
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

lowlevel



1

Contents

2 Conditionals 5

2.1 Preamble 6

2.2 TEX primitives 11

2.3 𝜀-TEX primitives 19

2.4 LuaTEX primitives 21

2.5 LuaMetaTEX primitives 25

2.6 For the brave 29

2.7 Relaxing 31

3 Boxes 35

3.1 Introduction 36

3.2 Boxes 36

3.3 TEX primitives 37

3.4 𝜀-TEX primitives 39

3.5 LuaTEX primitives 40

3.6 LuaMetaTEX primitives 41

4 Expansion 49

4.1 Preamble 50

4.2 TEX primitives 50

4.3 𝜀-TEX primitives 55

4.4 LuaTEX primitives 57

4.5 LuaMetaTEX primitives 58

4.6 Dirty tricks 68

5 Registers 72

5.1 Preamble 73

5.2 TEX primitives 73

5.3 𝜀-TEX primitives 76

5.4 LuaTEX primitives 76

5.5 LuaMetaTEX primitives 77

6 Macros 78

6.1 Preamble 79

6.2 Definitions 79

6.3 Runaway arguments 89

6.4 Introspection 90

6.5 nesting 91



2

6.6 Prefixes 94

7 Grouping 97

7.1 Introduction 98

7.2 Pascal 98

7.3 TEX 98

7.4 MetaPost 99

7.5 Lua 100

7.6 C 100

8 Security 102

8.1 Preamble 103

8.2 Flags 103

8.3 Complications 106

8.4 Introspection 107

9 Characters 108

9.1 Introduction 109

9.2 History 109

9.3 The heritage 110

9.4 The LMTX approach 111

10 Scope 115

10.1 Introduction 116

10.2 Registers 116

10.3 Allocation 118

10.4 Files 121

11 Paragraphs 124

11.1 Introduction 125

11.2 Paragraphs 125

11.3 Properties 129

11.4 Wrapping up 131

11.5 Hanging 131

11.6 Shapes 132

11.7 Modes 150

11.8 Normalization 150

11.9 Dirty tricks 150

12 Alignments 152

12.1 Introduction 153

12.2 Between the lines 155



3

12.3 Pre-, inter- and post-tab skips 157

12.4 Cell widths 160

12.5 Plugins 161

12.6 Pitfalls and tricks 164

12.7 Remark 167

13 Marks 169

13.1 Introduction 170

13.2 The basics 171

13.3 Migration 172

13.4 Tracing 174

13.5 High level commands 175

13.6 Pitfalls 178

14 Inserts 179

14.1 Introduction 180

14.2 The page builder 180

14.3 Inserts 182

14.4 Storing 184

14.5 Callbacks 184



4

Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



5

2 Conditionals



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

conditionals



6

Preamble

Contents

2.1 Preamble 6

2.2 TEX primitives 11

2.3 𝜀-TEX primitives 19

2.4 LuaTEX primitives 21

2.5 LuaMetaTEX primitives 25

2.6 For the brave 29

2.7 Relaxing 31

2.1 Preamble

2.1.1 Introduction

You seldom need the low level conditionals because there are quite some so called

support macros available in ConTEXt. For instance, when you want to compare two

values (or more accurate: sequences of tokens), you can do this:

\doifelse {foo} {bar} {

the same

} {

different

}

But if you look in the ConTEXt code, you will see that often we use primitives that start

with \if in low level macros. There are good reasons for this. First of all, it looks

familiar when you also code in other languages. Another reason is performance but

that is only true in cases where the snippet of code is expanded very often, because

TEX is already pretty fast. Using low level TEX can also be more verbose, which is not

always nice in a document source. But, the most important reason (for me) is the layout

of the code. I often let the look and feel of code determine the kind of coding. This also

relates to the syntax highlighting that I am using, which is consistent for TEX, MetaPost,

Lua, etc. and evolved over decades. If code looks bad, it probably is bad. Of course this

doesn't mean all my code looks good; you're warned. In general we can say that I often

use \if... when coding core macros, and \doifelse... macros in (document) styles

and modules.

In the sections below I will discuss the low level conditions in TEX. For the often more

convenient ConTEXt wrappers you can consult the source of the system and support

modules, the wiki and/or manuals.



7

Preamble

Some of the primitives shown here are only available in LuaTEX, and some only in

LuaMetaTEX. We could do without them for decades but they were added to these en

gines because of convenience and, more important, because then made for nicer code.

Of course there's also the fun aspect. This manual is not an invitation to use these very

low level primitives in your document source. The ones that probably make most sense

are \ifnum, \ifdim and \ifcase. The others are often wrapped into support macros

that are more convenient.

In due time I might add more examples and explanations. Also, maybe some more tests

will show up as part of the LuaMetaTEX project.

2.1.2 Number and dimensions

Numbers and dimensions are basic data types in TEX. When you enter one, a number is

just that but a dimension gets a unit. Compare:

1234

1234pt

If you also use MetaPost, you need to be aware of the fact that in that language there

are not really dimensions. The post part of the name implies that eventually a number

becomes a PostScript unit which represents a base point (bp) in TEX. When in MetaPost

you entry 1234pt you actually multiply 1234 by the variable pt. In TEX on the other

hand, a unit like pt is one of the keywords that gets parsed. Internally dimensions are

also numbers and the unit (keyword) tells the scanner what multiplier to use. When

that multiplier is one, we're talking of scaled points, with the unit sp.

\the\dimexpr 12.34pt \relax

\the\dimexpr 12.34sp \relax

\the\dimexpr 12.99sp \relax

\the\dimexpr 1234sp \relax

\the\numexpr 1234 \relax

12.34pt

0.00018pt

0.00018pt

0.01883pt

1234

When we serialize a dimension it always shows the dimension in points, unless we se

rialize it as number.



8

Preamble

\scratchdimen1234sp

\number\scratchdimen

\the\scratchdimen

1234

0.01883pt

When a number is scanned, the first thing that is taken care of is the sign. In many

cases, when TEX scans for something specific it will ignore spaces. It will happily accept

multiple signs:

\number +123

\number +++123

\number + + + 123

\number +-+-+123

\number --123

\number ---123

123

123

123

123

123

-123

Watch how the negation accumulates. The scanner can handle decimal, hexadecimal

and octal numbers:

\number -123

\number -"123

\number -'123

-123

-291

-83

A dimension is scanned like a number but this time the scanner checks for upto three

parts: an either or not signed number, a period and a fraction. Here no number means

zero, so the next is valid:

\the\dimexpr . pt \relax

\the\dimexpr 1. pt \relax



9

Preamble

\the\dimexpr .1pt \relax

\the\dimexpr 1.1pt \relax

0.0pt

1.0pt

0.1pt

1.1pt

Again we can use hexadecimal and octal numbers but when these are entered, there

can be no fractional part.

\the\dimexpr 16 pt \relax

\the\dimexpr "10 pt \relax

\the\dimexpr '20 pt \relax

16.0pt

16.0pt

16.0pt

The reason for discussing numbers and dimensions here is that there are cases where

when TEX expects a number it will also accept a dimension. It is good to know that for

instance a macro defined with \chardef or \mathchardef also is treated as a number.

Even normal characters can be numbers, when prefixed by a ` (backtick).

The maximum number in TEX is 2147483647 so we can do this:

\scratchcounter2147483647

but not this

\scratchcounter2147483648

as it will trigger an error. A dimension can be positive and negative so there we can do

at most:

\scratchdimen 1073741823sp

\scratchdimen1073741823sp

\number\scratchdimen

\the\scratchdimen

\scratchdimen16383.99998pt

\number\scratchdimen

\the\scratchdimen



10

Preamble

1073741823

16383.99998pt

1073741823

16383.99998pt

We can also do this:

\scratchdimen16383.99999pt

\number\scratchdimen

\the\scratchdimen

1073741823

16383.99998pt

but the next one will fail:

\scratchdimen16383.9999999pt

Just keep in mind that TEX scans both parts as number so the error comes from checking

if those numbers combine well.

\ifdim 16383.99999 pt = 16383.99998 pt the same \else different \fi

\ifdim 16383.999979 pt = 16383.999980 pt the same \else different \fi

\ifdim 16383.999987 pt = 16383.999991 pt the same \else different \fi

Watch the difference in dividing, the / rounds, while the : truncates.

the same

the same

the same

You need to be aware of border cases, although in practice they never really are a

problem:

\ifdim \dimexpr16383.99997 pt/2\relax = \dimexpr 16383.99998 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr16383.99997 pt:2\relax = \dimexpr 16383.99998 pt:2\relax

the same \else different

\fi

different

the same



11

TEX primitives

\ifdim \dimexpr1.99997 pt/2\relax = \dimexpr 1.99998 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr1.99997 pt:2\relax = \dimexpr 1.99998 pt:2\relax

the same \else different

\fi

different

the same

\ifdim \dimexpr1.999999 pt/2\relax = \dimexpr 1.9999995 pt/2\relax

the same \else different

\fi

\ifdim \dimexpr1.999999 pt:2\relax = \dimexpr 1.9999995 pt:2\relax

the same \else different

\fi

the same

the same

This last case demonstrates that at some point the digits get dropped (still assuming

that the fraction is within the maximum permitted) so these numbers then are the same.

Anyway, this is not different in other programming languages and just something you

need to be aware of.

2.2 TEX primitives

2.2.1 \if

I seldom use this one. Internally TEX stores (and thinks) in terms of tokens. If you see

for instance \def or \dimen or \hbox these all become tokens. But characters like A or

@ also become tokens. In this test primitive all non-characters are considered to be the

same. In the next examples this is demonstrated.

[\if AB yes\else nop\fi]

[\if AA yes\else nop\fi]

[\if CDyes\else nop\fi]

[\if CCyes\else nop\fi]

[\if\dimen\font yes\else nop\fi]

[\if\dimen\font yes\else nop\fi]



12

TEX primitives

Watch how spaces after the two characters are kept: [nop] [ yes] [nop] [yes] [yes] [yes].

This primitive looks at the next two tokens but when doing so it expands. Just look at

the following:

\def\AA{AA}%

\def\AB{AB}%

[\if\AA yes\else nop\fi]

[\if\AB yes\else nop\fi]

We get: [yes] [nop].

2.2.2 \ifcat

In TEX characters (in the input) get interpreted according to their so called catcodes.

The most common are letters (alphabetic) and and other (symbols) but for instance the

backslash has the property that it starts a command, the dollar signs trigger mathmode,

while the curly braced deal with grouping. If for instance either or not the ampersand

is special (for instance as column separator in tables) depends on the macro package.

[\ifcat AB yes\else nop\fi]

[\ifcat AA yes\else nop\fi]

[\ifcat CDyes\else nop\fi]

[\ifcat CCyes\else nop\fi]

[\ifcat C1yes\else nop\fi]

[\ifcat\dimen\font yes\else nop\fi]

[\ifcat\dimen\font yes\else nop\fi]

This time we also compare a letter with a number: [ yes] [ yes] [yes] [yes] [nop] [yes]

[yes]. In that case the category codes differ (letter vs other) but in this test comparing

the letters result in a match. This is a test that is used only once in ConTEXt and even

that occasion is dubious and will go away.

You can use \noexpand to prevent expansion:

\def\A{A}%

\let\B B%

\def\C{D}%

\let\D D%

[\ifcat\noexpand\A Ayes\else nop\fi]

[\ifcat\noexpand\B Byes\else nop\fi]

[\ifcat\noexpand\C Cyes\else nop\fi]

[\ifcat\noexpand\C Dyes\else nop\fi]



13

TEX primitives

[\ifcat\noexpand\D Dyes\else nop\fi]

We get: [nop] [yes] [nop] [nop] [yes], so who still thinks that TEX is easy to understand

for a novice user?

2.2.3 \ifnum

This condition compares its argument with another one, separated by an <, = or > char

acter.

\ifnum\scratchcounter<0

less than

\else\ifnum\scratchcounter>0

more than

\else

equal to

\fi zero

This is one of these situations where a dimension can be used instead. In that case the

dimension is in scaled points.

\ifnum\scratchdimen<0

less than

\else\ifnum\scratchdimen>0

more than

\else

equal to

\fi zero

Of course this equal treatment of a dimension and number is only true when the dimen

sion is a register or box property.

2.2.4 \ifdim

This condition compares one dimension with another one, separated by an <, = or >

sign.

\ifdim\scratchdimen<0pt

less than

\else\ifdim\scratchdimen>0pt

more than



14

TEX primitives

\else

equal to

\fi zero

While when comparing numbers a dimension is a valid quantity but here you cannot

mix them: something with a unit is expected.

2.2.5 \ifodd

This one can come in handy, although in ConTEXt it is only used in checking for an odd

of even page number.

\scratchdimen 3sp

\scratchcounter4

\ifodd\scratchdimen very \else not so \fi odd

\ifodd\scratchcounter very \else not so \fi odd

As with the previously discussed \ifnum you can use a dimension variable too, which is

then interpreted as representing scaled points. Here we get:

very odd

not so odd

2.2.6 \ifvmode

This is a rather trivial check. It takes no arguments and just is true when we're in

vertical mode. Here is an example:

\hbox{\ifvmode\else\par\fi\ifvmode v\else h\fi mode}

We're always in horizontal mode and issuing a \par inside a horizontal box doesn't

change that, so we get: hmode.

