as I know the Omega/Aleph local box mechanism is mostly in those engines in order

to support repetitive quotes. In LuaTEX this mechanism has been made more robust and in

LuaMetaTEX it became more tightly integrated in the paragraph properties. In order for it to

be more generic and useful, it got more features. For instance it is a bit painful to manage

with respect to grouping (which is a reason why it's not that much used). The most interesting

property is that the dimensions are taken into account when a paragraph is broken into lines.

There are three commands: \localleftbox, \localrightbox and the LuaMetaTEX specific \lo­

calmiddlebox which is basically a right box but when we pass these boxes to a callback they

can be distinguished (we could have used the index but this was a cheap extra signal so we keep

it).

These commands take optional keywords. The index keyword has to be followed by an integer.

This index determines the order which doesn't introduce a significant compatibility issue: local

boxes are hardly used and originally had only one instance.

7 Under consideration is to let the callback mess with the flushing order.

Building paragraphs and pages134

The par keyword forces the box to be added to the current paragraph head. This permits setting

them when a paragraph has already started. The implementation of these boxes is done via so

called (local) paragraph nodes and there is one at the start of each paragraph.

The local keyword tells this mechanism not to update the registers that keep these boxes. In

that case a next paragraph will start fresh. The keep option will do the opposite and retain the

box after a group ends.

The commands: \localleftboxbox, \localrightboxbox and \localmiddleboxbox return a

copy of the current related register content.

135Nodes

10 Nodes

10.1 Lua node representation

TEX's nodes are represented in Lua as user data objects with a variable set of fields or by a

numeric identifier when requested. When you print a node user data object you will see these

numbers. In the following syntax tables the type of such a user data object is represented as

⟨node⟩.

The return values of node.types are: hlist (0), vlist (1), rule (2), insert (3), mark (4),

adjust (5), boundary (6), disc (7), whatsit (8), par (9), dir (10), math (11), glue (12), kern

(13), penalty (14), style (15), choice (16), parameter (17), noad (18), radical (19), fraction

(20), accent (21), fence (22), math_char (23), math_text_char (24), sub_box (25), sub_mlist

(26), delimiter (27), glyph (28), unset (29), align_record (31), attribute (32), glue_spec

(33), temp (34) and split (35)

You can ask for a list of fields with node.fields and for valid subtypes with node.subtypes.

The node.values function reports some used values. Valid arguments are glue, style and

math. Keep in mind that the setters normally expect a number, but this helper gives you a list

of what numbers matter. For practical reason the pagestate values are also reported with this

helper, but they are backend specific.

The return values of node.values("glue") are: normal (0), fi (1), fil (2), fill (3) and filll

(4)

The return values of node.values("style") are: display (0), crampeddisplay (1), text (2),

crampedtext (3), script (4), crampedscript (5), scriptscript (6) and crampedscriptscript

(7)

The return values of node.values("math") are: quad (0), axis (1), accentbaseheight (2),

accentbasedepth (3), flattenedaccentbaseheight (4), flattenedaccentbasedepth (5), xs­

cale (6), yscale (7), operatorsize (8), overbarkern (9), overbarrule (10), overbarvgap (11),

underbarkern (12), underbarrule (13), underbarvgap (14), radicalkern (15), radicalrule

(16), radicalvgap (17), radicaldegreebefore (18), radicaldegreeafter (19), radicalde­

greeraise (20), stackvgap (21), stacknumup (22), stackdenomdown (23), fractionrule (24),

fractionnumvgap (25), fractionnumup (26), fractiondenomvgap (27), fractiondenomdown (28),

fractiondelsize (29), skewedfractionhgap (30), skewedfractionvgap (31), limitabovev­

gap (32), limitabovebgap (33), limitabovekern (34), limitbelowvgap (35), limitbelowbgap

(36), limitbelowkern (37), nolimitsubfactor (38), nolimitsupfactor (39), underdelimiter­

vgap (40), underdelimiterbgap (41), overdelimitervgap (42), overdelimiterbgap (43), sub­

shiftdrop (44), supshiftdrop (45), subshiftdown (46), subsupshiftdown (47), subtopmax (48),

supshiftup (49), supbottommin (50), supsubbottommax (51), subsupvgap (52), spacebefore­

script (53), spaceafterscript (54), connectoroverlapmin (55), extrasuperscriptshift (56),

extrasubscriptshift (57), extrasuperprescriptshift (58), extrasubprescriptshift (59),

primeraise (60), primeshiftup (61), primeshiftdrop (62), primespaceafter (63), primewidth

Nodes136

(64), ruleheight (65), ruledepth (66), superscriptshiftdistance (67), subscriptshiftdis­

tance (68), presuperscriptshiftdistance (69), presubscriptshiftdistance (70), extrasu­

perscriptspace (71), extrasubscriptspace (72), extrasuperprescriptspace (73), extra­

subprescriptspace (74), skeweddelimitertolerance (75), accenttopshiftup (76), accent­

bottomshiftdown (77), flattenedaccenttopshiftup (78), flattenedaccentbottomshiftdown

(79), overlinevariant (80), underlinevariant (81), overdelimitervariant (82), underde­

limitervariant (83), delimiterovervariant (84), delimiterundervariant (85), hextensi­

blevariant (86), vextensiblevariant (87), fractionvariant (88), radicalvariant (89), ac­

centvariant (90), degreevariant (91), topaccentvariant (92), botaccentvariant (93), over­

layaccentvariant (94), numeratorvariant (95), denominatorvariant (96), superscriptvari­

ant (97), subscriptvariant (98), primevariant (99) and stackvariant (100)

The return values of node.values("pagestate") are:

10.2 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all

nodes regardless of their type, these are:

FIELD TYPE EXPLANATION

next node the next node in a list, or nil

id number the node's type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a dummy entry because not all nodes actually use the subtype,

but this way you can be sure that all nodes accept it as a valid field name, and that is often handy

in node list traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field

called prev. That last field is always present, but only initialized on explicit request: when the

function node.slide is called, it will set up the prev fields to be a backwards pointer in the

argument node list. By now most of TEX's node processing makes sure that the prev nodes are

valid but there can be exceptions, especially when the internal magic uses a leading temp nodes

to temporarily store a state.

The LuaMetaTEX engine provides a lot of freedom and it is up to the user to make sure that the

node lists remain sane. There are some safeguards but there can be cases where the engine just

quits out of frustration. And, of course you can make the engine crash.

10.2.1 hlist and vlist nodes

These lists share fields and subtypes although some subtypes can only occur in horizontal lists

while others are unique for vertical lists. The possible fields are attr, class, depth, direction,

doffset, glueorder, glueset, gluesign, height, hoffset, list, orientation, shift, source,

state, target, width, woffset, xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number accent, alignment, box, cell, container, degree, denominator, equa­

tion, equationnumber, fence, fraction, hdelimiter, hextensible, in­

137Nodes

dent, insert, left, line, local, math, mathchar, middle, modifier, nu­

cleus, numerator, over, overdelimiter, radical, right, scripts, sub,

sup, under, underdelimiter, unknown, vdelimiter and vextensible

attr node list of attributes

width number the width of the box

height number the height of the box

depth number the depth of the box

direction number the direction of this box, see 10.2.15

shift number a displacement perpendicular to the character (hlist) or line (vlist) pro­

gression direction

glueorder number a number in the range [0, 4], indicating the glue order
glueset number the calculated glue ratio

gluesign number 0 = normal, 1 = stretching, 2 = shrinking

list node the first node of the body of this list

The orientation, woffset, hoffset, doffset, xoffset and yoffset fields are special. They can

be used to make the backend rotate and shift boxes which can be handy in for instance vertical

typesetting. Because they relate to (and depend on the) the backend they are not discussed here

(yet).

A warning: never assign a node list to the list field unless you are sure its internal link structure

is correct, otherwise an error may result.

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to

a list by head, sometimes list makes more sense.

10.2.2 rule nodes

Contrary to traditional TEX, LuaTEX has more \hrule and \vrule subtypes because we also use

rules to store reuseable objects and images. User nodes are invisible and can be intercepted by

a callback. The supported fields are attr, char, data, depth, font, height, left, right, width,

xoffset and yoffset.

FIELD TYPE EXPLANATION

subtype number box, empty, fraction, image, normal, outline, over, radical, strut,

under and user

attr node list of attributes

width number the width of the rule where the special value −1073741824 is used for
‘running’ glue dimensions

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

left number shift at the left end (also subtracted from width)

right number (subtracted from width)

dir string the direction of this rule, see 10.2.15

index number an optional index that can be referred to

transform number an private variable (also used to specify outline width)

The left and type right keys are somewhat special (and experimental). When rules are auto

adapting to the surrounding box width you can enforce a shift to the right by setting left. The

Nodes138

value is also subtracted from the width which can be a value set by the engine itself and is not

entirely under user control. The right is also subtracted from the width. It all happens in the

backend so these are not affecting the calculations in the frontend (actually the auto settings

also happen in the backend). For a vertical rule left affects the height and right affects the

depth. There is no matching interface at the TEX end (although we can have more keywords

for rules it would complicate matters and introduce a speed penalty.) However, you can just

construct a rule node with Lua and write it to the TEX input. The outline subtype is just a

convenient variant and the transform field specifies the width of the outline.

The xoffset and yoffset fields are special. They can be used to shift rules. Because they relate

to (and depend on the) the backend they are not discussed here (yet).

10.2.3 insert nodes

This node relates to the \insert primitive and support the fields: attr, cost, depth, height,

list and spec.

FIELD TYPE EXPLANATION

subtype number the insertion class

attr node list of attributes

cost number the penalty associated with this insert

height number height of the insert

depth number depth of the insert

list node the first node of the body of this insert

There is a set of extra fields that concern the associated glue: width, stretch, stretchorder,

shrink and shrinkorder. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may result. You can use list instead (often in functions you want

to use local variable with similar names and both names are equally sensible).

10.2.4 mark nodes

This one relates to the \mark primitive and only has a few fields: attr, class and mark.

FIELD TYPE EXPLANATION

subtype number unused

attr node list of attributes

class number the mark class

mark table a table representing a token list

10.2.5 adjust nodes

This node comes from \vadjust primitive and has fields: attr and list.

FIELD TYPE EXPLANATION

subtype number local, post and pre

139Nodes

attr node list of attributes

list node adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be the result.

10.2.6 disc nodes

The \discretionary and \-, the - character but also the hyphenation mechanism produces

these nodes. The available fields are: attr, options, penalty, post, pre and replace.

FIELD TYPE EXPLANATION

subtype number automatic, discretionary, explicit and regular

attr node list of attributes

pre node pointer to the pre-break text

post node pointer to the post-break text

replace node pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \ex­

hyphenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere. These disc

nodes are kind of special as at some point they also keep information about breakpoints and

nested ligatures.

The pre, post and replace fields at the Lua end are in fact indirectly accessed and have a prev

pointer that is not nil. This means that when you mess around with the head of these (three)

lists, you also need to reassign them because that will restore the proper prev pointer, so:

pre = d.pre

-- change the list starting with pre

d.pre = pre

Otherwise you can end up with an invalid internal perception of reality and LuaMetaTEX might

even decide to crash on you. It also means that running forward over for instance pre is ok but

backward you need to stop at pre. And you definitely must not mess with the node that prev

points to, if only because it is not really a node but part of the disc data structure (so freeing it

again might crash LuaMetaTEX).

10.2.7 math nodes

Math nodes represent the boundaries of a math formula, normally wrapped into $ signs. The

following fields are available: attr, penalty, shrink, shrinkorder, stretch, stretchorder,

surround and width.

FIELD TYPE EXPLANATION

subtype number beginmath and endmath

attr node list of attributes

Nodes140

surround number width of the \mathsurround kern

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretchorder number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrinkorder number factor applied to shrink amount

The glue fields only kick in when the surround fields is zero.

10.2.8 glue nodes

Skips are about the only type of data objects in traditional TEX that are not a simple value. They

are inserted when TEX sees a space in the text flow but also by \hskip and \vskip. The structure

that represents the glue components of a skip internally is called a glue_spec. In LuaMetaTEX

we don't use the spec itself but just its values. A glue node has the fields: attr, font, leader,

shrink, shrinkorder, stretch, stretchorder and width.

FIELD TYPE EXPLANATION

subtype number abovedisplayshortskip, abovedisplayskip, baselineskip,

belowdisplayshortskip, belowdisplayskip, cleaders, con­

ditionalmathskip, correctionskip, gleaders, ignored, in­

dentskip, intermathskip, leaders, lefthangskip, leftskip,

lineskip, mathskip, medmuskip, muglue, page, parfillleftskip,

parfillskip, parskip, righthangskip, rightskip, spaceskip,

splittopskip, tabskip, thickmuskip, thinmuskip, topskip, user­

skip, xleaders, xspaceskip and zerospaceskip

attr node list of attributes

leader node pointer to a box or rule for leaders

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretchorder number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrinkorder number factor applied to shrink amount

Note that we use the key width in both horizontal and vertical glue. This suits the TEX internals

well so we decided to stick to that naming.

The effective width of some glue subtypes depends on the stretch or shrink needed to make

the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue

representing spaces and these stretch or shrink to make the content fit in the available space.

The effectiveglue function that takes a glue node and a parent (hlist or vlist) returns the

effective width of that glue item. When you pass true as third argument the value will be

rounded.

10.2.9 glue_spec nodes

Internally LuaMetaTEX (like its ancestors) also uses nodes to store data that is not seen in node

lists. For instance the state of expression scanning (\dimexpr etc.) and conditionals (\ifcase

141Nodes

etc.) is also kept in lists of nodes. A glue, which has five components, is stored in a node as

well, so, where most registers store just a number, a skip register (of internal quantity) uses a

pointer to a glue spec node. It has similar fields as glue nodes: shrink, shrinkorder, stretch,

stretchorder and width, which is not surprising because in the past (and other engines than

LuaTEX) a glue node also has its values stored in a glue spec. This has some advantages because

often the values are the same, so for instance spacing related skips were not resolved immedi­

ately but pointed to the current value of a space related internal register (like \spaceskip). But,

in LuaTEX we do resolve these quantities immediately and we put the current values in the glue

nodes.

FIELD TYPE EXPLANATION

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretchorder number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrinkorder number factor applied to shrink amount

You will only find these nodes in a few places, for instance when you query an internal quantity.

In principle we could do without them as we have interfaces that use the five numbers instead.

For compatibility reasons we keep glue spec nodes exposed but this might change in the future.

10.2.10 kern nodes

The \kern command creates such nodes but for instance the font and math machinery can also

add them. There are not that many fields: attr, expansion and kern.

FIELD TYPE EXPLANATION

subtype number accentkern, fontkern, horizontalmathkern, italiccorrection, left­

marginkern, mathkern, mathshapekern, rightmarginkern, userkern and

verticalmathkern

attr node list of attributes

kern number fixed horizontal or vertical advance

expansion number multiplier related to hz for font kerns

10.2.11 penalty nodes

The \penalty command is one that generates these nodes. It is one of the type of nodes often

found in vertical lists. It has the fields: attr and penalty.

FIELD TYPE EXPLANATION

subtype number afterdisplaypenalty, beforedisplaypenalty, equationnumberpenalty,

finalpenalty, linebreakpenalty, linepenalty, mathpostpenalty, math­

prepenalty, orphanpenalty, userpenalty and wordpenalty

attr node list of attributes

penalty number the penalty value

Nodes142

The subtypes are just informative and TEX itself doesn't use them. When you run into an line­

breakpenalty you need to keep inmind that it's a accumulation of club, widow and other relevant

penalties.

10.2.12 glyph nodes

These are probably the mostly used nodes and although you can push them in the current list

with for instance \char TEX will normally do it for you when it considers some input to be text.

Glyph nodes are relatively large and have many fields: attr, char, data, depth, expansion,

font, height, hyphenate, language, left, lhmin, options, rhmin, right, script, state, total,

uchyph, width, xoffset, xscale, yoffset and yscale.

FIELD TYPE EXPLANATION

subtype number bit field

attr node list of attributes

char number the character index in the font

font number the font identifier

language number the language identifier

left number the frozen \lefthyphenmnin value

right number the frozen \righthyphenmnin value

uchyph boolean the frozen \uchyph value

state number a user field (replaces the component list)

xoffset number a virtual displacement in horizontal direction

yoffset number a virtual displacement in vertical direction

width number the (original) width of the character

height number the (original) height of the character

depth number the (original) depth of the character

expansion number the to be applied expansion factor

data number a general purpose field for users (we had room for it)

The width, height and depth values are read-only. The expansion is assigned in the par builder

and used in the backend. Valid bits for the subtype field are:

BIT MEANING

0 character

1 ligature

2 ghost

3 left

4 right

The expansion has been introduced as part of the separation between front- and backend. It

is the result of extensive experiments with a more efficient implementation of expansion. Early

versions of LuaTEX already replaced multiple instances of fonts in the backend by scaling but

contrary to pdfTEX in LuaTEX we now also got rid of font copies in the frontend and replaced

them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is

also a step towards a better separation between front- and backend.

143Nodes

The ischar function checks if a node is a glyph node with a subtype still less than 256. This

function can be used to determine if applying font logic to a glyph node makes sense. The value

nil gets returned when the node is not a glyph, a character number is returned if the node is

still tagged as character and false gets returned otherwise. When nil is returned, the id is also

returned. The isglyph variant doesn't check for a subtype being less than 256, so it returns

either the character value or nil plus the id. These helpers are not always faster than separate

calls but they sometimes permit making more readable tests. The usesfont helpers takes a node

and font id and returns true when a glyph or disc node references that font.

The isnextchar and isprevchar return a next node, a character code (or false) and an node

id or next character code. The four is checkers take a node and optionally a font, data, state,

scale, xscale and yscale value that are then checked.

10.2.13 boundary nodes

This node relates to the \noboundary, \boundary, \protrusionboundary and \wordboundary

primitives. These are small nodes: attr and data are the only fields.

FIELD TYPE EXPLANATION

subtype number cancel, protrusion, user and word

attr node list of attributes

data number values 0–255 are reserved

10.2.14 par nodes

This node is inserted at the start of a paragraph. You should not mess too much with this one.

Valid fields are: attr, brokenpenalty, dir, interlinepenalty, leftbox, leftboxwidth, mid­

dlebox, rightbox and rightboxwidth.

FIELD TYPE EXPLANATION

attr node list of attributes

interlinepenalty number local interline penalty (from \localinterlinepenalty)

brokenpenalty number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 10.2.15

leftbox node the \localleftbox

leftboxwidth number width of the \localleftbox

rightbox node the \localrightbox

rightboxwidth number width of the \localrightbox

middlebox node the \localmiddlebox (zero width)

A warning: never assign a node list to one of the box fields unless you are sure its internal link

structure is correct, otherwise an error may result.

10.2.15 dir nodes

Direction nodes mark parts of the running text that need a change of direction and the \textdi­

rection command generates them. Again this is a small node, we just have attr, dir and level.

Nodes144

FIELD TYPE EXPLANATION

subtype number cancel and normal

attr node list of attributes

dir string the direction (0 = l2r, 1 = r2l)

level number nesting level of this direction

There are only two directions: left-to-right (0) and right-to-left (1). This is different from LuaTEX

that has four directions.

10.2.16 Whatsits

A whatsit node is a real simple one and it only has a subtype. It is even less than a user node

(which it actually could be) and uses hardly any memory. What you do with it it entirely up to

you: it's is real minimalistic. You can assign a subtype and it has attributes. It is all up to the

user how they are handled.

10.2.17 Math noads

10.2.17.1 The concept

These are the so--called ‘noad’s and the nodes that are specifically associated with math pro­

cessing. When you enter a formula, TEX creates a node list with regular nodes and noads. Then

it hands over the list the math processing engine. The result of that is a nodelist without noads.

Most of the noads contain subnodes so that the list of possible fields is actually quite small. Math

formulas are both a linked list and a tree. For instance in 𝑒 = 𝑚𝑐2 there is a linked list e = m c

but the c has a superscript branch that itself can be a list with branches.

First, there are the objects (the TEXbook calls them ‘atoms’) that are associated with the sim­

ple math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcenter. These all

have the same fields, and they are combined into a single node type with separate subtypes for

differentiation: attr, nucleus, options, prime, sub, subpre, sup and suppre.

Many object fields in math mode are either simple characters in a specific family or math lists

or node lists: math_char, math_text_char, sub_box and sub_mlist and delimiter. These are

endpoints and therefore the next and prev fields of these these subnodes are unused.

Some of the more elaborate noads have an option field. The values in this bitset are common:

MEANING BITS

set 0x08

internal 0x00 + 0x08

internal 0x01 + 0x08

axis 0x02 + 0x08

no axis 0x04 + 0x08

exact 0x10 + 0x08

left 0x11 + 0x08

middle 0x12 + 0x08

right 0x14 + 0x08

145Nodes

no subscript 0x21 + 0x08

no superscript 0x22 + 0x08

no script 0x23 + 0x08

10.2.17.2 math_char and math_text_char subnodes

These are the most common ones, as they represent characters, and they both have the same

fields: attr, char, fam and options.

FIELD TYPE EXPLANATION

attr node list of attributes

char number the character index

fam number the family number

The math_char is the simplest subnode field, it contains the character and family for a single

glyph object. The family eventually resolves on a reference to a font. The math_text_char

is a special case that you will not normally encounter, it arises temporarily during math list

conversion (its sole function is to suppress a following italic correction).

10.2.17.3 sub_box and sub_mlist subnodes

These two subnode types are used for subsidiary list items. For sub_box, the list points to a

‘normal’ vbox or hbox. For sub_mlist, the list points to a math list that is yet to be converted.

Their fields are: attr and list.

FIELD TYPE EXPLANATION

attr node list of attributes

list node list of nodes

A warning: never assign a node list to the list field unless you are sure its internal link structure

is correct, otherwise an error is triggered.

10.2.17.4 delimiter subnodes

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next

and prev fields are unused, but we do have: attr, largechar, largefamily, smallchar and

smallfamily.

FIELD TYPE EXPLANATION

attr node list of attributes

smallchar number character index of base character

smallfamily number family number of base character

largechar number character index of next larger character

largefamily number family number of next larger character

The fields largechar and largefamily can be zero, in that case the font that is set for the

smallfamily is expected to provide the large version as an extension to the smallchar.

Nodes146

10.2.17.5 simple noad nodes

In these noads, the nucleus, sub and sup fields can branch of. Its fields are: attr, nucleus,

options, prime, sub, subpre, sup and suppre.

FIELD TYPE EXPLANATION

subtype number accent, active, bin, close, fenced, fraction, ghost, inner, middle,

op, open, ord, over, punct, radical, rel, under, variable and vcenter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

options number bitset of rendering options

10.2.17.6 accent nodes

Accent nodes deal with stuff on top or below a math constructs. They support: accent, attr,

botaccent, fraction, nucleus, overlayaccent, sub, sup and topaccent.

FIELD TYPE EXPLANATION

subtype number bothflexible, fixedboth, fixedbottom and fixedtop

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

topaccent kernel node top accent

botaccent kernel node bottom accent

fraction number larger step criterium (divided by 1000)

10.2.17.7 style nodes

These nodes are signals to switch to another math style. They are quite simple: attr and style.

Currently the subtype is actually used to store the style but don't rely on that for the future.

Fields are: attr and style.

FIELD TYPE EXPLANATION

style string contains the style

Valid styles are: display (0), crampeddisplay (1), text (2), crampedtext (3), script (4),

crampedscript (5), scriptscript (6) and crampedscriptscript (7).

10.2.17.8 parameter nodes

These nodes are used to (locally) set math parameters: list, name, style and value. Fields are:

list, name, style and value.

FIELD TYPE EXPLANATION

style string contains the style

name string defines the parameter

value number holds the value, in case of a muglue multiple

147Nodes

10.2.17.9 choice nodes

Of its fields attr, display, script, scriptscript and text most are lists. Warning: never

assign a node list unless you are sure its internal link structure is correct, otherwise an error

can occur.

FIELD TYPE EXPLANATION

attr node list of attributes

display node list of display size alternatives

text node list of text size alternatives

script node list of scriptsize alternatives

scriptscript node list of scriptscriptsize alternatives

10.2.17.10 radical nodes

Radical nodes are the most complex as they deal with scripts as well as constructed large sym­

bols. Many fields: attr, degree, left, nucleus, options, presub, presup, prime, sub, sup and

width. Warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless

you are sure its internal link structure is correct, otherwise an error can be triggered.

FIELD TYPE EXPLANATION

subtype number delimiterover, delimiterunder, hextensible, normal, overde­

limiter, radical, root and underdelimiter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

left delimiter node

degree kernel node only set by \Uroot

width number required width

options number bitset of rendering options

10.2.17.11 fraction nodes

Fraction nodes are also used for delimited cases, hence the left and right fields among: attr,

denom, fam, left, middle, num, options, right and width.

FIELD TYPE EXPLANATION

attr node list of attributes

width number (optional) width of the fraction

num kernel node numerator

denom kernel node denominator

left delimiter node left side symbol

right delimiter node right side symbol

middle delimiter node middle symbol

options number bitset of rendering options

Warning: never assign a node list to the num, or denom field unless you are sure its internal link

structure is correct, otherwise an error can result.

Nodes148

10.2.17.12 fence nodes

Fence nodes come in pairs but either one can be a dummy (this period driven empty fence).

Fields are: attr, bottom, class, delimiter, depth, height, italic, options, source and top.

Some of these fields are used by the renderer and might get adapted in the process.

FIELD TYPE EXPLANATION

subtype number left, middle, no, operator, right and unset

attr node list of attributes

delimiter delimiter node delimiter specification

italic number italic correction

height number required height

depth number required depth

options number bitset of rendering options

class number spacing related class

10.3 The node library

10.3.1 Introduction

The node library provides methods that facilitate dealing with (lists of) nodes and their values.

They allow you to create, alter, copy, delete, and insert node, the core objects within the typeset­

ter. Nodes are represented in Lua as user data. The various parts within a node can be accessed

using named fields.

Each node has at least the three fields next, id, and subtype. The other available fields depend

on the id.

‣ The next field returns the user data object for the next node in a linked list of nodes, or nil,

if there is no next node.

‣ The id indicates TEX's ‘node type’. The field id has a numeric value for efficiency reasons,

but some of the library functions also accept a string value instead of id.

‣ The subtype is another number. It often gives further information about a node of a particular

id.

Nodes can be compared to each other, but: you are actually comparing indices into the node

memory. This means that equality tests can only be trusted under very limited conditions. It will

not work correctly in any situation where one of the two nodes has been freed and/or reallocated:

in that case, there will be false positives. The general approach to a node related callback is as

follows:

‣ Assume that the node list that you get is okay and properly double linked. If for some reason

the links are not right, you can apply node.slide to the list.

‣ When you insert a node, make sure you use a previously removed one, a new one or a copy.

Don't simply inject the same node twice.

‣ When you remove a node, make sure that when this is permanent, you also free the node or

list.

149Nodes

‣ Although you can fool the system, normally you will trigger an error when you try to copy

a nonexisting node, or free an already freed node. There is some overhead involved in this

checking but the current compromise is acceptable.

‣ When you're done, pass back (if needed) the result. It's your responsibility to make sure that

the list is properly linked (you can play safe and again apply node.slide. In principle you

can put nodes in a list that are not acceptable in the following up actions. Some nodes get

ignored, others will trigger an error, and sometimes the engine will just crash.

So, from the above it will be clear thenmemory management of nodes has to be done explicitly by

the user. Nodes are not ‘seen’ by the Lua garbage collector, so you have to call the node freeing

functions yourself when you are no longer in need of a node (list). Nodes form linked lists without

reference counting, so you have to be careful that when control returns back to LuaTEX itself,

you have not deleted nodes that are still referenced from a next pointer elsewhere, and that

you did not create nodes that are referenced more than once. Normally the setters and getters

handle this for you.

A good example are discretionary nodes that themselves have three sublists. Internally they use

special pointers, but the user never sees them because when you query them or set fields, this

property is hidden and taken care of. You just see a list. But, when you mess with these sub lists

it is your responsibility that it only contains nodes that are permitted in a discretionary.

There are statistics available with regards to the allocated node memory, which can be handy

for tracing. Normally the amount of used nodes is not that large. Typesetting a page can involve

thousands of them but most are freed when the page has been shipped out. Compared to other

programs, node memory usage is not that excessive. So, if for some reason your application

leaks nodes, if at the end of your run you lost as few hundred it's not a real problem. In fact, if

you created boxes and made copies but not flushed them for good reason, your run will for sure

end with used nodes and the statistics will mention that. The same is true for attributes and

skips (glue spec nodes): keeping the current state involves using nodes.

10.3.2 Housekeeping

10.3.2.1 types

This function returns an array that maps node id numbers to node type strings, providing an

overview of the possible top-level id types.

<table> t = node.types()

When we issue this command, we get a table. The currently visible types are { [0] =

"hlist", "vlist", "rule", "insert", "mark", "adjust", "boundary", "disc", "whatsit",

"par", "dir", "math", "glue", "kern", "penalty", "style", "choice", "parameter",

"noad", "radical", "fraction", "accent", "fence", "math_char", "math_text_char",

"sub_box", "sub_mlist", "delimiter", "glyph", "unset", [31] = "align_record", [32]

= "attribute", [33] = "glue_spec", [34] = "temp", [35] = "split", } where the numbers

are the internal identifiers. Only those nodes are reported that make sense to users so there

can be gaps in the range of numbers.

Nodes150

10.3.2.2 id and type

This converts a single type name to its internal numeric representation.

<number> id = node.id(<string> type)

The node.id("glyph") command returns the number 28 and node.id("hlist") returns 0

where the numbers don't relate to importance or some ordering; they just appear in the order

that is handy for the engine. Commands like this are rather optimized so performance should

be ok but you can of course always store the id in a Lua number.

The reverse operation is: node.type If the argument is a number, then the next function converts

an internal numeric representation to an external string representation. Otherwise, it will return

the string node if the object represents a node, and nil otherwise.

<string> type = node.type(<any> n)

The node.type(4) command returns the string mark and node.id(99) returns nil because there

is no node with that id.

10.3.2.3 fields and hasfield

This function returns an indexed table with valid field names for a particular type of node.

<table> t = node.fields(<number|string> id)

The function accepts a string or number, so node.fields ("glyph") returns { [-1]

= "prev", [0] = "next", "id", "subtype", "attr", "char", "font", "language", "lh­

min", "rhmin", "uchyph", "state", "left", "right", "xoffset", "yoffset", "xscale",

"yscale", "width", "height", "depth", "total", "expansion", "data", "script", "hy­

phenate", "options", } and node.fields (12) gives { [-1] = "prev", [0] = "next",

"id", "subtype", "attr", "leader", "width", "stretch", "shrink", "stretchorder",

"shrinkorder", "font", }.

The hasfield function returns a boolean that is only true if n is actually a node, and it has the

field.

<boolean> t = node.hasfield(<node> n, <string> field)

This function probably is not that useful but some nodes don't have a subtype, attr or prev field

and this is a way to test for that.

10.3.2.4 isnode

<boolean|integer> t = node.isnode(<any> item)

This function returns a number (the internal index of the node) if the argument is a user data

object of type <node> and false when no node is passed.

10.3.2.5 new

The new function creates a new node. All its fields are initialized to either zero or nil except

for id and subtype. Instead of numbers you can also use strings (names). If you pass a second

argument the subtype will be set too.

151Nodes

<node> n = node.new(<number|string> id)

<node> n = node.new(<number|string> id, <number|string> subtype)

As already has been mentioned, you are responsible for making sure that nodes created this way

are used only once, and are freed when you don't pass them back somehow.

10.3.2.6 free, flushnode and flushlist

The next one frees node n from TEX's memory. Be careful: no checks are done on whether this

node is still pointed to from a register or some next field: it is up to you to make sure that the

internal data structures remain correct. Fields that point to nodes or lists are flushed too. So,

when you used their content for something else you need to set them to nil first.

<node> next = node.free(<node> n)

flushnode(<node> n)

The free function returns the next field of the freed node, while the flushnode alternative

returns nothing.

A list starting with node n can be flushed from TEX's memory too. Be careful: no checks are done

on whether any of these nodes is still pointed to from a register or some next field: it is up to

you to make sure that the internal data structures remain correct.

node.flushlist(<node> n)

When you free for instance a discretionary node, flushlist is applied to the pre, post, replace

so you don't need to do that yourself. Assigning them nil won't free those lists!

10.3.2.7 copy and copylist

This creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.

Only the next field is not copied.

<node> m = node.copy(<node> n)

A deep copy of the node list that starts at n can be created too. If m is also given, the copy stops

just before node m.

<node> m = node.copylist(<node> n)

<node> m = node.copylist(<node> n, <node> m)

Note that you cannot copy attribute lists this way. However, there is normally no need to copy

attribute lists as when you do assignments to the attr field or make changes to specific attrib­

utes, the needed copying and freeing takes place automatically. When you change a value of an

attribute in a list, it will affect all the nodes that share that list.

10.3.2.8 write

node.write(<node> n)

This function will append a node list to TEX's ‘current list’. The node list is not deep-copied!

There is no error checking either! You might need to enforce horizontal mode in order for this

to work as expected.

Nodes152

10.3.3 Manipulating lists

10.3.3.1 slide

This helper makes sure that the node list is double linked and returns the found tail node.

<node> tail = node.slide(<node> n)

In most cases TEX itself only uses next pointers but your other callbacks might expect proper

prev pointers too. So, when you run into issues or are in doubt, apply the slide function before

you return the list.

10.3.3.2 tail

<node> m = node.tail(<node> n)

Returns the last node of the node list that starts at n.

10.3.3.3 length and count

<number> i = node.length(<node> n)

<number> i = node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it

stops at m instead of at the end of the list. The node m is not counted.

<number> i = node.count(<number> id, <node> n)

<number> i = node.count(<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have a matching id

field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not

counted. This function also accept string id's.

10.3.3.4 remove

<node> head, current, removed =

node.remove(<node> head, <node> current)

<node> head, current =

node.remove(<node> head, <node> current, <boolean> true)

This function removes the node current from the list following head. It is your responsibility

to make sure it is really part of that list. The return values are the new head and current

nodes. The returned current is the node following the current in the calling argument, and

is only passed back as a convenience (or nil, if there is no such node). The returned head is

more important, because if the function is called with current equal to head, it will be changed.

When the third argument is passed, the node is freed.

10.3.3.5 insertbefore

<node> head, new = node.insertbefore(<node> head, <node> current, <node> new)

153Nodes

This function inserts the node new before current into the list following head. It is your respon­

sibility to make sure that current is really part of that list. The return values are the (potentially

mutated) head and the node new, set up to be part of the list (with correct next field). If head is

initially nil, it will become new.

10.3.3.6 insertafter

<node> head, new = node.insertafter(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon­

sibility to make sure that current is really part of that list. The return values are the head and

the node new, set up to be part of the list (with correct next field). If head is initially nil, it will

become new.

10.3.3.7 lastnode

<node> n = node.lastnode()

This function pops the last node from TEX's ‘current list’. It returns that node, or nil if the

current list is empty.

10.3.3.8 traverse

<node> t, id, subtype = node.traverse(<node> n)

This is a Lua iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

...

end

is functionally equivalent to:

do

local n

local function f (head,var)

local t

if var == nil then

t = head

else

t = var.next

end

return t

end

while true do

n = f (head, n)

if n == nil then break end

...

end

end

Nodes154

It should be clear from the definition of the function f that even though it is possible to add or

remove nodes from the node list while traversing, you have to take great care to make sure all

the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

10.3.3.9 traverseid

<node> t, subtype = node.traverseid(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching

id field.

See the previous section for details. The change is in the local function f, which now does an

extra while loop checking against the upvalue id:

local function f(head,var)

local t

if var == nil then

t = head

else

t = var.next

end

while not t.id == id do

t = t.next

end

return t

end

10.3.3.10 traversechar and traverseglyph

The traversechar iterator loops over the glyph nodes in a list. Only nodes with a subtype less

than 256 are seen.

<direct> n, font, char = node.direct.traversechar(<direct> n)

The traverseglyph iterator loops over a list and returns the list and filters all glyphs:

<direct> n, font, char = node.traverseglyph(<direct> n)

These functions are only available for direct nodes.

10.3.3.11 traverselist

This iterator loops over the hlist and vlist nodes in a list.

<direct> n, id, subtype, list = node.traverselist(<direct> n)

The four return values can save some time compared to fetching these fields but in practice you

seldom need them all. This function is only available for direct nodes.

155Nodes

10.3.3.12 traversecontent

This iterator loops over nodes that have content: hlist, vlist, glue with leaders, glyphs, disc

and rules nodes.

<direct> n, id, subtype[, list|leader] = node.traverselist(<direct> n)

The four return values can save some time compared to fetching these fields but in practice you

seldom need them all. This function is only available for direct nodes.

10.3.3.13 Reverse traversing

The traversers also support backward traversal. An optional extra boolean triggers this. Yet

another optional boolean will automatically start at the end of the given list.

\setbox0\hbox{1 2 3 4 5}

local l = tex.box[0].list

for n in node.traverse(l) do

print("1>",n)

end

for n in node.traverse(l,true) do

print("2>",n)

end

for n in node.traverse(l,true,true) do

print("3>",n)

end

for n in node.traverseid(nodes.nodecodes.glyph,l) do

print("4>",n)

end

for n in node.traverseid(nodes.nodecodes.glyph,l,true) do

print("5>",n)

end

for n in node.traverseid(nodes.nodecodes.glyph,l,true,true) do

print("6>",n)

end

This produces something similar to this (the glyph subtype indicates that it has been processed

by the font handlers):

1> <node : nil <= 1112 => 590 : glyph 32768>

1> <node : 1112 <= 590 => 1120 : glue spaceskip>

1> <node : 590 <= 1120 => 849 : glyph 32768>

1> <node : 1120 <= 849 => 1128 : glue spaceskip>

1> <node : 849 <= 1128 => 880 : glyph 32768>

1> <node : 1128 <= 880 => 1136 : glue spaceskip>

1> <node : 880 <= 1136 => 1020 : glyph 32768>

1> <node : 1136 <= 1020 => 1144 : glue spaceskip>

1> <node : 1020 <= 1144 => nil : glyph 32768>

Nodes156

2> <node : nil <= 1112 => 590 : glyph 32768>

3> <node : 1020 <= 1144 => nil : glyph 32768>

3> <node : 1136 <= 1020 => 1144 : glue spaceskip>

3> <node : 880 <= 1136 => 1020 : glyph 32768>

3> <node : 1128 <= 880 => 1136 : glue spaceskip>

3> <node : 849 <= 1128 => 880 : glyph 32768>

3> <node : 1120 <= 849 => 1128 : glue spaceskip>

3> <node : 590 <= 1120 => 849 : glyph 32768>

3> <node : 1112 <= 590 => 1120 : glue spaceskip>

3> <node : nil <= 1112 => 590 : glyph 32768>

4> <node : nil <= 1112 => 590 : glyph 32768>

4> <node : 590 <= 1120 => 849 : glyph 32768>

4> <node : 849 <= 1128 => 880 : glyph 32768>

4> <node : 880 <= 1136 => 1020 : glyph 32768>

4> <node : 1020 <= 1144 => nil : glyph 32768>

5> <node : nil <= 1112 => 590 : glyph 32768>

6> <node : 1020 <= 1144 => nil : glyph 32768>

6> <node : 880 <= 1136 => 1020 : glyph 32768>

6> <node : 849 <= 1128 => 880 : glyph 32768>

6> <node : 590 <= 1120 => 849 : glyph 32768>

6> <node : nil <= 1112 => 590 : glyph 32768>

10.3.3.14 findnode

This helper returns the location of the first match at or after node n:

<node> n = node.findnode(<node> n, <integer> subtype)

<node> n, subtype = node.findnode(<node> n)

10.3.4 Glue handling

10.3.4.1 setglue

You can set the five properties of a glue in one go. If a non-numeric value is passed the property

becomes zero.

node.setglue(<node> n)

node.setglue(<node> n,width,stretch,shrink,stretchorder,shrinkorder)

When you pass values, only arguments that are numbers are assigned so

node.setglue(n,655360,false,65536)

will only adapt the width and shrink.

When a list node is passed, you set the glue, order and sign instead.

10.3.4.2 getglue

The next call will return 5 values or nothing when no glue is passed.

157Nodes

<integer> width, <integer> stretch, <integer> shrink, <integer> stretchorder,

<integer> shrinkorder = node.getglue(<node> n)

When the second argument is false, only the width is returned (this is consistent with tex.get).

When a list node is passed, you get back the glue that is set, the order of that glue and the sign.

10.3.4.3 iszeroglue

This function returns true when the width, stretch and shrink properties are zero.

<boolean> isglue = node.iszeroglue(<node> n)

10.3.5 Attribute handling

10.3.5.1 Attributes

Assignments to attributes registers result in assigning lists with set attributes to nodes and the

implementation is non-trivial because the value that is attached to a node is essentially a (sorted)

sparse array of key-value pairs. It is generally easiest to deal with attribute lists and attributes

by using the dedicated functions in the node library.

10.3.5.2 attribute nodes

An attribute comes in two variants, indicated by subtype. Because attributes are stored in a

sorted linked list, and because they are shared, the first node is a list reference node and the

following ones are value nodes. So, most attribute nodes are value nodes. These are forward

linked lists. The reference node has fields:

FIELD TYPE EXPLANATION

next node pointer to the first attribute

count number the reference count

Value nodes have these:

FIELD TYPE EXPLANATION

next node pointer to the next attribute

index number the attribute index

value number the attribute value

Because there are assumptions to how these list are build you should rely on the helpers, also

because details might change.

10.3.5.3 currentattr

This returns the currently active list of attributes, if there is one.

<node> m = node.currentattr()

The intended usage of currentattr is as follows:

Nodes158

local x1 = node.new("glyph")

x1.attr = node.currentattr()

local x2 = node.new("glyph")

x2.attr = node.currentattr()

or:

local x1 = node.new("glyph")

local x2 = node.new("glyph")

local ca = node.currentattr()

x1.attr = ca

x2.attr = ca

The attribute lists are reference counted and the assignment takes care of incrementing the

count. You cannot expect the value ca to be valid any more when you assign attributes (using

tex.setattribute) or when control has been passed back to TEX.

10.3.5.4 hasattribute

<number> v = node.hasattribute(<node> n, <number> id)

<number> v = node.hasattribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value

matches val. It returns the value, or, if no match is found, nil.

10.3.5.5 getattribute

<number> v = node.getattribute(<node> n, <number> id)

Tests if a node has an attribute with number id set. It returns the value, or, if no match is found,

nil. If no id is given then the zero attributes is assumed.

10.3.5.6 findattribute

<number> v, <node> n = node.findattribute(<node> n, <number> id)

Finds the first node that has attribute with number id set. It returns the value and the node if

there is a match and otherwise nothing.

10.3.5.7 setattribute

node.setattribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

10.3.5.8 unsetattribute

<number> v =

node.unsetattribute(<node> n, <number> id)

<number> v =

node.unsetattribute(<node> n, <number> id, <number> val)

159Nodes

Unsets the attribute with number id. If val is also supplied, it will only perform this operation

if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

10.3.6 Glyph handling

10.3.6.1 firstglyph

<node> n = node.firstglyph(<node> n)

<node> n = node.firstglyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is

a glyph, or nil. If m is given, processing stops at (but including) that node, otherwise processing

stops at the end of the list.

10.3.6.2 ischar and isglyph

The subtype of a glyph node signals if the glyph is already turned into a character reference or

not.

<boolean> b = node.ischar(<node> n)

<boolean> b = node.isglyph(<node> n)

10.3.6.3 hasglyph

This function returns the first glyph or disc node in the given list:

<node> n = node.hasglyph(<node> n)

10.3.6.4 ligaturing

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n, <node> m)

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned

nodes h and t are the new head and tail (both n and m can change into a new ligature).

10.3.6.5 kerning

<node> h, <node> t, <boolean> success = node.kerning(<node> n)

<node> h, <node> t, <boolean> success = node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified node list. The tail node m is optional. The two returned

nodes h and t are the head and tail (either one of these can be an inserted kern node, because

special kernings with word boundaries are possible).

10.3.6.6 unprotectglyph[s]

node.unprotectglyph(<node> n)

node.unprotectglyphs(<node> n,[<node> n])

Nodes160

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to con­

vert from characters to glyphs during node processing. The second argument is optional and

indicates the end of a range.

10.3.6.7 protectglyph[s]

node.protectglyph(<node> n)

node.protectglyphs(<node> n,[<node> n])

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,

it adds only 255. The special handling of 1 means that characters will become glyphs after

subtraction of 256. A single character can be marked by the singular call. The second argument

is optional and indicates the end of a range.

10.3.6.8 protrusionskippable

<boolean> skippable = node.protrusionskippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,

this node can be skipped.

10.3.6.9 checkdiscretionary, checkdiscretionaries

When you fool around with disc nodes you need to be aware of the fact that they have a special

internal data structure. As long as you reassign the fields when you have extended the lists it's

ok because then the tail pointers get updated, but when you add to list without reassigning you

might end up in trouble when the linebreak routine kicks in. You can call this function to check

the list for issues with disc nodes.

node.checkdiscretionary(<node> n)

node.checkdiscretionaries(<node> head)

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it

also checks if the node is a disc node).

10.3.6.10 flattendiscretionaries

This function will remove the discretionaries in the list and inject the replace field when set.

<node> head, count = node.flattendiscretionaries(<node> n)

10.3.7 Packaging

10.3.7.1 hpack

This function creates a new hlist by packaging the list that begins at node n into a horizontal

box. With only a single argument, this box is created using the natural width of its components.

In the three argument form, infomust be either additional or exactly, and w is the additional

(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness

of the generated box.

161Nodes

<node> h, <number> b =

node.hpack(<node> n)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info, <string> dir)

Caveat: there can be unexpected side-effects to this function, like updating some of the \marks

and \inserts. Also note that the content of h is the original node list n: if you call node.free(h)

you will also free the node list itself, unless you explicitly set the list field to nil beforehand.

And in a similar way, calling node.free(n) will invalidate h as well!

10.3.7.2 vpack

This function creates a new vlist by packaging the list that begins at node n into a vertical box.

With only a single argument, this box is created using the natural height of its components. In

the three argument form, info must be either additional or exactly, and w is the additional

(\vbox spread) or exact (\vbox to) height to be used.

<node> h, <number> b =

node.vpack(<node> n)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info, <string> dir)

The second return value is the badness of the generated box. See the description of hpack for a

few memory allocation caveats.

10.3.7.3 dimensions, rangedimensions, naturalwidth

<number> w, <number> h, <number> d =

node.dimensions(<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<node> n, <node> t)

This function calculates the natural in-line dimensions of the node list starting at node n and

terminating just before node t (or the end of the list, if there is no second argument). The

return values are scaled points. An alternative format that starts with glue parameters as the

first three arguments is also possible:

<number> w, <number> h, <number> d =

node.dimensions(<number> glueset, <number> gluesign, <number> glueorder,

<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<number> glueset, <number> gluesign, <number> glueorder,

<node> n, <node> t)

This calling method takes glue settings into account and is especially useful for finding the actual

width of a sublist of nodes that are already boxed, for example in code like this, which prints the

width of the space in between the a and b as it would be if \box0 was used as-is:

Nodes162

\setbox0 = \hbox to 20pt {a b}

\directlua{print (node.dimensions(

tex.box[0].glueset,

tex.box[0].gluesign,

tex.box[0].glueorder,

tex.box[0].head.next,

node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TEX where floats are used, which

means that you can get small differences in rounding when you compare the width reported by

hpack with dimensions.

The second alternative saves a few lookups and can be more convenient in some cases:

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first)

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first, <node> last)

A simple and somewhat more efficient variant is this:

<number> w =

node.naturalwidth(<node> start, <node> stop)

10.3.8 Math

10.3.8.1 mlisttohlist

<node> h =

node.mlisttohlist(<node> n, <string> display_type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal

list h. The interface is exactly the same as for the callback mlisttohlist.

10.3.8.2 endofmath

<node> t = node.endofmath(<node> start)

Looks for and returns the next math_node following the start. If the given node is a math end

node this helper returns that node, else it follows the list and returns the next math endnote. If

no such node is found nil is returned.

10.4 Two access models

Deep down in TEX a node has a number which is a numeric entry in a memory table. In fact, this

model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks

that operate on nodes is quite fast too. Each node gets a number that is in fact an index in the

163Nodes

memory table and that number often is reported when you print node related information. You

go from user data nodes and there numeric references and back with:

<integer> d = node.todirect(<node> n))

<node> n = node.tonode(<integer> d))

The user data model is rather robust as it is a virtual interface with some additional checking

while the more direct access which uses the node numbers directly. However, even with user

data you can get into troubles when you free nodes that are no longer allocated or mess up lists.

if you apply tostring to a node you see its internal (direct) number and id.

The first model provides key based access while the second always accesses fields via functions:

nodeobject.char

getfield(nodenumber,"char")

If you use the direct model, even if you know that you deal with numbers, you should not depend

on that property but treat it as an abstraction just like traditional nodes. In fact, the fact that we

use a simple basic datatype has the penalty that less checking can be done, but less checking

is also the reason why it's somewhat faster. An important aspect is that one cannot mix both

methods, but you can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct

one when speed might be a real issue. For that reason LuaTEX also provide the get* and set*

functions in the top level node namespace. There is a limited set of getters. When implementing

this direct approach the regular index by key variant was also optimized, so direct access only

makes sense when nodes are accessed millions of times (which happens in some font processing

for instance).

We're talking mostly of getters because setters are less important. Documents have not that

many content related nodes and setting many thousands of properties is hardly a burden con­

trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next

if next then

-- do something

end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being

called. In practice it boils down to looking up the node type and based on the node type checking

for the field name. In a worst case you have a node type that sits at the end of the lookup list and

a field that is last in the lookup chain. However, in successive versions of LuaTEX these lookups

have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.

The next code does the same and performs a tiny bit faster (but not that much because it is still

a function call but one that knows what to look up).

local next = node.next(current)

if next then

Nodes164

-- do something

end

In the direct namespace there are more helpers and most of them are accompanied by setters.

The getters and setters are clever enough to see what node is meant. We don't deal with whatsit

nodes: their fields are always accessed by name. It doesn't make sense to add getters for all

fields, we just identifier the most likely candidates. In complex documents, many node and fields

types never get seen, or seen only a few times, but for instance glyphs are candidates for such

optimization. The node.direct interface has some more helpers.8

The setdisc helper takes three (optional) arguments plus an optional fourth indicating the sub­

type. Its getdisc takes an optional boolean; when its value is true the tail nodes will also be

returned. The setfont helper takes an optional second argument, it being the character. The

directmode setter setlink takes a list of nodes and will link them, thereby ignoring nil entries.

The first valid node is returned (beware: for good reason it assumes single nodes). For rarely

used fields no helpers are provided and there are a few that probably are used seldom too but

were added for consistency. You can of course always define additional accessors using get­

field and setfield with little overhead. When the second argument of setattributelist is

true the current attribute list is assumed.

The reverse function reverses a given list. The exchange function swaps two nodes; it takes

upto three arguments: a head node, and one or two to be swapped nodes. When there is no

third argument, it will assume that the node following node is to be used. So we have:

head = node.direct.reverse(head)

head = node.direct.exchange(head,first,[second])

In ConTEXt some of the not performance-critical user data variants are emulated in Lua and not

in the engine, so we retain downward compatibility.

FUNCTION NODE DIRECTemulated

checkdiscretionaries − + +
checkdiscretionary − + +
copylist + +
copy + +
count − + +
currentattributes + +
dimensions − + +
effectiveglue − + +
endofmath − + +
findattributerange − +
findattribute − + +
findnode − +
firstglyph − + +
flattendiscretionaries − + +
flushlist + +

8 We can define the helpers in the node namespace with getfield which is about as efficient, so at some point we might

provide that as module.

165Nodes

flushnode + +
free + +
getattributes − +
getattribute + +
getpropertiestable + +
getsynctexfields − +
getattributelist − +
getboth − +
getbox − +
getchar − +
getdata − +
getdepth − +
getdirection − +
getdisc − +
getexpansion − +
getfam − +
getfield + +
getfont − +
getglue − + +
getglyphdata − +
getglyphdimensions − + +
getglyphscript − +
getglyphstate − +
getheight − +
getid − +
getindex − +
getkerndimension − + +
getkern − +
getlanguage − +
getleader − +
getlist − +
getnext − +
getnormalizedline − +
getnucleus − +
getoffsets − +
getoptions − +
getorientation − +
getparstate − +
getpenalty − +
getpost − +
getprev − +
getpre − +
getproperty + +
getreplace − +
getscales − +
getscript − +

Nodes166

getshift − +
getstate − +
getsubpre − +
getsubtype − +
getsub − +
getsuppre − +
getsup − +
gettotal + +
getwhd − +
getwidth − +
getxscale − +
getxyscale − +
getyscale − +
hasattribute + +
hasdimensions − +
hasfield + +
hasglyphoption − + +
hasglyph − + +
hpack − + +
hyphenating − + +
ignoremathskip − +
insertafter + +
insertbefore + +
ischar − +
isdirect − +
isglyph − +
isnextchar − +
isnextglyph − +
isnode + +
isprevchar − +
isprevglyph − +
isvalid − +
iszeroglue − + +
kerning − + +
lastnode − + +
length − + +
ligaturing − + +
makeextensible − + +
migrate − +
mlisttohlist − + +
naturalwidth − + +
new + +
protectglyphs − + +
protectglyph − + +
protrusionskippable − + +
rangedimensions − + +

167Nodes

remove + +
setattributes − +
setattribute + +
setsynctexfields − +
setattributelist − +
setboth − +
setbox − +
setchar − +
setdata − +
setdepth − +
setdirection − +
setdisc − +
setexpansion − +
setfam − +
setfield + +
setfont − +
setglue + +
setglyphdata − +
setglyphscript − +
setglyphstate − +
setheight − +
setindex − +
setkern − +
setlanguage − +
setleader − +
setlink − +
setlist − +
setnext − +
setnucleus − +
setoffsets − +
setoptions − +
setorientation − +
setpenalty − +
setpost − +
setprev − +
setpre − +
setproperty + +
setreplace − +
setscales − +
setscript − +
setshift − +
setsplit − +
setstate − +
setsubpre − +
setsubtype − +
setsub − +

Nodes168

setsuppre − +
setsup − +
setwhd − +
setwidth − +
slide − + +
startofpar − +
subtype − −
tail + +
todirect − +
tonode − +
tostring + −
total − +
tovaliddirect − +
traversechar + +
traversecontent + +
traverseglyph + +
traverseid + +
traverselist + +
traverse + +
type + −
unprotectglyphs − + +
unprotectglyph − + +
unsetattributes − +
unsetattribute + +
usedlist − + +
usesfont − + +
verticalbreak − +
vpack − + +
write + +

The node.next and node.prev functions will stay but for consistency there are variants called

getnext and getprev. We had to use get because node.id and node.subtype are already taken

for providing meta information about nodes. Note: The getters do only basic checking for valid

keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some of the getters and setters handle multiple node types, given that the field is relevant. In

that case, some field names are considered similar (like kern and width, or data and value). In

retrospect we could have normalized field names better but we decided to stick to the original

(internal) names as much as possible. After all, at the Lua end one can easily create synonyms.

Some nodes have indirect references. For instance a math character refers to a family instead

of a font. In that case we provide a virtual font field as accessor. So, getfont and .font can be

used on them. The same is true for the width, height and depth of glue nodes. These actually

access the spec node properties, and here we can set as well as get the values.

You can set and query the SyncTEX fields, a file number aka tag and a line number, for a glue,

kern, hlist, vlist, rule and math nodes as well as glyph nodes (although this last one is not used

in native SyncTEX).

169Nodes

node.setsynctexfields(<integer> f, <integer> l)

<integer> f, <integer> l =

node.getsynctexfields(<node> n)

Of course you need to know what you're doing as no checking on sane values takes place. Also,

the synctex interpreter used in editors is rather peculiar and has some assumptions (heuristics).

10.5 Normalization

As an experiment the lines resulting from paragraph construction can be normalized. There are

several modes, that can be set and queried with:

node.direct.setnormalize(<integer> n)

<integer> n = node.direct.getnormalize()

The state of a line (a hlist) can be queried with:

<integer> leftskip, <integer> rightskip,

<integer> lefthangskip, <integer> righthangskip,

<node> head, <node> tail,

<integer> parindent, <integer> parfillskip = node.direct.getnormalized()

The modes accumulate, so mode 4 includes 1 upto 3:

VALUE EXPLANATION

1 left and right skips and directions

2 indentation and parfill skip

3 hanging indentation and par shapes

4 idem but before left and right skips

5 inject compensation for overflow

This is experimental code and might take a while to become frozen.

10.6 Properties

Attributes are a convenient way to relate extra information to a node. You can assign them at

the TEX end as well as at the Lua end and consult them at the Lua end. One big advantage is that

they obey grouping. They are linked lists and normally checking for them is pretty efficient, even

if you use a lot of them. A macro package has to provide some way to manage these attributes

at the TEX end because otherwise clashes in their usage can occur.

Each node also can have a properties table and you can assign values to this table using the

setproperty function and get properties using the getproperty function. Managing properties

is way more demanding than managing attributes.

Take the following example:

\directlua {

local n = node.new("glyph")

Nodes170

node.setproperty(n,"foo")

print(node.getproperty(n))

node.setproperty(n,"bar")

print(node.getproperty(n))

node.free(n)

}

This will print foo and bar which in itself is not that useful when multiple mechanisms want to

use this feature. A variant is:

\directlua {

local n = node.new("glyph")

node.setproperty(n,{ one = "foo", two = "bar" })

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

This time we store two properties with the node. It really makes sense to have a table as property

because that way we can store more. But in order for that to work well you need to do it this

way:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.one = "foo"

t.two = "bar"

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

Here our own properties will not overwrite other users properties unless of course they use the

same keys. So, eventually you will end up with something:

\directlua {

171Nodes

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.myself = { one = "foo", two = "bar" }

print(node.getproperty(n).myself.one)

print(node.getproperty(n).myself.two)

node.free(n)

}

This assumes that only you use myself as subtable. The possibilities are endless but care is

needed. For instance, the generic font handler that ships with ConTEXt uses the injections

subtable and you should not mess with that one!

There are a few helper functions that you normally should not touch as user: getproperti­

estable and will give the table that stores properties (using direct entries) and you can best not

mess too much with that one either because LuaTEX itself will make sure that entries related to

nodes will get wiped when nodes get freed, so that the Lua garbage collector can do its job. In

fact, the main reason why we have this mechanism is that it saves the user (or macro package)

some work. One can easily write a property mechanism in Lua where after a shipout properties

gets cleaned up but it's not entirely trivial to make sure that with each freed node also its prop­

erties get freed, due to the fact that there can be nodes left over for a next page. And having a

callback bound to the node deallocator would add way to much overhead.

When we copy a node list that has a table as property, there are several possibilities: we do the

same as a new node, we copy the entry to the table in properties (a reference), we do a deep copy

of a table in the properties, we create a new table and give it the original one as a metatable.

After some experiments (that also included timing) with these scenarios we decided that a deep

copy made no sense, nor did nilling. In the end both the shallow copy and the metatable variant

were both ok, although the second one is slower. The most important aspect to keep in mind is

that references to other nodes in properties no longer can be valid for that copy. We could use

two tables (one unique and one shared) or metatables but that only complicates matters.

When defining a new node, we could already allocate a table but it is rather easy to do that at

the lua end e.g. using a metatable __indexmethod. That way it is under macro package control.

When deleting a node, we could keep the slot (e.g. setting it to false) but it could make memory

consumption raise unneeded when we have temporary large node lists and after that only small

lists. Both are not done because in the end this is what happens now: when a node is copied,

and it has a table as property, the new node will share that table. The copy gets its own table

with the original table as metatable.

A few more experiments were done. For instance: copy attributes to the properties so that we

have fast access at the Lua end. In the end the overhead is not compensated by speed and

Nodes172

convenience, in fact, attributes are not that slow when it comes to accessing them. So this was

rejected.

Another experiment concerned a bitset in the node but again the gain compared to attributes

was neglectable and given the small amount of available bits it also demands a pretty strong

agreement over what bit represents what, and this is unlikely to succeed in the TEX community.

It doesn't pay off.

Just in case one wonders why properties make sense: it is not so much speed that we gain,

but more convenience: storing all kinds of (temporary) data in attributes is no fun and this

mechanismmakes sure that properties are cleaned up when a node is freed. Also, the advantage

of a more or less global properties table is that we stay at the Lua end. An alternative is to store

a reference in the node itself but that is complicated by the fact that the register has some

limitations (no numeric keys) and we also don't want to mess with it too much.

173Lua callbacks

11 Lua callbacks

11.1 Registering callbacks

The callbacks are a moving target. Don't bother me with questions about them.

This library has functions that register, find and list callbacks. Callbacks are Lua functions

that are called in well defined places. There are two kinds of callbacks: those that mix with

existing functionality, and those that (when enabled) replace functionality. In mosty cases the

second category is expected to behave similar to the built in functionality because in a next step

specific data is expected. For instance, you can replace the hyphenation routine. The function

gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used

for constructing a paragraph. Another function can replace the ligature builder and/or kerner.

Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id = callback.register(<string> callback_name, <function> func)

id = callback.register(<string> callback_name, nil)

id = callback.register(<string> callback_name, false)

Here the callback_name is a predefined callback name, see below. The function returns the

internal id of the callback or nil, if the callback could not be registered.

LuaTEX internalizes the callback function in such a way that it does not matter if you redefine a

function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function

for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,

doing so will prevent LuaTEX from executing whatever it would execute by default (when no

callback function is registered at all). Be warned: this may cause all sorts of grief unless you

know exactly what you are doing!

<table> info =

callback.list()

The keys in the table are the known callback names, the value is a boolean where true means

that the callback is currently set (active).

<function> f = callback.find(callback_name)

If the callback is not set, find returns nil. The known function can be used to check if a callback

is supported.

if callback.known("foo") then ... end

Lua callbacks174

11.2 File related callbacks

11.2.1 find_format_file and find_log_file

These callbacks are called as:

<string> actualname =

function (<string> askedname)

The askedname is a format file for reading (the format file for writing is always opened in the

current directory) or a log file for writing.

11.2.2 open_data_file

This callback function gets a filename passed:

<table> env = function (<string> filename)

The return value is either the boolean value false or a table with two functions. A mandate

reader function fill be called once for each new line to be read, the optional close function will

be called once LuaTEX is done with the file.

LuaTEX never looks at the rest of the table, so you can use it to store your private per-file data.

Both the callback functions will receive the table as their only argument.

11.3 Data processing callbacks

11.3.1 process_jobname

This callback allows you to change the jobname given by \jobname in TEX and tex.jobname in

Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)

return <string> adjusted_jobname

end

The only argument is the actual job name; you should not use tex.jobname inside this function

or infinite recursion may occur. If you return nil, LuaTEX will pretend your callback never

happened. This callback does not replace any internal code.

11.4 Node list processing callbacks

The description of nodes and node lists is in chapter 10.

11.4.1 contribute_filter

This callback is called when LuaTEX adds contents to list:

175Lua callbacks

function(<string> extrainfo)

end

The string reports the group code. From this you can deduce from what list you can give a treat.

VALUE EXPLANATION

pre_box interline material is being added

pre_adjust \vadjust material is being added

box a typeset box is being added (always called)

adjust \vadjust material is being added

11.4.2 buildpage_filter

This callback is called whenever LuaTEX is ready to move stuff to the main vertical list. You can

use this callback to do specialized manipulation of the page building stage like imposition or

column balancing.

function(<string> extrainfo)

end

The string extrainfo gives some additional information about what TEX's state is with respect

to the ‘current page’. The possible values for the buildpage_filter callback are:

VALUE EXPLANATION

alignment a (partial) alignment is being added

after_output an output routine has just finished

new_graf the beginning of a new paragraph

vmode_par \par was found in vertical mode

hmode_par \par was found in horizontal mode

insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts

after_display a display is finished

end LuaTEX is terminating (it's all over)

11.4.3 build_page_insert

This callback is called when the pagebuilder adds an insert. There is not much control over this

mechanism but this callback permits some last minute manipulations of the spacing before an

insert, something that might be handy when for instance multiple inserts (types) are appended

in a row.

function(<number> n, <number> i)

return <number> register

end

with

Lua callbacks176

VALUE EXPLANATION

n the insert class

i the order of the insert

The return value is a number indicating the skip register to use for the prepended spacing. This

permits for instance a different top space (when i equals one) and intermediate space (when i

is larger than one). Of course you can mess with the insert box but you need to make sure that

LuaTEX is happy afterwards.

11.4.4 pre_linebreak_filter

This callback is called just before LuaTEX starts converting a list of nodes into a stack of \hboxes,

after the addition of \parfillskip.

function(<node> head, <string> groupcode)

return <node> newhead

end

The string called groupcode identifies the nodelist's context within TEX's processing. The range

of possibilities is given in the table below, but not all of those can actually appear in pre_line­

break_filter, some are for the hpack_filter and vpack_filter callbacks that will be ex­

plained in the next two paragraphs.

VALUE EXPLANATION

<empty> main vertical list

hbox \hbox in horizontal mode

adjusted_hbox \hbox in vertical mode

vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox

split_off top of a \vsplit

split_keep remainder of a \vsplit

align_set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

‣ boolean true signals successful processing

‣ <node> signals that the ‘head’ node should be replaced by the returned node

‣ boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

177Lua callbacks

11.4.5 linebreak_filter

This callback replaces LuaTEX's line breaking algorithm.

function(<node> head, <boolean> is_display)

return <node> newhead

end

The returned node is the head of the list that will be added to the main vertical list, the boolean

argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTEX will apply the internal linebreak algorithm

on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head

of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent

an \hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up

in an unfixable ‘deadcycles loop’.

11.4.6 append_to_vlist_filter

This callback is called whenever LuaTEX adds a box to a vertical list (the mirrored argument is

obsolete):

function(<node> box, <string> locationcode, <number> prevdepth)

return list [, prevdepth [, checkdepth]]

end

It is ok to return nothing or nil in which case you also need to flush the box or deal with it your­

self. The prevdepth is also optional. Locations are box, alignment, equation, equation_number

and post_linebreak. When the third argument returned is true the normal prevdepth correc­

tion will be applied, based on the first node.

11.4.7 post_linebreak_filter

This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)

return <node> newhead

end

This callback does not replace any internal code.

11.4.8 glyph_run

When set this callback is triggered when TEX normally handles the ligaturing and kerning. In

LuaTEX you use the hpack_filter and per_linebreak_filter callbacks for that (where each

passes different arguments). This callback doesn't get triggered when there are no glyphs (in

LuaTEX this optimization is controlled by a a variable).

Lua callbacks178

function(<node> head, <string> groupcode, <number> direction])

return <node> newhead

end

The traditional TEX font processing is bypassed so you need to take care of that with the helpers.

(For the moment we keep the ligaturing and kerning callbacks but they are kind of obsolete.)

11.4.9 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math

items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,

<string> packtype [, <number> direction] [, <node> attributelist])

return <node> newhead

end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread

... argument. If exactly, then the size is a \hbox to In both cases, the number is in

scaled points.