2.2.7 \ifhmode

As with \ifvmode this one has no argument and just tells if we're in vertical mode.

\vbox {

\noindent \ifhmode h\else v\fi mode

\par



15

TEX primitives

\ifhmode h\else \noindent v\fi mode

}

You can use it for instance to trigger injection of code, or prevent that some content (or

command) is done more than once:

hmode

vmode

2.2.8 \ifmmode

Math is something very TEX so naturally you can check if you're in math mode. here is

an example of using this test:

\def\enforcemath#1{\ifmmode#1\else$ #1 $\fi}

Of course in reality macros that do such things are more advanced than this one.

2.2.9 \ifinner

\def\ShowMode

{\ifhmode \ifinner inner \fi hmode

\else\ifvmode \ifinner inner \fi vmode

\else\ifmmode \ifinner inner \fi mmode

\else \ifinner inner \fi unset

\fi\fi\fi}

\ShowMode \ShowMode

\vbox{\ShowMode}

\hbox{\ShowMode}

$\ShowMode$

$$\ShowMode$$

The first line has two tests, where the first one changes the mode to horizontal simply

because a text has been typeset. Watch how display math is not inner.

vmode hmode

inner vmode



16

TEX primitives

inner hmode

𝑖𝑛𝑛𝑒𝑟𝑚𝑚𝑜𝑑𝑒

𝑚𝑚𝑜𝑑𝑒

By the way, moving the \ifinner test outside the branches (to the top of the macro)

won't work because once the word inner is typeset we're no longer in vertical mode, if

we were at all.

2.2.10 \ifvoid

A box is one of the basic concepts in TEX. In order to understand this primitive we

present four cases:

\setbox0\hbox{} \ifvoid0 void \else content \fi

\setbox0\hbox{123} \ifvoid0 void \else content \fi

\setbox0\hbox{} \box0 \ifvoid0 void \else content \fi

\setbox0\hbox to 10pt{} \ifvoid0 void \else content \fi

In the first case, we have a box which is empty but it's not void. It helps to know that

internally an hbox is actually an object with a pointer to a linked list of nodes. So, the

first two can be seen as:

hlist -> [nothing]

hlist -> 1 -> 2 -> 3 -> [nothing]

but in any case there is a hlist. The third case puts something in a hlist but then flushes

it. Now we have not even the hlist any more; the box register has become void. The

last case is a variant on the first. It is an empty box with a given width. The outcome

of the four lines (with a box flushed in between) is:

content

content

void

content

So, when you want to test if a box is really empty, you need to test also its dimensions,

which can be up to three tests, depending on your needs.

\setbox0\emptybox \ifvoid0 void\else content\fi

\setbox0\emptybox \wd0=10pt \ifvoid0 void\else content\fi



17

TEX primitives

\setbox0\hbox to 10pt {} \ifvoid0 void\else content\fi

\setbox0\hbox {} \wd0=10pt \ifvoid0 void\else content\fi

Setting a dimension of a void voix (empty) box doesn't make it less void:

void

void

content

content

2.2.11 \ifhbox

This test takes a box number and gives true when it is an hbox.

2.2.12 \ifvbox

This test takes a box number and gives true when it is an vbox. Both a \vbox and \vtop

are vboxes, the difference is in the height and depth and the baseline. In a \vbox the

last line determines the baseline

vbox or vtop

vtop or vbox

And in a \vtop the first line takes control:

vbox or vtop

vtop or vbox

but, once wrapped, both internally are just vlists.

2.2.13 \ifx

This test is actually used a lot in ConTEXt: it compares two token(list)s:

\ifx a b Y\else N\fi

\ifx ab Y\else N\fi

\def\A {a}\def\B{b}\ifx \A\B Y\else N\fi

\def\A{aa}\def\B{a}\ifx \A\B Y\else N\fi

\def\A {a}\def\B{a}\ifx \A\B Y\else N\fi



18

TEX primitives

Here the result is: “NNNNY”. It does not expand the content, if you want that you need

to use an \edef to create two (temporary) macros that get compared, like in:

\edef\TempA{...}\edef\TempB{...}\ifx\TempA\TempB ...\else ...\fi

2.2.14 \ifeof

This test checks if a the pointer in a given input channel has reached its end. It is

also true when the file is not present. The argument is a number which relates to the

\openin primitive that is used to open files for reading.

2.2.15 \iftrue

It does what it says: always true.

2.2.16 \iffalse

It does what it says: always false.

2.2.17 \ifcase

The general layout of an \ifcase tests is as follows:

\ifcase<number>

when zero

\or

when one

\or

when two

\or

...

\else

when something else

\fi

As in other places a number is a sequence of signs followed by one of more digits



19

𝜀-TEX primitives

2.3 𝜀-TEX primitives

2.3.1 \ifdefined

This primitive was introduced for checking the existence of a macro (or primitive) and

with good reason. Say that you want to know if \MyMacro is defined? One way to do

that is:

\ifx\MyMacro\undefined

{\bf undefined indeed}

\fi

This results in: undefined indeed, but is this macro really undefined? When TEX scans

your source and sees a the escape character (the forward slash) it will grab the next

characters and construct a control sequence from it. Then it finds out that there is

nothing with that name and it will create a hash entry for a macro with that name but

with no meaning. Because \undefined is also not defined, these two macros have the

samemeaning and therefore the \ifx is true. Imagine that you do this many times, with

different macro names, then your hash can fill up. Also, when a user defined \undefined

you're suddenly get a different outcome.

In order to catch the last problem there is the option to test directly:

\ifdefined\MyOtherMacro \else

{\bf also undefined}

\fi

This (or course) results in: also undefined, but the macro is still sort of defined (with

no meaning). The next section shows how to get around this.

2.3.2 \ifcsname

A macro is often defined using a ready made name, as in:

\def\OhYes{yes}

The name is made from characters with catcode letter which means that you cannot use

for instance digits or underscores unless you also give these characters that catcode,

which is not that handy in a document. You can however use \csname to define a control

sequence with any character in the name, like:



20

𝜀-TEX primitives

\expandafter\def\csname Oh Yes : 1\endcsname{yes}

Later on you can get this one with \csname:

\csname Oh Yes : 1\endcsname

However, if you say:

\csname Oh Yes : 2\endcsname

you won't get some result, nor a message about an undefined control sequence, but

the name triggers a define anyway, this time not with no meaning (undefined) but as

equivalent to \relax, which is why

\expandafter\ifx\csname Oh Yes : 2\endcsname\relax

{\bf relaxed indeed}

\fi

is the way to test its existence. As with the test in the previous section, this can deplete

the hash when you do lots of such tests. The way out of this is:

\ifcsname Oh Yes : 2\endcsname \else

{\bf unknown indeed}

\fi

This time there is no hash entry created and therefore there is not even an undefined

control sequence.

In LuaTEX there is an option to return false in case of a messy expansion during this

test, and in LuaMetaTEX that is default. This means that tests can be made quite robust

as it is pretty safe to assume that names that make sense are constructed from regular

characters and not boxes, font switches, etc.

2.3.3 \iffontchar

This test was also part of the 𝜀-TEX extensions and it can be used to see if a font has a

character.

\iffontchar\font`A

{\em This font has an A!}

\fi

And, as expected, the outcome is: “This font has an A!”. The test takes two arguments,



21

LuaTEX primitives

the first being a font identifier and the second a character number, so the next checks

are all valid:

\iffontchar\font `A yes\else nop\fi\par

\iffontchar\nullfont `A yes\else nop\fi\par

\iffontchar\textfont0`A yes\else nop\fi\par

In the perspective of LuaMetaTEX I considered also supporting \fontid but it got a bit

messy due to the fact that this primitive expands in a different way so this extension

was rejected.

2.3.4 \unless

You can negate the results of a test by using the \unless prefix, so for instance you can

replace:

\ifdim\scratchdimen=10pt

\dosomething

\else\ifdim\scratchdimen<10pt

\dosomething

\fi\fi

by:

\unless\ifdim\scratchdimen>10pt

\dosomething

\fi

2.4 LuaTEX primitives

2.4.1 \ifincsname

As it had no real practical usage uit might get dropped in LuaMetaTEX, so it will not be

discussed here.

2.4.2 \ifprimitive

As it had no real practical usage due to limitations, this one is not available in LuaMetaTEX

so it will not be discussed here.



22

LuaTEX primitives

2.4.3 \ifabsnum

This test is inherited from pdfTEX and behaves like \ifnum but first turns a negative

number into a positive one.

2.4.4 \ifabsdim

This test is inherited from pdfTEX and behaves like \ifdim but first turns a negative

dimension into a positive one.

2.4.5 \ifcondition

This is not really a test but in order to unstand that you need to know how TEX internally

deals with tests.

\ifdimen\scratchdimen>10pt

\ifdim\scratchdimen<20pt

result a

\else

result b

\fi

\else

result c

\fi

When we end up in the branch of “result a” we need to skip two \else branches after

we're done. The \if.. commands increment a level while the \fi decrements a level.

The \else needs to be skipped here. In other cases the true branch needs to be skipped

till we end up a the right \else. When doing this skipping, TEX is not interested in what

it encounters beyond these tokens and this skipping (therefore) goes real fast but it

does see nested conditions and doesn't interpret grouping related tokens.

A side effect of this is that the next is not working as expected:

\def\ifmorethan{\ifdim\scratchdimen>}

\def\iflessthan{\ifdim\scratchdimen<}

\ifmorethan10pt

\iflessthan20pt

result a

\else



23

LuaTEX primitives

result b

\fi

\else

result c

\fi

The \iflessthan macro is not seen as an \if... so the nesting gets messed up. The

solution is to fool the scanner in thinking that it is. Say we have:

\scratchdimen=25pt

\def\ifmorethan{\ifdim\scratchdimen>}

\def\iflessthan{\ifdim\scratchdimen<}

and:

\ifcondition\ifmorethan10pt

\ifcondition\iflessthan20pt

result a

\else

result b

\fi

\else

result c

\fi

When we expand this snippet we get: “result b” and no error concerning a failure

in locating the right \fi's. So, when scanning the \ifcondition is seen as a valid

\if... but when the condition is really expanded it gets ignored and the \ifmorethan

has better come up with a match or not.

In this perspective it is also worth mentioning that nesting problems can be avoided

this way:

\def\WhenTrue {something \iftrue ...}

\def\WhenFalse{something \iffalse ...}

\ifnum\scratchcounter>123

\let\next\WhenTrue

\else

\let\next\WhenFalse

\fi

\next



24

LuaTEX primitives

This trick is mentioned in The TEXbook and can also be found in the plain TEX format.

A variant is this:

\ifnum\scratchcounter>123

\expandafter\WhenTrue

\else

\expandafter\WhenFalse

\fi

but using \expandafter can be quite intimidating especially when there are multiple

in a row. It can also be confusing. Take this: an \ifcondition expects the code that

follows to produce a test. So:

\def\ifwhatever#1%

{\ifdim#1>10pt

\expandafter\iftrue

\else

\expandafter\iffalse

\fi}

\ifcondition\ifwhatever{10pt}

result a

\else

result b

\fi

This will not work! The reason is in the already mentioned fact that when we end up

in the greater than 10pt case, the scanner will happily push the \iftrue after the \fi,

which is okay, but when skipping over the \else it sees a nested condition without

matching \fi, which makes ity fail. I will spare you a solution with lots of nasty tricks,

so here is the clean solution using \ifcondition:

\def\truecondition {\iftrue}

\def\falsecondition{\iffalse}

\def\ifwhatever#1%

{\ifdim#1>10pt

\expandafter\truecondition

\else

\expandafter\falsecondition

\fi}



25

LuaMetaTEX primitives

\ifcondition\ifwhatever{10pt}

result a

\else

result b

\fi

It will be no surprise that the two macros at the top are predefined in ConTEXt. It

might be more of a surprise that at the time of this writing the usage in ConTEXt of this

\ifcondition primitive is rather minimal. But that might change.

As a further teaser I'll show another simple one,

\def\HowOdd#1{\unless\ifnum\numexpr ((#1):2)*2\relax=\numexpr#1\relax}

\ifcondition\HowOdd{1}very \else not so \fi odd

\ifcondition\HowOdd{2}very \else not so \fi odd

\ifcondition\HowOdd{3}very \else not so \fi odd

This renders:

very odd

not so odd

very odd

The code demonstrates several tricks. First of all we use \numexpr which permits more

complex arguments, like:

\ifcondition\HowOdd{4+1}very \else not so \fi odd

\ifcondition\HowOdd{2\scratchcounter+9}very \else not so \fi odd

Another trick is that we use an integer division (the :) which is an operator supported

by LuaMetaTEX.