This callback does not replace any internal code.

11.4.10 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math

displays are ignored at the moment.

This function is very similar to the hpack_filter. Besides the fact that it is called at different

moments, there is an extra variable that matches TEX's \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <number> direction] [, <node> attributelist]))

return <node> newhead

end

This callback does not replace any internal code.

11.4.11 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

return <node> whatever

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed

179Lua callbacks

(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return

a node, for instance an overfull rule indicator. That node will be appended to the list (just like

TEX's own rule would).

11.4.12 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

11.4.13 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets

three arguments: the node, the width and the height. The callback can use pdf.print to write

code to the pdf file but beware of not messing up the final result. No checking is done.

11.4.14 pre_output_filter

This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <number> direction])

return <node> newhead

end

This callback does not replace any internal code.

11.4.15 hyphenate

function(<node> head, <node> tail)

end

No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

11.4.16 ligaturing

function(<node> head, <node> tail)

end

Lua callbacks180

No return values. This callback has to apply ligaturing to the node list it receives.

You don't have to worry about return values because the head node that is passed on to the

callback is guaranteed not to be a glyph_node (if need be, a temporary node will be prepended),

and therefore it cannot be affected by the mutations that take place. After the callback, the

internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often

be ignored. It is provided for orthogonality, and because it can sometimes be handy when special

processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

11.4.17 kerning

function(<node> head, <node> tail)

end

No return values. This callback has to apply kerning between the nodes in the node list it

receives. See ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

11.4.18 insert_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You

can hook a callback into the creator:

function(<node> par, <string> location)

end

There is no return value and you should make sure that the node stays valid as otherwise TEX

can get confused.

11.4.19 mlist_to_hlist

This callback replaces LuaTEX's math list to node list conversion algorithm.

function(<node> head, <string> display_type, <boolean> need_penalties)

return <node> newhead

end

The returned node is the head of the list that will be added to the vertical or horizontal list, the

string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean

argument is true if penalties have to be inserted in this list, false otherwise.

181Lua callbacks

Setting this callback to false is bad, it will almost certainly result in an endless loop.

11.5 Information reporting callbacks

11.5.1 pre_dump

function()

end

This function is called just before dumping to a format file starts. It does not replace any code

and there are neither arguments nor return values.

11.5.2 start_run

function()

end

This callback replaces the code that prints LuaTEX's banner. Note that for successful use, this

callback has to be set in the Lua initialization script, otherwise it will be seen only after the run

has already started.

11.5.3 stop_run

function()

end

This callback replaces the code that prints LuaTEX's statistics and ‘output written to’ messages.

The engine can still do housekeeping and therefore you should not rely on this hook for postpro­

cessing the pdf or log file.

11.5.4 intercept_tex_error, intercept_lua_error

function()

end

This callback is run from inside the TEX error function, and the idea is to allow you to do some

extra reporting on top of what TEX already does (none of the normal actions are removed).

You may find some of the values in the status table useful. The TEX related callback gets two

arguments: the current processing mode and a boolean indicating if there was a runaway.

11.5.5 show_error_message and show_warning_message

function()

end

Lua callbacks182

These callback replaces the code that prints the error message. The usual interaction after the

message is not affected.

11.5.6 start_file

function(category,filename)

end

This callback replaces the code that LuaTEX prints when a file is opened like (filename for

regular files. The category is a number:

VALUE MEANING

1 a normal data file, like a TEX source

2 a font map coupling font names to resources

3 an image file (png, pdf, etc)

4 an embedded font subset

5 a fully embedded font

11.5.7 stop_file

function(category)

end

This callback replaces the code that LuaTEX prints when a file is closed like the) for regular

files.

11.5.8 wrapup_run

This callback is called after the pdf and log files are closed. Use it at your own risk.

11.6 Font-related callbacks

11.6.1 define_font

function(<string> name, <number> size)

return <number> id

end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

‣ If it is positive, it specifies an ‘at size’ in scaled points.

‣ If it is negative, its absolute value represents a ‘scaled’ setting relative to the design size of

the font.

183Lua callbacks

The font can be defined with font.define which returns a font identifier that can be returned

in the callback. So, contrary to LuaTEX, in LuaMetaTEX we only accept a number.

The internal structure of the font table that is passed to font.define is explained in chapter 6.

That table is saved internally, so you can put extra fields in the table for your later Lua code

to use. In alternative, retval can be a previously defined fontid. This is useful if a previous

definition can be reused instead of creating a whole new font structure.

Setting this callback to false is pointless as it will prevent font loading completely but will

nevertheless generate errors.

11.6.2 show_whatsit

Because we only have a generic whatsit it is up to the macro package to provide details when

tracing them.

function(<node> whatsit, <number> indentation,

<number> tracinglevel, <number> currentlevel, <number> inputlevel)

-- no return value

end

The indentation tells how many periods are to be typeset if you want to be compatible with the

rest of tracing. The tracinglevels indicates if the current level and|/or input level are shown cf.

\tracinglevels. Of course one is free to show whatever in whatever way suits the whatsit best.

Lua callbacks184

185The TEX related libraries

12 The TEX related libraries

12.1 The lua library

12.1.1 Version information

This version of the used Lua interpreter (currently Lua 5.4) can be queried with:

<string> v = lua.getversion()

The name of used startup file, if at all, is returned by:

<string> s = lua.getstartupfile()

For this document the reported value is:

c:/data/develop/tex-context/tex/texmf-cache/luametatex-cache/context/764bd4e1ce0f004ab3cec90018f8b80a/for­

mats/luametatex/cont-en.lui

12.1.2 Table allocators

Sometimes performance (and memory usage) can benefit a little from it preallocating a table

with newtable:

<table> t = lua.newtable(100,5000)

This preallocates 100 hash entries and 5000 index entries. The newindex function create an

indexed table with preset values:

<table> t = lua.newindex(2500,true)

12.1.3 Bytecode registers

Lua registers can be used to store Lua code chunks. The accepted values for assignments are

functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f

<function> f = lua.bytecode[<number> n] % -- f()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode,

so it can also be used to preload Lua code. The function must not contain any upvalues. The

associated function calls are:

lua.setbytecode(<number> n, <function> f)

<function> f = lua.getbytecode(<number> n)

The TEX related libraries186

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function,

a complete file can be stored in a bytecode register like this:

lua.setbytecode(n,loadfile(filename))

Now all definitions (functions, variables) contained in the file can be created by executing this

bytecode register:

lua.callbytecode(n)

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and

therefore dumped into the format file if the above code is used in iniTEX. If it contains private

information, i.e. the user name, this information is then contained in the format file as well. This

should be kept in mind when preloading files into a bytecode register in iniTEX.

12.1.4 Introspection

The getstacktop function return a number indicating how full the Lua stack is. This function

only makes sense as breakpoint when checking some mechanism going haywire.

There are four time related helpers. The getruntime function returns the time passed since

startup. The getcurrenttime does what its name says. Just play with them to see how it pays

off. The getpreciseticks returns a number that can be used later, after a similar call, to get a

difference. The getpreciseseconds function gets such a tick (delta) as argument and returns

the number of seconds. Ticks can differ per operating system, but one always creates a reference

first and then deltas to this reference.

12.2 The status library

This contains a number of run-time configuration items that you may find useful in message

reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. There are toplevel

items and items that are tables with subentries. The current list is:

TOPLEVEL STATISTICS

banner This is LuaMetaTeX, Version 2.09.42

copyright Taco Hoekwater, Hans Hagen & Wolfgang Schuster

development_id 20220308

filename E:/context/manuals/mkiv/external/luametatex/luametatex-tex.tex

format_id 642

logfilename luametatex.log

luatex_engine luametatex

luatex_revision 42

luatex_verbose 2.09.42

luatex_version 209

187The TEX related libraries

permit_loadlib false

run_state 1

used_compiler gcc

BUFFERSTATE.*

all 1000000

ini -1

max 100000000

mem 1000000

min 1000000

ptr 0

set 10000000

stp 1000000

top 858

CALLBACKSTATE.*

bytecode 601

count 208225

direct 1262

file 14786

function 53700

local 0

message 0

saved 133766

value 4110

ENGINESTATE.*

banner This is LuaMetaTeX, Version 2.09.42

copyright Taco Hoekwater, Hans Hagen & Wolfgang Schuster

development_id 20220308

format_id 642

logfilename luametatex.log

luatex_engine luametatex

luatex_revision 42

luatex_verbose 2.09.42

luatex_version 209

permit_loadlib false

run_state 1

tex_hash_size 131072

used_compiler gcc

ERRORLINESTATE.*

max 255

min 132

set 250

top 0

The TEX related libraries188

ERRORSTATE.*

error unset

errorcontext unset

luaerror unset

EXPANDSTATE.*

max 1000000

min 10000

set 10000

top 10

EXTRASTATE.*

all 0

ini -1

max -1

mem 0

min -1

ptr 0

set -1

stp -1

top 0

FILESTATE.*

all 16000

ini -1

max 2000

mem 500

min 500

ptr 6

set 2000

stp 250

top 11

FONTSTATE.*

all 8699096

ini -1

max 100000

mem 8699096

min 250

ptr 28

set 100000

stp 250

top 250

HALFERRORLINESTATE.*

max 255

189The TEX related libraries

min 80

set 234

top 0

HASHSTATE.*

all 2400000

ini 0

max 2097152

mem 150000

min 150000

ptr 12059

set 250000

stp 100000

top 740702

INPUTSTATE.*

all 320000

ini -1

max 100000

mem 10000

min 10000

ptr 7

set 100000

stp 10000

top 58

INSERTSTATE.*

all 10240

ini -1

max 500

mem 320

min 10

ptr 7

set 250

stp 25

top 10

LANGUAGESTATE.*

all 96

ini 0

max 10000

mem 96

min 250

ptr 0

set 250

The TEX related libraries190

stp 250

top 250

LOOKUPSTATE.*

all -1

ini 45747

max 2097152

mem -1

min 150000

ptr 55452

set 250000

stp 100000

top 131074

LUASTATE.*

bytecodebytes 16064

bytecodes 1003

functionsize 32768

propertiessize 10000

statebytes 147562437

statebytesmax 162048213

MARKSTATE.*

all 28800

ini -1

max 10000

mem 1200

min 50

ptr 28

set 250

stp 50

top 50

NESTSTATE.*

all 56000

ini -1

max 10000

mem 1000

min 1000

ptr 0

set 10000

stp 1000

top 19

NODESTATE.*

all 9000000

191The TEX related libraries

ini 0

max 100000000

mem 1000000

min 1000000

ptr -172307

set 100000000

stp 500000

top 211928

PARAMETERSTATE.*

all 80000

ini -1

max 100000

mem 20000

min 20000

ptr 1

set 100000

stp 10000

top 54

POOLSTATE.*

all 1080137

ini 863699

max 100000000

mem 1080137

min 10000000

ptr -1

set 10000000

stp 1000000

top -1

READSTATE.*

filename E:/context/manuals/mkiv/external/luametatex/luametatex-tex.tex

iocode 5

linenumber 210

skiplinenumber 163

SAVESTATE.*

all 160000

ini -1

max 500000

mem 10000

min 100000

ptr 162

set 500000

The TEX related libraries192

stp 10000

top 862

SPARSESTATE.*

all 2042840

ini -1

max -1

mem 2042840

min -1

ptr -1

set -1

stp -1

top -1

STRINGSTATE.*

all 2400000

ini 2142917

max 2097152

mem 150000

min 150000

ptr 55470

set 500000

stp 100000

top 55470

TEXSTATE.*

approximate 36293209

TOKENSTATE.*

all 8000000

ini 501468

max 10000000

mem 1000000

min 1000000

ptr 1275274

set 10000000

stp 250000

top 692643

WARNINGSTATE.*

warning unset

warningtag unset

There are also getters for the subtables. The whole repertoire of functions in the sta­

tus table is: getbufferstate, getcallbackstate, getconstants, geterrorlinestate,

193The TEX related libraries

geterrorstate, getexpandstate, getextrastate, getfilestate, getfontstate, geth­

alferrorlinestate, gethashstate, getinputstate, getinsertstate, getlanguages­

tate, getlookupstate, getluastate, getmarkstate, getneststate, getnodestate,

getparameterstate, getpoolstate, getreadstate, getsavestate, getsparsestate,

getstringstate, gettexstate, gettokenstate, getwarningstate, iocodes, list, re­

setmessages. The error and warning messages can be wiped with the resetmessages function.

The states in subtables relate to memory management and are mostly there for development

purposes.

The getconstants query gives back a table with all kind of internal quantities and again

these are only relevant for diagnostic and development purposes. Many are good old TEX con­

stants that are describes in the original documentation of the source but some are definitely

LuaMetaTEX specific.

CONSTANTS.*

assumed_math_control 455550

awful_bad 1073741823

decent_criterium 12

default_catcode_table -1

default_deadcycles 25

default_eqno_gap_step 1000

default_hangafter 1

default_output_box 255

default_pre_display_gap 2000

default_rule 26214

default_space_factor 1000

default_tolerance 10000

deplorable 100000

eject_penalty -10000

ignore_depth -65536000

infinite_bad 10000

infinite_penalty 10000

infinity 2147483647

large_width_excess 7230584

loose_criterium 99

math_begin_class 62

math_end_class 63

max_attribute_register_index65535

max_box_register_index 65535

max_bytecode_index 65535

max_cardinal 4294967295

max_category_code 15

max_char_code 15

max_character_code 1114111

max_data_value 2097151

max_dimen 1073741823

max_dimen_register_index 65535

The TEX related libraries194

max_function_reference 2097151

max_glue_register_index 65535

max_half_value 32767

max_halfword 1073741823

max_int_register_index 65535

max_integer 2147483647

max_mark_index 9999

max_math_class_code 63

max_math_family_index 63

max_mu_glue_register_index 65535

max_n_of_bytecodes 65536

max_n_of_catcode_tables 256

max_n_of_fonts 100000

max_n_of_languages 10000

max_n_of_marks 10000

max_n_of_math_families 64

max_newline_character 127

max_quarterword 65535

max_size_of_word 1024

max_space_factor 32767

max_toks_register_index 65535

min_cardinal 0

min_data_value 0

min_dimen -1073741823

min_halfword -1073741823

min_infinity -2147483647

min_integer -2147483647

min_quarterword 0

min_space_factor 0

no_catcode_table -2

null 0

null_flag -1073741824

null_font 0

one_bp 65781

preset_rule_thickness 1073741824

running_rule -1073741824

small_stretchability 1663497

tex_eqtb_size 590702

tex_hash_prime 131041

tex_hash_size 131072

two 131072

unity 65536

unused_attribute_value -2147483647

unused_math_family 255

unused_math_style 255

unused_script_value 0

195The TEX related libraries

unused_state_value 0

zero_glue 0

Most variables speak for themselves, some are more obscure. For instance the run_state vari­

able indicates what the engine is doing:

N meaning explanation

0 initializing --ini mnode

1 updating relates to \overloadmode

2 production a regular (format driven) run

12.3 The tex library

12.3.1 Introduction

The tex table contains a large list of virtual internal TEX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in Lua, but are only

frontends that are handled by a metatable that operates on the actual TEX values. As a result,

most of the Lua table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that you can use after \the, is a

single token or is sort of special in TEX. This excludes parameters that need extra arguments, like

\the\scriptfont. The subset comprising simple integer and dimension registers are writable

as well as readable (like \tracingcommands and \parindent).

12.3.2 Internal parameter values, set and get

For all the parameters in this section, it is possible to access them directly using their names as

index in the tex table, or by using one of the functions tex.get and tex.set.

The exact parameters and return values differ depending on the actual parameter, and so does

whether tex.set has any effect. For the parameters that can be set, it is possible to use global

as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (["global",] <string> n, ...)

... = tex.get (<string> n)

Glue is kind of special because there are five values involved. The return value is a glue_spec

node but when you pass false as last argument to tex.get you get the width of the glue and

when you pass true you get all five values. Otherwise you get a node which is a copy of the

internal value so you are responsible for its freeing at the Lua end. When you set a glue quantity

you can either pass a glue_spec or upto five numbers.

Beware: as with regular Lua tables you can add values to the tex table. So, the following is

valid:

tex.foo = 123

The TEX related libraries196

When you access a TEX parameter a look up takes place. For read--only variables that means

that you will get something back, but when you set them you create a new entry in the table

thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space­

factor. These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth = p

tex.nest[tex.nest.ptr].spacefactor = s

However, the following also works:

tex.prevdepth = p

tex.spacefactor = s

Keep in mind that when you mess with node lists directly at the Lua end you might need to

update the top of the nesting stack's prevdepth explicitly as there is no way LuaTEX can guess

your intentions. By using the accessor in the tex tables, you get and set the values at the top of

the nesting stack.

12.3.2.1 Integer parameters

The integer parameters accept and return Lua integers. In some cases the values are

checked, trigger other settings or result in some immediate change of behaviour: adjde­

merits, adjustspacing, adjustspacingshrink, adjustspacingstep, adjustspacingstretch,

automatichyphenpenalty, automigrationmode, autoparagraphmode, binoppenalty, bro­

kenpenalty, catcodetable, clubpenalty, day, defaulthyphenchar, defaultskewchar, de­

limiterfactor, displaywidowpenalty, doublehyphendemerits, endlinechar, errorcon­

textlines, escapechar, exceptionpenalty, exhyphenchar, exhyphenpenalty, explicithy­

phenpenalty, fam, finalhyphendemerits, firstvalidlanguage, floatingpenalty, glob­

aldefs, glyphdatafield, glyphoptions, glyphscale, glyphscriptfield, glyphscriptscale,

glyphscriptscriptscale, glyphstatefield, glyphtextscale, glyphxscale, glyphyscale,

hangafter, hbadness, holdinginserts, hyphenationmode, hyphenpenalty, interlinepenalty,

language, lastlinefit, lefthyphenmin, linedirection, linepenalty, localbrokenpenalty,

localinterlinepenalty, looseness, luacopyinputnodes, mathdelimitersmode, mathdirec­

tion, mathdisplayskipmode, matheqnogapstep, mathfencesmode, mathfontcontrol, math­

limitsmode, mathnolimitsmode, mathpenaltiesmode, mathrulesfam, mathrulesmode, math­

scriptboxmode, mathscriptcharmode, mathscriptsmode, mathslackmode, mathspacingmode,

mathsurroundmode, maxdeadcycles, month, newlinechar, normalizelinemode, nospaces, or­

phanpenalty, outputbox, outputpenalty, overloadmode, pageboundarypenalty, pardirec­

tion, pausing, postdisplaypenalty, postinlinepenalty, prebinoppenalty, predisplay­

direction, predisplaygapfactor, predisplaypenalty, preinlinepenalty, prerelpenalty,

pretolerance, protrudechars, relpenalty, righthyphenmin, savinghyphcodes, savingvdis­

cards, setfontid, setlanguage, shapingpenaltiesmode, shapingpenalty, showboxbreadth,

showboxdepth, shownodedetails, supmarkmode, textdirection, time, tolerance, tracingad­

justs, tracingalignments, tracingassigns, tracingcommands, tracingexpressions, trac­

ingfonts, tracingfullboxes, tracinggroups, tracinghyphenation, tracingifs, tracin­

ginserts, tracinglevels, tracinglostchars, tracingmacros, tracingmarks, tracingmath,

197The TEX related libraries

tracingnesting, tracingnodes, tracingonline, tracingoutput, tracingpages, tracing­

paragraphs, tracingrestores, tracingstats, uchyph, vbadness, widowpenalty, year.

Some integer parameters are read only, because they are actually referring not to some inter­

nal integer register but to an engine property: deadcycles, insertpenalties, parshape, in­

terlinepenalties, clubpenalties, widowpenalties, displaywidowpenalties, prevgraf and

spacefactor.

12.3.2.2 Dimension parameters

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with in­

cluded dimension). The result is always a number in scaled points. These are read-write: box­

maxdepth, delimitershortfall, displayindent, displaywidth, emergencystretch, glyphx­

offset, glyphyoffset, hangindent, hfuzz, hsize, lineskiplimit, mathsurround, maxdepth,

nulldelimiterspace, overfullrule, parindent, predisplaysize, pxdimen, scriptspace,

splitmaxdepth, tabsize, vfuzz, vsize.

These are read-only: pagedepth, pagefilllstretch, pagefillstretch, pagefilstretch, page­

goal, pageshrink, pagestretch and pagetotal.

12.3.2.3 Direction parameters

The direction states can be queried with: gettextdir, getlinedir, getmathdir and getpar­

dir. You can set them with settextdir, setlinedir, setmathdir and setpardir, commands

that accept a number. You can also set these parameters as table key/values: textdirection,

linedirection, mathdirection and pardirection, so the next code sets the text direction to

r2l:

tex.textdirection = 1

12.3.2.4 Glue parameters

The internal glue parameters accept and return a userdata object that represents a glue_spec

node: abovedisplayshortskip, abovedisplayskip, baselineskip, belowdisplayshortskip,

belowdisplayskip, leftskip, lineskip, mathsurroundskip, maththreshold, parfillleft­

skip, parfillskip, parskip, rightskip, spaceskip, splittopskip, tabskip, topskip,

xspaceskip.

12.3.2.5 Muglue parameters

All muglue parameters are to be used read-only and return a Lua string medmuskip, thickmuskip,

thinmuskip, tinymuskip.

12.3.2.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or other

(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it

feels bad to make exceptions in view of a coming extension that will accept full-blown token

strings. Here is the lot: errhelp, everybeforepar, everycr, everydisplay, everyeof, every­

hbox, everyjob, everymath, everypar, everytab, everyvbox, output.

The TEX related libraries198

12.3.3 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands

at this moment are: Uchar, csstring, directlua, expanded, fontname, fontspecifiedname,

formatname, jobname, luabytecode, luaescapestring, luafunction, luatexbanner, mean­

ing, meaningasis, meaningfull, meaningless, number, romannumeral, semiexpanded, string,

todimension, tointeger, tomathstyle, toscaled. You will get an error message if an operation

is not (yet) permitted. Some take an string or number argument, just like at the TEX end some

extra input is expected.

12.3.4 Item commands

All so called ‘item’ commands are read-only and return a number. The complete list of these

commands is: Umathcharclass, Umathcharfam, Umathcharslot, badness, currentgrouplevel,

currentgrouptype, currentifbranch, currentiflevel, currentiftype, currentloopitera­

tor, currentloopnesting, dimexpr, dimexpression, fontchardp, fontcharht, fontcharic,

fontcharwd, fontid, fontmathcontrol, fontspecid, fontspecifiedsize, fontspecscale,

fontspecxscale, fontspecyscale, fonttextcontrol, glueexpr, glueshrink, glueshrinko­

rder, gluestretch, gluestretchorder, gluetomu, inputlineno, insertprogress, lastar­

guments, lastchkdim, lastchknum, lastkern, lastleftclass, lastloopiterator, lastn­

odesubtype, lastnodetype, lastparcontext, lastpenalty, lastrightclass, lastskip,

leftmarginkern, luatexrevision, luatexversion, mathscale, mathstackstyle, math­

style, mathstylefontid, muexpr, mutoglue, numericscale, numexpr, numexpression, over­

shoot, parametercount, parshapedimen, parshapeindent, parshapelength, rightmarginkern,

scaledemwidth, scaledexheight, scaledextraspace, scaledinterwordshrink, scaledinter­

wordspace, scaledinterwordstretch, scaledslantperpoint. No all are currently supported

but eventually that might be the case. Like the lists in previous sections, there are differences

between LuaTEX and LuaMetaTEX, where some commands are organized differently in order to

provide a consistent Lua interface.

12.3.5 Accessing registers: set*, get* and is*

TEX's attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip, \muskip)

and token (\toks) registers can be accessed and written to using two times five virtual sub-tables

of the tex table:

tex.attribute

tex.count

tex.dimen

tex.skip

tex.glue

tex.muskip

tex.muglue

tex.toks

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or

\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0

enormous = tex.dimen['maxdimen']

199The TEX related libraries

In this case, LuaTEX looks up the value for you on the fly. You have to use a valid \countdef (or

\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error

(the intent is to eventually also allow <chardef tokens> and even macros that expand into a

number).

‣ The count registers accept and return Lua numbers.

‣ The dimension registers accept Lua numbers (in scaled points) or strings (with an included

absolute dimension; em and ex and px are forbidden). The result is always a number in scaled

points.

‣ The token registers accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or

other (12).

‣ The skip registers accept and return glue_spec userdata node objects (see the description

of the node interface elsewhere in this manual).

‣ The glue registers are just skip registers but instead of userdata are verbose.

‣ Like the counts, the attribute registers accept and return Lua numbers.

As an alternative to array addressing, there are also accessor functions defined for all cases, for

example, here is the set of possibilities for \skip registers:

tex.setskip (["global",] <number> n, <node> s)

tex.setskip (["global",] <string> s, <node> s)

<node> s = tex.getskip (<number> n)

<node> s = tex.getskip (<string> s)

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented

by numbers, skips and muskips by nodes, and toks by strings.

Again the glue variants are not using the glue-spec userdata nodes. The setglue function ac­

cepts upto five arguments: width, stretch, shrink, stretch order and shrink order. Non-numeric

values set the property to zero. The getglue function reports all five properties, unless the

second argument is false in which case only the width is returned.

Here is an example using a threesome:

local d = tex.getdimen("foo")

if tex.isdimen("oof") then

tex.setdimen("oof",d)

end

There are six extra skip (glue) related helpers:

tex.setglue (["global"], <number> n,

width, stretch, shrink, stretch_order, shrink_order)

tex.setglue (["global"], <string> s,

width, stretch, shrink, stretch_order, shrink_order)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<number> n)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<string> s)

The TEX related libraries200

The other two are tex.setmuglue and tex.getmuglue.

There are such helpers for dimen, count, skip, muskip, box and attribute registers but the

glue ones are special because they have to deal with more properties.

As with the general get and set function discussed before, for the skip registers getskip returns

a node and getglue returns numbers, while setskip accepts a node and setglue expects upto

5 numbers. Again, when you pass false as second argument to getglue you only get the width

returned. The same is true for the mu variants getmuskip, setmuskip, getmuskip andsetmuskip.

For tokens registers we have an alternative where a catcode table is specified:

tex.scantoks(0,3,"$e=mc^2$")

tex.scantoks("global",0,3,"$\int\limits^1_2$")

In the function-based interface, it is possible to define values globally by using the string global

as the first function argument.

There is a dedicated getter for marks: getmark that takes two arguments. The first argument

is one of top, bottom, first, splitbottom or splitfirst, and the second argument is a marks

class number. When no arguments are given the current maximum number of classes is re­

turned.

When tex.gettoks gets an extra argument true it will return a table with userdata tokens.

12.3.6 Character code registers: [get|set]*code[s]

TEX's character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can

be accessed and written to using six virtual subtables of the tex table

tex.lccode

tex.uccode

tex.sfcode

tex.catcode

tex.mathcode

tex.delcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the

simple ones:

tex.setsfcode (["global",] <number> n, <number> s)

<number> s = tex.getsfcode (<number> n)

The function call interface for lccode and uccode additionally allows you to set the associated

sibling at the same time:

tex.setlccode (["global"], <number> n, <number> lc)

tex.setlccode (["global"], <number> n, <number> lc, <number> uc)

<number> lc = tex.getlccode (<number> n)

tex.setuccode (["global"], <number> n, <number> uc)

tex.setuccode (["global"], <number> n, <number> uc, <number> lc)

<number> uc = tex.getuccode (<number> n)

The function call interface for catcode also allows you to specify a category table to use on

assignment or on query (default in both cases is the current one):

201The TEX related libraries

tex.setcatcode (["global"], <number> n, <number> c)

tex.setcatcode (["global"], <number> cattable, <number> n, <number> c)

<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

tex.setmathcode (["global"], <number> n, <table> mval)

<table> mval = tex.getmathcode (<number> n)

tex.setdelcode (["global"], <number> n, <table> dval)

<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{

<number> class,

<number> family,

<number> character

}

And the table for delcode is an array with 4 numbers, like this:

{

<number> small_fam,

<number> small_char,

<number> large_fam,

<number> large_char

}

You can also avoid the table:

tex.setmathcode (["global"], <number> n, <number> class,

<number> family, <number> character)

class, family, char =

tex.getmathcodes (<number> n)

tex.setdelcode (["global"], <number> n, <number> smallfam,

<number> smallchar, <number> largefam, <number> largechar)

smallfam, smallchar, largefam, largechar =

tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to

\Udelcode usage, but the returned table can have values there (if the delimiter code was set

using \delcode, for example). Unset delcode's can be recognized because dval[1] is −1.

12.3.7 Box registers: [get|set]box

It is possible to set and query actual boxes, coming for instance from \hbox, \vbox or \vtop,

using the node interface as defined in the node library:

The TEX related libraries202

tex.box

for array access, or

tex.setbox(["global",] <number> n, <node> s)

tex.setbox(["global",] <string> cs, <node> s)

<node> n = tex.getbox(<number> n)

<node> n = tex.getbox(<string> cs)

for function-based access. In the function-based interface, it is possible to define values globally

by using the string global as the first function argument.

Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com­

mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,

always use node.copy_list unless you are assigning to a temporary variable:

tex.box[0] = node.copy_list(tex.box[2])

12.3.8 triggerbuildpage

You should not expect to much from the triggerbuildpage helpers because often TEX doesn't

do much if it thinks nothing has to be done, but it might be useful for some applications. It just

does as it says it calls the internal function that build a page, given that there is something to

build.

12.3.9 splitbox

You can split a box:

local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is

comparable to the \vsplit operation. The mode can be additional or exactly and concerns

the split off box.

12.3.10 Accessing math parameters: [get|set]math

It is possible to set and query the internal math parameters using:

tex.setmath(["global",] <string> n, <string> t, <number> n)

<number> n = tex.getmath(<string> n, <string> t)

As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the

style name minus the trailing ‘style’. Just to be complete, the values for the math parameter

name are:

203The TEX related libraries

quad axis operatorsize

overbarkern overbarrule overbarvgap

underbarkern underbarrule underbarvgap

radicalkern radicalrule radicalvgap

radicaldegreebefore radicaldegreeafter radicaldegreeraise

stackvgap stacknumup stackdenomdown

fractionrule fractionnumvgap fractionnumup

fractiondenomvgap fractiondenomdown fractiondelsize

limitabovevgap limitabovebgap limitabovekern

limitbelowvgap limitbelowbgap limitbelowkern

underdelimitervgap underdelimiterbgap

overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown

subsupshiftdown subtopmax supshiftup

supbottommin supsubbottommax subsupvgap

spaceafterscript connectoroverlapmin

ordordspacing ordopspacing ordbinspacing ordrelspacing

ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing

opordspacing opopspacing opbinspacing oprelspacing

opopenspacing opclosespacing oppunctspacing opinnerspacing

binordspacing binopspacing binbinspacing binrelspacing

binopenspacing binclosespacing binpunctspacing bininnerspacing

relordspacing relopspacing relbinspacing relrelspacing

relopenspacing relclosespacing relpunctspacing relinnerspacing

openordspacing openopspacing openbinspacing openrelspacing

openopenspacing openclosespacing openpunctspacing openinnerspacing

closeordspacing closeopspacing closebinspacing closerelspacing

closeopenspacing closeclosespacing closepunctspacing closeinnerspacing

punctordspacing punctopspacing punctbinspacing punctrelspacing

punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing

innerordspacing inneropspacing innerbinspacing innerrelspacing

inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter are:

display crampeddisplay

text crampedtext

script crampedscript

scriptscript crampedscriptscript

The value is either a number (representing a dimension or number) or a glue spec node repre­

senting a muskip for ordordspacing and similar spacing parameters.

12.3.11 Special list heads: [get|set]list

The virtual table tex.lists contains the set of internal registers that keep track of building

page lists.

The TEX related libraries204

FIELD EXPLANATION

pageinserthead circular list of pending insertions

contributehead the recent contributions

pagehead the current page content

holdhead used for held-over items for next page

postadjusthead head of the (pending) post adjustments

preadjusthead head of the (pending) pre adjustments

postmigratehead head of the (pending) post migrations

premigratehead head of the (pending) pre migrations

pagediscardshead head of the discarded items of a page break

splitdiscardshead head of the discarded items in a vsplit

The getter and setter functions are getlist and setlist. You have to be careful with what you

set as TEX can have expectations with regards to how a list is constructed or in what state it is.

12.3.12 Semantic nest levels: getnest and ptr

The virtual table nest contains the currently active semantic nesting state. It has twomain parts:

a zero-based array of userdata for the semantic nest itself, and the numerical value ptr, which

gives the highest available index. Neither the array items in nest[] nor ptr can be assigned to

(as this would confuse the typesetting engine beyond repair), but you can assign to the individual

values inside the array items, e.g. tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, nest[0] the outermost (main vertical list)

level. The getter function is getnest. You can pass a number (which gives you a list), nothing or

top, which returns the topmost list, or the string ptr which gives you the index of the topmost

list.

The known fields are:

KEY TYPE MODES EXPLANATION

mode number all the meaning of these numbers depends on the engine and

sometimes even the version; you can use tex.getmodeval­

ues() to get the mapping: positive values signal vertical,

horizontal and math mode, while negative values indicate in­

ner and inline variants

modeline number all source input line where this mode was entered in, negative

inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

prevdepth number vmode depth of the previous paragraph

spacefactor number hmode the current space factor

direction node hmode stack used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,

for \over etc.

delimiter node mmode used for temporary storage of the previous math delimiter,

for \middle

205The TEX related libraries

mathdir boolean mmode true when during math processing the \mathdirection is

not the same as the surrounding \textdirection

mathstyle number mmode the current \mathstyle

When a second string argument is given to the getnest, the value with that name is returned.

Of course the level must be valid. When setnest gets a third argument that value is assigned

to the field given as second argument.

12.3.13 Print functions

The tex table also contains the three print functions that are the major interface from Lua

scripting to TEX. The arguments to these three functions are all stored in an in-memory virtual

file that is fed to the TEX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available

system ram. However, each separate printed string has to fit completely in TEX's input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

12.3.13.1 print

tex.print(<string> s, ...)

tex.print(<number> n, <string> s, ...)

tex.print(<table> t)

tex.print(<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument

instead of a list of strings, this has to be a consecutive array of strings to print (the first non-string

value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by

\catcodetable n. If n is −1, the currently active catcode regime is used. If n is −2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space

character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it

is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print command in a \directlua will not have the

\endlinechar appended, all others do.

12.3.13.2 sprint

tex.sprint(<string> s, ...)

tex.sprint(<number> n, <string> s, ...)

tex.sprint(<table> t)

tex.sprint(<number> n, <table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a partial line input mechanism:

‣ TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

‣ No \endlinechar is inserted.

‣ Trailing spaces are not removed. Note that this does not prevent TEX itself from eating spaces

as result of interpreting the line. For example, in

The TEX related libraries206

before\directlua{tex.sprint("\\relax")tex.sprint(" in between")}after

the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

The optional argument sets the catcode regime, as with tex.print. This influences the string

arguments (or numbers turned into strings).

Although this needs to be used with care, you can also pass token or node userdata objects.

These get injected into the stream. Tokens had best be valid tokens, while nodes need to be

around when they get injected. Therefore it is important to realize the following:

‣ When you inject a token, you need to pass a valid token userdata object. This object will

be collected by Lua when it no longer is referenced. When it gets printed to TEX the token

itself gets copied so there is no interference with the Lua garbage collection. You manage the

object yourself. Because tokens are actually just numbers, there is no real extra overhead at

the TEX end.

‣ When you inject a node, you need to pass a valid node userdata object. The node related

to the object will not be collected by Lua when it no longer is referenced. It lives on at the

TEX end in its own memory space. When it gets printed to TEX the node reference is used

assuming that node stays around. There is no Lua garbage collection involved. Again, you

manage the object yourself. The node itself is freed when TEX is done with it.

If you consider the last remark you might realize that we have a problem when a printed mix

of strings, tokens and nodes is reused. Inside TEX the sequence becomes a linked list of input

buffers. So, "123" or "\foo{123}" gets read and parsed on the fly, while <token userdata>

already is tokenized and effectively is a token list now. A <node userdata> is also tokenized into

a token list but it has a reference to a real node. Normally this goes fine. But now assume that

you store the whole lot in a macro: in that case the tokenized node can be flushed many times.

But, after the first such flush the node is used and its memory freed. You can prevent this by

using copies which is controlled by setting \luacopyinputnodes to a non-zero value. This is one

of these fuzzy areas you have to live with if you really mess with these low level issues.

12.3.13.3 tprint

tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>

s, ...), once for each of the supplied argument tables.

12.3.13.4 cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or

an argument list of strings that will be pushed into the input stream.

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

207The TEX related libraries

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters

tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

12.3.13.5 write

tex.write(<string> s, ...)

tex.write(<table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a quick way to dump information:

‣ All catcodes on that line are either ‘space’ (for ' ') or ‘character’ (for all others).

‣ There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

12.3.14 Helper functions

12.3.14.1 round

<number> n = tex.round(<number> o)

Rounds Lua number o, and returns a number that is in the range of a valid TEX register value.

If the number starts out of range, it generates a ‘number too big’ error as well.

12.3.14.2 scale

<number> n = tex.scale(<number> o, <number> delta)

<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o and delta, and returns a rounded number that is in the range of

a valid TEX register value. In the table version, it creates a copy of the table with all numeric

top--level values scaled in that manner. If the multiplied number(s) are of range, it generates

‘number too big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer's architecture

and operating system, so use with care! An interface to LuaTEX's internal, 100% portable scale

function will be added at a later date.

12.3.14.3 number and romannumeral

These are the companions to the primitives \number and \romannumeral. They can be used like:

tex.print(tex.romannumeral(123))

12.3.14.4 fontidentifier and fontname

The first one returns the name only, the second one reports the size too.

The TEX related libraries208

tex.print(tex.fontname(tex.fontname))

tex.print(tex.fontname(tex.fontidentidier))

12.3.14.5 sp

<number> n = tex.sp(<number> o)

<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number

of scaled points.

For parsing the string, the same scanning and conversion rules are used that LuaTEX would use

if it was scanning a dimension specifier in its TEX-like input language (this includes generating

errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled

2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)

12.3.14.6 tex.getlinenumber and tex.setlinenumber

You can mess with the current line number:

local n = tex.getlinenumber()

tex.setlinenumber(n+10)

which can be shortcut to:

tex.setlinenumber(10,true)

This might be handy when you have a callback that reads numbers from a file and combines

them in one line (in which case an error message probably has to refer to the original line).

Interference with TEX's internal handling of numbers is of course possible.

12.3.14.7 error, show_context and gethelptext

tex.error(<string> s)

tex.error(<string> s, <table> help)

<string> s = tex.gethelptext()

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur­

ing this error, deletions are disabled.

The array part of the help table has to contain strings, one for each line of error help.

In case of an error the show_context function will show the current context where we're at (in

the expansion).

12.3.14.8 getfamilyoffont

When you pass a proper family identifier the next helper will return the font currently associated

with it.

209The TEX related libraries

<integer> id = font.getfamilyoffont(<integer> fam)

12.3.14.9 [set|get]interaction

The engine can be in one of four modes:

VALUE mode MEANING

0 batch omits all stops and omits terminal output

1 nonstop omits all stops

2 scroll omits error stops

3 errorstop stops at every opportunity to interact

The mode can be queried and set with:

<integer> i = tex.getinteraction()

tex.setinteraction(<integer> i)

12.3.14.10 runtoks and quittoks

Because of the fact that TEX is in a complex dance of expanding, dealing with fonts, typesetting

paragraphs, messing around with boxes, building pages, and so on, you cannot easily run a

nested TEX run (read nested main loop). However, there is an option to force a local run with

runtoks. The content of the given token list register gets expanded locally after which we return

to where we triggered this expansion, at the Lua end. Instead a function can get passed that

does some work. You have to make sure that at the end TEX is in a sane state and this is not

always trivial. A more complex mechanism would complicate TEX itself (and probably also harm

performance) so this simple local expansion loop has to do.

tex.runtoks(<token register>)

tex.runtoks(<lua function>)

tex.runtoks(<macro name>)

tex.runtoks(<register name>)

When the \tracingnesting parameter is set to a value larger than 2 some information is re­

ported about the state of the local loop. The return value indicates an error:

VALUE meaning

0 no error

1 bad register number

2 unknown macro or register name

3 macro is unsuitable for runtoks (has arguments)

This function has two optional arguments in case a token register is passed:

tex.runtoks(<token register>,force,grouped,obeymode)

Inside for instance an \edef the runtoks function behaves (at least tries to) like it were an \the.

This prevents unwanted side effects: normally in such an definition tokens remain tokens and

(for instance) characters don't become nodes. With the second argument you can force the local

The TEX related libraries210

main loop, no matter what. The third argument adds a level of grouping. The last argument

tells the scanner to stay in the current mode.

You can quit the local loop with \endlocalcontrol or from the Lua end with tex.quittoks. In

that case you end one level up! Of course in the end that can mean that you arrive at the main

level in which case an extra end will trigger a redundancy warning (not an abort!).

12.3.14.11 forcehmode

An example of a (possible error triggering) complication is that TEX expects to be in some state,

say horizontal mode, and you have to make sure it is when you start feeding back something

from Lua into TEX. Normally a user will not run into issues but when you start writing tokens or

nodes or have a nested run there can be situations that you need to run forcehmode. There is

no recipe for this and intercepting possible cases would weaken LuaTEX's flexibility.

12.3.14.12 hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

Returns a list of names. This can be useful for debugging, but note that this also reports control

sequences that may be unreachable at this moment due to local redefinitions: it is strictly a

dump of the hash table. You can use token.create to inspect properties, for instance when the

command key in a created table equals 123, you have the cmdname value undefined_cs.

12.3.14.13 definefont

tex.definefont(<string> csname, <number> fontid)

tex.definefont(<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)

global is specified and true (the setting of globaldefs is not taken into account).

12.3.15 Functions for dealing with primitives

12.3.15.1 enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names. For each combination of

‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’ is an actual primitive

(it must be returned by one of the tex.extraprimitives calls explained below, or part of TEX82,

or \directlua). If it is not, tex.enableprimitives does nothing and skips to the next pair.

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,

unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the

‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un­

defined (note: that is not the same as \relax), it will globally define the csname to have the

meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already

defined, it does nothing and tries the next pair.

211The TEX related libraries

An example:

tex.enableprimitives('LuaTeX', {'formatname'})

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive

\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LuaTEX is run with --ini only the TEX82 primitives and \directlua are available, so no

extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,

you will have to add

\ifx\directlua\undefined \else

\directlua {tex.enableprimitives('',tex.extraprimitives ())}

\fi

near the beginning of your format generation file. Or you can choose different prefixes for

different subsets, as you see fit.

Calling some form of tex.enableprimitives is highly important though, because if you do not,

you will end up with a TEX82-lookalike that can run Lua code but not do much else. The defined

csnames are (of course) saved in the format and will be available at runtime.

12.3.15.2 extraprimitives

<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the re­

quested string value(s). The possible values and their (current) return values are given in the

following table. In addition the somewhat special primitives ‘\ ’, ‘\/’ and ‘-’ are defined.

NAME VALUES

tex above abovedisplayshortskip abovedisplayskip abovewithdelims accent adjde­

merits advance afterassignment aftergroup aligncontent atop atopwithdelims

badness baselineskip batchmode begingroup belowdisplayshortskip belowdis­

playskip binoppenalty botmark box boxmaxdepth brokenpenalty catcode char

chardef cleaders clubpenalty copy count countdef cr crcr csname day dead­

cycles def defaulthyphenchar defaultskewchar delcode delimiter delimiter­

factor delimitershortfall dimen dimendef discretionary displayindent dis­

playlimits displaystyle displaywidowpenalty displaywidth divide double­

hyphendemerits dp dump edef else emergencystretch end endcsname endgroup

endinput endlinechar eqno errhelp errmessage errorcontextlines errorstop­

mode escapechar everycr everydisplay everyhbox everyjob everymath everypar

everyvbox exhyphenchar exhyphenpenalty expandafter fam fi finalhyphende­

merits firstmark floatingpenalty font fontdimen fontname fontspecifiedname

futurelet gdef global globaldefs glyph halign hangafter hangindent hbad­

ness hbox hfil hfill hfilneg hfuzz holdinginserts hrule hsize hskip hss ht

hyphenation hyphenchar hyphenpenalty if ifcase ifcat ifdim iffalse ifhbox

ifhmode ifinner ifmmode ifnum ifodd iftrue ifvbox ifvmode ifvoid ifx ignore­

The TEX related libraries212

spaces indent input inputlineno insert insertpenalties interlinepenalty

jobname kern language lastbox lastkern lastpenalty lastskip lccode lead­

ers left lefthyphenmin leftskip leqno let limits linepenalty lineskip line­

skiplimit long looseness lower lowercase mark mathbin mathchar mathchardef

mathchoice mathclose mathcode mathinner mathop mathopen mathord mathpunct

mathrel mathsurround maxdeadcycles maxdepth meaning meaningasis meaning­

full meaningless medmuskip message middle mkern month moveleft moveright

mskip multiply muskip muskipdef newlinechar noalign noexpand noindent no­

limits nonscript nonstopmode nulldelimiterspace nullfont number omit or

outer output outputpenalty over overfullrule overline overshoot overwith­

delims pagedepth pagefilllstretch pagefillstretch pagefilstretch page­

goal pageshrink pagestretch pagetotal par parfillleftskip parfillskip

parindent parshape parskip patterns pausing penalty postdisplaypenalty pre­

displaypenalty predisplaysize pretolerance prevdepth prevgraf radical raise

relax relpenalty right righthyphenmin rightskip romannumeral scaledfontdi­

men scriptfont scriptscriptfont scriptscriptstyle scriptspace scriptstyle

scrollmode setbox setlanguage sfcode shipout show showbox showboxbreadth

showboxdepth showlists shownodedetails showthe skewchar skip skipdef space­

factor spaceskip span splitbotmark splitfirstmark splitmaxdepth splittop­

skip srule string tabskip textfont textstyle the thickmuskip thinmuskip time

tinymuskip toks toksdef tolerance topmark topskip tracingcommands tracin­

glostchars tracingmacros tracingonline tracingoutput tracingpages tracing­

paragraphs tracingrestores tracingstats uccode uchyph underline unhbox un­

hcopy unhpack unkern unpenalty unskip unvbox unvcopy unvpack uppercase vad­

just valign vbadness vbox vcenter vfil vfill vfilneg vfuzz vrule vsize vskip

vsplit vss vtop wd widowpenalty xdef xleaders xspaceskip year

core

etex botmarks clubpenalties currentgrouplevel currentgrouptype currentifbranch

currentiflevel currentiftype detokenize dimexpr displaywidowpenalties

everyeof firstmarks fontchardp fontcharht fontcharic fontcharwd glueexpr

glueshrink glueshrinkorder gluestretch gluestretchorder gluetomu ifc­

sname ifdefined iffontchar interactionmode interlinepenalties lastline­

fit lastnodetype marks muexpr mutoglue numexpr pagediscards parshapedimen

parshapeindent parshapelength predisplaydirection protected savinghyph­

codes savingvdiscards scantokens showgroups showifs showtokens splitbot­

marks splitdiscards splitfirstmarks topmarks tracingassigns tracinggroups

tracingifs tracinglevels tracingnesting unexpanded unless widowpenalties

luatex Uabove Uabovewithdelims Uatop Uatopwithdelims Uchar Udelcode Udelcodenum

Udelimiter Udelimiterover Udelimiterunder Uhextensible Uleft Umathaccent

Umathaccentbasedepth Umathaccentbaseheight Umathaccentbottomshiftdown

Umathaccenttopshiftup Umathaccentvariant Umathadapttoleft Umathadapt­

toright Umathaxis Umathbotaccentvariant Umathchar Umathcharclass Umath­

chardef Umathcharfam Umathcharnum Umathcharnumdef Umathcharslot Umathclass

Umathcode Umathcodenum Umathconnectoroverlapmin Umathdegreevariant Umath­

delimiterovervariant Umathdelimiterundervariant Umathdenominatorvariant

Umathextrasubpreshift Umathextrasubprespace Umathextrasubshift Umathextra­

213The TEX related libraries

subspace Umathextrasuppreshift Umathextrasupprespace Umathextrasupshift

Umathextrasupspace Umathflattenedaccentbasedepth Umathflattenedaccent­

baseheight Umathflattenedaccentbottomshiftdown Umathflattenedaccenttop­

shiftup Umathfractiondelsize Umathfractiondenomdown Umathfractiondenomvgap

Umathfractionnumup Umathfractionnumvgap Umathfractionrule Umathfraction­

variant Umathhextensiblevariant Umathlimitabovebgap Umathlimitabovekern

Umathlimitabovevgap Umathlimitbelowbgap Umathlimitbelowkern Umathlimitbe­

lowvgap Umathlimits Umathnoaxis Umathnolimits Umathnolimitsubfactor Umath­

nolimitsupfactor Umathnumeratorvariant Umathopenupdepth Umathopenupheight

Umathoperatorsize Umathoverbarkern Umathoverbarrule Umathoverbarvgap

Umathoverdelimiterbgap Umathoverdelimitervariant Umathoverdelimitervgap

Umathoverlayaccentvariant Umathoverlinevariant Umathphantom Umathpresub­

shiftdistance Umathpresupshiftdistance Umathprimeraise Umathprimeshiftdrop

Umathprimeshiftup Umathprimespaceafter Umathprimevariant Umathprimewidth

Umathquad Umathradicaldegreeafter Umathradicaldegreebefore Umathradicalde­

greeraise Umathradicalkern Umathradicalrule Umathradicalvariant Umath­

radicalvgap Umathruledepth Umathruleheight Umathskeweddelimitertolerance

Umathskewedfractionhgap Umathskewedfractionvgap Umathspaceafterscript

Umathspacebeforescript Umathstackdenomdown Umathstacknumup Umathstackvari­

ant Umathstackvgap Umathsubscriptvariant Umathsubshiftdistance Umathsub­

shiftdown Umathsubshiftdrop Umathsubsupshiftdown Umathsubsupvgap Umath­

subtopmax Umathsupbottommin Umathsuperscriptvariant Umathsupshiftdistance

Umathsupshiftdrop Umathsupshiftup Umathsupsubbottommax Umathtopaccentvari­

ant Umathunderbarkern Umathunderbarrule Umathunderbarvgap Umathunderde­

limiterbgap Umathunderdelimitervariant Umathunderdelimitervgap Umathun­

derlinevariant Umathuseaxis Umathvextensiblevariant Umathvoid Umathxscale

Umathyscale Umiddle Unosubprescript Unosubscript Unosuperprescript Unosu­

perscript Uoperator Uover Uoverdelimiter Uoverwithdelims Uprimescript Urad­

ical Uright Uroot Ushiftedsubprescript Ushiftedsubscript Ushiftedsuperpre­

script Ushiftedsuperscript Uskewed Uskewedwithdelims Ustack Ustartdisplay­

math Ustartmath Ustopdisplaymath Ustopmath Ustyle Usubprescript Usubscript

Usuperprescript Usuperscript Uunderdelimiter Uvextensible adjustspacing

adjustspacingshrink adjustspacingstep adjustspacingstretch afterassigned

aftergrouped aliased alignmark aligntab allcrampedstyles alldisplaystyles

allmathstyles allscriptscriptstyles allscriptstyles allsplitstyles all­

textstyles alluncrampedstyles atendofgroup atendofgrouped attribute at­

tributedef automaticdiscretionary automatichyphenpenalty automigration­

mode autoparagraphmode begincsname beginlocalcontrol beginmathgroup be­

ginsimplegroup boundary boxanchor boxanchors boxattribute boxdirection

boxgeometry boxorientation boxshift boxsource boxtarget boxtotal boxxmove

boxxoffset boxymove boxyoffset catcodetable clearmarks copymathatomrule

copymathparent copymathspacing crampeddisplaystyle crampedscriptscript­

style crampedscriptstyle crampedtextstyle csstring currentloopiterator cur­

rentloopnesting currentmarks defcsname dimensiondef dimexpression directlua

edefcsname efcode endlocalcontrol endmathgroup endsimplegroup enforced

etoks etoksapp etokspre everybeforepar everytab exceptionpenalty expand ex­

The TEX related libraries214

pandafterpars expandafterspaces expandcstoken expanded expandedafter ex­

pandedloop expandtoken explicitdiscretionary explicithyphenpenalty first­

validlanguage flushmarks fontid fontmathcontrol fontspecdef fontspecid

fontspecifiedsize fontspecscale fontspecxscale fontspecyscale fonttextcon­

trol formatname frozen futurecsname futuredef futureexpand futureexpandis

futureexpandisap gdefcsname gleaders glet gletcsname glettonothing glue­

specdef glyphdatafield glyphoptions glyphscale glyphscriptfield glyph­

scriptscale glyphscriptscriptscale glyphstatefield glyphtextscale glyphx­

offset glyphxscale glyphyoffset glyphyscale gtoksapp gtokspre hccode hj­

code hpack hyphenationmin hyphenationmode ifabsdim ifabsnum ifarguments

ifboolean ifchkdim ifchknum ifcmpdim ifcmpnum ifcondition ifcstok ifdimex­

pression ifdimval ifempty ifflags ifhaschar ifhastok ifhastoks ifhasxtoks

ifincsname ifinsert ifmathparameter ifmathstyle ifnumexpression ifnumval

ifparameter ifparameters ifrelax iftok ignorearguments ignorepars immedi­

ate immutable inherited initcatcodetable insertbox insertcopy insertdepth

insertdistance insertheight insertheights insertlimit insertmaxdepth in­

sertmode insertmultiplier insertpenalty insertprogress insertstorage in­

sertstoring insertunbox insertuncopy insertwidth instance integerdef las­

targuments lastchkdim lastchknum lastleftclass lastloopiterator lastnamedcs

lastnodesubtype lastparcontext lastrightclass leftmarginkern letcharcode

letcsname letfrozen letmathatomrule letmathparent letmathspacing letpro­

tected lettonothing linedirection localbrokenpenalty localcontrol localcon­

trolled localcontrolledloop localinterlinepenalty localleftbox localleft­

boxbox localmiddlebox localmiddleboxbox localrightbox localrightboxbox lp­

code luabytecode luabytecodecall luacopyinputnodes luadef luaescapestring

luafunction luafunctioncall luatexbanner luatexrevision luatexversion math­

accent mathatom mathatomskip mathbackwardpenalties mathdelimitersmode math­

direction mathdisplayskipmode matheqnogapstep mathfenced mathfencesmode

mathfontcontrol mathforwardpenalties mathfrac mathghost mathlimitsmode

mathmiddle mathnolimitsmode mathpenaltiesmode mathrad mathrulesfam math­

rulesmode mathscale mathscriptboxmode mathscriptcharmode mathscriptsmode

mathslackmode mathspacingmode mathstackstyle mathstyle mathstylefontid

mathsurroundmode mathsurroundskip maththreshold mugluespecdef mutable

noaligned noboundary nohrule norelax normalizelinemode nospaces novrule nu­

mericscale numexpression orelse orphanpenalties orphanpenalty orunless out­

putbox overloaded overloadmode pageboundary pageboundarypenalty pagevsize

parametercount parametermark parattribute pardirection permanent postexhy­

phenchar posthyphenchar postinlinepenalty prebinoppenalty predisplaygap­

factor preexhyphenchar prehyphenchar preinlinepenalty prerelpenalty pro­

trudechars protrusionboundary pxdimen quitloop quitvmode resetmathspacing

retokenized rightmarginkern rpcode savecatcodetable scaledemwidth scaledex­

height scaledextraspace scaledinterwordshrink scaledinterwordspace scaled­

interwordstretch scaledslantperpoint scantextokens semiexpanded semipro­

tected setdefaultmathcodes setfontid setmathatomrule setmathignore set­

mathoptions setmathpostpenalty setmathprepenalty setmathspacing shaping­

penaltiesmode shapingpenalty skewed skewedwithdelims snapshotpar supmark­

215The TEX related libraries

mode swapcsvalues tabsize textdirection thewithoutunit todimension tointe­

ger tokenized toksapp tokspre tolerant tomathstyle toscaled tpack tracingad­

justs tracingalignments tracingexpressions tracingfonts tracingfullboxes

tracinghyphenation tracinginserts tracingmarks tracingmath tracingnodes

uleaders undent unexpandedloop unletfrozen unletprotected untraced vpack

wordboundary wrapuppar xdefcsname xtoks xtoksapp xtokspre

Note that luatex does not contain directlua, as that is considered to be a core primitive, along

with all the TEX82 primitives, so it is part of the list that is returned from 'core'.

Running tex.extraprimitives will give you the complete list of primitives -ini startup. It is

exactly equivalent to tex.extraprimitives("etex","luatex").

12.3.15.3 primitives

<table> t = tex.primitives()

This function returns a list of all primitives that LuaTEX knows about.

12.3.16 Core functionality interfaces

12.3.16.1 badness

<number> b = tex.badness(<number> t, <number> s)

This helper function is useful during linebreak calculations. t and s are scaled values; the

function returns the badness for when total t is supposed to be made from amounts that sum to

s. The returned number is a reasonable approximation of 100(𝑡/𝑠)3;

12.3.16.2 tex.resetparagraph

This function resets the parameters that TEX normally resets when a new paragraph is seen.

12.3.16.3 linebreak

local <node> nodelist, <table> info =

tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

NAME TYPE EXPLANATION

pardir string

pretolerance number

tracingparagraphs number

tolerance number

looseness number

hyphenpenalty number

exhyphenpenalty number

pdfadjustspacing number

The TEX related libraries216

adjdemerits number

protrudechars number

linepenalty number

lastlinefit number

doublehyphendemerits number

finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal­

ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue_spec node

rightskip glue_spec node

parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice

for widowpenalties yourself.

It is your own job to make sure that listhead is a proper paragraph list: this function does

not add any nodes to it. To be exact, if you want to replace the core line breaking, you may

have to do the following (when you are not actually working in the pre_linebreak_filter or

linebreak_filter callbacks, or when the original list starting at listhead was generated in

horizontal mode):

‣ add an ‘indent box’ and perhaps a par node at the start (only if you need them)

‣ replace any found final glue by an infinite penalty (or add such a penalty, if the last node is

not a glue)

‣ add a glue node for the \parfillskip after that penalty node

‣ make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox. The

returned info table contains four values that are all numbers:

NAME EXPLANATION

prevdepth depth of the last line in the broken paragraph

prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph

demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font

expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.

The same is true for hbadness and hfuzz etc. All these are in the hpack routine, and that fetches

its own variables via globals.

217The TEX related libraries

12.3.16.4 shipout

tex.shipout(<number> n)

Ships out box number n to the output file, and clears the box register.

12.3.16.5 getpagestate

This helper reports the current page state: empty, box_there or inserts_only as integer value.

12.3.16.6 getlocallevel

This integer reports the current level of the local loop. It's only useful for debugging and the

(relative state) numbers can change with the implementation.

12.3.17 Functions related to synctex

The next helpers only make sense when you implement your own synctex logic. Keep in mind

that the library used in editors assumes a certain logic and is geared for plain and LATEX, so after

a decade users expect a certain behaviour.

NAME EXPLANATION

setsynctexmode 0 is the default and used normal synctex logic, 1 uses the values set by

the next helpers while 2 also sets these for glyph nodes; 3 sets glyphs

and glue and 4 sets only glyphs

setsynctextag set the current tag (file) value (obeys save stack)

setsynctexline set the current line value (obeys save stack)

setsynctexnofiles disable synctex file logging

getsynctexmode returns the current mode (for values see above)

getsynctextag get the currently set value of tag (file)

getsynctexline get the currently set value of line

forcesynctextag overload the tag (file) value (0 resets)

forcesynctexline overload the line value (0 resets)

The last one is somewhat special. Due to the way files are registered in SyncTEX we need to

explicitly disable that feature if we provide our own alternative if we want to avoid that overhead.

Passing a value of 1 disables registering.

12.4 The texconfig table

This is a table that is created empty. A startup Lua script could fill this table with a number of

settings that are read out by the executable after loading and executing the startup file. Watch

out: some keys are different from LuaTEX, which is a side effect of a more granular and dynamic

memory management.

KEY TYPE DEFAULT COMMENT

buffersize number/table 1000000 input buffer bytes

The TEX related libraries218

filesize number/table 1000 max number of open files

fontsize number/table 250 number of permitted fonts

hashsize number/table 150000 number of hash entries

inputsize number/table 10000 maximum input stack

languagesize number/table 250 number of permitted languages

marksize number/table 50 number of mark classes

nestsize number/table 1000 max depth of nesting

nodesize number/table 1000000 max node memory (various size)

parametersize number/table 20000 max size of parameter stack

poolsize number/table 10000000 max number of string bytes

savesize number/table 100000 mas size of save stack

stringsize number/table 150000 max number of strings

tokensize number/table 1000000 max token memory

expandsize number/table 10000 max expansion nesting

propertiessize number 0 initial size of node properties table

functionsize number 0 initial size of Lua functions table

errorlinesize number 79 how much or an error is shown

halferrorlinesize number 50 idem

formatname string

jobname string

starttime number for testing only

useutctime number for testing only

permitloadlib number for testing only

If no format name or jobname is given on the command line, the related keys will be tested

first instead of simply quitting. The statistics library has methods for tracking down how much

memory is available and has been configured. The size parameters take a number (for the

maximum allocated size) or a table with three possible keys: size, plus (for extra size) and step

for the increment when more memory is needed. They all start out with a hard coded minimum

and also have an hard coded maximum, the the configured size sits somewhere between these.

12.5 The texio library

This library takes care of the low-level I/O interface: writing to the log file and/or console.

12.5.1 write and writeselector

texio.write(<string> target, <string> s, ...)

texio.write(<string> s, ...)

texio.writeselector(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes mes­

sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes

to the log and the terminal. The optional target can be one of terminal, logfile or termi­

nal_and_logfile.

219The TEX related libraries

Note: If several strings are given, and if the first of these strings is or might be one of the targets

above, the target must be specified explicitly to prevent Lua from interpreting the first string

as the target.

12.5.2 writenl and writeselectornl

texio.writenl(<string> target, <string> s, ...)

texio.writenl(<string> s, ...)

texio.writeselectornl(<string> target, ...)

This function behaves like texio.write, but makes sure that the given strings will appear at the

beginning of a new line. You can pass a single empty string if you only want to move to the next

line.

The selector variants always expect a selector, so there is no misunderstanding if logfile is a

string or selector.

12.5.3 setescape

You can disable ^^ escaping of control characters by passing a value of zero.

12.5.4 closeinput

This function should be used with care. It acts as \endinput but at the Lua end. You can use it

to (sort of) force a jump back to TEX. Normally a Lua call will just collect prints and at the end

bump an input level and flush these prints. This function can help you stay at the current level

but you need to know what you're doing (or more precise: what TEX is doing with input).

12.6 The token library

12.6.1 The scanner

The token library provides means to intercept the input and deal with it at the Lua level. The

library provides a basic scanner infrastructure that can be used to write macros that accept a

wide range of arguments. This interface is on purpose kept general and as performance is quite

okay so one can build additional parsers without too much overhead. It's up to macro package

writers to see how they can benefit from this as the main principle behind LuaTEX is to provide

a minimal set of tools and no solutions. The scanner functions are probably the most intriguing.

FUNCTION ARGUMENT RESULT

scankeyword string returns true if the given keyword is gobbled; as with the

regular TEX keyword scanner this is case insensitive (and

ascii based)

scankeywordcs string returns true if the given keyword is gobbled; this variant

is case sensitive and also suitable for utf8

The TEX related libraries220

scanint returns an integer

scanreal returns a number from e.g. 1, 1.1, .1 with optional col­

lapsed signs

scanfloat returns a number from e.g. 1, 1.1, .1, 1.1E10, , .1e-10

with optional collapsed signs

scandimen infinity, mu-units returns a number representing a dimension or two num­

bers being the filler and order

scanglue mu-units returns a glue spec node

scantoks definer, expand returns a table of tokens

scancode bitset returns a character if its category is in the given bitset (rep­

resenting catcodes)

scanstring returns a string given between {}, as \macro or as se­

quence of characters with catcode 11 or 12

scanargument this one is simular to scanstring but also accepts a \cs

(which then get expanded)

scanword returns a sequence of characters with catcode 11 or 12 as

string

scancsname returns foo after scanning \foo

scanlist picks up a box specification and returns a [h|v]list node

The integer, dimension and glue scanners take an extra optional argument that signals that en

optional equal is permitted.

The scanners can be considered stable apart from the one scanning for a token. The scancode

function takes an optional number, the scankeyword function a normal Lua string. The infinity

boolean signals that we also permit fill as dimension and the mu-units flags the scanner that

we expect math units. When scanning tokens we can indicate that we are defining a macro, in

which case the result will also provide information about what arguments are expected and in

the result this is separated from the meaning by a separator token. The expand flag determines

if the list will be expanded.

The scanargument function expands the given argument. When a braced argument is scanned,

expansion can be prohibited by passing false (default is true). In case of a control sequence

passing false will result in a one-level expansion (the meaning of the macro).

The string scanner scans for something between curly braces and expands on the way, or when

it sees a control sequence it will return its meaning. Otherwise it will scan characters with

catcode letter or other. So, given the following definition:

\def\oof{oof}

\def\foo{foo-\oof}

we get:

NAME RESULT

\directlua{token.scanstring()}{foo} foo full expansion

\directlua{token.scanstring()}foo foo letters and others

\directlua{token.scanstring()}\foo foo-oof meaning

221The TEX related libraries

The \foo case only gives themeaning, but one can pass an already expanded definition (\edef'd).

In the case of the braced variant one can of course use the \detokenize and \unexpanded prim­

itives since there we do expand.

The scanword scanner can be used to implement for instance a number scanner. An optional

boolean argument can signal that a trailing space or \relax should be gobbled:

function token.scannumber(base)

return tonumber(token.scanword(),base)

end

This scanner accepts any valid Lua number so it is a way to pick up floats in the input.

You can use the Lua interface as follows:

\directlua {

function mymacro(n)

...

end

}

\def\mymacro#1{%

\directlua {

mymacro(\number\dimexpr#1)

}%

}

\mymacro{12pt}

\mymacro{\dimen0}

You can also do this:

\directlua {

function mymacro()

local d = token.scandimen()

...

end

}

\def\mymacro{%

\directlua {

mymacro()

}%

}

\mymacro 12pt

\mymacro \dimen0

It is quite clear from looking at the code what the first method needs as argument(s). For the

second method you need to look at the Lua code to see what gets picked up. Instead of passing

from TEX to Lua we let Lua fetch from the input stream.

The TEX related libraries222

In the first case the input is tokenized and then turned into a string, then it is passed to Lua

where it gets interpreted. In the second case only a function call gets interpreted but then the

input is picked up by explicitly calling the scanner functions. These return proper Lua variables

so no further conversion has to be done. This is more efficient but in practice (given what TEX

has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit

but for passing strings conversion to and from tokens has to be done anyway (although we can

probably speed up the process in later versions if needed).

12.6.2 Picking up one token

The scanners look for a sequence. When you want to pick up one token from the input you use

scannext. This creates a token with the (low level) properties as discussed next. This token is

just the next one. If you want to enforce expansion first you can use scantoken or the _expanded

variants. Internally tokens are characterized by a number that packs a lot of information. In

order to access the bits of information a token is wrapped in a userdata object.