2.5 LuaMetaTEX primitives

2.5.1 \ifcmpnum

This one is part of s set of three tests that all are a variant of a \ifcase test. A simple

example of the first test is this:

\ifcmpnum 123 345 less \or equal \else more \fi



26

LuaMetaTEX primitives

The test scans for two numbers, which of course can be registers or expressions, and

sets the case value to 0, 1 or 2, which means that you then use the normal \or and

\else primitives for follow up on the test.

2.5.2 \ifchknum

This test scans a number and when it's okay sets the case value to 1, and otherwise to

2. So you can do the next:

\ifchknum 123\or good \else bad \fi

\ifchknum bad\or good \else bad \fi

An error message is suppressed and the first \or can be seen as a sort of recovery

token, although in fact we just use the fast scanner mode that comes with the \ifcase:

because the result is 1 or 2, we never see invalid tokens.

2.5.3 \ifnumval

A sort of combination of the previous two is \ifnumval which checks a number but also

if it's less, equal or more than zero:

\ifnumval 123\or less \or equal \or more \else error \fi

\ifnumval bad\or less \or equal \or more \else error \fi

You can decide to ignore the bad number or do something that makes more sense. Often

the to be checked value will be the content of a macro or an argument like #1.

2.5.4 \ifcmpdim

This test is like \ifcmpnum but for dimensions.

2.5.5 \ifchkdim

This test is like \ifchknum but for dimensions. The last checked value is available as

\lastchknum.

2.5.6 \ifdimval

This test is like \ifnumval but for dimensions. The last checked value is available as

\lastchkdim



27

LuaMetaTEX primitives

2.5.7 \iftok

Although this test is still experimental it can be used. What happens is that two to be

compared ‘things’ get scanned for. For each we first gobble spaces and \relax tokens.

Then we can have several cases:

1. When we see a left brace, a list of tokens is scanned upto the matching right brace.

2. When a reference to a token register is seen, that register is taken as value.

3. When a reference to an internal token register is seen, that register is taken as value.

4. When a macro is seen, its definition becomes the to be compared value.

5. When a number is seen, the value of the corresponding register is taken

An example of the first case is:

\iftok {abc} {def}%

...

\else

...

\fi

The second case goes like this:

\iftok\scratchtoksone\scratchtokstwo

...

\else

...

\fi

Case one and four mixed:

\iftok{123}\TempX

...

\else

...

\fi

The last case is more a catch: it will issue an error when no number is given. Eventually

that might become a bit more clever (depending on our needs.)

2.5.8 \ifcstok

There is a subtle difference between this one and iftok: spaces and \relax tokens are



28

LuaMetaTEX primitives

skipped but nothing gets expanded. So, when we arrive at the to be compared ‘things’

we look at what is there, as-is.

2.5.9 \iffrozen

This is an experimental test. Commands can be defined with the \frozen prefix and

this test can be used to check if that has been the case.

2.5.10 \ifprotected

Commands can be defined with the \protected prefix (or in ConTEXt, for historic rea

sons, with \unexpanded) and this test can be used to check if that has been the case.

2.5.11 \ifusercmd

This is an experimental test. It can be used to see if the command is defined at the user

level or is a build in one. This one might evolve.

2.5.12 \ifarguments

This conditional can be used to check how many arguments were matched. It only

makes sense when used with macros defined with the \tolerant prefix and/or when

the sentinel \ignorearguments after the arguments is used. More details can be found

in the lowlevel macros manual.

2.5.13 \orelse

This it not really a test primitive but it does act that way. Say that we have this:

\ifdim\scratchdimen>10pt

case 1

\else\ifdim\scratchdimen<20pt

case 2

\else\ifcount\scratchcounter>10

case 3

\else\ifcount\scratchcounter<20

case 4

\fi\fi\fi\fi



29

For the brave

A bit nicer looks this:

\ifdim\scratchdimen>10pt

case 1

\orelse\ifdim\scratchdimen<20pt

case 2

\orelse\ifcount\scratchcounter>10

case 3

\orelse\ifcount\scratchcounter<20

case 4

\fi

We stay at the same level. Sometimes a more flat test tree had advantages but if you

think that it gives better performance then you will be disappointed. The fact that we

stay at the same level is compensated by a bit more parsing, so unless you have millions

such cases (or expansions) it might make a bit of a difference. As mentioned, I'm a bit

sensitive for how code looks so that was the main motivation for introducing it. There

is a companion \orunless continuation primitive.

A rather neat trick is the definition of \quitcondition:

\def\quitcondition{\orelse\iffalse}

This permits:

\ifdim\scratchdimen>10pt

case 1a

\quitcondition

case 4b

\fi

where, of course, the quitting normally is the result of some intermediate extra test.

But let me play safe here: beware of side effects.

2.6 For the brave

2.6.1 Full expansion

If you don't understand the following code, don't worry. There is seldom much reason

to go this complex but obscure TEX code attracts some users so . . .



30

For the brave

When you have a macro that has for instance assignments, and when you expand that

macro inside an \edef, these assignments are not actually expanded but tokenized. In

LuaMetaTEX there is a way to apply these assignments without side effects and that

feature can be used to write a fully expandable user test. For instance:

\def\truecondition {\iftrue}

\def\falsecondition{\iffalse}

\def\fontwithidhaschar#1#2%

{\beginlocalcontrol

\scratchcounter\numexpr\fontid\font\relax

\setfontid\numexpr#1\relax

\endlocalcontrol

\iffontchar\font\numexpr#2\relax

\beginlocalcontrol

\setfontid\scratchcounter

\endlocalcontrol

\expandafter\truecondition

\else

\expandafter\falsecondition

\fi}

The \iffontchar test doesn't handle numeric font id, simply because at the time it was

added to 𝜀-TEX, there was no access to these id's. Now we can do:

\edef\foo{\fontwithidhaschar{1} {75}yes\else nop\fi} \meaning\foo

\edef\foo{\fontwithidhaschar{1}{999}yes\else nop\fi} \meaning\foo

[\ifcondition\fontwithidhaschar{1} {75}yes\else nop\fi]

[\ifcondition\fontwithidhaschar{1}{999}yes\else nop\fi]

These result in:

macro:yes

macro:nop

[yes]

[nop]

If you remove the \immediateassignment in the definition above then the typeset re

sults are still the same but the meanings of \foo look different: they contain the assign

ments and the test for the character is actually done when constructing the content of



31

Relaxing

the \edef, but for the current font. So, basically that test is now useless.

2.6.2 User defined if's

There is a \newif macro that defines three other macros:

\newif\ifOnMyOwnTerms

After this, not only \ifOnMyOwnTerms is defined, but also:

\OnMyOwnTermstrue

\OnMyOwnTermsfalse

These two actually are macros that redefine \ifOnMyOwnTerms to be either equivalent

to \iftrue and \iffalse. The (often derived from plain TEX) definition of \newif is a

bit if a challenge as it has to deal with removing the if in order to create the two extra

macros and also make sure that it doesn't get mixed up in a catcode jungle.

In ConTEXt we have a variant:

\newconditional\MyConditional

that can be used with:

\settrue\MyConditional

\setfalse\MyConditional

and tested like:

\ifconditional\MyConditional

...

\else

...

\fi

This one is cheaper on the hash and doesn't need the two extra macros per test. The

price is the use of \ifconditional, which is not to confused with \ifcondition (it has

bitten me already a few times).

2.7 Relaxing

When TEX scans for a number or dimension it has to check tokens one by one. On the



32

Relaxing

case of a number, the scanning stops when there is no digit, in the case of a dimension

the unit determine the end of scanning. In the case of a number, when a token is not a

digit that token gets pushed back. When digits are scanned a trailing space or \relax

is pushed back. Instead of a number of dimension made from digits, periods and units,

the scanner also accepts registers, both the direct accessors like \count and \dimen

and those represented by one token. Take these definitions:

\newdimen\MyDimenA \MyDimenA=1pt \dimen0=\MyDimenA

\newdimen\MyDimenB \MyDimenB=2pt \dimen2=\MyDimenB

I will use these to illustrate the side effects of scanning. Watch the spaces in the result.

First I show what effect we want to avoid. When second argument contains a number

(digits) the zero will become part of it so we actually check \dimen00 here.

\def\whatever#1#2%

{\ifdim#1=#20\else1\fi}

\whatever{1pt}{2pt} [ macro:1]

\whatever{1pt}{1pt} [ macro:0]

\whatever{\dimen 0}{\dimen 2} [ macro:1]

\whatever{\dimen 0}{\dimen 0} [ macro:]

\whatever \MyDimenA \MyDimenB [ macro:1]

\whatever \MyDimenA \MyDimenB [ macro:1]

The solution is to add a space but watch how that one can end up in the result:

\def\whatever#1#2%

{\ifdim#1=#2 0\else1\fi}

\whatever{1pt}{2pt} [ macro:1]

\whatever{1pt}{1pt} [ macro:0]

\whatever{\dimen 0}{\dimen 2} [ macro:1]

\whatever{\dimen 0}{\dimen 0} [ macro:0]

\whatever \MyDimenA \MyDimenB [ macro:1]

\whatever \MyDimenA \MyDimenB [ macro:1]

A variant is using \relax and this time we get this token retained in the output.

\def\whatever#1#2%

{\ifdim#1=#2\relax0\else1\fi}



33

Relaxing

\whatever{1pt}{2pt} [ macro:1]

\whatever{1pt}{1pt} [ macro:\relax 0]

\whatever{\dimen 0}{\dimen 2} [ macro:1]

\whatever{\dimen 0}{\dimen 0} [ macro:\relax 0]

\whatever \MyDimenA \MyDimenB [ macro:1]

\whatever \MyDimenA \MyDimenB [ macro:1]

A solution that doesn't have side effects of forcing the end of a number (using a space or

\relax is one where we use expressions. The added overhead of scanning expressions

is taken for granted because the effect is what we like:

\def\whatever#1#2%

{\ifdim\dimexpr#1\relax=\dimexpr#2\relax0\else1\fi}

\whatever{1pt}{2pt} [ macro:1]

\whatever{1pt}{1pt} [ macro:0]

\whatever{\dimen 0}{\dimen 2} [ macro:1]

\whatever{\dimen 0}{\dimen 0} [ macro:0]

\whatever \MyDimenA \MyDimenB [ macro:1]

\whatever \MyDimenA \MyDimenB [ macro:1]

Just for completeness we show a more obscure trick: this one hides assignments to

temporary variables. Although performance is okay, it is the least efficient one so far.

\def\whatever#1#2%

{\beginlocalcontrol

\MyDimenA#1\relax

\MyDimenB#2\relax

\endlocalcontrol

\ifdim\MyDimenA=\MyDimenB0\else1\fi}

\whatever{1pt}{2pt} [ macro:1]

\whatever{1pt}{1pt} [ macro:0]

\whatever{\dimen 0}{\dimen 2} [ macro:1]

\whatever{\dimen 0}{\dimen 0} [ macro:0]

\whatever \MyDimenA \MyDimenB [ macro:1]

\whatever \MyDimenA \MyDimenB [ macro:1]

It is kind of a game to come up with alternatives but for sure those involve dirty tricks

and more tokens (and runtime). The next can be considered a dirty trick too: we use a

special variant of \relax. When a number is scanned it acts as relax, but otherwise it

just is ignored and disappears.



34

Colofon

\def\whatever#1#2%

{\ifdim#1=#2\norelax0\else1\fi}

\whatever{1pt}{2pt} [ macro:1]

\whatever{1pt}{1pt} [ macro:0]

\whatever{\dimen 0}{\dimen 2} [ macro:1]

\whatever{\dimen 0}{\dimen 0} [ macro:0]

\whatever \MyDimenA \MyDimenB [ macro:1]

\whatever \MyDimenA \MyDimenB [ macro:1]

2.7 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



35

3 Boxes



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

boxes



36

Introduction

Contents

3.1 Introduction 36

3.2 Boxes 36

3.3 TEX primitives 37

3.4 𝜀-TEX primitives 39

3.5 LuaTEX primitives 40

3.6 LuaMetaTEX primitives 41

3.1 Introduction

An average ConTEXt user will not use the low level box primitives but a basic under

standing of how TEX works doesn't hurt. In fact, occasionally using a box command

might bring a solution not easily achieved otherwise, simply because a more high level

interface can also be in the way.

The best reference is of course The TEXbook so if you're really interested in the details

you should get a copy of that book. Below I will not go into details about all kind of

glues, kerns and penalties, just boxes it is.

This explanation will be extended when I feel the need (or users have questions that

can be answered here).

3.2 Boxes

This paragraph of text is made from lines that contain words that themselves contain

symbolic representations of characters. Each line is wrapped in a so called horizontal

box and eventually those lines themselves get wrapped in what we call a vertical box.