The expand function will trigger expansion of the next token in the input. This can be quite

unpredictable but when you call it you probably know enough about TEX not to be too worried

about that. It basically is a call to the internal expand related function.

NAME EXPLANATION

scannext get the next token

scannextexpanded get the next expanded token

skipnext skip the next token

skipnextexpanded skip the next expanded token

peeknext get the next token and put it back in the input

peeknextexpanded get the next expanded token and put it back in the input

The peek function accept a boolean argument that triggers skipping spaces and alike.

12.6.3 Creating tokens

The creator function can be used as follows:

local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible

properties of tokens are:

NAME EXPLANATION

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the

classifier that determines the internal treatment)

csname the associated control sequence (if applicable)

id the unique id of the token

tok the full token number as stored in TEX

active a boolean indicating the active state of the token

223The TEX related libraries

expandable a boolean indicating if the token (macro) is expandable

protected a boolean indicating if the token (macro) is protected

frozen a boolean indicating if the token is a frozen command

user a boolean indicating if the token is a user defined command

index a number that indicated the subcommand; differs per command

Alternatively you can use a getter get<fieldname> to access a property of a token.

The numbers that represent a catcode are the same as in TEX itself, so using this information

assumes that you know a bit about TEX's internals. The other numbers and names are used

consistently but are not frozen. So, when you use them for comparing you can best query a

known primitive or character first to see the values.

You can ask for a list of commands:

local t = token.commands()

The id of a token class can be queried as follows:

local id = token.command_id("math_shift")

If you really know what you're doing you can create character tokens by not passing a string but

a number:

local letter_x = token.create(string.byte("x"))

local other_x = token.create(string.byte("x"),12)

Passing weird numbers can give side effects so don't expect too much help with that. As said,

you need to know what you're doing. The best way to explore the way these internals work is

to just look at how primitives or macros or \chardef'd commands are tokenized. Just create a

known one and inspect its fields. A variant that ignores the current catcode table is:

local whatever = token.new(123,12)

You can test if a control sequence is defined with is_defined, which accepts a string and returns

a boolean:

local okay = token.is_defined("foo")

The largest character possible is returned by biggest_char, just in case you need to know that

boundary condition.

12.6.4 Macros

The set_macro function can get upto 4 arguments:

set_macro("csname","content")

set_macro("csname","content","global")

set_macro("csname")

You can pass a catcodetable identifier as first argument:

The TEX related libraries224

set_macro(catcodetable,"csname","content")

set_macro(catcodetable,"csname","content","global")

set_macro(catcodetable,"csname")

The results are like:

\def\csname{content}

\gdef\csname{content}

\def\csname{}

The getmacro function can be used to get the content of a macro while the getmeaning function

gives the meaning including the argument specification (as usual in TEX separated by ->).

The set_char function can be used to do a \chardef at the Lua end, where invalid assignments

are silently ignored:

set_char("csname",number)

set_char("csname",number,"global")

A special one is the following:

set_lua("mycode",id)

set_lua("mycode",id,"global","protected")

This creates a token that refers to a Lua function with an entry in the table that you can ac­

cess with lua.getfunctions_table. It is the companion to \luadef. When the first (and only)

argument is true the size will preset to the value of texconfig.function_size.

The pushmacro and popmacro function are very experimental and can be used to get and set

an existing macro. The push call returns a user data object and the pop takes such a userdata

object. These object have no accessors and are to be seen as abstractions.

12.6.5 Pushing back

There is a (for now) experimental putter:

local t1 = token.scannext()

local t2 = token.scannext()

local t3 = token.scannext()

local t4 = token.scannext()

-- watch out, we flush in sequence

token.putnext { t1, t2 }

-- but this one gets pushed in front

token.putnext (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of

tokens. The token.expand function will trigger expansion but what happens really depends on

what you're doing where.

This putter is actually a bit more flexible because the following input also works out okay:

225The TEX related libraries

\def\foo#1{[#1]}

\directlua {

local list = { 101, 102, 103, token.create("foo"), "{abracadabra}" }

token.putnext("(the)")

token.putnext(list)

token.putnext("(order)")

token.putnext(unpack(list))

token.putnext("(is reversed)")

}

We get this:

(is reversed)efg[abracadabra](order)efg[abracadabra](the)

So, strings get converted to individual tokens according to the current catcode regime and num­

bers become characters also according to this regime.

12.6.6 Nota bene

When scanning for the next token you need to keep in mind that we're not scanning like TEX

does: expanding, changing modes and doing things as it goes. When we scan with Lua we just

pick up tokens. Say that we have:

\oof

but \oof is undefined. Normally TEX will then issue an error message. However, when we have:

\def\foo{\oof}

We get no error, unless we expand \foo while \oof is still undefined. What happens is that as

soon as TEX sees an undefined macro it will create a hash entry and when later it gets defined

that entry will be reused. So, \oof really exists but can be in an undefined state.

oof : oof

foo : foo

myfirstoof :

This was entered as:

oof : \directlua{tex.print(token.scancsname())}\oof

foo : \directlua{tex.print(token.scancsname())}\foo

myfirstoof : \directlua{tex.print(token.scancsname())}\myfirstoof

The reason that you see oof reported and not myfirstoof is that \oof was already used in a

previous paragraph.

If we now say:

\def\foo{}

The TEX related libraries226

we get:

oof : oof

foo : foo

myfirstoof :

And if we say

\def\foo{\oof}

we get:

oof : oof

foo : foo

myfirstoof :

When scanning from Lua we are not in a mode that defines (undefined) macros at all. There we

just get the real primitive undefined macro token.

689527 537473675

684090 536969024

689705 536985953

This was generated with:

\directlua{local t = token.scannext() tex.print(t.id.." "..t.tok)}\myfirstoof

\directlua{local t = token.scannext() tex.print(t.id.." "..t.tok)}\mysecondoof

\directlua{local t = token.scannext() tex.print(t.id.." "..t.tok)}\mythirdoof

So, we do get a unique token because after all we need some kind of Lua object that can be

used and garbage collected, but it is basically the same one, representing an undefined control

sequence.

227The MetaPost library mplib

13 The MetaPost library mplib

13.1 Introduction

The library used in LuaMetaTEX differs from the one used in LuaTEX. There are for instance

no backends and the binary number model is not available. There is also no textual output.

There are scanners and injectors that make it possible to enhance the language and efficiently

feed back into MetaPost. File handling is now completely delegated to Lua, so there are more

callbacks.

Some functionality is experimental and therefore documentation is limited. Also, details are

discussed in articles.

13.2 Process management

The MetaPost library interface registers itself in the table mplib. It is based on mplib version

3.11 (LuaTEX used version 2+). Not all functionality is described here. Once we're out of the

experimental stage some more information will be added. Using the library boils down to ini­

tializing an instance, executing statements and picking up assembled figures in the form of Lua

user data objects (and from there on Lua variables like tables).

13.2.1 new

To create a new MetaPost instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument is a hash table that can have a number of

different fields, as follows:

NAME TYPE DESCRIPTION DEFAULT

error_line number error line width 79

print_line number line length in ps output 100

random_seed number the initial random seed variable

math_mode string the number system to use: scaled

scaled, double or decimal

interaction string the interaction mode: batch, errorstop

nonstop, scroll or errorstop

job_name string a compatibility value

utf8_mode boolean permit characters in the range false

128 upto 255 to be part of names

text_mode boolean permit characters 2 and 3 as false

fencing string literals

tolerance number the value used as criterium for 131/65536

straight lines

The MetaPost library mplib228

extensions boolean enable all extensions (might go)

The binary mode is no longer available in the LuaMetaTEX version of mplib. It offers no real

advantage and brings a ton of extra libraries with platform specific properties that we can now

avoid. We might introduce a high resolution scaled variant at some point but only when it pays

of performance wise.

In addition to the above we need to provide functions that helps MetaPost communicate to the

outside world.

NAME TYPE ARGUMENT(S) RESULT

find_file function string, string, string string

function string, string, number string

open_file function string, string, string table

function string, string, number table

run_logger function number, string

run_script function string whatever [, boolean]

function number whatever [, boolean]

make_text function string, number string

run_internal function number, number, number, string

run_overload function number, string, number boolean

run_error function string, string, number

The find_file and open_file functions should be of this form:

<string> found = find_file (<string> name, <string> mode, <string> type)

<table> actions = open_file (<string> name, <string> mode, <string> type)

where the mode is r or w and the type is mp, data, terminal or a number, The finder is supposed

to return the full path name of the found file, or nil if the file cannot be found. The open_file

is supposed to return a table with a close and read function. This is similar to the way we do

it in TEX. The special name terminal is used for interactive input. A numeric type indicates a

specific read or write channel.

The run_logger callback gets a target and a string. A target 1 means log, a value 2 means and

3 means both.

The run_script function gets either a number or a string. The string represents a script, the

number can be used as reference to something stored. The return value can be a boolean,

number, string or table. Booleans and numbers are injected directly, strings and concatenated

tables are fed into scantokens. When the second argument is true, the strings are also injected

directly and tables are injected as pairs, colors, paths, transforms, depending on how many

elements there are.

The run_internal function triggers when internal MetaPost variables flagged with runscript

are initialized, saved or restored. The first argument is an index, the second the action. When

initialized a third and fourth argument are passed. This is an experimental feature.

The experimental run_overload callback kicks in when a variable (or macro) with a property

other than zero is redefined. It gets a property, name and the value of overloadmode passed and

when the function returns true redefinition is permitted.

229The MetaPost library mplib

The run_error callback gets the error message, help text and current interaction mode passed.

Normally it's best to just quit and let the user fix the code.

When you are processing a snippet of text starting with btex or verbatimtex and ending with

etex, the MetaPost texscriptmode parameter controls how spaces and newlines get honoured.

The default value is 1. Possible values are:

NAME MEANING

0 no newlines

1 newlines in verbatimtex

2 newlines in verbatimtex and etex

3 no leading and trailing strip in verbatimtex

4 no leading and trailing strip in verbatimtex and btex

That way the Lua handler (assigned to make_text) can do what it likes. An etex has to be

followed by a space or ; or be at the end of a line and preceded by a space or at the beginning

of a line. The make_text function can return a string that gets fed into scantokens.

13.2.2 getstatistics

You can request statistics with:

<table> stats = mp:getstatistics()

This function returns the vital statistics for an mplib instance. Some are useful, others make

more sense when debugging.

FIELD TYPE EXPLANATION

memory number bytes of node memory

hash number size of the hash

parameters number allocated parameter stack

input number allocated input stack

tokens number number of token nodes

pairs number number of pair nodes

knots number number of knot nodes

nodes number number of value nodes

symbols number number of symbolic nodes

characters number number of string bytes

strings number number of strings

internals number number of internals

Note that in the new version of mplib, this is informational only. The objects are all allocated

dynamically, so there is no chance of running out of space unless the available system memory

is exhausted.

13.2.3 execute

You can ask the MetaPost interpreter to run a chunk of code by calling

The MetaPost library mplib230

<table> rettable = execute(mp,"metapost code")

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)

because when a fatal MetaPost error occurs the mplib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey

proper syntax, like each of them is a small file. For instance, you cannot split a single statement

over multiple chunks.

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start

of the first chunk. When no string is passed to the execute function, there will still be one

triggered because it then expects input from the terminal and you can emulate that channel

with the callback you provide.

13.2.4 finish

Once you create an instance it is likely that you will keep it open for successive processing, if

only because you want to avoid loading a format each time. If for some reason you want to stop

using an mplib instance while processing is not yet actually done, you can call finish.

<table> rettable = finish(mp)

Eventually, used memory will be freed and open files will be closed by the Lua garbage collector,

but an explicit finish is the only way to capture the final part of the output streams.

13.2.5 settolerance and gettolerance

These two functions relate to the bend tolerance, a value that is used when the export determines

if a path has straight lines (like a rectangle has).

13.2.6 Errors

In case of an error you can get the context where it happened with showcontext.

13.2.7 The scanner status

When processing a graphic an instance is in a specific state and again we have a getter for

the (internal) values mplib.getstates(): 0: normal, 1: skipping, 2: flushing, 3: absorbing, 4:

var_defining, 5: op_defining, 6: loop_defining. The current status can be queried with getsta­

tus.

13.2.8 The hash

Macro names and variable names are stored in a hash table. You can get a list with entries

with gethashentries, which takes an instance as first argument. When the second argument is

true more details will be provided. With gethashentry you get info about the given macro or

variable.

231The MetaPost library mplib

13.2.9 Callbacks

Some statistics about the number of calls to the callbacks can be queried with getcallback­

state, This function expects a valid instance.

13.3 The end result

13.3.1 The figure

The return value of execute and finish is a table with a few possible keys (only status is always

guaranteed to be present).

FIELD TYPE EXPLANATION

status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error

fig table an array of generated figures (if any)

When status equals 3, you should stop using this mplib instance immediately, it is no longer

capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,

and each of those has a number of object methods you can call:

You can check if a figure uses stacking with the stacking function. When objects are fetched,

memory gets freed so no information about stacking is available then. You can get the used bend

tolerance of an object with tolerance.

FIELD TYPE EXPLANATION

boundingbox function returns the bounding box, as an array of 4 values

objects function returns the actual array of graphic objects in this fig

filename function the filename this fig's PostScript output would have written to in

stand alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italic function the fontcharit value

charcode function the (rounded) charcode value

stacking function is there a non-zero stacking

Note: you can call fig:objects() only once for any one fig object! Some information, like

stacking, can only be queried when the complete figure is still present and calling up objects

will free elements in the original once they are transferred.

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is

larger than the second set, the picture is empty.

Graphical objects come in various types: fill, outline, text, start_clip, stop_clip,

start_bounds, stop_bounds, start_group and stop_group. Each type has a different list of

accessible values.

The MetaPost library mplib232

There is a helper function (mplib.fields(obj)) to get the list of accessible values for a particular

object, but you can just as easily use the tables given below.

All graphical objects have a field type that gives the object type as a string value; it is not explicit

mentioned in the following tables. In the following, numbers are PostScript points (base points

in TEX speak) represented as a floating point number, unless stated otherwise. Field values that

are of type table are explained in the next section.

13.3.2 fill

FIELD TYPE EXPLANATION

path table the list of knots

htap table the list of knots for the reversed trajectory

pen table knots of the pen

color table the object's color

linejoin number line join style (bare number)

miterlimit number miterlimit

prescript string the prescript text

postscript string the postscript text

stacking number the stacking (level)

The entries htap and pen are optional.

13.3.3 outline

FIELD TYPE EXPLANATION

path table the list of knots

pen table knots of the pen

color table the object's color

linejoin number line join style (bare number)

miterlimit number miterlimit

linecap number line cap style (bare number)

dash table representation of a dash list

prescript string the prescript text

postscript string the postscript text

stacking number the stacking (level)

The entry dash is optional.

13.3.4 start_bounds, start_clip, start_group

FIELD TYPE EXPLANATION

path table the list of knots

stacking number the stacking (level)

233The MetaPost library mplib

13.3.5 stop_bounds, stop_clip, stop_group

Here we have only one key:

FIELD TYPE EXPLANATION

stacking number the stacking (level)

13.4 Subsidiary table formats

13.4.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as mplib is concerned) are

represented by an array where each entry is a table that represents a knot.

FIELD TYPE EXPLANATION

left_type string when present: endpoint, but usually absent

right_type string like left_type

x_coord number X coordinate of this knot

y_coord number Y coordinate of this knot

left_x number X coordinate of the precontrol point of this knot

left_y number Y coordinate of the precontrol point of this knot

right_x number X coordinate of the postcontrol point of this knot

right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra key type

with value elliptical besides the array part containing the knot list.

13.4.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

FIELD TYPE EXPLANATION

0 marking only no values

1 greyscale one value in the range (0, 1), ‘black’ is 0
3 rgb three values in the range (0, 1), ‘black’ is 0, 0, 0
4 cmyk four values in the range (0, 1), ‘black’ is 0, 0, 0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values

representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the

shipout.

13.4.3 Transforms

Each transform is a six-item array.

The MetaPost library mplib234

INDEX TYPE EXPLANATION

1 number represents x

2 number represents y

3 number represents xx

4 number represents yx

5 number represents xy

6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,

where the translation comes last.

13.4.4 Dashes

Each dash is a hash with two items. We use the same model as PostScript for the representation

of the dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

FIELD TYPE EXPLANATION

dashes hash an array of on-off numbers

offset number the starting offset value

13.4.5 Pens and peninfo

There is helper function (peninfo(obj)) that returns a table containing a bunch of vital charac­

teristics of the used pen (all values are floats):

FIELD TYPE EXPLANATION

width number width of the pen

sx number 𝑥 scale
rx number 𝑥𝑦 multiplier
ry number 𝑦𝑥 multiplier
sy number 𝑦 scale
tx number 𝑥 offset
ty number 𝑦 offset

13.4.6 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the

argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

<number> w = char_width(mp,<string> fontname, <number> char)

<number> h = char_height(mp,<string> fontname, <number> char)

<number> d = char_depth(mp,<string> fontname, <number> char)

235The MetaPost library mplib

13.5 Scanners

After a relative long period of testing the scanners are now part of the interface. That doesn't

mean that there will be no changes: depending on the needs and experiences details might

evolve. The summary below is there still preliminary and mostly provided as reminder.

SCANNER ARGUMENT RETURNS

scannext instance, keep token, mode, type

scanexpression instance, keep type

scantoken instance, keep token, mode, kind

scansymbol instance, keep, expand string

scannumeric instance, type number

scaninteger instance, type integer

scanboolean instance, type boolean

scanstring instance, type string

scanpair instance, hashed, type table or two numbers

scancolor instance, hashed, type table or three numbers

scancmykcolor instance, hashed, type table or four numbers

scantransform instance, hashed, type table or six numbers

scanpath instance, hashed, type table with hashes or arrays

scanpen instance, hashed, type table with hashes or arrays

scanproperty todo

skiptoken todo

The types and token codes are numbers but they actually depend on the implementation (al­

though changes are unlikely). The types of data structures can be queried with mplib.get­

types(): 0: undefined, 1: vacuous, 2: boolean, 3: unknownboolean, 4: string, 5: unknown­

string, 6: pen, 7: unknownpen, 8: path, 9: unknownpath, 10: picture, 11: unknownpicture,

12: transform, 13: color, 14: cmykcolor, 15: pair, 16: numeric, 17: known, 18: dependent,

19: protodependent, 20: independent, 21: tokenlist, 22: structured, 23: unsuffixedmacro, 24:

suffixedmacro, and command codes with mplib.getcodes(): 0: undefined, 1: btex, 2: etex, 3:

if, 4: fiorelse, 5: input, 6: iteration, 7: repeatloop, 8: exittest, 9: relax, 10: scantokens, 11:

runscript, 12: maketext, 13: expandafter, 14: definedmacro, 15: save, 16: interim, 17: let, 18:

newinternal, 19: macrodef, 20: shipout, 21: addto, 22: setbounds, 23: protection, 24: property,

25: show, 26: mode, 27: randomseed, 28: message, 29: everyjob, 30: delimiters, 31: write, 32:

typename, 33: leftdelimiter, 34: begingroup, 35: nullary, 36: unary, 37: str, 38: void, 39: cycle,

40: ofbinary, 41: capsule, 42: string, 43: internal, 44: tag, 45: numeric, 46: plusorminus, 47:

secondarydef, 48: tertiarybinary, 49: leftbrace, 50: pathjoin, 51: ampersand, 52: tertiarydef,

53: primarybinary, 54: equals, 55: and, 56: primarydef, 57: slash, 58: secondarybinary, 59:

parametertype, 60: controls, 61: tension, 62: atleast, 63: curl, 64: macrospecial, 65: rightde­

limiter, 66: leftbracket, 67: rightbracket, 68: rightbrace, 69: with, 70: thingstoadd, 71: of, 72:

to, 73: step, 74: until, 75: within, 76: assignment, 77: colon, 78: comma, 79: semicolon, 80:

endgroup, 81: stop, 82: undefinedcs

Now, if you really want to use these, keep in mind that the internals of MetaPost are not trivial,

especially because expression scanning can be complex. So you need to experiment a bit. In

The MetaPost library mplib236

ConTEXt all is (and will be) hidden below an abstraction layer so users are not bothered by all

these look-ahead and push-back issues that originate in the way MetaPost scans its input.

The supported color models are: mplib.getcolormodels(): 0: no, 1: grey, 2: rgb, 3: cmyk.

If you want the internal codes of the possible fields in a graphic object use mplib.getobject­

types(): 0: , 1: fill, 2: outline, 3: start_clip, 4: start_group, 5: start_bounds, 6: stop_clip, 7:

stop_group, 8: stop_bounds. You can query the id of a graphic object with the gettype function.

ID OBJECT FIELDS

1 fill type path htap pen color linejoin miterlimit prescript postscript

stacking

2 outline type path pen color linejoin miterlimit linecap dash prescript

postscript stacking

3 start_clip type path prescript postscript stacking

4 start_group type path prescript postscript stacking

5 start_bounds type path prescript postscript stacking

6 stop_clip type stacking

7 stop_group type stacking

8 stop_bounds type stacking

13.6 Injectors

It is important to know that piping code into the library is pretty fast and efficient. Most pro­

cessing time relates to memory management, calculations and generation of output can not be

neglected either. Out of curiousity I added some functions that directly push data into the library

but the gain is not that large.9

SCANNER ARGUMENT

injectnumeric instance, number

injectinteger instance, number

injectboolean instance, boolean

injectstring instance, string

injectpair instance, (table with) two numbers

injectcolor instance, (table with) three numbers

injectcmykcolor instance, (table with) four numbers

injecttransform instance, (table with) six numbers

injectpath instance, table with hashes or arrays, cycle, variant

injectwhatever instance, ont of the above depending on type and size

The path injector takes a table with subtables that are either hashed (like the path solver) or

arrays with two, four or six entries. When the third argument has the value true the path is

closed. When the fourth argument is true the path is constructed out of straight lines (as with

--) by setting the curl values to 1 automatically.10

9 The main motivation was checking of huge paths could be optimized. The other data structures were then added for

completeness.
10 This is all experimental so future versions might provide more control.

237The MetaPost library mplib

This is the simplest path definition:

{

{ x, y },

...,

cycle = true

}

and this one also has the control points:

{

{ x0, y0, x1, y1, x2, y2 },

...,

cycle = true

}

A very detailed specification is this but you have to make sure that the parameters make sense.

{

{

x_coord = ...,

y_coord = ...,

left_x = ...,

left_y = ...,

right_x = ...,

right_y = ...,

left_tension = ...,

right_tension = ...,

left_curl = ...,

right_curl = ...,

direction_x = ...,

direction_y = ...,

left_type = ...,

right_type = ...,

},

...,

cycle = true

}

Instead of the optional keyword cycle you can use close.

13.7 To be checked

% solvepath

% expandtex

The MetaPost library mplib238

239The pdf related libraries

14 The pdf related libraries

14.1 The pdfe library

14.1.1 Introduction

The pdfe library replaces the epdf library and provides an interface to pdf files. It uses the

same code as is used for pdf image inclusion. The pplib library by Paweł Jackowski replaces

the poppler (derived from xpdf) library.

A pdf file is basically a tree of objects and one descends into the tree via dictionaries (key/value)

and arrays (index/value). There are a few topmost dictionaries that start at root that are accessed

more directly.

Although everything in pdf is basically an object we only wrap a few in so called userdata Lua

objects.

TYPE MAPPING

pdf Lua

null nil

boolean boolean

integer integer

float number

name string

string string

array array userdatum

dictionary dictionary userdatum

stream stream userdatum (with related dictionary)

reference reference userdatum

The regular getters return these Lua data types but one can also get more detailed information.

14.1.2 open, openfile, new, getstatus, close, unencrypt

A document is loaded from a file (by name or handle) or string:

<pdfe document> = pdfe.open(filename)

<pdfe document> = pdfe.openfile(filehandle)

<pdfe document> = pdfe.new(somestring,somelength)

Such a document is closed with:

pdfe.close(<pdfe document>)

You can check if a document opened well by:

pdfe.getstatus(<pdfe document>)

The pdf related libraries240

The returned codes are:

VALUE EXPLANATION

-2 the document failed to open

-1 the document is (still) protected

0 the document is not encrypted

2 the document has been unencrypted

An encrypted document can be unencrypted by the next command where instead of either pass­

word you can give nil:

pdfe.unencrypt(<pdfe document>,userpassword,ownerpassword)

14.1.3 getsize, getversion, getnofobjects, getnofpages

A successfully opened document can provide some information:

bytes = getsize(<pdfe document>)

major, minor = getversion(<pdfe document>)

n = getnofobjects(<pdfe document>)

n = getnofpages(<pdfe document>)

bytes, waste = getnofpages(<pdfe document>)

14.1.4 get[catalog|trailer|info]

For accessing the document structure you start with the so called catalog, a dictionary:

<pdfe dictionary> = pdfe.getcatalog(<pdfe document>)

The other two root dictionaries are accessed with:

<pdfe dictionary> = pdfe.gettrailer(<pdfe document>)

<pdfe dictionary> = pdfe.getinfo(<pdfe document>)

14.1.5 getpage, getbox

A specific page can conveniently be reached with the next command, which returns a dictionary.

<pdfe dictionary> = pdfe.getpage(<pdfe document>,pagenumber)

Another convenience command gives you the (bounding) box of a (normally page) which can be

inherited from the document itself. An example of a valid box name is MediaBox.

pages = pdfe.getbox(<pdfe dictionary>,boxname)

14.1.6 get[string|integer|number|boolean|name]

Common values in dictionaries and arrays are strings, integers, floats, booleans and names

(which are also strings) and these are also normal Lua objects:

241The pdf related libraries

s = getstring (<pdfe array|dictionary>,index|key)

i = getinteger(<pdfe array|dictionary>,index|key)

n = getnumber (<pdfe array|dictionary>,index|key)

b = getboolean(<pdfe array|dictionary>,index|key)

n = getname (<pdfe array|dictionary>,index|key)

The getstring function has two extra variants:

s, h = getstring (<pdfe array|dictionary>,index|key,false)

s = getstring (<pdfe array|dictionary>,index|key,true)

The first call returns the original string plus a boolean indicating if the string is hex encoded.

The second call returns the unencoded string.

14.1.7 get[dictionary|array|stream]

Normally you will use an index in an array and key in a dictionary but dictionaries also accept

an index. The size of an array or dictionary is available with the usual # operator.

<pdfe dictionary> = getdictionary(<pdfe array|dictionary>,index|key)

<pdfe array> = getarray (<pdfe array|dictionary>,index|key)

<pdfe stream>,

<pdfe dictionary> = getstream (<pdfe array|dictionary>,index|key)

These commands return dictionaries, arrays and streams, which are dictionaries with a blob of

data attached.

Before we come to an alternative access mode, we mention that the objects provide access in a

different way too, for instance this is valid:

print(pdfe.open("foo.pdf").Catalog.Type)

At the topmost level there are Catalog, Info, Trailer and Pages, so this is also okay:

print(pdfe.open("foo.pdf").Pages[1])

14.1.8 [open|close|readfrom|whole|]stream

Streams are sort of special. When your index or key hits a stream you get back a stream object

and dictionary object. The dictionary you can access in the usual way and for the stream there

are the following methods:

okay = openstream(<pdfe stream>,[decode])

closestream(<pdfe stream>)

str, n = readfromstream(<pdfe stream>)

str, n = readwholestream(<pdfe stream>,[decode])

You either read in chunks, or you ask for the whole. When reading in chunks, you need to open

and close the stream yourself. The n value indicates the length read. The decode parameter

controls if the stream data gets uncompressed.

The pdf related libraries242

As with dictionaries, you can access fields in a stream dictionary in the usual Lua way too. You

get the content when you ‘call’ the stream. You can pass a boolean that indicates if the stream

has to be decompressed.

14.1.9 getfrom[dictionary|array]

In addition to the interface described before, there is also a bit lower level interface available.

key, type, value, detail = getfromdictionary(<pdfe dictionary>,index)

type, value, detail = getfromarray(<pdfe array>,index)

TYPE MEANING VALUE DETAIL

0 none nil

1 null nil

2 boolean boolean

3 integer integer

4 number float

5 name string

6 string string hex

7 array arrayobject size

8 dictionary dictionaryobject size

9 stream streamobject dictionary size

10 reference integer

A hex string is (in the pdf file) surrounded by <> while plain strings are bounded by <>.

14.1.10 [dictionary|array]totable

All entries in a dictionary or table can be fetched with the following commands where the return

values are a hashed or indexed table.

hash = dictionarytotable(<pdfe dictionary>)

list = arraytotable(<pdfe array>)

You can get a list of pages with:

{ { <pdfe dictionary>, size, objnum }, ... } = pagestotable(<pdfe document>)

14.1.11 getfromreference

Because you can have unresolved references, a reference object can be resolved with:

type, <pdfe dictionary|array|stream>, detail = getfromreference(<pdfe refer­

ence>)

So, as second value you get back a new pdfe userdata object that you can query.

243The pdf related libraries

14.2 Memory streams

The pdfe.new function takes three arguments:

VALUE EXPLANATION

stream this is a (in low level Lua speak) light userdata object, i.e. a pointer to a sequence of

bytes

length this is the length of the stream in bytes (the stream can have embedded zeros)

name optional, this is a unique identifier that is used for hashing the stream

The third argument is optional. When it is not given the function will return a pdfe document

object as with a regular file, otherwise it will return a filename that can be used elsewhere (e.g.

in the image library) to reference the stream as pseudo file.

Instead of a light userdata stream (which is actually fragile but handy when you come from a

library) you can also pass a Lua string, in which case the given length is (at most) the string

length.

The function returns a pdfe object and a string. The string can be used in the img library instead

of a filename. You need to prevent garbage collection of the object when you use it as image (for

instance by storing it somewhere).

Both the memory stream and it's use in the image library is experimental and can change. In

case you wonder where this can be used: when you use the swiglib library for graphicmagick,

it can return such a userdata object. This permits conversion in memory and passing the result

directly to the backend. This might save some runtime in one-pass workflows. This feature is

currently not meant for production and we might come up with a better implementation.

14.3 The pdfscanner library

This library is not available in LuaMetaTEX.

The pdf related libraries244

245Extra libraries

15 Extra libraries

15.1 Introduction

The libraries can be grouped in categories like fonts, languages, TEX, MetaPost, pdf, etc. There

are however also some that are more general purpose and these are discussed here.

15.2 File and string readers: fio and type sio

This library provides a set of functions for reading numbers from a file and in addition to the

regular io library functions. The following work on normal Lua file handles.

NAME ARGUMENTS RESULTS

readcardinal1 (f) a 1 byte unsigned integer

readcardinal2 (f) a 2 byte unsigned integer

readcardinal3 (f) a 3 byte unsigned integer

readcardinal4 (f) a 4 byte unsigned integer

readcardinaltable (f,n,b) n cardinals of b bytes

readinteger1 (f) a 1 byte signed integer

readinteger2 (f) a 2 byte signed integer

readinteger3 (f) a 3 byte signed integer

readinteger4 (f) a 4 byte signed integer

readintegertable (f,n,b) n integers of b bytes

readfixed2 (f) a float made from a 2 byte fixed format

readfixed4 (f) a float made from a 4 byte fixed format

read2dot14 (f) a float made from a 2 byte in 2dot4 format

setposition (f,p) goto position p

getposition (f) get the current position

skipposition (f,n) skip n positions

readbytes (f,n) n bytes

readbytetable (f,n) n bytes

When relevant there are also variants that end with le that do it the little endian way. The fixed

and dot floating points formats are found in font files and return Lua doubles.

A similar set of function as in the fio library is available in the sio library: sio.readcardi­

nal1, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltable,

sio.readinteger1, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.readin­

tegertable, sio.readfixed2, sio.readfixed4, sio.read2dot14, sio.setposition, sio.get­

position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first argu­

ment is a string instead of a file handle.

15.3 md5

NAME ARGUMENTS RESULTS

sum

Extra libraries246

hex

HEX

15.4 sha2

NAME ARGUMENTS RESULTS

digest256

digest384

digest512

15.5 xzip

NAME ARGUMENTS RESULTS

compress

decompress

adler32

crc32

15.6 xmath

This library just opens up standard C math library and the main reason for it being there is that it

permits advanced graphics in MetaPost (via the Lua interface). There are three constant values:

NAME ARGUMENTS RESULTS

inf — inf

nan — nan

pi — 3.1415926535898

and a lot of functions:

NAME ARGUMENTS RESULTS

acos (a)

acosh (a)

asin (a)

asinh (a)

atan (a[,b])

atan2 (a[,b])

atanh (a)

cbrt (a)

ceil (a)

copysign (a,b)

cos (a)

cosh (a)

deg (a)

247Extra libraries

erf (a)

erfc (a)

exp (a)

exp2 (a)

expm1 (a)

fabs (a)

fdim (a,b)

floor (a)

fma (a,b,c)

fmax (...)

fmin (...)

fmod (a,b)

frexp (a,b)

gamma (a)

hypot (a,b)

isfinite (a)

isinf (a)

isnan (a)

isnormal (a)

j0 (a)

j1 (a)

jn (a,b)

ldexp (a,b)

lgamma (a)

l0 (a)

l1 (a)

ln (a,b)

log (a[,b])

log10 (a)

log1p (a)

log2 (a)

logb (a)

modf (a,b)

nearbyint (a)

nextafter (a,b)

pow (a,b)

rad (a)

remainder (a,b)

remquo (a,b)

round (a)

scalbn (a,b)

sin (a)

sinh (a)

sqrt (a)

tan (a)

tanh (a)

Extra libraries248

tgamma (a)

trunc (a)

y0 (a)

y1 (a)

yn (a)

15.7 xcomplex

LuaMetaTEX also provides a complex library xcomplex. The complex number is a userdatum:

NAME ARGUMENTS RESULTS

new (r,i) a complex userdata type

tostring (z) a string representation

topair (z) two numbers

There is a bunch of functions that take a complex number:

NAME ARGUMENTS RESULTS

abs (a)

arg (a)

imag (a)

real (a)

onj (a)

proj (a)

exp" (a)

log (a)

sqrt (a)

pow (a,b)

sin (a)

cos (a)

tan (a)

asin (a)

acos (a)

atan (a)

sinh (a)

cosh (a)

tanh (a)

asinh (a)

acosh (a)

atanh (a)

These are accompanied by libcerf functions:

NAME ARGUMENTS RESULTS

erf (a) The complex error function erf(z)

erfc (a) The complex complementary error function erfc(z) = 1 - erf(z)

249Extra libraries

erfcx (a) The underflow-compensating function erfcx(z) = exp(z^2) erfc(z)

erfi (a) The imaginary error function erfi(z) = -i erf(iz)

dawson (a) Dawson's integral D(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)

voigt (a,b,c) The convolution of a Gaussian and a Lorentzian

voigt_hwhm (a,b) The half width at half maximum of the Voigt profile

15.8 xdecimal

As an experiment LuaMetaTEX provides an interface to the decNumber library that we have on

board forMetaPost anyway. Apart from the usual support for operators there are some functions.

NAME ARGUMENTS RESULTS

abs (a)

new ([n or s])

copy (a)

trim (a)

tostring (a)

tonumber (a)

setprecision (n)

getprecision ()

conj (a)

abs (a)

pow (a,b)

sqrt (a)

ln (a)

log (a)

exp (a)

bor (a,b)

bxor (a,b)

band (a,b)

shift (a,b)

rotate (a,b)

minus (a)

plus (a)

min (a,b)

max (a,b)

15.9 lfs

The original lfs module has been adapted a bit to our needs but for practical reasons we kept

the namespace. This module will probably evolve a bit over time.

NAME ARGUMENTS RESULTS

attributes (name)

chdir (name)

Extra libraries250

currentdir ()

dir (name) name, mode, size and mtime

mkdir (name)

rmdir (name)

touch (name)

link (name)

symlinkattributes (name)

isdir (name)

isfile (name)

iswriteabledir (name)

iswriteablefile (name)

isreadabledir (name)

isreadablefile (name)

The dir function is a traverser which in addition to the name returns some more properties.

Keep in mind that the traverser loops over a directory and that it doesn't run well when used

nested. This is a side effect of the operating system. It is also the reason why we return some

properties because querying them via attributes would interfere badly.

The following attributes are returned by attributes:

NAME VALUE

mode

size

modification

access

change

permissions

nlink

15.10 pngdecode

This module is experimental and used in image inclusion. It is not some general purpose module

and is supposed to be used in a very controlled way. The interfaces might evolve.

NAME ARGUMENTS RESULTS

applyfilter (str,nx,ny,slice) string

splitmask (str,nx,ny,bpp,bytes) string

interlace (str,nx,ny,slice,pass) string

expand (str,nx,ny,parts,xline,factor) string

15.11 basexx

Some more experimental helpers:

NAME ARGUMENTS RESULTS

encode16 (str[,newline]) string

251Extra libraries

decode16 (str) string

encode64 (str[,newline]) string

decode64 (str) string

encode85 (str[,newline]) string

decode85 (str) string

encodeRL (str) string

decodeRL (str) string

encodeLZW (str[,defaults]) string

decodeLZW (str[,defaults]) string

15.12 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function takes

upto two arguments: string.explode(s[,m]) and returns an array containing the string argu­

ment s split into sub-strings based on the value of the string argument m. The second argument is

a string that is either empty (this splits the string into characters), a single character (this splits

on each occurrence of that character, possibly introducing empty strings), or a single character

followed by the plus sign + (this special version does not create empty sub-strings). The default

value for m is ‘ +’ (multiple spaces). Note: m is not hidden by surrounding braces as it would be

if this function was written in TEX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfval­

ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes and

string.bytepairs.

‣ string.utfvalues(s): an integer value in the Unicode range

‣ string.utfcharacters(s): a string with a single utf-8 token in it

‣ string.characters(s): a string containing one byte

‣ string.characterpairs(s): two strings each containing one byte or an empty second string

if the string length was odd

‣ string.bytes(s): a single byte value

‣ string.bytepairs(s): two byte values or nil instead of a number as its second return value

if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the

conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,

if true, strips the symbols from the dumped data. This matches an extension made in luajit.

This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the

utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func­

tions from the slnunicode library can be used, e.g., unicode.utf8.len, unicode.utf8.lower

etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and

unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are

Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture

() but other captures work as expected. For the interpretation of character classes in uni­

code.utf8 functions refer to the library sources at http://luaforge.net/projects/sln.

Extra libraries252

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers

too: string.utfvalue, string.utfcharacter and string.utflength.

‣ string.utfvalue(s): returns the codepoints of the characters in the given string

‣ string.utfcharacter(c,...): returns a string with the characters of the given code points

‣ string.utflength(s): returns the length of the given string

These three functions are relative fast and don't do much checking. They can be used as building

blocks for other helpers.

15.13 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.selfarg, os.setenv,

os.env, os.gettimeofday, os.type, os.name and os.uname, that we will discuss here. There

are also some time related helpers in the lua namespace.

‣ os.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

‣ os.selfarg is a table with the command line arguments.

‣ os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value

string will remove the variable.

‣ os.env is a hash table containing a dump of the variables and values in the process envi­

ronment at the start of the run. It is writeable, but the actual environment is not updated

automatically.

‣ os.gettimeofday returns the current ‘Unix time’, but as a float. Keep in mind that there

might be platforms where this function is not available.

‣ os.type is a string that gives a global indication of the class of operating system. The possible

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

‣ os.name is a string that gives a more precise indication of the operating system. These pos­

sible values are not yet fixed, and for os.type values windows and msdos, the os.name values

are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so­

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv,

generic (unknown). But . . . we only provide LuaMetaTEX binaries for the mainstream vari­

ants.

Officially we only support mainstream systems: MS Windows, linux, FreeBSD and os-x. Of

course one can build LuaMetaTEX for other systems, in which case on has to check the above.

‣ os.uname returns a table with specific operating system information acquired at runtime.

The keys in the returned table are all string values, and their names are: sysname, machine,

release, version, and nodename.

15.14 The lua library functions

The lua library provides some general helpers.

‣ The newtable and newindex functions can be used to create tables with space reserved be­

forehand for the given amount of entries.

‣ The getstacktop function returns a number that can be used for diagnostic purposes.

253Extra libraries

‣ The functions getruntime, getcurrenttime, getpreciseticks and getpreciseseconds re­

turn what their name suggests.

‣ On MS Windows the getcodepage function returns two numbers, one for the command han­

dler and one for the graphical user interface.

‣ The name of the startup file is reported by getstartupfile.

‣ The Lua version is reported by getversion.

‣ The lua.openfile function can be used instead of io.open. On MS Windows it will convert

the filename to a so called wide one which means that filenames in utf8 encoding will work

ok. On the other hand, names given in the codepage won't.

Extra libraries254

255Primitive codes

Primitive codes

here follows a list with all primitives and their category is shown. When the engine starts up

in ini mode all primitives get defined along with some properties that makes it possible to do a

reverse lookup of a combination of command code and char code. But, a primitive, being also

a regular command can be redefined later on. The table below shows the original pairs but in

ConTEXt some of these primitives are redefined. However, any macro that fits a command and

char pair is (reported as) a primitive in logs and error messages. In the end all tokens are such a

combination, The first 16 command codes are reserved for characters (the whole Unicode range

can be used as char code) with specific catcodes and not mentioned in the list.