When we expose some details of a paragraph it looks like this:

This is a rather narrowH__

paragraph blown up aH__

bit. Here we use a flushH__

left, aka ragged right,H__

approach.H____V

LH:0.000
LS:0.000

IN:0.000ThisSP:3.497isSP:3.497aSP:3.497ratherSP:3.497narrow
RS:13.685

RH:0.000H__VP:2000BS:7.473

LH:0.000
LS:0.000
paragraphSP:3.497blownSP:3.497upSP:3.497a

RS:19.008
RH:0.000H__BS:5.185

LH:0.000
LS:0.000
bit.XS:5.500HereSP:3.497weSP:3.497useSP:3.497aSP:3.497flush

RS:7.557
RH:0.000H__BS:7.473

LH:0.000
LS:0.000
left,SP:3.497akaSP:3.497raggedSP:3.497right,

RS:19.706
RH:0.000H__VP:2000BS:5.185

LH:0.000
LS:0.000PL:0.000approach.HP:10000PR:86.442 RS:0.000

RH:0.000H____V



37

TEX primitives

The left only shows the boxes, the variant at the right shows (font) kerns and glue too.

Because we flush left, there is rather strong right skip glue at the right boundary of the

box. If font kerns show up depends on the font, not all fonts have them (or have only a

few). The glyphs themselves are also kind of boxed, as their dimensions determine the

area that they occupy:

This is a rather ...
But, internally they are not really boxed, as they already are a single quantity. The same

is true for rules: they are just blobs with dimensions. A box on the other hand wraps

a linked list of so called nodes: glyphs, kerns, glue, penalties, rules, boxes, etc. It is a

container with properties like width, height, depth and shift.

3.3 TEX primitives

The box model is reflected in TEX's user interface but not by that many commands, most

noticeably \hbox, \vbox and \vtop. Here is an example of the first one:

\hbox width 10cm{text}

\hbox width 10cm height 1cm depth 5mm{text}

text \raise5mm\hbox{text} text

The \raise and \lower commands behave the same but in opposite directions. One

could as well have been defined in terms of the other.

text \raise 5mm \hbox to 2cm {text}

text \lower -5mm \hbox to 2cm {text}

text \raise -5mm \hbox to 2cm {text}

text \lower 5mm \hbox to 2cm {text}

text

textH__

text

textH__

text

textH__

text

textH__

A box can be moved to the left or right but, believe it or not, in ConTEXt we never use

that feature, probably because the consequences for the width are such that we can as

well use kerns. Here are some examples:

text \vbox{\moveleft 5mm \hbox {left}}text !

text \vbox{\moveright 5mm \hbox{right}}text !



38

TEX primitives

textlefttext ! text righttext !

text \vbox{\moveleft 25mm \hbox {left}}text !

text \vbox{\moveright 25mm \hbox{right}}text !

textleft text ! text righttext !

Code like this will produce a complaint about an underfull box but we can easily get

around that:

text \raise 5mm \hbox to 2cm {\hss text}

text \lower -5mm \hbox to 2cm {text\hss}

text \raise -5mm \hbox to 2cm {\hss text}

text \lower 5mm \hbox to 2cm {text\hss}

The \hss primitive injects a glue that when needed will fill up the available space. So,

here we force the text to the right or left.

text

textH__

text

textH__

text

textH__

text

textH__

We have three kind of boxes: \hbox, \vbox and \vtop:

\hbox{\strut height and depth\strut}

\vbox{\hsize 4cm \strut height and depth\par and width\strut}

\vtop{\hsize 4cm \strut height and depth\par and width\strut}

A \vbox aligns at the bottom and a \vtop at the top. I have added some so called struts

to enforce a consistent height and depth. A strut is an invisible quantity (consider it a

black box) that enforces consistent line dimensions: height and depth.

height and depthH__

height and depthH__

and widthH____V height and depthH__

and widthH__

_T_

You can store a box in a register but you need to be careful not to use a predefined one.

If you need a lot of boxes you can reserve some for your own:

\newbox\MySpecialBox

but normally you can do with one of the scratch registers, like 0, 2, 4, 6 or 8, for local



39

𝜀-TEX primitives

boxes, and 1, 3, 5, 7 and 9 for global ones. Registers are used like:

\setbox0\hbox{here}

\global\setbox1\hbox{there}

In ConTEXt you can also use

\setbox\scratchbox \hbox{here}

\setbox\scratchboxone\hbox{here}

\setbox\scratchboxtwo\hbox{here}

and some more. In fact, there are quite some predefined scratch registers (boxes, di

mensions, counters, etc). Feel free to investigate further.

When a box is stored, you can consult its dimensions with \wd, \ht and \dp. You can of

course store them for later use.

\scratchwidth \wd\scratchbox

\scratchheight\ht\scratchbox

\scratchdepth \dp\scratchbox

\scratchtotal \dimexpr\ht\scratchbox+\dp\scratchbox\relax

\scratchtotal \htdp\scratchbox

The last line is ConTEXt specific. You can also set the dimensions

\wd\scratchbox 10cm

\ht\scratchbox 10mm

\dp\scratchbox 5mm

So you can cheat! A box is placed with \copy, which keeps the original intact or \box

which just inserts the box and then wipes the register. In practice you seldom need a

copy, which is more expensive in runtime anyway. Here we use copy because it serves

the examples.

\copy\scratchbox

\box \scratchbox

3.4 𝜀-TEX primitives

The 𝜀-TEX extensions don't add something relevant for boxes, apart from that you can

use the expressions mechanism to mess around with their dimensions. There is a mech

anism for typesetting r2l within a paragraph but that has limited capabilities and doesn't



40

LuaTEX primitives

change much as it's mostly a way to trick the backend into outputting a stretch of text in

the other direction. This feature is not available in LuaTEX because it has an alternative

direction mechanism.

3.5 LuaTEX primitives

The concept of boxes is the same in LuaTEX as in its predecessors but there are some

aspects to keep in mind. When a box is typeset this happens in LuaTEX:

1. A list of nodes is constructed. In LuaTEX this is a double linked list (so that it can

easily be manipulated in Lua) but TEX itself only uses the forward links.

2. That list is hyphenated, that is: so called discretionary nodes are injected. This

depends on the language properties of the glyph (character) nodes.

3. Then ligatures are constructed, if the font has such combinations. When this built-in

mechanism is used, in ConTEXt we speak of base mode.

4. After that inter-character kerns are applied, if the font provides them. Again this is

a base mode action.

5. Finally the box gets packaged:

– In the case of a horizontal box, the list is packaged in a hlist node, basically one

liner, and its dimensions are calculated and set.

– In the case of a vertical box, the paragraph is broken into one or more lines, with

out hyphenation, with optimal hyphenation or in the worst case with so called

emergency stretch applied, and the result becomes a vlist node with its dimen

sions set.

In traditional TEX the first four steps are interwoven but in LuaTEX we need them split

because the step 5 can be overloaded by a callback. In that case steps 3 and 4 (and

maybe 2) are probably also overloaded, especially when you bring handling of fonts

under Lua control.

New in LuaTEX are three packers: \hpack, \vpack and \tpack, which are companions

to \hbox, \vbox and \vtop but without the callbacks applied. Using them is a bit tricky

as you never know if a callback should be applied, which, because users can often add

their own Lua code, is not something predictable.

Another box related extension is direction. There are four possible directions but be

cause in LuaMetaTEX there are only two. Because this model has been upgraded, it will



41

LuaMetaTEX primitives

be discusses in the next section. A ConTEXt user is supposed to use the official ConTEXt

interfaces in order to be downward compatible.

3.6 LuaMetaTEX primitives

There are two possible directions: left to right (the default) and right to left for Hebrew

and Arabic. Here is an example that shows how it'd done with low level directives:

\hbox direction 0 {from left to right}

\hbox direction 1 {from right to left}

from left to right

fromrighttoleft

A low level direction switch is done with:

\hbox direction 0

{from left to right \textdirection 1 from right to left}

\hbox direction 1

{from right to left \textdirection 1 from left to right}

from left to right fromrighttoleft

fromrighttoleftfromlefttoright

but actually this is kind of not done in ConTEXt, because there you are supposed to use

the proper direction switches:

\naturalhbox {from left to right}

\reversehbox {from right to left}

\naturalhbox {from left to right \righttoleft from right to left}

\reversehbox {from right to left \lefttoright from left to right}

from left to right

fromrighttoleft

from left to right fromrighttoleft

fromrighttoleftfrom left to right

Often more is needed to properly support right to left typesetting so using the ConTEXt

commands is more robust.

In LuaMetaTEX the box model has been extended a bit, this as a consequence of drop

ping the vertical directional typesetting, which never worked well. In previous sections



42

LuaMetaTEX primitives

we discussed the properties width, height and depth and the shift resulting from a

\raise, \lower, \moveleft and \moveright. Actually, the shift is also used in for in

stance positioning math elements.

The way shifting influences dimensions can be somewhat puzzling. Internally, when

TEX packages content in a box there are two cases:

• When a horizontal box is made, and height - shift is larger than the maximum

height so far, that delta is taken. When depth + shift is larger than the current

depth, then that depth is adapted. So, a shift up influences the height and a shift

down influences the depth.

• In the case of vertical packaging, when width + shift is larger than the maximum

box (line) width so far, that maximum gets bumped. So, a shift to the right can

contribute, but a shift to the left cannot result in a negative width. This is also why

vertical typesetting, where height and depth are swapped with width, goes wrong:

we somehow need to map two properties onto one and conceptually TEX is really

set up for horizontal typesetting. (And it's why I decided to just remove it from the

engine.)

This is one of these cases where TEX behaves as expected but it also means that there is

some limitation to what can be manipulated. Setting the shift using one of the four com

mands has a direct consequence when a box gets packaged which happens immediately

because the box is an argument to the foursome.

There is in traditional TEX, probably for good reason, no way to set the shift of a box,

if only because the effect would normally be none. But in LuaTEX we can cheat, and

therefore, for educational purposed ConTEXt has implements some cheats.

We use this sample box:

\setbox\scratchbox\hbox\bgroup

\middlegray\vrule width 20mm depth -.5mm height 10mm

\hskip-20mm

\darkgray \vrule width 20mm height -.5mm depth 5mm

\egroup

When we mess with the shift using the ConTEXt \shiftbox helper, we see no immediate

effect. We only get the shift applied when we use another helper, \hpackbox.

\hbox\bgroup

\showstruts \strut

\quad \copy\scratchbox



43

LuaMetaTEX primitives

\quad \shiftbox\scratchbox -20mm \copy\scratchbox

\quad \hpackbox\scratchbox \box \scratchbox

\quad \strut

\egroup

When instead we use \vpackbox we get a different result. This time we move left.

\hbox\bgroup

\showstruts \strut

\quad \copy\scratchbox

\quad \shiftbox\scratchbox -10mm \copy\scratchbox

\quad \vpackbox\scratchbox \copy\scratchbox

\quad \strut

\egroup

The shift is set via Lua and the repackaging is also done in Lua, using the low level

hpack and vpack helpers and these just happen to look at the shift when doing their

job. At the TEX end this never happens.

This long exploration of shifting serves a purpose: it demonstrates that there is not

that much direct control over boxes apart from their three dimensions. However this

was never a real problem as one can just wrap a box in another one and use kerns

to move the embedded box around. But nevertheless I decided to see if the engine

can be a bit more helpful, if only because all that extra wrapping gives some overhead

and complications when we want to manipulate boxes. And of course it is also a nice

playground.

We start with changing the direction. Changing this property doesn't require repackag

ing because directions are not really dealt with in the frontend. When a box is converted

to (for instance pdf) the reversion happens.



44

LuaMetaTEX primitives

\setbox\scratchbox\hbox{whatever}

\the\boxdirection\scratchbox: \copy\scratchbox \crlf

\boxdirection\scratchbox 1

\the\boxdirection\scratchbox: \copy\scratchbox

0: whatever

1: whatever

Another property that can be queried and set is an attribute. In order to get a private

attribute we define one.

\newattribute\MyAt

\setbox\scratchbox\hbox attr \MyAt 123 {whatever}

[\the\boxattribute\scratchbox\MyAt]

\boxattribute\scratchbox\MyAt 456

[\the\boxattribute\scratchbox\MyAt]

[\ifnum\boxattribute\scratchbox\MyAt>400 okay\fi]

[123] [456] [okay]

The sum of the height and depth is available too. Because for practical reasons setting

that property is also needed then, the choice was made to distribute the value equally

over height and depth.

\setbox\scratchbox\hbox {height and depth}

[\the\ht\scratchbox]

[\the\dp\scratchbox]

[\the\boxtotal\scratchbox]

\boxtotal\scratchbox=20pt

[\the\ht\scratchbox]

[\the\dp\scratchbox]

[\the\boxtotal\scratchbox]

[8.35742pt] [2.44385pt] [10.80127pt] [10.0pt] [10.0pt] [20.0pt]

We've now arrived to a set of properties that relate to each other. They are a bit complex

and given the number of possibilities one might need to revert to some trial and error:

orientations and offsets. As with the dimensions, directions and attributes, they are

passed as box specification. We start with the orientation.

\hbox \bgroup \showboxes

\hbox orientation 0 {right}



45

LuaMetaTEX primitives

\quad \hbox orientation 1 {up}

\quad \hbox orientation 2 {left}

\quad \hbox orientation 3 {down}

\egroup

rightH__

u
p

H__ leftH__ d
o
w
n

H__

When the orientation is set, you can also set an offset. Where shifting around a box

can have consequences for the dimensions, an offset is virtual. It gets effective in the

backend, when the contents is converted to some output format.

\hbox \bgroup \showboxes

\hbox orientation 0 yoffset 10pt {right}

\quad \hbox orientation 1 xoffset 10pt {up}

\quad \hbox orientation 2 yoffset -10pt {left}

\quad \hbox orientation 3 xoffset -10pt {down}

\egroup

right
H__

u
p

H__

left

H__ d
o
w
n

H__

The reason that offsets are related to orientation is that we need to know in what di

rection the offsets have to be applied and this binding forces the user to think about it.

You can also set the offsets using commands.

\setbox\scratchbox\hbox{whatever}%

1 \copy\scratchbox

2 \boxorientation\scratchbox 2 \copy\scratchbox

3 \boxxoffset \scratchbox -15pt \copy\scratchbox

4 \boxyoffset \scratchbox -15pt \copy\scratchbox

5

1 whatever2 whatever 3 whatever 4

whatever

5

\setbox\scratchboxone\hbox{whatever}%

\setbox\scratchboxtwo\hbox{whatever}%

1 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

2 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

3 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

4 \boxyoffset \scratchboxone -15pt \copy\scratchboxone



46

LuaMetaTEX primitives

5 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

6 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

7 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

8 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

1whatever 2

whatever

3

whatever

4

whatever

5whatever6

whatever

7

whatever

8

whatever

The move commands are provides as convenience and contrary to the offsets they do

adapt the dimensions. Internally, with the box, we register the orientation and the off

sets and when you apply these commands multiple times the current values get over

written. But . . . because an orientation can be more complex you might not get the

effects you expect when the options we discuss next are used. The reason is that we

store the original dimensions too and these come into play when these other options

are used: anchoring. So, normally you will apply an orientation and offsets once only.

The orientation specifier is actually a three byte number that best can be seen hexa

decimal (although we stay within the decimal domain). There are three components:

x-anchoring, y-anchoring and orientation:

0x<X><Y><O>

or in TEX speak:

"<X><Y><O>

The landscape and seascape variants both sit on top of the baseline while the flipped

variant has its depth swapped with the height. Although this would be enough a bit

more control is possible.

The vertical options of the horizontal variants anchor on the baseline, lower corner,

upper corner or center.

\ruledhbox orientation "002 {\TEX} and

\ruledhbox orientation "012 {\TEX} and

\ruledhbox orientation "022 {\TEX} and

\ruledhbox orientation "032 {\TEX}

TEX and

TEX

and TEX and TEX

The horizontal options of the horizontal variants anchor in the center, left, right, halfway

left and halfway right.



47

LuaMetaTEX primitives

\ruledhbox orientation "002 {\TEX} and

\ruledhbox orientation "102 {\TEX} and

\ruledhbox orientation "202 {\TEX} and

\ruledhbox orientation "302 {\TEX} and

\ruledhbox orientation "402 {\TEX}

TEX and TEX and TEXand TEX and TEX

The orientation has consequences for the dimensions so they are dealt with in the ex

pected way in constructing lines, paragraphs and pages, but the anchoring is virtual,

like the offsets. There are two extra variants for orientation zero: on top of baseline or

below, with dimensions taken into account.

\ruledhbox orientation "000 {\TEX} and

\ruledhbox orientation "004 {\TEX} and

\ruledhbox orientation "005 {\TEX}

TEX and TEX and
TEX

The anchoring can look somewhat confusing but you need to keep in mind that it is

normally only used in very controlled circumstances and not in running text. Wrapped

in macros users don't see the details. We're talking boxes here, so for instance:

test\quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "012 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "022 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "032 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "042 \bgroup\strut test\egroup test%



48

Colofon

\egroup

\quad test

test te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

test

3.6 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



49

4 Expansion



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

expansion



50

Preamble

Contents

4.1 Preamble 50

4.2 TEX primitives 50

4.3 𝜀-TEX primitives 55

4.4 LuaTEX primitives 57

4.5 LuaMetaTEX primitives 58

4.6 Dirty tricks 68

4.1 Preamble

This short manual demonstrates a couple of properties of the macro language. It is

not an in-depth philosophical expose about macro languages, tokens, expansion and

such that some TEXies like. I prefer to stick to the practical aspects. Occasionally it

will be technical but you can just skip those paragraphs (or later return to them) when

you can't follow the explanation. It's often not that relevant. I won't talk in terms of

mouth, stomach and gut the way the TEXbook does and although there is no way to

avoid the word ‘token’ I will do my best to not complicate matters by too much token

speak. Examples show best what we mean.

4.2 TEX primitives

The TEX language provides quite some commands and those built in are called prim

itives. User defined commands are called macros. A macro is a shortcut to a list of

primitives and/or macro calls. All can be mixed with characters that are to be typeset

somehow.

\def\MyMacro{b}

a\MyMacro c

When TEX reads this input the a gets turned into a glyph node with a reference to the

current font set and the character a. Then the parser sees a macro call, and it will enter

another input level where it expands this macro. In this case it sees just an b and it will

give this the same treatment as the a. The macro ends, the input level decrements and

the c gets its treatment.

Before we move on to more examples and differences between engines, it is good to

stress that \MyMacro is not a primitive command: we made our command here. The b

actually can be seen as a sort of primitive because in this macro it gets stored as so



51

TEX primitives

called token with a primitive property. That primitive property can later on be used to

determine what to do. More explicit examples of primitives are \hbox, \advance and

\relax. It will be clear that ConTEXt extends the repertoire of primitive commands

with a lot of macro commands. When we typeset a source using module m-scite the

primitives come out dark blue.

The amount of primitives differs per engine. It all starts with TEX as written by Don

Knuth. Later 𝜀-TEX added some more primitives and these became official extensions

adopted by other variants of TEX. The pdfTEX engine added quite some and as follow

up on that LuaTEX added more but didn't add all of pdfTEX. A few new primitives came

from Omega (Aleph). The LuaMetaTEX engine drops a set of primitives that comes with

LuaTEX and adds plenty new ones. The nature of this engine (no backend and less

frontend) makes that we need to implement some primitives as macros. But the basic

set is what good old TEX comes with.

Internally these so called primitives are grouped in categories that relate to their na

ture. They can be directly expanded (a way of saying that they get immediately inter

preted) or delayed (maybe stored for later usage). They can involve definitions, calcula

tions, setting properties and values or they can result in some typesetting. This is what

makes TEX confusing to new users: it is a macro programming language, an interpreter

but at the same time an executor of typesetting instructions.

A group of primitives is internally identified as a command (they have a cmd code) and

the sub commands are flagged by their chr code. This sounds confusing but just thing

of the fact that most of what we input are characters and therefore they make up most

sub commands. For instance the ‘letter cmd’ is used for characters that are seen as

letters that can be used in the name of user commands, can be typeset, are valid for

hyphenation etc. The letter related cmd can have many chr codes (all of Unicode). I'd

like to remark that the grouping is to a large extend functional, so sometimes primitives

that you expect to be similar in nature are in different groups. This has to do with the

fact that TEX needs to be a able to determine efficiently if a primitive is operating (or

forbidden) in horizontal, vertical and/or math mode.

There are more than 150 internal cmd groups. if we forget about the mentioned char

acter related ones, some, have only a few sub commands (chr) and others many more

(just consider all the OpenType math spacing related parameters). A handful of these

commands deal with what we call macros: user defined combinations of primitives and

other macros, consider them little programs. The \MyMacro example above is an ex

ample. There are differences between engines. In standard TEX there are \outer and

\long commands, and most engines have these. However, in LuaMetaTEX the later to

be discussed \protectedmacros have their own specific ‘call cmd’. Users don't need to

bother about this.



52

TEX primitives

So, when from now on we talk about primitives, we mean the built in, hard coded com

mands, and when we talk about macros we mean user commands. Although internally

there are less cmd categories than primitives, from the perspective of the user they are

all unique. Users won't consult the source anyway but when they do they are warned.

Also, when in LuaMetaTEX you use the low level interfacing to TEX you have to figure

out these subtle aspects because there this grouping does matter.

Before we continue I want to make clear that expansion (as discussed in this document)

can refer to a macro being expanded (read: its meaning gets injected into the input, so

the engine kind of sidetracks from what is was doing) but also to direct consequences

of running into a primitive. However, users only need to consider expansion in the

perspective of macros. If a user has \advance in the input it immediately gets done.

But when it's part of a macro definition it only is executed when the macro expands. A

good check in (traditional) TEX is to compare what happens in \def and \edef which

is why we will use these two in the upcoming examples. You put something in a macro

and then check what \meaning or \show reports.

Now back to user defined macros. A macro can contain references to macros so in

practice the input can go several levels up and some applications push back a lot so

this is why your TEX input stack can be configured to be huge.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

When \MyMacroB is defined, its body gets three so called tokens: the character token 1

with property ‘other’, a token that is a reference to the macro \MyMacroB, and a char

acter token 2, also with property ‘other’ The meaning of \MyMacroA is five tokens: a

reference to a space token, then three character tokens with property ‘letter’, and fi

nally a space token.

\def \MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

In the second definition an \edef is used, where the e indicates expansion. This time

the meaning gets expanded immediately. So we get effectively the same as in:

\def\MyMacroB{1 and 2}

Characters are easy: they just expand to themselves or trigger adding a glyph node,



53

TEX primitives

but not all primitives expand to their meaning or effect.

\def\MyMacroA{\scratchcounter = 1 }

\def\MyMacroB{\advance\scratchcounter by 1}

\def\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:\the \scratchcounter

Let's assume that \scratchcounter is zero to start with and use \edef's:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 0

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:0

So, this time the third macro has its meaning frozen, but we can prevent this by applying

a \noexpand when we do this:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\noexpand\the\scratchcounter}



54

TEX primitives

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:\the \scratchcounter

Of course this is a rather useless example but it serves its purpose: you'd better be

aware what gets expanded immediately in an \edef. In most cases you only need to

worry about \the and embedded macros (and then of course their meanings).

You can also store tokens in a so-called token register. Here we use a predefined scratch

register:

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks {\MyMacroA}

The content of \scratchtoks is: “\MyMacroA”, so no expansion has happened here.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroA}

Now the content of \scratchtoks is: “ and ”, so this time expansion has happened.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

Indeed the macro gets expanded but only one level: “1\MyMacroA 2”. Compare this

with:

\def\MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

The trick is to expand in two steps with an intermediate \edef: “1 and 2”. Later we will



55

𝜀-TEX primitives

see that other engines provide some more expansion tricks. The only way to get some

grip on expansion is to just play with it.

The \expandafter primitive expands the token (which can be a macro) standing after

the next next one and then injects its meaning into the stream. So:

\expandafter \MyMacroA \MyMacroB

works okay. In a normal document you will never need this kind of hackery: it only

happens in a bit more complex macros. Here is an example:

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\egroup

\the\scratchcounter

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\expandafter

\egroup

\the\scratchcounter

The first one gives 1, while the second gives 2.

4.3 𝜀-TEX primitives

In this engine a couple of extensions were added and later on pdfTEX added some more.

We only discuss a few that relate to expansion. There is however a pitfall here. Before

𝜀-TEX showed up, ConTEXt already had a few mechanism that also related to expansion

and it used some names for macros that clash with those in 𝜀-TEX. This is why we will
use the \normal prefix here to indicate the primitive.1.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\edef\MyMacroABC{\MyMacroA\MyMacroB\MyMacroC}

These macros have the following meanings:

1 In the meantime we no longer have a low level \protected macro so one can use the primitive



56

𝜀-TEX primitives

macro:a

macro:b

protected macro:c

macro:ab\MyMacroC

In ConTEXt you will use the \unexpanded prefix instead, because that one did something

similar in older versions of ConTEXt. As we were early adopters of 𝜀-TEX, this later

became a synonym to the 𝜀-TEX primitive.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded{\scratchtoks{\MyMacroA\MyMacroB\MyMacroC}}

Here the wrapper around the token register assignment will expand the three macros,

unless they are protected, so its content becomes “ab\MyMacroC”. This saves either a

lot of more complex \expandafter usage or the need to use an intermediate \edef. In

ConTEXt the \expanded macro does something simpler but it doesn't expand the first

token as this is meant as a wrapper around a command, like:

\expanded{\chapter{....}} % a ConTeXt command

where we do want to expand the title but not the \chapter command (not that this

would happen actually because \chapter is a protected command.)

The counterpart of \normalexpanded is \normalunexpanded, as in:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded {\scratchtoks

{\MyMacroA\normalunexpanded {\MyMacroB}\MyMacroC}}

The register now holds “a\MyMacroB \MyMacroC”: three tokens, one character token

and two macro references.

Tokens can represent characters, primitives, macros or be special entities like starting

math mode, beginning a group, assigning a dimension to a register, etc. Although you

can never really get back to the original input, you can come pretty close, with:

\detokenize{this can $ be anything \bgroup}

This (when typeset monospaced) is: this can $ be anything \bgroup. The detok



57

LuaTEX primitives

enizer is like \string applied to each token in its argument. Compare this to:

\normalexpanded {

\normaldetokenize{10pt}

}

We get four tokens: 10pt.