PRIMITIVE COMMAND NAME CMD CHR ORIGIN

\ explicit_space 74 0 tex

\- discretionary 57 1 tex

\/ italic_correction 54 0 tex

\Uabove math_fraction 62 8 luatex

\Uabovewithdelims math_fraction 62 9 luatex

\Uatop math_fraction 62 12 luatex

\Uatopwithdelims math_fraction 62 13 luatex

\Uchar convert 132 17 luatex

\Udelcode define_char_code 103 9 luatex

\Udelcodenum define_char_code 103 10 luatex

\Udelimiter delimiter_number 24 1 luatex

\Udelimiterover math_radical 76 6 luatex

\Udelimiterunder math_radical 76 5 luatex

\Uhextensible math_radical 76 7 luatex

\Uleft math_fence 59 6 luatex

\Umathaccent math_accent 56 1 luatex

\Umathaccentbasedepth set_math_parameter 105 3 luatex

\Umathaccentbaseheight set_math_parameter 105 2 luatex

\Umathaccentbottomshiftdown set_math_parameter 105 77 luatex

\Umathaccenttopshiftup set_math_parameter 105 76 luatex

\Umathaccentvariant set_math_parameter 105 91 luatex

\Umathadapttoleft math_modifier 61 3 luatex

\Umathadapttoright math_modifier 61 4 luatex

\Umathaxis set_math_parameter 105 1 luatex

\Umathbotaccentvariant set_math_parameter 105 93 luatex

\Umathchar math_char_number 26 1 luatex

\Umathcharclass some_item 83 33 luatex

\Umathchardef shorthand_def 118 2 luatex

\Umathcharfam some_item 83 34 luatex

\Umathcharnum math_char_number 26 2 luatex

\Umathcharnumdef shorthand_def 118 3 luatex

\Umathcharslot some_item 83 35 luatex

\Umathclass math_char_number 26 3 luatex

Primitive codes256

\Umathcode define_char_code 103 6 luatex

\Umathcodenum define_char_code 103 7 luatex

\Umathconnectoroverlapmin set_math_parameter 105 55 luatex

\Umathdegreevariant set_math_parameter 105 90 luatex

\Umathdelimiterovervariant set_math_parameter 105 84 luatex

\Umathdelimiterundervariant set_math_parameter 105 85 luatex

\Umathdenominatorvariant set_math_parameter 105 96 luatex

\Umathextrasubpreshift set_math_parameter 105 59 luatex

\Umathextrasubprespace set_math_parameter 105 74 luatex

\Umathextrasubshift set_math_parameter 105 57 luatex

\Umathextrasubspace set_math_parameter 105 72 luatex

\Umathextrasuppreshift set_math_parameter 105 58 luatex

\Umathextrasupprespace set_math_parameter 105 73 luatex

\Umathextrasupshift set_math_parameter 105 56 luatex

\Umathextrasupspace set_math_parameter 105 71 luatex

\Umathflattenedaccentbasedepth set_math_parameter 105 5 luatex

\Umathflattenedaccentbaseheight set_math_parameter 105 4 luatex

\Umathflattenedaccentbottomshiftdown set_math_parameter 105 79 luatex

\Umathflattenedaccenttopshiftup set_math_parameter 105 78 luatex

\Umathfractiondelsize set_math_parameter 105 29 luatex

\Umathfractiondenomdown set_math_parameter 105 28 luatex

\Umathfractiondenomvgap set_math_parameter 105 27 luatex

\Umathfractionnumup set_math_parameter 105 26 luatex

\Umathfractionnumvgap set_math_parameter 105 25 luatex

\Umathfractionrule set_math_parameter 105 24 luatex

\Umathfractionvariant set_math_parameter 105 88 luatex

\Umathhextensiblevariant set_math_parameter 105 86 luatex

\Umathlimitabovebgap set_math_parameter 105 33 luatex

\Umathlimitabovekern set_math_parameter 105 34 luatex

\Umathlimitabovevgap set_math_parameter 105 32 luatex

\Umathlimitbelowbgap set_math_parameter 105 36 luatex

\Umathlimitbelowkern set_math_parameter 105 37 luatex

\Umathlimitbelowvgap set_math_parameter 105 35 luatex

\Umathlimits math_modifier 61 1 luatex

\Umathnoaxis math_modifier 61 6 luatex

\Umathnolimits math_modifier 61 2 luatex

\Umathnolimitsubfactor set_math_parameter 105 38 luatex

\Umathnolimitsupfactor set_math_parameter 105 39 luatex

\Umathnumeratorvariant set_math_parameter 105 95 luatex

\Umathopenupdepth math_modifier 61 10 luatex

\Umathopenupheight math_modifier 61 9 luatex

\Umathoperatorsize set_math_parameter 105 8 luatex

\Umathoverbarkern set_math_parameter 105 9 luatex

\Umathoverbarrule set_math_parameter 105 10 luatex

\Umathoverbarvgap set_math_parameter 105 11 luatex

\Umathoverdelimiterbgap set_math_parameter 105 43 luatex

257Primitive codes

\Umathoverdelimitervariant set_math_parameter 105 82 luatex

\Umathoverdelimitervgap set_math_parameter 105 42 luatex

\Umathoverlayaccentvariant set_math_parameter 105 94 luatex

\Umathoverlinevariant set_math_parameter 105 80 luatex

\Umathphantom math_modifier 61 7 luatex

\Umathpresubshiftdistance set_math_parameter 105 70 luatex

\Umathpresupshiftdistance set_math_parameter 105 69 luatex

\Umathprimeraise set_math_parameter 105 60 luatex

\Umathprimeshiftdrop set_math_parameter 105 62 luatex

\Umathprimeshiftup set_math_parameter 105 61 luatex

\Umathprimespaceafter set_math_parameter 105 63 luatex

\Umathprimevariant set_math_parameter 105 99 luatex

\Umathprimewidth set_math_parameter 105 64 luatex

\Umathquad set_math_parameter 105 0 luatex

\Umathradicaldegreeafter set_math_parameter 105 19 luatex

\Umathradicaldegreebefore set_math_parameter 105 18 luatex

\Umathradicaldegreeraise set_math_parameter 105 20 luatex

\Umathradicalkern set_math_parameter 105 15 luatex

\Umathradicalrule set_math_parameter 105 16 luatex

\Umathradicalvariant set_math_parameter 105 89 luatex

\Umathradicalvgap set_math_parameter 105 17 luatex

\Umathruledepth set_math_parameter 105 66 luatex

\Umathruleheight set_math_parameter 105 65 luatex

\Umathskeweddelimitertolerance set_math_parameter 105 75 luatex

\Umathskewedfractionhgap set_math_parameter 105 30 luatex

\Umathskewedfractionvgap set_math_parameter 105 31 luatex

\Umathspaceafterscript set_math_parameter 105 54 luatex

\Umathspacebeforescript set_math_parameter 105 53 luatex

\Umathstackdenomdown set_math_parameter 105 23 luatex

\Umathstacknumup set_math_parameter 105 22 luatex

\Umathstackvariant set_math_parameter 105 100 luatex

\Umathstackvgap set_math_parameter 105 21 luatex

\Umathsubscriptvariant set_math_parameter 105 98 luatex

\Umathsubshiftdistance set_math_parameter 105 68 luatex

\Umathsubshiftdown set_math_parameter 105 46 luatex

\Umathsubshiftdrop set_math_parameter 105 44 luatex

\Umathsubsupshiftdown set_math_parameter 105 47 luatex

\Umathsubsupvgap set_math_parameter 105 52 luatex

\Umathsubtopmax set_math_parameter 105 48 luatex

\Umathsupbottommin set_math_parameter 105 50 luatex

\Umathsuperscriptvariant set_math_parameter 105 97 luatex

\Umathsupshiftdistance set_math_parameter 105 67 luatex

\Umathsupshiftdrop set_math_parameter 105 45 luatex

\Umathsupshiftup set_math_parameter 105 49 luatex

\Umathsupsubbottommax set_math_parameter 105 51 luatex

\Umathtopaccentvariant set_math_parameter 105 92 luatex

Primitive codes258

\Umathunderbarkern set_math_parameter 105 12 luatex

\Umathunderbarrule set_math_parameter 105 13 luatex

\Umathunderbarvgap set_math_parameter 105 14 luatex

\Umathunderdelimiterbgap set_math_parameter 105 41 luatex

\Umathunderdelimitervariant set_math_parameter 105 83 luatex

\Umathunderdelimitervgap set_math_parameter 105 40 luatex

\Umathunderlinevariant set_math_parameter 105 81 luatex

\Umathuseaxis math_modifier 61 5 luatex

\Umathvextensiblevariant set_math_parameter 105 87 luatex

\Umathvoid math_modifier 61 8 luatex

\Umathxscale set_math_parameter 105 6 luatex

\Umathyscale set_math_parameter 105 7 luatex

\Umiddle math_fence 59 7 luatex

\Unosubprescript math_script 77 7 luatex

\Unosubscript math_script 77 5 luatex

\Unosuperprescript math_script 77 8 luatex

\Unosuperscript math_script 77 6 luatex

\Uoperator math_fence 59 4 luatex

\Uover math_fraction 62 10 luatex

\Uoverdelimiter math_radical 76 4 luatex

\Uoverwithdelims math_fraction 62 11 luatex

\Uprimescript math_script 77 13 luatex

\Uradical math_radical 76 1 luatex

\Uright math_fence 59 8 luatex

\Uroot math_radical 76 2 luatex

\Ushiftedsubprescript math_script 77 11 luatex

\Ushiftedsubscript math_script 77 9 luatex

\Ushiftedsuperprescript math_script 77 12 luatex

\Ushiftedsuperscript math_script 77 10 luatex

\Uskewed math_fraction 62 14 luatex

\Uskewedwithdelims math_fraction 62 15 luatex

\Ustack math_choice 64 1 luatex

\Ustartdisplaymath math_shift_cs 78 2 luatex

\Ustartmath math_shift_cs 78 0 luatex

\Ustopdisplaymath math_shift_cs 78 3 luatex

\Ustopmath math_shift_cs 78 1 luatex

\Ustyle math_style 63 8 luatex

\Usubprescript math_script 77 4 luatex

\Usubscript math_script 77 1 luatex

\Usuperprescript math_script 77 3 luatex

\Usuperscript math_script 77 2 luatex

\Uunderdelimiter math_radical 76 3 luatex

\Uvextensible math_fence 59 5 luatex

\above math_fraction 62 0 tex

\abovedisplayshortskip internal_glue 92 0 tex

\abovedisplayskip internal_glue 92 0 tex

259Primitive codes

\abovewithdelims math_fraction 62 1 tex

\accent accent 55 0 tex

\adjdemerits internal_int 86 0 tex

\adjustspacing internal_int 86 0 luatex

\adjustspacingshrink internal_int 86 0 luatex

\adjustspacingstep internal_int 86 0 luatex

\adjustspacingstretch internal_int 86 0 luatex

\advance arithmic 115 0 tex

\afterassigned after_something 51 4 luatex

\afterassignment after_something 51 1 tex

\aftergroup after_something 51 0 tex

\aftergrouped after_something 51 3 luatex

\aliased prefix 116 11 luatex

\aligncontent end_template 18 3 tex

\alignmark parameter 6 0 luatex

\aligntab alignment_tab 4 0 luatex

\allcrampedstyles math_style 63 16 luatex

\alldisplaystyles math_style 63 9 luatex

\allmathstyles math_style 63 13 luatex

\allscriptscriptstyles math_style 63 12 luatex

\allscriptstyles math_style 63 11 luatex

\allsplitstyles math_style 63 14 luatex

\alltextstyles math_style 63 10 luatex

\alluncrampedstyles math_style 63 15 luatex

\atendofgroup after_something 51 2 luatex

\atendofgrouped after_something 51 5 luatex

\atop math_fraction 62 4 tex

\atopwithdelims math_fraction 62 5 tex

\attribute register 113 1 luatex

\attributedef shorthand_def 118 5 luatex

\automaticdiscretionary discretionary 57 2 luatex

\automatichyphenpenalty internal_int 86 0 luatex

\automigrationmode internal_int 86 0 luatex

\autoparagraphmode internal_int 86 0 luatex

\badness some_item 83 6 tex

\baselineskip internal_glue 92 0 tex

\batchmode set_interaction 122 0 tex

\begincsname cs_name 131 2 luatex

\begingroup begin_group 72 0 tex

\beginlocalcontrol begin_local 129 0 luatex

\beginmathgroup begin_group 72 2 luatex

\beginsimplegroup begin_group 72 1 luatex

\belowdisplayshortskip internal_glue 92 0 tex

\belowdisplayskip internal_glue 92 0 tex

\binoppenalty internal_int 86 0 tex

\botmark get_mark 134 8 tex

Primitive codes260

\botmarks get_mark 134 3 etex

\boundary boundary 75 1 luatex

\box make_box 30 0 tex

\boxanchor set_box_property 101 6 luatex

\boxanchors set_box_property 101 7 luatex

\boxattribute set_box_property 101 16 luatex

\boxdirection set_box_property 101 3 luatex

\boxgeometry set_box_property 101 4 luatex

\boxmaxdepth internal_dimen 90 0 tex

\boxorientation set_box_property 101 5 luatex

\boxshift set_box_property 101 15 luatex

\boxsource set_box_property 101 8 luatex

\boxtarget set_box_property 101 9 luatex

\boxtotal set_box_property 101 14 luatex

\boxxmove set_box_property 101 12 luatex

\boxxoffset set_box_property 101 10 luatex

\boxymove set_box_property 101 13 luatex

\boxyoffset set_box_property 101 11 luatex

\brokenpenalty internal_int 86 0 tex

\catcode define_char_code 103 0 tex

\catcodetable internal_int 86 0 luatex

\char char_number 25 0 tex

\chardef shorthand_def 118 0 tex

\cleaders leader 41 1 tex

\clearmarks set_mark 27 2 luatex

\clubpenalties set_specification 102 0 etex

\clubpenalty internal_int 86 0 tex

\copy make_box 30 1 tex

\copymathatomrule set_math_parameter 105 8456 luatex

\copymathparent set_math_parameter 105 8458 luatex

\copymathspacing set_math_parameter 105 8453 luatex

\count register 113 0 tex

\countdef shorthand_def 118 4 tex

\cr end_template 18 5 tex

\crampeddisplaystyle math_style 63 1 luatex

\crampedscriptscriptstyle math_style 63 7 luatex

\crampedscriptstyle math_style 63 5 luatex

\crampedtextstyle math_style 63 3 luatex

\crcr end_template 18 6 tex

\csname cs_name 131 0 tex

\csstring convert 132 11 luatex

\currentgrouplevel some_item 83 10 etex

\currentgrouptype some_item 83 11 etex

\currentifbranch some_item 83 14 etex

\currentiflevel some_item 83 12 etex

\currentiftype some_item 83 13 etex

261Primitive codes

\currentloopiterator some_item 83 66 luatex

\currentloopnesting some_item 83 67 luatex

\currentmarks get_mark 134 0 luatex

\day internal_int 86 0 tex

\deadcycles set_page_property 100 9 tex

\def def 119 1 tex

\defaulthyphenchar internal_int 86 0 tex

\defaultskewchar internal_int 86 0 tex

\defcsname def 119 5 luatex

\delcode define_char_code 103 8 tex

\delimiter delimiter_number 24 0 tex

\delimiterfactor internal_int 86 0 tex

\delimitershortfall internal_dimen 90 0 tex

\detokenize the 133 2 etex

\dimen register 113 2 tex

\dimendef shorthand_def 118 6 tex

\dimensiondef shorthand_def 118 12 luatex

\dimexpr some_item 83 56 etex

\dimexpression some_item 83 60 luatex

\directlua convert 132 5 luatex

\discretionary discretionary 57 0 tex

\displayindent internal_dimen 90 0 tex

\displaylimits math_modifier 61 0 tex

\displaystyle math_style 63 0 tex

\displaywidowpenalties set_specification 102 0 etex

\displaywidowpenalty internal_int 86 0 tex

\displaywidth internal_dimen 90 0 tex

\divide arithmic 115 2 tex

\doublehyphendemerits internal_int 86 0 tex

\dp set_box_property 101 2 tex

\dump end_job 23 1 tex

\edef def 119 0 tex

\edefcsname def 119 4 luatex

\efcode set_font_property 98 4 luatex

\else if_test 130 3 tex

\emergencystretch internal_dimen 90 0 tex

\end end_job 23 0 tex

\endcsname end_cs_name 79 0 tex

\endgroup end_group 73 0 tex

\endinput input 126 1 tex

\endlinechar internal_int 86 0 tex

\endlocalcontrol end_local 69 0 luatex

\endmathgroup end_group 73 2 luatex

\endsimplegroup end_group 73 1 luatex

\enforced prefix 116 14 luatex

\eqno equation_number 58 1 tex

Primitive codes262

\errhelp internal_toks 84 0 tex

\errmessage message 67 1 tex

\errorcontextlines internal_int 86 0 tex

\errorstopmode set_interaction 122 3 tex

\escapechar internal_int 86 0 tex

\etoks combine_toks 114 0 luatex

\etoksapp combine_toks 114 2 luatex

\etokspre combine_toks 114 4 luatex

\everybeforepar internal_toks 84 0 luatex

\everycr internal_toks 84 0 tex

\everydisplay internal_toks 84 0 tex

\everyeof internal_toks 84 0 etex

\everyhbox internal_toks 84 0 tex

\everyjob internal_toks 84 0 tex

\everymath internal_toks 84 0 tex

\everypar internal_toks 84 0 tex

\everytab internal_toks 84 0 luatex

\everyvbox internal_toks 84 0 tex

\exceptionpenalty internal_int 86 0 luatex

\exhyphenchar internal_int 86 0 tex

\exhyphenpenalty internal_int 86 0 tex

\expand expand_after 124 9 luatex

\expandafter expand_after 124 0 tex

\expandafterpars expand_after 124 6 luatex

\expandafterspaces expand_after 124 5 luatex

\expandcstoken expand_after 124 8 luatex

\expanded convert 132 8 luatex

\expandedafter expand_after 124 10 luatex

\expandedloop begin_local 129 4 luatex

\expandtoken expand_after 124 7 luatex

\explicitdiscretionary discretionary 57 1 luatex

\explicithyphenpenalty internal_int 86 0 luatex

\fam internal_int 86 0 tex

\fi if_test 130 2 tex

\finalhyphendemerits internal_int 86 0 tex

\firstmark get_mark 134 7 tex

\firstmarks get_mark 134 2 etex

\firstvalidlanguage internal_int 86 0 luatex

\floatingpenalty internal_int 86 0 tex

\flushmarks set_mark 27 3 luatex

\font define_font 107 0 tex

\fontchardp some_item 83 20 etex

\fontcharht some_item 83 19 etex

\fontcharic some_item 83 21 etex

\fontcharwd some_item 83 18 etex

\fontdimen set_font_property 98 5 tex

263Primitive codes

\fontid some_item 83 17 luatex

\fontmathcontrol some_item 83 27 luatex

\fontname convert 132 19 tex

\fontspecdef shorthand_def 118 15 luatex

\fontspecid some_item 83 22 luatex

\fontspecifiedname convert 132 20 tex

\fontspecifiedsize some_item 83 26 luatex

\fontspecscale some_item 83 23 luatex

\fontspecxscale some_item 83 24 luatex

\fontspecyscale some_item 83 25 luatex

\fonttextcontrol some_item 83 28 luatex

\formatname convert 132 22 luatex

\frozen prefix 116 0 luatex

\futurecsname cs_name 131 3 luatex

\futuredef let 117 3 luatex

\futureexpand expand_after 124 2 luatex

\futureexpandis expand_after 124 3 luatex

\futureexpandisap expand_after 124 4 luatex

\futurelet let 117 2 tex

\gdef def 119 3 tex

\gdefcsname def 119 7 luatex

\gleaders leader 41 3 luatex

\glet let 117 0 luatex

\gletcsname let 117 11 luatex

\glettonothing let 117 13 luatex

\global prefix 116 7 tex

\globaldefs internal_int 86 0 tex

\glueexpr some_item 83 57 etex

\glueshrink some_item 83 52 etex

\glueshrinkorder some_item 83 16 etex

\gluespecdef shorthand_def 118 13 luatex

\gluestretch some_item 83 51 etex

\gluestretchorder some_item 83 15 etex

\gluetomu some_item 83 54 etex

\glyph char_number 25 1 tex

\glyphdatafield internal_int 86 0 luatex

\glyphoptions internal_int 86 0 luatex

\glyphscale internal_int 86 0 luatex

\glyphscriptfield internal_int 86 0 luatex

\glyphscriptscale internal_int 86 0 luatex

\glyphscriptscriptscale internal_int 86 0 luatex

\glyphstatefield internal_int 86 0 luatex

\glyphtextscale internal_int 86 0 luatex

\glyphxoffset internal_dimen 90 0 luatex

\glyphxscale internal_int 86 0 luatex

\glyphyoffset internal_dimen 90 0 luatex

Primitive codes264

\glyphyscale internal_int 86 0 luatex

\gtoksapp combine_toks 114 6 luatex

\gtokspre combine_toks 114 8 luatex

\halign halign 44 0 tex

\hangafter internal_int 86 0 tex

\hangindent internal_dimen 90 0 tex

\hbadness internal_int 86 0 tex

\hbox make_box 30 10 tex

\hccode define_char_code 103 4 luatex

\hfil hskip 36 0 tex

\hfill hskip 36 1 tex

\hfilneg hskip 36 3 tex

\hfuzz internal_dimen 90 0 tex

\hjcode hyphenation 121 7 luatex

\holdinginserts internal_int 86 0 tex

\hpack make_box 30 7 luatex

\hrule hrule 47 0 tex

\hsize internal_dimen 90 0 tex

\hskip hskip 36 4 tex

\hss hskip 36 2 tex

\ht set_box_property 101 1 tex

\hyphenation hyphenation 121 0 tex

\hyphenationmin hyphenation 121 6 luatex

\hyphenationmode internal_int 86 0 luatex

\hyphenchar set_font_property 98 0 tex

\hyphenpenalty internal_int 86 0 tex

\if if_test 130 7 tex

\ifabsdim if_test 130 11 luatex

\ifabsnum if_test 130 9 luatex

\ifarguments if_test 130 46 luatex

\ifboolean if_test 130 41 luatex

\ifcase if_test 130 32 tex

\ifcat if_test 130 8 tex

\ifchkdim if_test 130 29 luatex

\ifchknum if_test 130 26 luatex

\ifcmpdim if_test 130 31 luatex

\ifcmpnum if_test 130 28 luatex

\ifcondition if_test 130 37 luatex

\ifcsname if_test 130 34 etex

\ifcstok if_test 130 22 luatex

\ifdefined if_test 130 33 etex

\ifdim if_test 130 12 tex

\ifdimexpression if_test 130 43 luatex

\ifdimval if_test 130 30 luatex

\ifempty if_test 130 39 luatex

\iffalse if_test 130 25 tex

265Primitive codes

\ifflags if_test 130 38 luatex

\iffontchar if_test 130 36 etex

\ifhaschar if_test 130 52 luatex

\ifhastok if_test 130 49 luatex

\ifhastoks if_test 130 50 luatex

\ifhasxtoks if_test 130 51 luatex

\ifhbox if_test 130 19 tex

\ifhmode if_test 130 15 tex

\ifincsname if_test 130 35 luatex

\ifinner if_test 130 17 tex

\ifinsert if_test 130 53 luatex

\ifmathparameter if_test 130 44 luatex

\ifmathstyle if_test 130 45 luatex

\ifmmode if_test 130 16 tex

\ifnum if_test 130 10 tex

\ifnumexpression if_test 130 42 luatex

\ifnumval if_test 130 27 luatex

\ifodd if_test 130 13 tex

\ifparameter if_test 130 48 luatex

\ifparameters if_test 130 47 luatex

\ifrelax if_test 130 40 luatex

\iftok if_test 130 21 luatex

\iftrue if_test 130 24 tex

\ifvbox if_test 130 20 tex

\ifvmode if_test 130 14 tex

\ifvoid if_test 130 18 tex

\ifx if_test 130 23 tex

\ignorearguments ignore_something 50 2 luatex

\ignorepars ignore_something 50 1 luatex

\ignorespaces ignore_something 50 0 tex

\immediate prefix 116 12 luatex

\immutable prefix 116 2 luatex

\indent begin_paragraph 53 1 tex

\inherited prefix 116 16 luatex

\initcatcodetable catcode_table 68 1 luatex

\input input 126 0 tex

\inputlineno some_item 83 5 tex

\insert insert 48 0 tex

\insertbox make_box 30 11 luatex

\insertcopy make_box 30 12 luatex

\insertdepth set_page_property 100 20 luatex

\insertdistance set_page_property 100 13 luatex

\insertheight set_page_property 100 19 luatex

\insertheights set_page_property 100 11 luatex

\insertlimit set_page_property 100 15 luatex

\insertmaxdepth set_page_property 100 18 luatex

Primitive codes266

\insertmode set_auxiliary 99 4 luatex

\insertmultiplier set_page_property 100 14 luatex

\insertpenalties set_page_property 100 10 tex

\insertpenalty set_page_property 100 17 luatex

\insertprogress some_item 83 45 luatex

\insertstorage set_page_property 100 16 luatex

\insertstoring set_page_property 100 12 luatex

\insertunbox un_vbox 34 11 luatex

\insertuncopy un_vbox 34 12 luatex

\insertwidth set_page_property 100 21 luatex

\instance prefix 116 5 luatex

\integerdef shorthand_def 118 11 luatex

\interactionmode set_auxiliary 99 3 etex

\interlinepenalties set_specification 102 0 etex

\interlinepenalty internal_int 86 0 tex

\jobname convert 132 21 tex

\kern kern 39 0 tex

\language internal_int 86 0 tex

\lastarguments some_item 83 43 luatex

\lastbox make_box 30 3 tex

\lastchkdim some_item 83 62 luatex

\lastchknum some_item 83 61 luatex

\lastkern some_item 83 1 tex

\lastleftclass some_item 83 64 luatex

\lastlinefit internal_int 86 0 etex

\lastloopiterator some_item 83 68 luatex

\lastnamedcs cs_name 131 1 luatex

\lastnodesubtype some_item 83 4 luatex

\lastnodetype some_item 83 3 etex

\lastparcontext some_item 83 69 luatex

\lastpenalty some_item 83 0 tex

\lastrightclass some_item 83 65 luatex

\lastskip some_item 83 2 tex

\lccode define_char_code 103 1 tex

\leaders leader 41 0 tex

\left math_fence 59 1 tex

\lefthyphenmin internal_int 86 0 tex

\leftmarginkern some_item 83 46 luatex

\leftskip internal_glue 92 0 tex

\leqno equation_number 58 0 tex

\let let 117 1 tex

\letcharcode let 117 4 luatex

\letcsname let 117 10 luatex

\letfrozen let 117 8 luatex

\letmathatomrule set_math_parameter 105 8455 luatex

\letmathparent set_math_parameter 105 8457 luatex

267Primitive codes

\letmathspacing set_math_parameter 105 8452 luatex

\letprotected let 117 6 luatex

\lettonothing let 117 12 luatex

\limits math_modifier 61 1 tex

\linedirection internal_int 86 0 luatex

\linepenalty internal_int 86 0 tex

\lineskip internal_glue 92 0 tex

\lineskiplimit internal_dimen 90 0 tex

\localbrokenpenalty internal_int 86 0 luatex

\localcontrol begin_local 129 1 luatex

\localcontrolled begin_local 129 2 luatex

\localcontrolledloop begin_local 129 3 luatex

\localinterlinepenalty internal_int 86 0 luatex

\localleftbox local_box 43 0 luatex

\localleftboxbox make_box 30 13 luatex

\localmiddlebox local_box 43 2 luatex

\localmiddleboxbox make_box 30 15 luatex

\localrightbox local_box 43 1 luatex

\localrightboxbox make_box 30 14 luatex

\long prefix 116 17 tex

\looseness internal_int 86 0 tex

\lower vmove 32 0 tex

\lowercase case_shift 66 0 tex

\lpcode set_font_property 98 2 luatex

\luabytecode convert 132 7 luatex

\luabytecodecall lua_function_call 70 1 luatex

\luacopyinputnodes internal_int 86 0 luatex

\luadef shorthand_def 118 10 luatex

\luaescapestring convert 132 18 luatex

\luafunction convert 132 6 luatex

\luafunctioncall lua_function_call 70 0 luatex

\luatexbanner convert 132 23 luatex

\luatexrevision some_item 83 9 luatex

\luatexversion some_item 83 8 luatex

\mark set_mark 27 0 tex

\marks set_mark 27 1 etex

\mathaccent math_component 60 14 luatex

\mathatom math_component 60 17 luatex

\mathatomskip mskip 38 1 luatex

\mathbackwardpenalties set_specification 102 0 luatex

\mathbin math_component 60 2 tex

\mathchar math_char_number 26 0 tex

\mathchardef shorthand_def 118 1 tex

\mathchoice math_choice 64 0 tex

\mathclose math_component 60 5 tex

\mathcode define_char_code 103 5 tex

Primitive codes268

\mathdelimitersmode internal_int 86 0 luatex

\mathdirection internal_int 86 0 luatex

\mathdisplayskipmode internal_int 86 0 luatex

\matheqnogapstep internal_int 86 0 luatex

\mathfenced math_component 60 15 luatex

\mathfencesmode internal_int 86 0 luatex

\mathfontcontrol internal_int 86 0 luatex

\mathforwardpenalties set_specification 102 0 luatex

\mathfrac math_component 60 11 luatex

\mathghost math_component 60 16 luatex

\mathinner math_component 60 8 tex

\mathlimitsmode internal_int 86 0 luatex

\mathmiddle math_component 60 13 luatex

\mathnolimitsmode internal_int 86 0 luatex

\mathop math_component 60 1 tex

\mathopen math_component 60 4 tex

\mathord math_component 60 0 tex

\mathpenaltiesmode internal_int 86 0 luatex

\mathpunct math_component 60 6 tex

\mathrad math_component 60 12 luatex

\mathrel math_component 60 3 tex

\mathrulesfam internal_int 86 0 luatex

\mathrulesmode internal_int 86 0 luatex

\mathscale some_item 83 29 luatex

\mathscriptboxmode internal_int 86 0 luatex

\mathscriptcharmode internal_int 86 0 luatex

\mathscriptsmode internal_int 86 0 luatex

\mathslackmode internal_int 86 0 luatex

\mathspacingmode internal_int 86 0 luatex

\mathstackstyle some_item 83 32 luatex

\mathstyle some_item 83 30 luatex

\mathstylefontid some_item 83 31 luatex

\mathsurround internal_dimen 90 0 tex

\mathsurroundmode internal_int 86 0 luatex

\mathsurroundskip internal_glue 92 0 luatex

\maththreshold internal_glue 92 0 luatex

\maxdeadcycles internal_int 86 0 tex

\maxdepth internal_dimen 90 0 tex

\meaning convert 132 13 tex

\meaningasis convert 132 16 tex

\meaningfull convert 132 14 tex

\meaningless convert 132 15 tex

\medmuskip internal_mu_glue 94 1 tex

\message message 67 0 tex

\middle math_fence 59 2 tex

\mkern mkern 40 0 tex

269Primitive codes

\month internal_int 86 0 tex

\moveleft hmove 31 1 tex

\moveright hmove 31 0 tex

\mskip mskip 38 0 tex

\muexpr some_item 83 58 etex

\mugluespecdef shorthand_def 118 14 luatex

\multiply arithmic 115 1 tex

\muskip register 113 4 tex

\muskipdef shorthand_def 118 8 tex

\mutable prefix 116 3 luatex

\mutoglue some_item 83 53 etex

\newlinechar internal_int 86 0 tex

\noalign end_template 18 4 tex

\noaligned prefix 116 4 luatex

\noboundary boundary 75 0 luatex

\noexpand no_expand 125 0 tex

\nohrule hrule 47 1 luatex

\noindent begin_paragraph 53 0 tex

\nolimits math_modifier 61 2 tex

\nonscript math_script 77 0 tex

\nonstopmode set_interaction 122 1 tex

\norelax relax 16 1 luatex

\normalizelinemode internal_int 86 0 luatex

\nospaces internal_int 86 0 luatex

\novrule vrule 46 1 luatex

\nulldelimiterspace internal_dimen 90 0 tex

\nullfont set_font 106 0 tex

\number convert 132 0 tex

\numericscale some_item 83 63 luatex

\numexpr some_item 83 55 etex

\numexpression some_item 83 59 luatex

\omit end_template 18 2 tex

\or if_test 130 4 tex

\orelse if_test 130 5 luatex

\orphanpenalties set_specification 102 0 luatex

\orphanpenalty internal_int 86 0 luatex

\orunless if_test 130 6 luatex

\outer prefix 116 18 tex

\output internal_toks 84 0 tex

\outputbox internal_int 86 0 luatex

\outputpenalty internal_int 86 0 tex

\over math_fraction 62 2 tex

\overfullrule internal_dimen 90 0 tex

\overline math_component 60 10 tex

\overloaded prefix 116 10 luatex

\overloadmode internal_int 86 0 luatex

Primitive codes270

\overshoot some_item 83 7 tex

\overwithdelims math_fraction 62 3 tex

\pageboundary boundary 75 4 luatex

\pageboundarypenalty internal_int 86 0 luatex

\pagedepth set_page_property 100 7 tex

\pagediscards un_vbox 34 3 etex

\pagefilllstretch set_page_property 100 5 tex

\pagefillstretch set_page_property 100 4 tex

\pagefilstretch set_page_property 100 3 tex

\pagegoal set_page_property 100 0 tex

\pageshrink set_page_property 100 6 tex

\pagestretch set_page_property 100 2 tex

\pagetotal set_page_property 100 1 tex

\pagevsize set_page_property 100 8 luatex

\par end_paragraph 22 0 tex

\parametercount some_item 83 44 luatex

\parametermark parameter 6 0 luatex

\parattribute begin_paragraph 53 5 luatex

\pardirection internal_int 86 0 luatex

\parfillleftskip internal_glue 92 0 tex

\parfillskip internal_glue 92 0 tex

\parindent internal_dimen 90 0 tex

\parshape set_specification 102 0 tex

\parshapedimen some_item 83 50 etex

\parshapeindent some_item 83 49 etex

\parshapelength some_item 83 48 etex

\parskip internal_glue 92 0 tex

\patterns hyphenation 121 1 tex

\pausing internal_int 86 0 tex

\penalty penalty 52 0 tex

\permanent prefix 116 1 luatex

\postdisplaypenalty internal_int 86 0 tex

\postexhyphenchar hyphenation 121 5 luatex

\posthyphenchar hyphenation 121 3 luatex

\postinlinepenalty internal_int 86 0 luatex

\prebinoppenalty internal_int 86 0 luatex

\predisplaydirection internal_int 86 0 etex

\predisplaygapfactor internal_int 86 0 luatex

\predisplaypenalty internal_int 86 0 tex

\predisplaysize internal_dimen 90 0 tex

\preexhyphenchar hyphenation 121 4 luatex

\prehyphenchar hyphenation 121 2 luatex

\preinlinepenalty internal_int 86 0 luatex

\prerelpenalty internal_int 86 0 luatex

\pretolerance internal_int 86 0 tex

\prevdepth set_auxiliary 99 1 tex

271Primitive codes

\prevgraf set_auxiliary 99 2 tex

\protected prefix 116 9 etex

\protrudechars internal_int 86 0 luatex

\protrusionboundary boundary 75 2 luatex

\pxdimen internal_dimen 90 0 luatex

\quitloop input 126 6 luatex

\quitvmode begin_paragraph 53 2 luatex

\radical math_radical 76 0 tex

\raise vmove 32 1 tex

\relax relax 16 0 tex

\relpenalty internal_int 86 0 tex

\resetmathspacing set_math_parameter 105 8450 luatex

\retokenized input 126 5 luatex

\right math_fence 59 3 tex

\righthyphenmin internal_int 86 0 tex

\rightmarginkern some_item 83 47 luatex

\rightskip internal_glue 92 0 tex

\romannumeral convert 132 12 tex

\rpcode set_font_property 98 3 luatex

\savecatcodetable catcode_table 68 0 luatex

\savinghyphcodes internal_int 86 0 etex

\savingvdiscards internal_int 86 0 etex

\scaledemwidth some_item 83 41 luatex

\scaledexheight some_item 83 40 luatex

\scaledextraspace some_item 83 42 luatex

\scaledfontdimen set_font_property 98 6 tex

\scaledinterwordshrink some_item 83 39 luatex

\scaledinterwordspace some_item 83 37 luatex

\scaledinterwordstretch some_item 83 38 luatex

\scaledslantperpoint some_item 83 36 luatex

\scantextokens input 126 3 luatex

\scantokens input 126 2 etex

\scriptfont define_family 104 1 tex

\scriptscriptfont define_family 104 2 tex

\scriptscriptstyle math_style 63 6 tex

\scriptspace internal_dimen 90 0 tex

\scriptstyle math_style 63 4 tex

\scrollmode set_interaction 122 2 tex

\semiexpanded convert 132 9 luatex

\semiprotected prefix 116 13 luatex

\setbox set_box 120 0 tex

\setdefaultmathcodes set_math_parameter 105 8463 luatex

\setfontid internal_int 86 0 luatex

\setlanguage internal_int 86 0 tex

\setmathatomrule set_math_parameter 105 8454 luatex

\setmathignore set_math_parameter 105 8461 luatex

Primitive codes272

\setmathoptions set_math_parameter 105 8462 luatex

\setmathpostpenalty set_math_parameter 105 8460 luatex

\setmathprepenalty set_math_parameter 105 8459 luatex

\setmathspacing set_math_parameter 105 8451 luatex

\sfcode define_char_code 103 3 tex

\shapingpenaltiesmode internal_int 86 0 luatex

\shapingpenalty internal_int 86 0 luatex

\shipout legacy 42 0 tex

\show xray 29 0 tex

\showbox xray 29 1 tex

\showboxbreadth internal_int 86 0 tex

\showboxdepth internal_int 86 0 tex

\showgroups xray 29 4 etex

\showifs xray 29 6 etex

\showlists xray 29 3 tex

\shownodedetails internal_int 86 0 tex

\showthe xray 29 2 tex

\showtokens xray 29 5 etex

\skewchar set_font_property 98 1 tex

\skewed math_fraction 62 6 luatex

\skewedwithdelims math_fraction 62 7 luatex

\skip register 113 3 tex

\skipdef shorthand_def 118 7 tex

\snapshotpar begin_paragraph 53 4 luatex

\spacefactor set_auxiliary 99 0 tex

\spaceskip internal_glue 92 0 tex

\span end_template 18 1 tex

\splitbotmark get_mark 134 10 tex

\splitbotmarks get_mark 134 5 etex

\splitdiscards un_vbox 34 4 etex

\splitfirstmark get_mark 134 9 tex

\splitfirstmarks get_mark 134 4 etex

\splitmaxdepth internal_dimen 90 0 tex

\splittopskip internal_glue 92 0 tex

\srule vrule 46 2 tex

\string convert 132 10 tex

\supmarkmode internal_int 86 0 luatex

\swapcsvalues let 117 5 luatex

\tabsize internal_dimen 90 0 luatex

\tabskip internal_glue 92 0 tex

\textdirection internal_int 86 0 luatex

\textfont define_family 104 0 tex

\textstyle math_style 63 2 tex

\the the 133 0 tex

\thewithoutunit the 133 1 luatex

\thickmuskip internal_mu_glue 94 1 tex

273Primitive codes

\thinmuskip internal_mu_glue 94 1 tex

\time internal_int 86 0 tex

\tinymuskip internal_mu_glue 94 1 tex

\todimension convert 132 3 luatex

\tointeger convert 132 1 luatex

\tokenized input 126 4 luatex

\toks register 113 5 tex

\toksapp combine_toks 114 1 luatex

\toksdef shorthand_def 118 9 tex

\tokspre combine_toks 114 3 luatex

\tolerance internal_int 86 0 tex

\tolerant prefix 116 8 luatex

\tomathstyle convert 132 4 luatex

\topmark get_mark 134 6 tex

\topmarks get_mark 134 1 etex

\topskip internal_glue 92 0 tex

\toscaled convert 132 2 luatex

\tpack make_box 30 5 luatex

\tracingadjusts internal_int 86 0 luatex

\tracingalignments internal_int 86 0 luatex

\tracingassigns internal_int 86 0 etex

\tracingcommands internal_int 86 0 tex

\tracingexpressions internal_int 86 0 luatex

\tracingfonts internal_int 86 0 luatex

\tracingfullboxes internal_int 86 0 luatex

\tracinggroups internal_int 86 0 etex

\tracinghyphenation internal_int 86 0 luatex

\tracingifs internal_int 86 0 etex

\tracinginserts internal_int 86 0 luatex

\tracinglevels internal_int 86 0 etex

\tracinglostchars internal_int 86 0 tex

\tracingmacros internal_int 86 0 tex

\tracingmarks internal_int 86 0 luatex

\tracingmath internal_int 86 0 luatex

\tracingnesting internal_int 86 0 etex

\tracingnodes internal_int 86 0 luatex

\tracingonline internal_int 86 0 tex

\tracingoutput internal_int 86 0 tex

\tracingpages internal_int 86 0 tex

\tracingparagraphs internal_int 86 0 tex

\tracingrestores internal_int 86 0 tex

\tracingstats internal_int 86 0 tex

\uccode define_char_code 103 2 tex

\uchyph internal_int 86 0 tex

\uleaders leader 41 4 luatex

\undent begin_paragraph 53 3 luatex

Primitive codes274

\underline math_component 60 9 tex

\unexpanded the 133 3 etex

\unexpandedloop begin_local 129 5 luatex

\unhbox un_hbox 33 0 tex

\unhcopy un_hbox 33 1 tex

\unhpack un_hbox 33 2 tex

\unkern remove_item 35 0 tex

\unless expand_after 124 1 etex

\unletfrozen let 117 9 luatex

\unletprotected let 117 7 luatex

\unpenalty remove_item 35 1 tex

\unskip remove_item 35 2 tex

\untraced prefix 116 6 luatex

\unvbox un_vbox 34 0 tex

\unvcopy un_vbox 34 1 tex

\unvpack un_vbox 34 2 tex

\uppercase case_shift 66 1 tex

\vadjust vadjust 49 0 tex

\valign valign 45 0 tex

\vbadness internal_int 86 0 tex

\vbox make_box 30 9 tex

\vcenter vcenter 65 0 tex

\vfil vskip 37 0 tex

\vfill vskip 37 1 tex

\vfilneg vskip 37 3 tex

\vfuzz internal_dimen 90 0 tex

\vpack make_box 30 6 luatex

\vrule vrule 46 0 tex

\vsize internal_dimen 90 0 tex

\vskip vskip 37 4 tex

\vsplit make_box 30 4 tex

\vss vskip 37 2 tex

\vtop make_box 30 8 tex

\wd set_box_property 101 0 tex

\widowpenalties set_specification 102 0 etex

\widowpenalty internal_int 86 0 tex

\wordboundary boundary 75 3 luatex

\wrapuppar begin_paragraph 53 6 luatex

\xdef def 119 2 tex

\xdefcsname def 119 6 luatex

\xleaders leader 41 2 tex

\xspaceskip internal_glue 92 0 tex

\xtoks combine_toks 114 5 luatex

\xtoksapp combine_toks 114 7 luatex

\xtokspre combine_toks 114 9 luatex

\year internal_int 86 0 tex

275Topics

Topics

a

Aleph 32, 66

adjust 138

attributes 46, 157, 198

b

banner 42

boundaries 87

boundary 143

boxes 13, 46, 201

split 202

building 131

bytecodes 185

c

callbacks 173

building pages 175

contributions 174, 177

dump 181

errors 181

files 182

fonts 177, 182

format file 174

hyphenation 179

inserts 175

job run 181

jobname 174

kerning 180

ligature building 179

linebreaks 176, 177

log file 174

math 180

opening files 174

output 179

packing 178, 179

rules 179

warnings 181

whatsits 183

wrapping up 182

catcodes 51

characters 89

codes 200

command line 37

conditions 59

dimensions 56

numbers 56

tokens 58

configuration 217

convert commands 198

csnames 33

d

dimensions 56

direct nodes 162

directions 66, 143

discretionaries 98, 100, 139

e

𝜀-TEX 31

engines 29

errors 208

escaping 49

exceptions 96

expansion 55

suppress 85

f

files

binary 33

names 65

writing 66

fonts 66, 84

current 88

define 88

defining 210

extend 88

id 88

used 297

g

getstartupfile 185

getversion 185

glue 140

gluespec 140

glyphs 89, 142

Topics276

h

hash 210

helpers 207

history 29

hyphenation 64, 89, 94, 96

discretionaries 98

exceptions 96

how it works 98

patterns 96

tracing 94

i

io 218

images

MetaPost 227

mplib 227

initialization 37, 210

insertions 138

inserts 131

k

kerning 99

kerns 141

suppress 85

keywords 35

l

Lua 13

extensions 39

interpreter 37

libraries 39

modules 39

languages 64, 89

library 100

last items 198

leaders 64

libraries

lua 185

status 186

tex 195

texconfig 217

texio 218

token 219

ligatures 99

suppress 85

linebreaks 100, 215

lists 136, 203

m

MetaPost 227

mplib 227

macros 223

main loop 94

marks 53, 131, 138

math 66, 103

accents 122, 126

codes 127

control 105

cramped 108

delimiters 123, 126

extensibles 123

fences 120

fractions 124

kerning 118

last line 127

limits 118

nodes 139, 144

parameters 109, 111, 202

penalties 120

radicals 122

scripts 118, 123, 128

spacing 108, 115, 116, 118

stacks 107

styles 106, 108, 128

text 129

tracing 129

Unicode 103

memory 33

n

nesting 204, 217

newline 34

nodes 13, 45, 135

adjust 138

attributes 157

boundary 143

direct 162

direction 143

discretionaries 139

functions 150

glue 140

glyph 142

277Topics

insertions 138

kerns 141

lists 136

marks 138

math 139, 144

paragraphs 143

penalty 141

properties 169

rules 137

text 136

numbers 56

o

Omega 66

output 61

p

pdf

analyze 239

memory streams 243

objects 239

pdfe 239

pdfTEX 31

pages 131, 202, 217

paragraphs 100, 131, 143

reset 215

parameters

internal 195

math 202

patterns 96

penalty 141

primitives 210

printing 205

properties 169

protrusion 87

suppress 85

r

registers 198, 201

bytecodes 185

rules 61, 137

s

shipout 217

space 34

spaces

suppress 86

splitting 62

synctex 217

t

TEX 29

tables 185

testing 40

text

math 129

tokens 58, 219

scanning 52

tracing 64

u

Unicode 44

math 103

v

vcentering 46

version 42

w

web2c 33

Topics278

279Primitives

Primitives

This register contains the primitives that are mentioned in the manual. There are of course

many more primitives. The 𝜀-TEX and LuaTEX primitives are typeset in bold (some originate in
pdfTEX).

\abovedisplayskip 118

\abovewithdelims 124

\accent 94

\adjustspacing 31, 32, 79

\adjustspacingshrink 32

\adjustspacingstep 32

\adjustspacingstretch 32

\aftergrouped 55

\aliased 72

\aligncontent 53

\alignmark 53

\aligntab 53

\allcrampedstyles 111

\alldisplaystyles 111

\allmathstyles 111

\allscriptscriptstyles 111

\allscriptstyles 111

\allsplitstyles 111

\alltextstyles 111

\alluncrampedstyles 111

\atop 107, 109

\atopwithdelims 107

\attribute 198

\attributedef 198, 199

\automatichyphenpenalty 93

\automigrationmode 133

\autoparagraphmode 131

\batchmode 218

\begincsname 52, 53

\begingroup 107

\belowdisplayskip 118

\botmark 132

\boundary 64, 143

\box 45

\boxattribute 48

\catcode 33, 41, 44, 200

\catcodetable 51, 205

\char 16, 44, 86, 94, 96, 142

\chardef 44, 96, 223, 224

\clearmarks 53, 132

\clubpenalties 216

\copy 45

\count 39, 44, 46, 198

\countdef 44, 198, 199

\crampedscriptstyle 108

\csname 53, 54

\csstring 52

\currentiftype 65

\currentmarks 53

\defcsname 54

\delcode 33, 104, 200, 201

\delimiter 104

\detokenize 221

\dimen 39, 44, 198

\dimendef 44, 86, 198, 199

\dimensiondef 73

\dimexpr 74

\dimexpression 74

\directlua 13, 41, 48, 49, 205, 210, 211

\discretionary 16, 93, 96, 98, 139

\displaystyle 115

\displaywidowpenalties 216

\dp 45, 131

\edef 50, 55, 221

\edefcsname 54

\efcode 31, 44, 78

\endgroup 107

\endinput 219

\endlinechar 30, 52, 205, 207

\enforced 73

\errhelp 208

\errmessage 208

\etoksapp 52

\etokspre 52

\everybeforepar 131

\everycr 54

\everyeof 52

\everyjob 38

Primitives280

\everytab 53, 54

\exceptionpenalty 97

\exhyphenchar 95

\exhyphenpenalty 95, 98, 139

\expandafter 54, 55

\expanded 31, 55

\explicithyphenpenalty 94

\firstmark 132

\firstvalidlanguage 90

\flushmarks 53, 132

\fontdimen 85

\fontid 84

\fontmathcontrol 81

\fontspecdef 85

\fontspecid 85

\fontspecscale 85

\fontspecxscale 85

\fontspecyscale 85

\fonttextcontrol 81

\formatname 211

\frozen 73, 117

\futureexpand 55

\futureexpandis 55

\futureexpandisap 55

\gleaders 64

\glet 54

\glettonothing 54

\global 72

\glyph 86

\glyphdatafield 88

\glyphoptions 85

\glyphscale 85

\glyphscriptfield 88

\glyphstatefield 88

\glyphxoffset 86

\glyphxscale 85

\glyphyoffset 86

\glyphyscale 85

\gtoksapp 52

\gtokspre 52

\halign 53, 176

\hbox 15, 45, 64, 118, 176, 177, 201

\hjcode 33, 44, 90, 97

\hpack 64

\hrule 16, 61, 137

\hskip 16, 140

\ht 45, 131

\hyphenation 96, 98, 99

\hyphenationmin 64, 90

\hyphenationmode 81, 92, 95, 100

\hyphenchar 77, 94, 95, 98

\hyphenpenalty 98, 139

\if 53

\ifabsdim 31, 56

\ifabsnum 31, 56

\ifarguments 58

\ifboolean 58

\ifcase 57, 117

\ifchkdim 56

\ifchknum 56

\ifcmpdim 56

\ifcmpnum 56

\ifcondition 59

\ifcstok 58

\ifdimexpression 75

\ifdimval 56

\ifempty 57

\ifflags 61

\ifincsname 31

\ifinsert 132

\ifmathparameter 57, 117

\ifmathstyle 57

\ifnumexpression 75

\ifnumval 56

\ifparameter 58

\ifparameters 58

\ifrelax 58

\iftok 58

\ignorepars 55

\ignorespaces 55

\immutable 72

\inherited 116

\initcatcodetable 51

\insert 44, 138

\insertdepth 131

\insertdistance 131

\insertheight 131

\insertheights 131

\insertlimit 131

\insertmaxdepth 131

\insertmode 131

\insertmultiplier 131

281Primitives

\insertpenalties 131

\insertpenalty 131

\insertstorage 131

\insertstoring 131, 132

\insertwidth 131

\instance 73

\integerdef 73, 86

\interlinepenalties 216

\jobname 38, 174

\kern 16, 141

\language 95, 96, 99, 100

\lastchkdim 57

\lastchknum 57

\lastnamedcs 52, 53

\lastnodesubtype 65

\lastnodetype 65

\lccode 33, 44, 200

\leaders 64

\left 121

\lefthyphenmin 64, 90

\leftmarginkern 31

\letcharcode 54

\lettonothing 54

\linedirection 68

\localbrokenpenalty 143

\localinterlinepenalty 143

\localleftbox 133, 143, 176

\localleftboxbox 134

\localmiddlebox 133, 143

\localmiddleboxbox 134

\localrightbox 133, 143, 176

\localrightboxbox 134

\lowercase 97

\lpcode 31, 44, 78

\luabytecode 50

\luabytecodecall 50

\luacopyinputnodes 206

\luadef 49, 224

\luaescapestring 49

\luafunction 49

\luafunctioncall 49, 50

\luatexbanner 43

\luatexrevision 43

\luatexversion 43

\mark 132, 138

\marks 44, 53, 132, 161

\mathaccent 104

\mathchar 104, 129

\mathchardef 104, 129

\mathchoice 106

\mathcode 33, 104, 200

\mathcontrolmode 81

\mathdelimitersmode 120

\mathdirection 205

\mathdisplayskipmode 118

\matheqnogapstep 120

\mathfontcontrol 105

\mathnolimitsmode 118

\mathpenaltiesmode 120

\mathscriptboxmode 118

\mathscriptcharmode 119

\mathscriptsmode 119

\mathstyle 106, 107, 125, 205

\mathsurround 115, 116, 140

\mathsurroundmode 115

\mathsurroundskip 115, 116

\maxdepth 131, 178

\meaning 65, 72

\meaningasis 65

\meaningfull 65, 72

\meaningless 65, 72

\medmuskip 116

\middle 204

\muskip 44, 116, 198

\muskipdef 44

\mutable 72

\newlinechar 30

\noalign 53, 72

\noaligned 72

\noboundary 64, 95, 99, 143

\noexpand 55

\nohrule 61, 62

\normalizelinemode 68

\nospaces 86, 87

\novrule 61, 62

\number 43, 74, 207

\numericscale 70

\numexpr 74, 75

\numexpression 74

\orelse 60

\orphanpenalties 131

\orphanpenalty 131

Primitives282

\orunless 60, 61

\output 179

\outputbox 61

\over 107, 109, 110, 204

\overline 108

\overloaded 73

\overloadmode 72, 73, 195

\overwithdelims 107

\pageboundary 133

\par 46, 55, 175

\parattribute 48

\parfillskip 176, 216

\parindent 195

\patterns 96, 98, 99

\penalty 141

\permanent 72

\postexhyphenchar 98

\posthyphenchar 98

\predisplaygapfactor 127

\preexhyphenchar 98

\prehyphenchar 98

\protrudechars 31, 32, 79

\protrusionboundary 64, 87, 143

\pxdimen 32

\quitvmode 31

\radical 104

\relax 72, 75, 96, 206, 210, 222

\retokenized 52

\right 121

\righthyphenmin 64, 90

\rightmarginkern 31

\romannumeral 106, 207

\rpcode 31, 44, 78

\SuperscriptBaselineDropMax 110

\SuperscriptShiftUp 110

\SuperscriptShiftUpCramped 110

\savecatcodetable 52

\savinghyphcodes 90, 91, 96, 102

\scaledfontdimen 85

\scantextokens 52

\scantokens 49, 52

\scriptfont 111

\scriptscriptfont 111

\scriptscriptstyle 122

\scriptspace 115

\scriptstyle 108

\setbox 45

\setfontid 84

\setlanguage 90, 95, 99

\setmathspacing 116

\sfcode 33, 44, 200

\shapingpenaltiesmode 131

\shapingpenaltymode 131

\skewchar 77, 122

\skip 44, 198, 199

\skipdef 44, 198, 199

\snapshotpar 131

\spaceskip 86

\splitbotmark 132

\splitfirstmark 132

\string 52

\tabsize 53, 54

\tabskip 54

\textdirection 16, 68, 143, 205

\textfont 111, 129

\textstyle 106

\the 43, 46, 74, 195, 197, 199, 205

\thickmuskip 116

\thinmuskip 116

\tinymuskip 116

\todimension 74

\tointeger 74

\tokenized 52

\toks 44, 197, 198, 199, 205

\toksapp 52

\toksdef 44, 198, 199

\tokspre 52

\tolerant 70, 72

\topmark 132

\toscaled 74

\tpack 64

\tracingadjusts 133

\tracingalignments 53

\tracingassigns 31, 33

\tracingcommands 65, 95, 195

\tracingexpressions 75

\tracingfonts 32, 66

\tracinghyphenation 65, 95

\tracinginserts 132

\tracinglevels 65, 183

\tracingmarks 53, 132

\tracingmath 65

283Primitives

\tracingnesting 209

\tracingonline 64

\tracingrestores 31, 33

\Uabove 125

\Uabovewithdelims 125

\Uatop 125

\Uatopwithdelims 125

\Uchar 44

\Udelcode 104, 201

\Udelcodenum 104

\Udelimiter 104

\Udelimiterover 105, 123

\Udelimiterunder 105, 123

\Uhextensible 123, 124

\Uleft 105

\UmathAccentBaseHeight 111

\Umathaccent 104, 105, 122

\Umathaccentbasedepth 111

\Umathaccentbottomshiftdown 110

\Umathaccentflattenedbasedepth 111

\Umathaccenttopshiftup 110

\Umathaxis 109

\Umathchar 104, 129

\Umathcharclass 127

\Umathchardef 104, 129

\Umathcharfam 127

\Umathcharnum 104

\Umathcharnumdef 104

\Umathcharslot 127

\Umathclass 130

\Umathcode 104, 127

\Umathcodenum 104

\Umathconnectoroverlapmin 110, 115

\UmathFlattenedAccentBaseHeight 111

\Umathflattenedaccentbottomshiftdown

111

\Umathflattenedaccenttopshiftup 111

\Umathfractiondelsize 110

\Umathfractiondenomdown 110

\Umathfractiondenomvgap 110

\Umathfractionnumup 110

\Umathfractionnumvgap 110

\Umathfractionrule 109

\Umathlimitabovebgap 110

\Umathlimitabovekern 110, 114

\Umathlimitabovevgap 110

\Umathlimitbelowbgap 110

\Umathlimitbelowkern 110, 114

\Umathlimitbelowvgap 110

\Umathnolimitsubfactor 110, 118

\Umathnolimitsupfactor 110, 118

\Umathoperatorsize 105, 109, 115

\Umathoverbarkern 109

\Umathoverbarrule 109

\Umathoverbarvgap 109

\Umathoverdelimiterbgap 110, 124

\Umathoverdelimitervgap 110, 124

\Umathprimebaselinedropmax 110

\Umathprimeraisepercent 110

\Umathprimeshiftup 110

\Umathprimeshiftupcramped 110

\Umathprimespaceafter 110

\Umathprimewidthpercent 110

\Umathquad 109, 114

\Umathradicaldegreeafter 109, 115, 122

\Umathradicaldegreebefore 109, 115, 122

\Umathradicaldegreeraise 109, 115, 122

\Umathradicalkern 109

\Umathradicalrule 109, 114

\Umathradicalvgap 109, 115

\UmathSpaceAfterScript 110

\Umathskewedfractionhgap 124

\Umathskewedfractionvgap 124

\Umathspaceafterscript 110, 115

\Umathspacebeforescript 110

\Umathstackdenomdown 109

\Umathstacknumup 109

\Umathstackvgap 109

\Umathsubshiftdown 110, 119

\Umathsubshiftdrop 110

\Umathsubsupshiftdown 110, 119

\Umathsubsupvgap 110

\Umathsubtopmax 110

\Umathsupbottommin 110

\Umathsupshiftdrop 110

\Umathsupshiftup 110, 119

\Umathsupsubbottommax 110

\Umathunderbarkern 109

\Umathunderbarrule 109

\Umathunderbarvgap 109

\Umathunderdelimiterbgap 110, 124

\Umathunderdelimitervgap 110, 124

Primitives284

\Umathxscale 130

\Umathyscale 130

\Umiddle 105, 126

\Unosubscript 128

\Unosuperscript 128

\Uoperator 105

\Uover 105, 125

\Uoverdelimiter 105, 123, 124

\Uoverwithdelims 125

\Uradical 104, 122

\Uright 105, 126

\Uroot 105, 122, 147

\Uskewed 124

\Uskewedwithdelims 124

\Ustack 107, 108

\Ustartdisplaymath 128

\Ustartmath 128

\Ustopdisplaymath 128

\Ustopmath 128

\Ustyle 125

\Usubscript 128

\Usuperprescript 128

\Usuperscript 128

\UUskewed 125

\UUskewedwithdelims 125

\Uunderdelimiter 105, 123, 124

\UVextensible 105

\uccode 33, 44, 200

\uchyph 90, 93, 142

\unexpanded 221

\unhbox 45

\unhcopy 45

\unless 61

\untraced 73

\unvbox 45

\unvcopy 45

\uppercase 54, 97

\vadjust 132, 138, 175

\valign 53, 176

\vbox 16, 45, 64, 176, 201, 216

\vcenter 48, 64, 176

\vpack 64

\vrule 16, 61, 137

\vskip 16, 140

\vsplit 45, 62, 176, 202

\vtop 16, 64, 176, 201

\wd 45, 131

\widowpenalties 216

\wordboundary 64, 91, 143

\wrapuppar 131

\xdefcsname 54

\xtoksapp 52

\xtokspre 52

\- 139

285Callbacks

Callbacks

b

buildpage_filter 175

build_page_insert 175

c

contribute_filter 174

d

define_font 182

f

find_format_file 174

find_log_file 174

g

glyph_run 177

h

hpack_filter 176, 178

hyphenate 179

i

intercept_lua_error 181

intercept_tex_error 181

k

kerning 180

l

ligaturing 179, 180

linebreak_filter 177, 216

m

mlisttohlist 162

mlist_to_hlist 120, 180

o

open_data_file 174

p

post_linebreak_filter 177

pre_dump 181

pre_linebreak_filter 176, 216

process_jobname 174

process_rule 179

s

show_error_message 181

show_warning_message 181

show_whatsit 183

start_file 182

start_run 181

stop_file 182

stop_run 181

v

vpack_filter 176, 178

w

wrapup_run 182

Callbacks286

287Nodes

Nodes

This register contains the nodes that are known to LuaTEX. The primary nodes are in bold,

whatsits that are determined by their subtype are normal.