\normalexpanded {

\string 1\string 0\string p\string t

}

So that was the same operation: 10pt, but in both cases there is a subtle thing going on:

characters have a catcode which distinguishes them. The parser needs to know what

makes up a command name and normally that's only letters. The next snippet shows

these catcodes:

\normalexpanded {

\noexpand\the\catcode`\string 1 \noexpand\enspace

\noexpand\the\catcode`\string 0 \noexpand\enspace

\noexpand\the\catcode`\string p \noexpand\enspace

\noexpand\the\catcode`\string t \noexpand

}

The result is “12 12 11 11”: two characters are marked as ‘letter’ and two fall in the

‘other’ category.

4.4 LuaTEX primitives

This engine adds a little to the expansion repertoire. First of all it offers a way to extend

token lists registers:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{b}

\scratchtoks{\MyMacroA\MyMacroB}

The result is: “\MyMacroA \MyMacroB”.

\toksapp\scratchtoks{\MyMacroA\MyMacroB}

We're now at: “\MyMacroA \MyMacroB \MyMacroA \MyMacroB \MyMacroA \MyMacroB”.



58

LuaMetaTEX primitives

\etoksapp\scratchtoks{\MyMacroA\space\MyMacroB\space\MyMacroC}

The register has this content: “\MyMacroA \MyMacroB \MyMacroA \MyMacroB a b \My

MacroC a b \MyMacroC”, so the additional context got expanded in the process, except

of course the protected macro \MyMacroC.

There is a bunch of these combiners: \toksapp and \tokspre for local appending and

prepending, with global companions: \gtoksapp and \gtokspre, as well as expanding

variant: \etoksapp, \etokspre, \xtoksapp and \xtokspre.

These are not beforehand more efficient that using intermediate expanded macros or

token lists, simply because in the process TEX has to create tokens lists too, but some

times they're just more convenient to use. In ConTEXt we actually do benefit from these.

4.5 LuaMetaTEX primitives

We already saw that macro's can be defined protected which means that

\def\TestA{A}

\protected \def\TestB{B}

\edef\TestC{\TestA\TestB}

gives this:

\TestC : A\TestB

One way to get \TestB expanded it to prefix it with \expand:

\def\TestA{A}

\protected \def\TestB{B}

\edef\TestC{\TestA\TestB}

\edef\TestD{\TestA\expand\TestB}

We now get:

\TestC : A\TestB

\TestD : AB

There are however cases where one wishes this to happen automatically, but that will

also make protected macros expand which will create havoc, like switching fonts.

\def\TestA{A}

\protected \def\TestB{B}



59

LuaMetaTEX primitives

\semiprotected \def\TestC{C}

\edef\TestD{\TestA\TestB\TestC}

\edef\TestE{\normalexpanded{\TestA\TestB\TestC}}

\edef\TestF{\semiexpanded {\TestA\TestB\TestC}}

This time \TestC looses its protection:

\TestA : A

\TestB : B

\TestC : C

\TestD : A\TestB \TestC

\TestE : A\TestB \TestC

\TestF : A\TestB C

Actually adding \fullyexpanded would be trivial but it makes not much sense to add

the overhead (at least not now). This feature is experimental anyway so it might go

away when I see no real advantage from it.

When you store something in a macro or token register you always need to keep an

eye on category codes. A dollar in the input is normally treated as math shift, a hash

indicates a macro parameter or preamble entry. Characters like ‘A’ are letters but ‘[’

and ‘]’ are tagged as ‘other’. The TEX scanner acts according to these codes. If you ever

find yourself in a situation that changing catcodes is no option or cumbersome, you can

do this:

\edef\TestOA{\expandtoken\othercatcode `A}

\edef\TestLA{\expandtoken\lettercatcode`A}

In both cases the meaning is A but in the first case it's not a letter but a character

flagged as ‘other’.

A whole new category of commands has to do with so called local control. When TEX

scans and interprets the input, a process takes place that is called tokenizing: (se

quences of) characters get a symbolic representation and travel through the system as

tokens. Often they immediately get interpreted and are then discarded. But when for

instance you define a macro they end up as a linked list of tokens in the macro body. We

already saw that expansion plays a role. In most cases, unless TEX is collecting tokens,

the main action is dealt with in the so-called main loop. Something gets picked up from

the input but can also be pushed back, for instance because of some lookahead that

didn't result in an action. Quite some time is spent in pushing and popping from the

so-called input stack.

When we are in Lua, we can pipe back into the engine but all is collected till we're



60

LuaMetaTEX primitives

back in TEX where the collected result is pushed into the input. Because TEX is a mix

of programming and action there basically is only that main loop. There is no real way

to start a sub run in Lua and do all kind of things independent of the current one. This

makes sense when you consider the mix: it would get too confusing.

However, in LuaTEX and even better in LuaMetaTEX, we can enter a sort of local state

and this is called ‘local control’. When we are in local control a newmain loop is entered

and the current state is temporarily forgotten: we can for instance expand where one

level up expansion was not done. It sounds complicated an indeed it is complicated so

examples have to clarify it.

1 \setbox0\hbox to 10pt{2} \count0=3 \the\count0 \multiply\count0 by 4

This snippet of code is not that useful but illustrates what we're dealing with:

• The 1 gets typeset. So, characters like that are seen as text.

• The \setbox primitive triggers picking up a register number, then goes on scanning

for a box specification and that itself will typeset a sequence of whatever until the

group ends.

• The count primitive triggers scanning for a register number (or reference) and then

scans for a number; the equal sign is optional.

• The the primitive injects some value into the current input stream and it does so by

entering a new input level.

• The multiply primitive picks up a register specification and multiplies that by the

next scanned number. The by is optional.

We now look at this snippet again but with an expansion context:

\def \TestA{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

These two macros have a slightly different body. Make sure you see the difference

before reading on.

control sequence: TestA

500339 12 49 other char 1 U+00031

433523 10 32 spacer

500112 116 0 set box setbox



61

LuaMetaTEX primitives

502316 12 48 other char 0 U+00030

386851 30 10 make box hbox

499136 1 123 left brace

386869 12 50 other char 2 U+00032

31060 2 125 right brace

503004 10 32 spacer

503416 109 0 register count

502511 12 48 other char 0 U+00030

31100 12 61 other char = U+0003D

503195 12 51 other char 3 U+00033

502594 10 32 spacer

503076 129 0 the the

386994 109 0 register count

503129 12 48 other char 0 U+00030

control sequence: TestB

500308 12 49 other char 1 U+00031

502250 10 32 spacer

502462 116 0 set box setbox

386985 12 48 other char 0 U+00030

502805 30 10 make box hbox

503064 1 123 left brace

386817 12 50 other char 2 U+00032

503180 2 125 right brace

500346 10 32 spacer

502411 109 0 register count

502735 12 48 other char 0 U+00030

500189 12 61 other char = U+0003D

500138 12 51 other char 3 U+00033

433528 10 32 spacer

502793 12 49 other char 1 U+00031

We now introduce a new primitive \localcontrolled:

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestC{1 \setbox0\hbox{2} \localcontrolled{\count0=3} \the\count0}

Again, watch the subtle differences:



62

LuaMetaTEX primitives

control sequence: TestB

215000 12 49 other char 1 U+00031

502547 10 32 spacer

502382 116 0 set box setbox

112637 12 48 other char 0 U+00030

499145 30 10 make box hbox

340837 1 123 left brace

352318 12 50 other char 2 U+00032

502552 2 125 right brace

502367 10 32 spacer

502824 109 0 register count

31041 12 48 other char 0 U+00030

500296 12 61 other char = U+0003D

502468 12 51 other char 3 U+00033

387029 10 32 spacer

112641 12 49 other char 1 U+00031

control sequence: TestC

503158 12 49 other char 1 U+00031

502598 10 32 spacer

503164 116 0 set box setbox

500297 12 48 other char 0 U+00030

500064 30 10 make box hbox

499099 1 123 left brace

31116 12 50 other char 2 U+00032

499108 2 125 right brace

366852 10 32 spacer

502334 10 32 spacer

502706 12 51 other char 3 U+00033

Another example:

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestD{\localcontrolled{1 \setbox0\hbox{2} \count0=3 \the\count0}}

1 3 ← Watch how the results end up here!

control sequence: TestB



63

LuaMetaTEX primitives

500240 12 49 other char 1 U+00031

386765 10 32 spacer

214990 116 0 set box setbox

499255 12 48 other char 0 U+00030

194183 30 10 make box hbox

500293 1 123 left brace

502620 12 50 other char 2 U+00032

387017 2 125 right brace

503449 10 32 spacer

502646 109 0 register count

201286 12 48 other char 0 U+00030

502477 12 61 other char = U+0003D

503187 12 51 other char 3 U+00033

502969 10 32 spacer

31118 12 51 other char 3 U+00033

control sequence: TestD

<no tokens>

We can use this mechanism to define so called fully expandable macros:

\def\WidthOf#1%

{\beginlocalcontrol

\setbox0\hbox{#1}%

\endlocalcontrol

\wd0 }

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

When you want to add some grouping, it quickly can become less pretty:

\def\WidthOf#1%

{\dimexpr

\beginlocalcontrol

\begingroup

\setbox0\hbox{#1}%

\expandafter



64

LuaMetaTEX primitives

\endgroup

\expandafter

\endlocalcontrol

\the\wd0

\relax}

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

A single token alternative is available too and its usage is like this:

\def\TestA{\scratchcounter=100 }

\edef\TestB{\localcontrol\TestA \the\scratchcounter}

\edef\TestC{\localcontrolled{\TestA} \the\scratchcounter}

The content of \TestB is ‘100’ and of course the \TestC macro gives ‘ 100’.

We now move to the Lua end. Right from the start the way to get something into TEX

from Lua has been the print functions. But we can also go local (immediate). There are

several methods:

• via a set token register

• via a defined macro

• via a string

Among the things to keep in mind are catcodes, scope and expansion (especially in when

the result itself ends up in macros). We start with an example where we go via a token

register:

\toks0={\setbox0\hbox{The Rite Of Spring}}

\toks2={\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal(0) context("[1: %p]",tex.box[0].width)

tex.runlocal(2) context("[2: %p]",tex.box[0].width)

\stopluacode

[1: 104.72021pt][2: 109.14062pt]

We can also use a macro:



65

LuaMetaTEX primitives

\def\TestA{\setbox0\hbox{The Rite Of Spring}}

\def\TestB{\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal("TestA") context("[3: %p]",tex.box[0].width)

tex.runlocal("TestB") context("[4: %p]",tex.box[0].width)

\stopluacode

[3: 104.72021pt][4: 109.14062pt]

A third variant is more direct and uses a (Lua) string:

\startluacode

tex.runstring([[\setbox0\hbox{The Rite Of Spring}]])

context("[5: %p]",tex.box[0].width)

tex.runstring([[\setbox0\hbox{The Rite Of Spring!}]])

context("[6: %p]",tex.box[0].width)

\stopluacode

[5: 104.72021pt][6: 109.14062pt]

A bit more high level:

context.runstring([[\setbox0\hbox{(Here \bf 1.2345)}]])

context.runstring([[\setbox0\hbox{(Here \bf %.3f)}]],1.2345)

Before we had runstring this was the way to do it when staying in Lua was needed:

\startluacode

token.setmacro("TestX",[[\setbox0\hbox{The Rite Of Spring}]])

tex.runlocal("TestX")

context("[7: %p]",tex.box[0].width)

\stopluacode

[7: 104.72021pt]

\startluacode

tex.scantoks(0,tex.ctxcatcodes,[[\setbox0\hbox{The Rite Of Spring!}]])

tex.runlocal(0)

context("[8: %p]",tex.box[0].width)

\stopluacode



66

LuaMetaTEX primitives

[8: 109.14062pt]

The order of flushing matters because as soon as something is not stored in a token list

or macro body, TEX will typeset it. And as said, a lot of this relates to pushing stuff into

the input which is stacked. Compare:

\startluacode

context("[HERE 1]")

context("[HERE 2]")

\stopluacode

[HERE 1][HERE 2]

with this:

\startluacode

tex.pushlocal() context("[HERE 1]") tex.poplocal()

tex.pushlocal() context("[HERE 2]") tex.poplocal()

\stopluacode

[HERE 1][HERE 2]

You can expand a macro at the Lua end with token.expandmacro which has a peculiar

interface. The first argument has to be a string (the name of a macro) or a userdata (a

valid macro token). This macro can be fed with parameters by passing more arguments:

string serialized to tokens

true wrap the next string in curly braces

table each entry will become an argument wrapped in braces

token inject the token directly

number change control to the given catcode table

There are more scanner related primitives, like the 𝜀-TEX primitive \detokenize:

[\detokenize {test \relax}]

This gives: [test \relax ] . In LuaMetaTEX we also have complementary primi

tive(s):

[\tokenized catcodetable \vrbcatcodes {test {\bf test} test}]

[\tokenized {test {\bf test} test}]

[\retokenized \vrbcatcodes {test {\bf test} test}]



67

LuaMetaTEX primitives

The \tokenized takes an optional keyword and the examples above give: [test {\bf test} test]

[test test test] [test {\bf test} test] . The LuaTEX primitive \scantextokens

which is a variant of 𝜀-TEX's \scantokens operates under the current catcode regime

(the last one honors \everyeof). The difference with \tokenized is that this one first

serializes the given token list (just like \detokenize).2

With \retokenized the catcode table index is mandatory (it saves a bit of scanning and

is easier on intermixed \expandafter usage. There often are several ways to accom

plish the same:

\def\MyTitle{test {\bf test} test}

\detokenize \expandafter{\MyTitle}: 0.46\crlf

\meaningless \MyTitle : 0.47\crlf

\retokenized \notcatcodes{\MyTitle}: 0.87\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}: 0.93\crlf

test {\bf test} test: 0.46

test {\bf test} test: 0.47

test {\bf test} test: 0.87

test {\bf test} test: 0.93

Here the numbers show the relative performance of these methods. The \detokenize

and \meaninglesswin because they already know that a verbose serialization is needed.

The last two first serialize and then reinterpret the resulting token list using the given

catcode regime. The last one is slowest because it has to scan the keyword.

There is however a pitfall here:

\def\MyText {test}

\def\MyTitle{test \MyText\space test}

\detokenize \expandafter{\MyTitle}\crlf

\meaningless \MyTitle \crlf

\retokenized \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

The outcome is different now because we have an expandable embedded macro call.

The fact that we expand in the last two primitives is also the reason why they are

‘slower’.

test \MyText \space test

test \MyText \space test
2 The \scan *tokens primitives now share the same helpers as Lua, but they should behave the same as in

LuaTEX.



68

Dirty tricks

test test test

test test test

To complete this picture, we show a variant than combines much of what has been

introduced in this section:

\semiprotected\def\MyTextA {test}

\def\MyTextB {test}

\def\MyTitle{test \MyTextA\space \MyTextB\space test}

\detokenize \expandafter{\MyTitle}\crlf

\meaningless \MyTitle \crlf

\retokenized \notcatcodes{\MyTitle}\crlf

\retokenized \notcatcodes{\semiexpanded{\MyTitle}}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\semiexpanded{\MyTitle}}

This time compare the last four lines:

test \MyTextA \space \MyTextB \space test

test \MyTextA \space \MyTextB \space test

test \MyTextA test test

test test test test

test \MyTextA test test

test test test test

Of course the question remains to what extend we need this and eventually will apply

in ConTEXt. The \detokenize is used already. History shows that eventually there is a

use for everything and given the way LuaMetaTEX is structured it was not that hard to

provide the alternatives without sacrificing performance or bloating the source.

4.6 Dirty tricks

When I was updating this manual Hans vd Meer and I had some discussions about

expansion and tokenization related issues when combining of xml processing with TEX

macros where he did some manipulations in Lua. In these mixed cases you can run

into catcode related problems because in xml you want for instance a # to be a hash

mark (other character) and not an parameter identifier. Normally this is handled well

in ConTEXt but of course there are complex cases where you need to adapt.

Say that youwant to compare two strings (officially we should say token lists) withmixed

catcodes. Let's also assume that you want to use the normal \if construct (which was



69

Dirty tricks

part of the discussion). We start with defining a test set. The reason that we present

this example here is that we use commands discussed in previous sections:

\def\abc{abc}

\semiprotected \def\xyz{xyz}

\edef\pqr{\expandtoken\notcatcodes`p%

\expandtoken\notcatcodes`q%

\expandtoken\notcatcodes`r}

1: \ifcondition\similartokens{abc} {def}YES\else NOP\fi (NOP) \quad

2: \ifcondition\similartokens{abc}{\abc}YES\else NOP\fi (YES)

3: \ifcondition\similartokens{xyz} {pqr}YES\else NOP\fi (NOP) \quad

4: \ifcondition\similartokens{xyz}{\xyz}YES\else NOP\fi (YES)

5: \ifcondition\similartokens{pqr} {pqr}YES\else NOP\fi (YES) \quad

6: \ifcondition\similartokens{pqr}{\pqr}YES\else NOP\fi (YES)

So, we have a mix of expandable and semi expandable macros, and also a mix of cat

codes. A naive approach would be:

\permanent\protected\def\similartokens#1#2%

{\iftok{#1}{#2}}

but that will fail on some cases:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: NOP(YES)

So how about:

\permanent\protected\def\similartokens#1#2%

{\iftok{\detokenize{#1}}{\detokenize{#2}}}

That one is even worse:

1: NOP(NOP) 2: NOP(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: NOP(YES)

We need to expand so we end up with this:

\permanent\protected\def\similartokens#1#2%



70

Dirty tricks

{\normalexpanded{\noexpand\iftok

{\noexpand\detokenize{#1}}

{\noexpand\detokenize{#2}}}}

Better:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: YES(YES)

But that will still not deal with the mildly protected macro so in the end we have:

\permanent\protected\def\similartokens#1#2%

{\semiexpanded{\noexpand\iftok

{\noexpand\detokenize{#1}}

{\noexpand\detokenize{#2}}}}

Now we're good:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: YES(YES)

5: YES(YES) 6: YES(YES)

Finally we wrap this one in the usual \doifelse... macro:

\permanent\protected\def\doifelsesimilartokens#1#2%

{\ifcondition\similartokens{#1}{#2}%

\expandafter\firstoftwoarguments

\else

\expandafter\secondoftwoarguments

\fi}

so that we can do:

\doifelsesimilartokens{pqr}{\pqr}{YES}{NOP}

A companion macro of this is \wipetoken but for that one you need to look into the

source.



71

Colofon

4.6 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



72

5 Registers



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

registers



73

Preamble

Contents

5.1 Preamble 73

5.2 TEX primitives 73

5.3 𝜀-TEX primitives 76

5.4 LuaTEX primitives 76

5.5 LuaMetaTEX primitives 77

5.1 Preamble

Registers are sets of variables that are accessed by index and a such resemble regis

ters in a processing unit. You can store a quantity in a register, retrieve it, and also

manipulate it.

There is hardly any need to use them in ConTEXt so we keep it simple.

5.2 TEX primitives

There are several categories:

• Integers (int): in order to be portable (at the time it surfaced) there are only integers

and no floats. The only place where TEX uses floats internally is when glue gets

effective which happens in the backend.

• Dimensions (dimen): internally these are just integers but when they are entered

they are sliced into two parts so that we have a fractional part. The internal repre

sentation is called a scaled point.

• Glue (skip): these are dimensions with a few additional properties: stretch and

shrink. Being a compound entity they are stored differently and thereby a bit less

efficient than numbers and dimensions.

• Math glue (muskip): this is the same as glue but with a unit that adapts to the current

math style properties. It's best to think about them as being relative measures.

• Token lists (toks): these contain a list of tokens coming from the input or coming

from a place where they already have been converted.

The original TEX engine had 256 entries per set. The first ten of each set are normally

reserved for scratch purposes: the even ones for local use, and the odd ones for global

usage. On top of that macro packages can reserve some for its own use. It was quite



74

TEX primitives

easy to reach the maximum but there were tricks around that. This limitation is no

longer present in the variants in use today.

Let's set a few dimension registers:

\dimen 0 = 10 pt

\dimen2=10pt

\dimen4 10pt

\scratchdimen 10pt

We can serialize them with:

\the \dimen0

\number \dimen2

\meaning\dimen4

\meaning\scratchdimen

The results of these operations are:

10.0pt

655360

\dimen4

\dimen257

The last two is not really useful but it is what you see when tracing options are set. Here

\scratchdimen is a shortcut for a register. This is not a macro but a defined register.

The low level \dimendef is used for this but in a macro package you should not use that

one but the higher level \newdimen macro that uses it.

\newdimen\MyDimenA

\def \MyDimenB{\dimen999}

\dimendef\MyDimenC998

\meaning\MyDimenA

\meaning\MyDimenB

\meaning\MyDimenC

Watch the difference:

\dimen754

macro:\dimen 999

\dimen998



75

TEX primitives

The first definition uses a yet free register so you won't get a clash. The second one is

just a shortcut using a macro and the third one too but again direct shortcut. Try to

imagine how the second line gets interpreted:

\MyDimenA10pt \MyDimenA10.5pt

\MyDimenB10pt \MyDimenB10.5pt

\MyDimenC10pt \MyDimenC10.5pt

Also try to imagine what messing around with \MyDimenC will do when we also have

defined a few hundred extra dimensions with \newdimen.

In the case of dimensions the \number primitive will make the register serialize as scaled

points without unit sp.

Next we see some of the other registers being assigned:

\count 0 = 100

\skip 0 = 10pt plus 3pt minus 2pt

\skip 0 = 10pt plus 1fill

\muskip 0 = 10mu plus 3mu minus 2mu

\muskip 0 = 10mu minus 1 fil

\toks 0 = {hundred}

When a number is expected, you can use for instance this:

\scratchcounter\scratchcounterone

Here we use a few predefined scratch registers. You can also do this:

\scratchcounter\numexpr\scratchcounterone+\scratchcountertwo\relax

There are some quantities that also qualify as number:

\chardef\MyChar=123 % refers to character 123 (if present)

\scratchcounter\MyChar

In the past using \chardef was a way to get around the limited number of registers,

but it still had (in traditional TEX) a limitation: you could not go beyond 255. The

\mathchardef could fo higher as it also encodes a family number and class. This limi

tation has been lifted in LuaTEX.

A character itself can also be interpreted as number, in which case it has to be prefixed

with a reverse quote: `, so:



76

𝜀-TEX primitives

\scratchcounter\numexpr`0+5\relax

\char\scratchcounter

produces “5” because the `0 expands into the (ascii and utf8) slot 48 which represents

the character zero. In this case the next makes more sense:

\char\numexpr`0+5\relax

If you want to know more about all these quantities, “TEX By Topic” provides a good

summary of what TEX has to offer, and there is no need to repeat it here.

5.3 𝜀-TEX primitives

Apart from the ability to use expressions, the contribution to registers that 𝜀-TEX brought
was that suddenly we could use upto 65K of them, which is more than enough. The ex

tra registers were not as efficient as the first 256 because they were stored in the hash

table, but that was not really a problem. In Omega and later LuaTEX regular arrays

were used, at the cost of more memory which in the meantime has become cheap. As

ConTEXt moved to 𝜀-TEX rather early its users never had to worry about it.

5.4 LuaTEX primitives

The LuaTEX engine introduced attributes. These are numeric properties that are bound

to the nodes that are the result of typesetting operations. They are basically like integer

registers but when set their values get bound and when unset they are kind of invisible.

• Attribute (attribute): a numeric property that when set becomes part of the current

attribute list that gets assigned to nodes.

Attributes can be used to communicate properties to Lua callbacks. There are several

functions available for setting them and querying them.

\attribute999 = 123

Using attributes this way is dangerous (of course I can only speak for ConTEXt) because

an attribute value might trigger some action in a callback that gives unwanted side

effects. For convenience ConTEXt provides:

\newattribute\MyAttribute

Which currently defines \MyAttribute as integer 1026 and is meant to be used as:3

3 The low level \attributedef command is rather useless in the perspective of ConTEXt.



77

LuaMetaTEX primitives

\attribute\MyAttribute = 123

Just be aware that defining attributes can have an impact on performance. As you

cannot access them at the TEX end you seldom need them. If you do you can better use

the proper more high level definers (not discussed here).

5.5 LuaMetaTEX primitives

todo

5.5 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



78

6 Macros



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

macros



79

Preamble

Contents

6.1 Preamble 79

6.2 Definitions 79

6.3 Runaway arguments 89

6.4 Introspection 90

6.5 nesting 91

6.6 Prefixes 94

6.1 Preamble

This chapter overlaps with other chapters but brings together some extensions to the

macro definition and expansion parts. As these mechanisms were stepwise extended,

the other chapters describe intermediate steps in the development.

Now, in spite of the extensions discussed here the main ides is still that we have TEX

act like before. We keep the charm of the macro language but these additions make for

easier definitions, but (at least initially) none that could not be done before using more

code.

6.2 Definitions

A macro definition normally looks like like this:4

\def\macro#1#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Such a macro can be used as:

\macro {1}{2}

\macro {1} {2} middle space gobbled

\macro 1 {2} middle space gobbled

\macro {1} 2 middle space gobbled

\macro 1 2 middle space gobbled

We show the result with some comments about how spaces are handled:

12

12 middle space gobbled

12 middle space gobbled
4 The \dontleavehmode command make the examples stay on one line.