a

accent 146

adjust 92, 138

attribute 157

b

boundary 64, 92, 143

c

choice 147

d

delimiter 145

delta 207

dir 16, 92, 143

disc 16, 45, 139, 155

f

fence 148

fraction 122, 147

g

glue 16, 45, 92, 140, 155

glue-spec 199

glue_spec 140, 195, 197, 199

glyph 16, 45, 89, 90, 94, 142, 154

glyphs 155

h

hlist 15, 45, 47, 92, 136, 154, 155

i

insert 92, 138

k

kern 16, 45, 92, 141

m

mark 138

math 139

math_char 145

math_text_char 145

n

noad 146

p

par 143, 216

parameter 146

penalty 92, 141

r

radical 147

rule 16, 92, 137

rules 155

s

style 146

sub_box 145

sub_mlist 145

t

temp 136

v

vlist 16, 45, 92, 136, 154, 155

w

whatsit 92

Nodes288

289Libraries

Libraries

This register contains the functions available in libraries. Not all functions are documented, for

instance because they can be experimental or obsolete.

callback

find 173

known 173

list 173

register 173

lang

clean 101

clearhyphenation 101

clearpatterns 101

gethjcode 102

hyphenate 102

hyphenation 100

hyphenationmin 101

id 100

new 100

patterns 101

postexhyphenchar 101

posthyphenchar 101

preexhyphenchar 101

prehyphenchar 101

sethjcode 102

lua

bytecode 185

callbytecode 185

getbytecode 185

getcurrenttime 186

getpreciseseconds 186

getpreciseticks 186

getruntime 186

getstacktop 186

getstartupfile 185

getversion 185

newindex 185

newtable 185

setbytecode 185

mplib

execute 229

finish 230

getcallbackstate 231

gethashentries 230

gethashentry 230

getstates 230

getstatus 230

gettolerance 230

new 227

settolerance 230

showcontext 230

statistics 229

version 227

node

checkdiscretionaries 160

checkdiscretionary 160

copy 151, 164

copylist 151, 164

count 152

currentattr 157

currentattributes 164

dimensions 161

endofmath 162

fields 135, 150

findattribute 158

findnode 156

firstglyph 159

flattendiscretionaries 160

flushlist 151, 164

flushnode 151, 165

free 151, 165

getattribute 158, 165

getfield 165

getglue 156

getpropertiestable 165, 169

getproperty 165

gettotal 166

hasattribute 158, 166

hasfield 150, 166

hasglyph 159

hpack 160

id 150

insertafter 153, 166

insertbefore 152, 166

Libraries290

ischar 159

isglyph 159

isnode 150, 166

iszeroglue 157

kerning 159

lastnode 153

length 152

ligaturing 159

mlisttohlist 162

new 150, 166

protectglyph 160

protectglyphs 160

protrusionskippable 160

rangedimensions 161

remove 152, 167

setattribute 158, 167

setfield 167

setglue 156, 167

setpropertiesmode 169

setproperty 167

slide 152

subtypes 135

tail 152, 168

todirect 162

tonode 162

tostring 162, 168

traverse 153, 168

traversechar 154, 168

traversecontent 155, 168

traverseglyph 154, 168

traverseid 154, 168

traverselist 154, 168

type 150, 168

types 149

unprotectglyph 159

unprotectglyphs 159

unsetattribute 158, 168

values 135

vpack 161

write 151, 168

node.direct

checkdiscretionaries 164

checkdiscretionary 164

copy 164

copylist 164

count 164

currentattributes 164

dimensions 164

effectiveglue 164

endofmath 164

findattribute 164

findattributerange 164

findnode 164

firstglyph 164

flattendiscretionaries 164

flushlist 164

flushnode 165

free 165

getattribute 165

getattributelist 165

getattributes 165

getboth 165

getbox 165

getchar 165

getdata 165

getdepth 165

getdirection 165

getdisc 165

getexpansion 165

getfam 165

getfield 165

getfont 165

getglue 165

getglyphdata 165

getglyphdimensions 165

getglyphscript 165

getglyphstate 165

getheight 165

getid 165

getindex 165

getkern 165

getkerndimension 165

getlanguage 165

getleader 165

getlist 165

getnext 165

getnormalizedline 165

getnucleus 165

getoffsets 165

getoptions 165

getorientation 165

getparstate 165

291Libraries

getpenalty 165

getpost 165

getpre 165

getprev 165

getpropertiestable 165

getproperty 165

getreplace 165

getscales 165

getscript 165

getshift 166

getstate 166

getsub 166

getsubpre 166

getsubtype 166

getsup 166

getsuppre 166

getsynctexfields 165

gettotal 166

getwhd 166

getwidth 166

getxscale 166

getxyscale 166

getyscale 166

hasattribute 166

hasdimensions 166

hasfield 166

hasglyph 166

hasglyphoption 166

hpack 166

hyphenating 166

ignoremathskip 166

insertafter 166

insertbefore 166

ischar 166

isdirect 166

isglyph 166

isnextchar 166

isnextglyph 166

isnode 166

isprevchar 166

isprevglyph 166

isvalid 166

iszeroglue 166

kerning 166

lastnode 166

length 166

ligaturing 166

makeextensible 166

migrate 166

mlisttohlist 166

naturalwidth 166

new 166

protectglyph 166

protectglyphs 166

protrusionskippable 166

rangedimensions 166

remove 167

setattribute 167

setattributelist 167

setattributes 167

setboth 167

setbox 167

setchar 167

setdata 167

setdepth 167

setdirection 167

setdisc 167

setexpansion 167

setfam 167

setfield 167

setfont 167

setglue 167

setglyphdata 167

setglyphscript 167

setglyphstate 167

setheight 167

setindex 167

setkern 167

setlanguage 167

setleader 167

setlink 167

setlist 167

setnext 167

setnucleus 167

setoffsets 167

setoptions 167

setorientation 167

setpenalty 167

setpost 167

setpre 167

setprev 167

setproperty 167

Libraries292

setreplace 167

setscales 167

setscript 167

setshift 167

setsplit 167

setstate 167

setsub 167

setsubpre 167

setsubtype 167

setsup 168

setsuppre 168

setsynctexfields 167

setwhd 168

setwidth 168

slide 168

startofpar 168

tail 168

todirect 168

tonode 168

total 168

tovaliddirect 168

traverse 168

traversechar 168

traversecontent 168

traverseglyph 168

traverseid 168

traverselist 168

unprotectglyph 168

unprotectglyphs 168

unsetattribute 168

unsetattributes 168

usedlist 168

usesfont 168

verticalbreak 168

vpack 168

write 168

os

env 252

gettimeofday 252

name 252

selfarg 252

selfdir 252

setenv 252

type 252

uname 252

pdfe

arraytotable 242

close 239

closestream 241

dictionarytotable 242

getarray 241

getboolean 240

getbox 240

getcatalog 240

getdictionary 241

getfromarray 241, 242

getfromdictionary 241, 242

getfromreference 242

getfromstream 241

getinfo 240

getinteger 240

getname 240

getnofobjects 240

getnofpages 240

getnumber 240

getpage 240

getsize 240

getstatus 239

getstream 241

getstring 240

gettrailer 240

getversion 240

new 239, 243

open 239

openstream 241

readfromstream 241

readfromwholestream 241

unencrypt 239

sio

getposition 245

readbytes 245

readbytetable 245

readcardinaltable 245

readcardinal1 245

readcardinal2 245

readcardinal3 245

readcardinal4 245

readfixed2 245

readfixed4 245

readintegertable 245

readinteger1 245

readinteger2 245

293Libraries

readinteger3 245

readinteger4 245

read2dot14 245

setposition 245

skipposition 245

status

list 186

resetmessages 186

setexitcode 186

string

bytepairs 251

bytes 251

characterpairs 251

characters 251

explode 251

utfcharacter 252

utfcharacters 251

utflength 252

utfvalue 252

utfvalues 251

tex

attribute 198

badness 215

box 198, 201

catcode 200

count 198

cprint 206

definefont 210

delcode 200

dimen 198

enableprimitives 210

error 208

extraprimitives 211

fontidentifier 207

fontname 207

forcehmode 210

forcesynctexline 217

forcesynctextag 217

get 195

getattribute 198

getbox 198, 201

getcatcode 200

getcount 198

getdelcode 200

getdelcodes 200

getdimen 198

getfamilyoffont 208

getglue 198

gethelptext 208

getinteraction 209

getlccode 200

getlinenumber 208

getlist 203

getlocallevel 217

getmark 198

getmath 202

getmathcode 200

getmathcodes 200

getmuglue 198

getmuskip 198

getnest 204

getpagestate 217

getsfcode 200

getskip 198

getsynctexline 217

getsynctexmode 217

getsynctextag 217

gettoks 198

getuccode 200

glue 198

hashtokens 210

isattribute 198

isbox 198

iscount 198

isdimen 198

isglue 198

ismuglue 198

ismuskip 198

isskip 198

istoks 198

lccode 200

linebreak 215

lists 203

mathcode 200

muglue 198

muskip 198

nest 204

number 207

primitives 215

print 205

ptr 204

resetparagraph 215

Libraries294

romannumeral 207

round 207

scale 207

scantoks 198

set 195

setattribute 198

setbox 198, 201

setcatcode 200

setcount 198

setdelcode 200

setdelcodes 200

setdimen 198

setglue 198

setinteraction 209

setlccode 200

setlinenumber 208

setlist 203

setmath 202

setmathcode 200

setmathcodes 200

setmuglue 198

setmuskip 198

setsfcode 200

setskip 198

setsynctexline 217

setsynctexmode 217

setsynctexnofiles 217

setsynctextag 217

settoks 198

setuccode 200

sfcode 200

shipout 217

show_context 208

skip 198

sp 208

splitbox 202

sprint 205

toks 198

tprint 206

triggerbuildpage 202

uccode 200

write 207

texio

closeinput 219

setescape 219

write 218

writenl 219

writeselector 218

writeselectornl 219

token

biggest_char 222

commands 222

command_id 222

create 222

expand 222

getactive 222

getcmdname 222

getcommand 222

getcsname 222

getexpandable 222

getfrozen 222

getfunctionstable 223

getid 222

getindex 222

getmacro 223

getmeaning 223

getmode 222

getprotected 222

gettok 222

getuser 222

is_defined 222

is_token 222

new 222

peeknext 222

peeknextexpanded 222

popmacro 223

pushmacro 223

putnext 224

scanargument 219

scancode 219

scancsname 219

scandimen 219

scanfloat 219

scanglue 219

scanint 219

scankeyword 219

scankeywordcs 219

scanlist 219

scannext 222, 224

scannextexpanded 222

scanreal 219

scanstring 219

295Libraries

scantoken 222

scantoks 219

scanword 219

setchar 223

setlua 223

setmacro 223

skipnext 222

skipnextexpanded 222

Libraries296

297Statistics

Statistics

The following fonts are used in this document:

used filesize version filename

2 988.684 5.000 cambmath.ttf

1 927.280 5.020 cambria.ttf

1 163.452 1.802 LucidaBrightMathOT-Demi.otf

1 348.296 1.802 LucidaBrightMathOT.otf

1 73.284 1.801 LucidaBrightOT.otf

2 733.500 1.958 latinmodern-math.otf

1 64.684 2.004 lmmono10-regular.otf

2 64.160 2.004 lmmonoltcond10-regular.otf

1 111.536 2.004 lmroman10-regular.otf

3 525.008 1.106 texgyredejavu-math.otf

2 601.220 1.632 texgyrepagella-math.otf

1 218.100 2.501 texgyrepagella-regular.otf

1 693.876 2.340 DejaVuSans-Bold.ttf

1 741.536 2.340 DejaVuSans.ttf

1 318.392 2.340 DejaVuSansMono-Bold.ttf

1 245.948 2.340 DejaVuSansMono-Oblique.ttf

1 335.068 2.340 DejaVuSansMono.ttf

2 345.364 2.340 DejaVuSerif-Bold.ttf

1 336.884 2.340 DejaVuSerif-BoldItalic.ttf

1 343.388 2.340 DejaVuSerif-Italic.ttf

1 367.260 2.340 DejaVuSerif.ttf

28 8.546.920 21 files loaded

Statistics298

299Some remarks

Some remarks

Here I collect remarks that I'd like to make but that don't fit into the manual. Consider in a

notebook.

remark: LuaMetaTEX development is mostly done by Hans Hagen and in adapting the macros

to the new features Wolfgang Schuster, who knows the code inside--out is a instrumental. In

the initial phase Alan Braslau, who love playing with the three languages did extensive testing

and compiled for several platforms. Later Mojca Miklavec make sure all compiles well on the

buildbot infrastructure. After the first release more users got involved in testing. Many thanks

for their patience! The development also triggered upgrading of the wiki support infrastructure

where Taco Hoekwater and Paul Mazaitis have teamed up. So, progress all around.

remark: When there are non-intrusive features that also make sense in LuaTEX, these will be

applied in the experimental branch first, so that there is no interference with the stable release.

However, given that in the meantime the code bases differs a lot, it is unlikely that much will

trickle back. This is no real problem as there's not much demand for that anyway.

remark: Most ConTEXt users seem always willing to keep up with the latest versions which

means that LMTX is tested well. We can therefore safely claim that end of 2019 the code has

become quite stable, although after that in some areas there were substantial additions. There

are no complaints about performance (on my 2013 laptop this manual compiles at 24.5 pps with

LMTX versus 20.7 pps for the LuaTEX manual with MkIV). After updating some of the ConTEXt

code to use recently added features by the end of 2020 I could do more than 25.5 pps and in 2021

at some point to measured some 29.1 pps (probably also due to some performance improvements

in the MetaFun code) but don't expect spectacular bumps in performance (I need a new machine

for that to happen). Probably no one notices it, but memory consumption stepwise got reduced

too. And . . . the binary is still below 3 MegaBytes on all platforms.

remark: I tried to only add features that are sort of generic and much relates to controlling and

opening up the engine. That also means that there are extensions that (at least not now) are

used in ConTEXt, simply because there are already mechanisms in place that work well. So, it's

also about trying to be complete in order not have to add more later, which makes it possible

to shift to larger interval between updates. That way local experiments are also better isolated

from stable versions.

In that perspective arguments like “This got added because ConTEXt needs it.” or “That got

done because features creep.” as well as “Because of such features ConTEXt performs better.”

aremerely distractions from the fact that we are dealing with a project that just wants to upgrade

the machinery while making that effort fun to do. There has not been much community drive

and demand for substantial extensions over the last decades, so it has to be the fun factor, right?

And the ConTEXt community being willing to join the experiment makes it even more fun. Just

keep that in mind.

remark: It's is kind of strange to run into arguments for not using LuaTEX or for what it is

worth LuaMetaTEX. No one forces anyone to use TEX in the first place, also because often word

processors or web based editing provides plenty of benefits. And no one forces a TEX users to use

a specific engine. I bet that for most users pdfTEX suits well, especially when you only need TEX

for relative simple publications and reports in English, using default styles that put constraints

Some remarks300

on the user. Often the math is what matters there. Also, using XƎTEX is quite okay because it

ships with built in font handling (of course that also has disadvantages, just consider the fact

that it changed over time). When you want scripting LuaTEX is fine. When you need specific cjk

support there are specialized engines for that. The same is true for ConTEXt. You don't have

to dislike it: just ignore it and don't waste time on barking against a tree. But when you use

ConTEXt the Lua enhanced engines are what you use.

remark: Yes there are bugs but I always consider the ‘many’ in “There are many bugs.” to be an

indication of frustration. Given the number of extensions and experiment one can expect bugs.

But if someone can only mention a few, of which some fit into the category of engine limitations,

it's probably more about ego. Abusing a mechanism for what it's not meant to, stretching it to

the limits, running into a border case, those are not really bugs, more missing features. A crash

is a bug indeed but we can count those in a few digits. The same is true for something missing

in the manual: myabe it has a simple reason and explanation.

We have a fast cycle of resolving issues on the ConTEXt list where user also test new functionality

so that it can get improved. Complaints are also kind of puzzling because when we talk new

features we're also talking of something that could not be done before. No one forces anyone to

use experimental features. Yes, trying out something that is not perfect is no fun, but I clearly

remember working around many limitations which is not always fun but can also be interesting.

Just choose a better program if you don't like it, and definitely stick to the robust older engines!

As a warning: the tone in an email of a complaint or remark nowadays determines how high it

ends up on the to-be-dealt-with list: pretty low. There are always more interesting things on top.

remark: Some extensions involve the way macro arguments are dealt with. Combined with the

possibility to parse the input stream using Lua one can come up with solution that are hard (or

maybe even impossible) otherwise. For me it meant throwing away nice (but often complex)

solutions that evolved over decades. That can hurt, especially when you consider the time spent

on it. But all this doesn't change the concept of TEX the macro language. When pondering some

criticism, just wonder first why TEX attracts users, some of which like to write code.

I'm always puzzled by folks who complain about TEX as a language (the other part being the

typesetter). Why use it if you don't like it? A macro language has its own characteristics so live

with it. After years of writing TEX code it's this language that intrigues me. It's also a reason

why MetaPost and Lua are embedded: they are different languages and depending on the task

they might suit better. When Alan, Aditya, I and others are playing with MetaPost extensions

using the new scanners and interfaces resulting from that we do just that. We could invent a

new language, with lots of fruitless debate, with limitations, but in the end there's nothing wrong

with MetaPost (coming from MetaFont).

	Introduction
	1 The internals
	2 Differences with LuaTEX
	3 The original engines
	3.1 The merged engines
	3.1.1 The rationale
	3.1.2 Changes from TEX 3.1415926...
	3.1.3 Changes from 𝜀-TEX 2.2
	3.1.4 Changes from pdfTEX 1.40
	3.1.5 Changes from Aleph RC4
	3.1.6 Changes from standard web2c

	3.2 Implementation notes
	3.2.1 Memory allocation
	3.2.2 Sparse arrays
	3.2.3 Simple single-character csnames
	3.2.4 Binary file reading
	3.2.5 Tabs and spaces
	3.2.6 Logging
	3.2.7 Parsing
	3.2.8 Changes in keyword scanning

	4 Using LuaMetaTEX
	4.1 Initialization
	4.1.1 A bare bone engine
	4.1.2 LuaMetaTEX as a Lua interpreter
	4.1.3 Other commandline processing

	4.2 Lua behaviour
	4.2.1 The Lua version
	4.2.2 Locales

	4.3 Lua modules
	4.4 Testing

	5 Basic TEX enhancements
	5.1 Introduction
	5.1.1 Primitive behaviour
	5.1.2 Rationale
	5.1.3 Version information

	5.2 Unicode text support
	5.2.1 Extended ranges
	5.2.2 Uchar
	5.2.3 Extended tables

	5.3 Attributes
	5.3.1 Nodes
	5.3.2 Attribute registers
	5.3.3 Box attributes

	5.4 Lua related primitives
	5.4.1 \directlua
	5.4.2 \luaescapestring
	5.4.3 \luafunction, \luafunctioncall and \luadef
	5.4.4 \luabytecode and \luabytecodecall

	5.5 Catcode tables
	5.5.1 Catcodes
	5.5.2 \catcodetable
	5.5.3 \initcatcodetable
	5.5.4 \savecatcodetable

	5.6 Tokens, commands and strings
	5.6.1 \scantextokens, \tokenized and \retokenized
	5.6.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre, \xtoksapp, \xtokspre
	5.6.3 \csstring, \begincsname and \lastnamedcs
	5.6.4 \clearmarks, \flushmarks, \currentmarks
	5.6.5 \alignmark, \aligntab, \aligncontent, \tabsize and \everytab
	5.6.6 \letcharcode
	5.6.7 \lettonothing and \glettonothing
	5.6.8 \glet
	5.6.9 \defcsname, \edefcsname, \edefcsname and \xdefcsname
	5.6.10 \expanded
	5.6.11 \ignorepars
	5.6.12 \futureexpand, \futureexpandis, \futureexpandisap
	5.6.13 \aftergrouped

	5.7 Conditions
	5.7.1 \ifabsnum and \ifabsdim
	5.7.2 \ifcmpnum, \ifcmpdim, \ifnumval, \ifdimval, \ifchknum and \ifchkdim
	5.7.3 \ifmathstyle and \ifmathparameter
	5.7.4 \ifempty
	5.7.5 \ifrelax
	5.7.6 \ifboolean
	5.7.7 \iftok and \ifcstok
	5.7.8 \ifarguments, \ifparameters and \ifparameter
	5.7.9 \ifcondition
	5.7.10 \orelse and \orunless
	5.7.11 \ifflags

	5.8 Boxes, rules and leaders
	5.8.1 \outputbox
	5.8.2 \hrule, \vrule, \nohrule and \novrule
	5.8.3 \vsplit
	5.8.4 Images and reused box objects
	5.8.5 \hpack, \vpack and \tpack
	5.8.6 \gleaders

	5.9 Languages
	5.9.1 \hyphenationmin
	5.9.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

	5.10 Control and debugging
	5.10.1 Tracing
	5.10.2 \lastnodetype, \lastnodesubtype, \currentiftype

	5.11 Files
	5.11.1 File syntax
	5.11.2 Writing to file

	5.12 Math
	5.13 Fonts
	5.14 Directions
	5.14.1 Two directions
	5.14.2 How it works
	5.14.3 Normalizing lines
	5.14.4 Orientations

	5.15 Keywords
	5.16 Expressions and \numericscale
	5.17 Macro arguments
	5.18 Overload protection
	5.19 Constants with \integerdef and \dimensiondef
	5.20 Serialization with \todimension, \toscaled and \tointeger
	5.21 Expressions with \numexpression
	5.22 Nodes

	6 Fonts
	6.1 Introduction
	6.2 Defining fonts
	6.3 Virtual fonts
	6.4 Additional TEX commands
	6.4.1 Font syntax
	6.4.2 \fontid and \setfontid
	6.4.3 \glyphoptions
	6.4.4 \glyphscale, \glyphxscale, \glyphyscale and \scaledfontdimen
	6.4.5 \fontspecdef, \fontspecid, \fontspecscale, , \fontspecxscale, \fontspecyscale
	6.4.6 \glyphxoffset, \glyphyoffset
	6.4.7 \glyph
	6.4.8 \nospaces
	6.4.9 \protrusionboundary

	6.5 The Lua font library
	6.5.1 Introduction
	6.5.2 Defining a font with define, addcharacters and setfont
	6.5.3 Font ids: id, max and current
	6.5.4 Glyph data: \glyphdatafield, \glyphscriptfield, \glyphstatefield

	7 Languages, characters, fonts and glyphs
	7.1 Introduction
	7.2 Characters, glyphs and discretionaries
	7.3 The main control loop
	7.4 Loading patterns and exceptions
	7.5 Applying hyphenation
	7.6 Applying ligatures and kerning
	7.7 Breaking paragraphs into lines
	7.8 The language library
	7.8.1 new and id
	7.8.2 hyphenation
	7.8.3 clearhyphenation and clean
	7.8.4 patterns and clearpatterns
	7.8.5 hyphenationmin
	7.8.6 [pre|post][ex|]hyphenchar
	7.8.7 hyphenate
	7.8.8 [set|get]hjcode

	8 Math
	8.1 Traditional alongside OpenType
	8.2 Unicode math characters
	8.3 Setting up the engine
	8.4 Math styles
	8.4.1 \mathstyle
	8.4.2 Ustack
	8.4.3 The new \cramped ...style commands

	8.5 Math parameter settings
	8.5.1 Many new Umath* primitives
	8.5.2 Font-based math parameters

	8.6 Math spacing
	8.6.1 Setting inline surrounding space with \mathsurround and \mathsurroundskip
	8.6.2 Pairwise spacing
	8.6.3 Local \frozen settings with
	8.6.4 Checking a state with \ifmathparameter
	8.6.5 Skips around display math and \mathdisplayskipmode
	8.6.6 Nolimit correction with \mathnolimitsmode
	8.6.7 Influencing script kerning with \mathscriptboxmode
	8.6.8 Forcing fixed scripts with \mathscriptsmode
	8.6.9 Penalties: \mathpenaltiesmode
	8.6.10 Equation spacing: \matheqnogapstep

	8.7 Math constructs
	8.7.1 Unscaled fences and \mathdelimitersmode
	8.7.2 Accent handling with Umathaccent
	8.7.3 Building radicals with Uradical and Uroot
	8.7.4 Super- and subscripts
	8.7.5 Scripts on extensibles: Uunderdelimiter, Uoverdelimiter, Udelimiterover, Udelimiterunder and Uhextensible
	8.7.6 Fractions and the new Uskewed and Uskewedwithdelims
	8.7.7 Math styles: Ustyle
	8.7.8 Delimiters: Uleft, Umiddle and Uright
	8.7.9 Accents: \mathlimitsmode

	8.8 Extracting values
	8.8.1 Codes and using Umathcode, Umathcharclass, Umathcharfam and Umathcharslot
	8.8.2 Last lines and \predisplaygapfactor

	8.9 Math mode
	8.9.1 Verbose versions of single-character math commands like Usuperscript and Usubscript
	8.9.2 Script commands Unosuperscript and Unosubscript
	8.9.3 Injecting primes with Uprimescript
	8.9.4 Prescripts with Usuperprescript and Usubprescript
	8.9.5 Allowed math commands in non-math modes

	8.10 Goodies
	8.10.1 Less Tracing

	8.11 Experiments
	8.11.1 Forcing classes with Umathclass
	8.11.2 Scaling spacing with Umathxscale and Umathyscale

	9 Building paragraphs and pages
	9.1 Introduction
	9.2 Paragraphs
	9.3 Inserts
	9.4 Marks
	9.5 Adjusts
	9.6 Migration
	9.7 Pages
	9.8 Local boxes

	10 Nodes
	10.1 Lua node representation
	10.2 Main text nodes
	10.2.1 hlist and vlist nodes
	10.2.2 rule nodes
	10.2.3 insert nodes
	10.2.4 mark nodes
	10.2.5 adjust nodes
	10.2.6 disc nodes
	10.2.7 math nodes
	10.2.8 glue nodes
	10.2.9 glue_spec nodes
	10.2.10 kern nodes
	10.2.11 penalty nodes
	10.2.12 glyph nodes
	10.2.13 boundary nodes
	10.2.14 par nodes
	10.2.15 dir nodes
	10.2.16 Whatsits
	10.2.17 Math noads

	10.3 The node library
	10.3.1 Introduction
	10.3.2 Housekeeping
	10.3.3 Manipulating lists
	10.3.4 Glue handling
	10.3.5 Attribute handling
	10.3.6 Glyph handling
	10.3.7 Packaging
	10.3.8 Math

	10.4 Two access models
	10.5 Normalization
	10.6 Properties

	11 Lua callbacks
	11.1 Registering callbacks
	11.2 File related callbacks
	11.2.1 find_format_file and find_log_file
	11.2.2 open_data_file

	11.3 Data processing callbacks
	11.3.1 process_jobname

	11.4 Node list processing callbacks
	11.4.1 contribute_filter
	11.4.2 buildpage_filter
	11.4.3 build_page_insert
	11.4.4 pre_linebreak_filter
	11.4.5 linebreak_filter
	11.4.6 append_to_vlist_filter
	11.4.7 post_linebreak_filter
	11.4.8 glyph_run
	11.4.9 hpack_filter
	11.4.10 vpack_filter
	11.4.11 hpack_quality
	11.4.12 vpack_quality
	11.4.13 process_rule
	11.4.14 pre_output_filter
	11.4.15 hyphenate
	11.4.16 ligaturing
	11.4.17 kerning
	11.4.18 insert_par
	11.4.19 mlist_to_hlist

	11.5 Information reporting callbacks
	11.5.1 pre_dump
	11.5.2 start_run
	11.5.3 stop_run
	11.5.4 intercept_tex_error, intercept_lua_error
	11.5.5 show_error_message and show_warning_message
	11.5.6 start_file
	11.5.7 stop_file
	11.5.8 wrapup_run

	11.6 Font-related callbacks
	11.6.1 define_font
	11.6.2 show_whatsit

	12 The TEX related libraries
	12.1 The lua library
	12.1.1 Version information
	12.1.2 Table allocators
	12.1.3 Bytecode registers
	12.1.4 Introspection

	12.2 The status library
	12.3 The tex library
	12.3.1 Introduction
	12.3.2 Internal parameter values, set and get
	12.3.3 Convert commands
	12.3.4 Item commands
	12.3.5 Accessing registers: set*, get* and is*
	12.3.6 Character code registers: [get|set]*code[s]
	12.3.7 Box registers: [get|set]box
	12.3.8 triggerbuildpage
	12.3.9 splitbox
	12.3.10 Accessing math parameters: [get|set]math
	12.3.11 Special list heads: [get|set]list
	12.3.12 Semantic nest levels: getnest and ptr
	12.3.13 Print functions
	12.3.14 Helper functions
	12.3.15 Functions for dealing with primitives
	12.3.16 Core functionality interfaces
	12.3.17 Functions related to synctex

	12.4 The texconfig table
	12.5 The texio library
	12.5.1 write and writeselector
	12.5.2 writenl and writeselectornl
	12.5.3 setescape
	12.5.4 closeinput

	12.6 The token library
	12.6.1 The scanner
	12.6.2 Picking up one token
	12.6.3 Creating tokens
	12.6.4 Macros
	12.6.5 Pushing back
	12.6.6 Nota bene

	13 The MetaPost library mplib
	13.1 Introduction
	13.2 Process management
	13.2.1 new
	13.2.2 getstatistics
	13.2.3 execute
	13.2.4 finish
	13.2.5 settolerance and gettolerance
	13.2.6 Errors
	13.2.7 The scanner status
	13.2.8 The hash
	13.2.9 Callbacks

	13.3 The end result
	13.3.1 The figure
	13.3.2 fill
	13.3.3 outline
	13.3.4 start_bounds, start_clip, start_group
	13.3.5 stop_bounds, stop_clip, stop_group

	13.4 Subsidiary table formats
	13.4.1 Paths and pens
	13.4.2 Colors
	13.4.3 Transforms
	13.4.4 Dashes
	13.4.5 Pens and peninfo
	13.4.6 Character size information

	13.5 Scanners
	13.6 Injectors
	13.7 To be checked

	14 The pdf related libraries
	14.1 The pdfe library
	14.1.1 Introduction
	14.1.2 open, openfile, new, getstatus, close, unencrypt
	14.1.3 getsize, getversion, getnofobjects, getnofpages
	14.1.4 get[catalog|trailer|info]
	14.1.5 getpage, getbox
	14.1.6 get[string|integer|number|boolean|name]
	14.1.7 get[dictionary|array|stream]
	14.1.8 [open|close|readfrom|whole|]stream
	14.1.9 getfrom[dictionary|array]
	14.1.10 [dictionary|array]totable
	14.1.11 getfromreference

	14.2 Memory streams
	14.3 The pdfscanner library

	15 Extra libraries
	15.1 Introduction
	15.2 File and string readers: fio and type sio
	15.3 md5
	15.4 sha2
	15.5 xzip
	15.6 xmath
	15.7 xcomplex
	15.8 xdecimal
	15.9 lfs
	15.10 pngdecode
	15.11 basexx
	15.12 Multibyte string functions
	15.13 Extra os library functions
	15.14 The lua library functions

	Primitive codes
	Topics
	Primitives
	Callbacks
	Nodes
	Libraries
	Statistics
	Some remarks