80

Definitions

12 middle space gobbled

12 middle space gobbled

A definition with delimited parameters looks like this:

\def\macro[#1]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\hss}}

When we use this we get:

\macro [1]

\macro [ 1] leading space kept

\macro [1 ] trailing space kept

\macro [ 1 ] both spaces kept

Again, watch the handling of spaces:

1

1 leading space kept

1 trailing space kept

1 both spaces kept

Just for the record we show a combination:

\def\macro[#1]#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this:

\macro [1]{2}

\macro [1] {2}

\macro [1] 2

we can again see the spaces go away:

12

12

12

A definition with two separately delimited parameters is given next:

\def\macro[#1#2]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}



81

Definitions

When used:

\macro [12]

\macro [ 12] leading space gobbled

\macro [12 ] trailing space kept

\macro [ 12 ] leading space gobbled, trailing space kept

\macro [1 2] middle space kept

\macro [ 1 2 ] leading space gobbled, middle and trailing space kept

We get ourselves:

12

12 leading space gobbled

12 trailing space kept

12 leading space gobbled, trailing space kept

1 2 middle space kept

1 2 leading space gobbled, middle and trailing space kept

These examples demonstrate that the engine does some magic with spaces before (and

therefore also between multiple) parameters.

We will now go a bit beyond what traditional TEX engines do and enter the domain of

LuaMetaTEX specific parameter specifiers. We start with one that deals with this hard

coded space behavior:

\def\macro[#^#^]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The #^ specifier will count the parameter, so here we expect again two arguments but

the space is kept when parsing for them.

\macro [12]

\macro [ 12]

\macro [12 ]

\macro [ 12 ]

\macro [1 2]

\macro [ 1 2 ]

Now keep in mind that we could deal well with all kind of parameter handling in Con

TEXt for decades, so this is not really something wemissed, but it complements the to be

discussed other ones and it makes sense to have that level of control. Also, availability

triggers usage. Nevertheless, some day the #^ specifier will come in handy.



82

Definitions

12

12

12

12

1 2

1 2

We now come back to an earlier example:

\def\macro[#1]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

When we use this we see that the braces in the second call are removed:

\macro [1]

\macro [{1}]

1 1

This can be prohibited by the #+ specifier, as in:

\def\macro[#+]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

As we see, the braces are kept:

\macro [1]

\macro [{1}]

Again, we could easily get around that (for sure intended) side effect but it just makes

nicer code when we have a feature like this.

1 {1}

Sometimes you want to grab an argument but are not interested in the results. For this

we have two specifiers: one that just ignores the argument, and another one that keeps

counting but discards it, i.e. the related parameter is empty.

\def\macro[#1][#0][#3][#-][#4]%

{\dontleavehmode\hbox spread 1em

{\vl\type{#1}\vl\type{#2}\vl\type{#3}\vl\type{#4}\vl\hss}}

The second argument is empty and the fourth argument is simply ignored which is why

we need #4 for the fifth entry.



83

Definitions

\macro [1][2][3][4][5]

Here is proof that it works:

135

The reasoning behind dropping arguments is that for some cases we get around the

nine argument limitation, but more important is that we don't construct token lists that

are not used, which is more memory (and maybe even cpu cache) friendly.

Spaces are always kind of special in TEX, so it will be no surprise that we have another

specifier that relates to spaces.

\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

This permits usage like the following:

\macro [1][2]

\macro [1] [2]

12 12

Without the optional ‘grab spaces’ specifier the second line would possibly throw an

error. This because TEX then tries to match ][ so the ] [ in the input is simply added

to the first argument and the next occurrence of ][ will be used. That one can be

someplace further in your source and if not TEX complains about a premature end of

file. But, with the #* option it works out okay (unless of course you don't have that

second argument [2].

Now, you might wonder if there is a way to deal with that second delimited argument

being optional and of course that can be programmed quite well in traditional macro

code. In fact, ConTEXt does that a lot because it is set up as a parameter driven system

with optional arguments. That subsystem has been optimized to the max over years

and it works quite well and performance wise there is very little to gain. However, as

soon as you enable tracing you end up in an avalanche of expansions and that is no fun.

This time the solution is not in some special specifier but in the way a macro gets de

fined.

\tolerant\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The magic \tolerant prefix with delimited arguments and just quits when there is no

match. So, this is acceptable:



84

Definitions

\macro [1][2]

\macro [1] [2]

\macro [1]

\macro

12 12 1

We can check how many arguments have been processed with a dedicated conditional:

\tolerant\def\macro[#1]#*[#2]%

{\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

We use this test:

\macro [1][2] \macro [1] [2] \macro [1] \macro

The result is: 2: 12 2: 12 1: 10: which is what we expect because we flush inline and

there is no change of mode. When the following definition is used in display mode, the

leading n= can for instance start a new paragraph and when code in \everypar you can

loose the right number when macros get expanded before the n gets injected.

\tolerant\def\macro[#1]#*[#2]%

{n=\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

In addition to the \ifarguments test primitive there is also a related internal counter

\lastarguments set that you can consult, so the \ifarguments is actually just a shortcut

for \ifcase \lastarguments.

We now continue with the argument specifiers and the next two relate to this optional

grabbing. Consider the next definition:

\tolerant\def\macro#1#*#2%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this test:

\macro {1} {2}

\macro {1}

\macro

We get:

12 1\macro



85

Definitions

This is okay because the last \macro is a valid (single token) argument. But, we can

make the braces mandate:

\tolerant\def\macro#=#*#=%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Here the #= forces a check for braces, so:

\macro {1} {2}

\macro {1}

\macro

gives this:

12 1

However, we do loose these braces and sometimes you don't want that. Of course when

you pass the results downstream to another macro you can always add them, but it was

cheap to add a related specifier:

\tolerant\def\macro#_#*#_%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Again, the magic \tolerant prefix works will quit scanning when there is no match.

So:

\macro {1} {2}

\macro {1}

\macro

leads to:

{1}{2} {1}

When you're tolerant it can be that you still want to pick up some argument later on.

This is why we have a continuation option.

\tolerant\def\foo [#1]#*[#2]#:#3{!#1!#2!#3!}

\tolerant\def\oof[#1]#*[#2]#:(#3)#:#4{!#1!#2!#3!#4!}

\tolerant\def\ofo [#1]#:(#2)#:#3{!#1!#2!#3!}

Hopefully the next example demonstrates how it works:

\foo{3} \foo[1]{3} \foo[1][2]{3}



86

Definitions

\oof{4} \oof[1]{4} \oof[1][2]{4}

\oof[1][2](3){4} \oof[1](3){4} \oof(3){4}

\ofo{3} \ofo[1]{3}

\ofo[1](2){3} \ofo(2){3}

As you can see we can have multiple continuations using the #: directive:

!!!3! !1!!3! !1!2!3!

!!!!4! !1!!!4! !1!2!!4!

!1!2!3!4! !1!!3!4! !!!3!4!

!!!3! !1!!3!

!1!2!3! !!2!3!

The last specifier doesn't work well with the \ifarguments state because we no longer

know what arguments were skipped. This is why we have another test for arguments.

A zero value means that the next token is not a parameter reference, a value of one

means that a parameter has been set and a value of two signals an empty parameter.

So, it reports the state of the given parameter as a kind if \ifcase.

\def\foo#1#2{ [\ifparameter#1\or(ONE)\fi\ifparameter#2\or(TWO)\fi] }

Of course the test has to be followed by a valid parameter specifier:

\foo{1}{2} \foo{1}{} \foo{}{2} \foo{}{}

The previous code gives this:

[(ONE)(TWO)] [(ONE)] [(TWO)] []

A combination check \ifparameters, again a case, matches the first parameter that

has a value set.

We could add plenty of specifiers but we need to keep in ind that we're not talking of an

expression scanner. We need to keep performance in mind, so nesting and backtracking

are no option. We also have a limited set of useable single characters, but here's one

that uses a symbol that we had left:

\def\startfoo[#/]#/\stopfoo{ [#1](#2) }

The slash directive removes leading and trailing so called spacers as well as tokens that

represent a paragraph end:

\startfoo [x ] x \stopfoo

\startfoo [ x ] x \stopfoo



87

Definitions

\startfoo [ x] x \stopfoo

\startfoo [ x] \par x \par \par \stopfoo

So we get this:

[x](x) [x](x) [x](x) [x](x)

The next directive, the quitter #;, is demonstrated with an example. When no match

has occurred, scanning picks up after this signal, otherwise we just quit.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

///1/ ///2/ ///3/

I have to admit that I don't really need it but it made some macros that I was redefining

behave better, so there is some self-interest here. Anyway, I considered some other

features, like picking up a detokenized argument but I don't expect that to be of much



88

Definitions

use. In the meantime we ran out of reasonable characters, but some day #? and #!

might show up, or maybe I find a use for #< and #>. A summary of all this is given here:

+ keep the braces

- discard and don't count the argument

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

: pick up scanning here

; quit scanning

. ignore pars and spaces

, push back space when quit

The last two have not been discussed andwere added later. The period directive gobbles

space and par tokens and discards them in the process. The comma directive is like *

but it pushes back a space when the matching quits.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par



89

Runaway arguments

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

///1/ ///2/ ///3/

Gobbling spaces versus pushing back is an interface design decision because it has to

do with consistency.

6.3 Runaway arguments

There is a particular troublesome case left: a runaway argument. The solution is not

pretty but it's the only way: we need to tell the parser that it can quit.

\tolerant\def\foo[#1=#2]%

{\ifarguments 0\or 1\or 2\or 3\or 4\fi:\vl\type{#1}\vl\type{#2}\vl}

The outcome demonstrates that one still has to do some additional checking for sane

results and there are alternative way to (ab)use this mechanism. It all boils down to a

clever combination of delimiters and \ignorearguments.

\dontleavehmode \foo[a=1]

\dontleavehmode \foo[b=]

\dontleavehmode \foo[=]

\dontleavehmode \foo[x]\ignorearguments

All calls are accepted:

2:a1

2:b

2:

1:x]

Just in case you wonder about performance: don't expect miracles here. On the one

hand there is some extra overhead in the engine (when defining macros as well as

when collecting arguments during a macro call) and maybe using these new features

can sort of compensate that. As mentioned: the gain is mostly in cleaner macro code

and less clutter in tracing. And I just want the ConTEXt code to look nice: that way users



90

Introspection

can look in the source to see what happens and not drown in all these show-off tricks,

special characters like underscores, at signs, question marks and exclamation marks.

For the record: I normally run tests to see if there are performance side effects and

as long as processing the test suite that has thousands of files of all kind doesn't take

more time it's okay. Actually, there is a little gain in ConTEXt but that is to be expected,

but I bet users won't notice it, because it's easily offset by some inefficient styling. Of

course another gain of loosing some indirectness is that error messages point to the

macro that the user called for and not to some follow up.

6.4 Introspection

A macro has a meaning. You can serialize that meaning as follows:

\tolerant\protected\def\foo#1[#2]#*[#3]%

{(1=#1) (2=#3) (3=#3)}

\meaning\foo

The meaning of \foo comes out as:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

When you load the module system-tokens you can also say:

\luatokentable\foo

This produces a table of tokens specifications:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

tolerant protected control sequence: foo

502432 19 49 match argument 1

266963 12 91 other char [ U+0005B

502994 19 50 match argument 2

503680 12 93 other char ] U+0005D

500068 19 42 match argument *

500322 12 91 other char [ U+0005B

503121 19 51 match argument 3

31045 12 93 other char ] U+0005D

46310 20 0 end match

503117 12 40 other char ( U+00028



91

nesting

504226 12 49 other char 1 U+00031

499176 12 61 other char = U+0003D

502989 21 1 parameter reference

261002 12 41 other char ) U+00029

386857 10 32 spacer

503692 12 40 other char ( U+00028

498426 12 50 other char 2 U+00032

499137 12 61 other char = U+0003D

509904 21 3 parameter reference

386835 12 41 other char ) U+00029

502827 10 32 spacer

498451 12 40 other char ( U+00028

500116 12 51 other char 3 U+00033

502912 12 61 other char = U+0003D

503758 21 3 parameter reference

499121 12 41 other char ) U+00029

A token list is a linked list of tokens. The magic numbers in the first column are the

tokenmemory pointers. and becausemacros (and token lists) get recycled at some point

the available tokens get scattered, which is reflected in the order of these numbers.

Normally macros defined in the macro package are more sequential because they stay

around from the start. The second and third row show the so called command code and

the specifier. The command code groups primitives in categories, the specifier is an

indicator of what specific action will follow, a register number a reference, etc. Users

don't need to know these details. This macro is a special version of the online variant:

\showluatokens\foo

That one is always available and shows a similar list on the console. Again, users nor

mally don't want to know such details.

6.5 nesting

You can nest macros, as in:

\def\foo#1#2{\def\oof##1{<#1>##1<#2>}}

At first sight the duplication of # looks strange but this is what happens. When TEX

scans the definition of \foo it sees two arguments. Their specification ends up in the

preamble that defines the matching. When the body is scanned, the #1 and #2 are

turned into a parameter reference. In order to make nested macros with arguments



92

nesting

possible a # followed by another # becomes just one #. Keep in mind that the definition

of \oof is delayed till the macro \foo gets expanded. That definition is just stored and

the only thing that get's replaced are the two references to a macro parameter

control sequence: foo

502384 19 49 match argument 1

502416 19 50 match argument 2

503312 20 0 end match

507473 115 1 def def

504217 134 0 tolerant call oof

499221 6 35 parameter

201296 12 49 other char 1 U+00031

503763 1 123 left brace

500345 12 60 other char < U+0003C

499172 21 1 parameter reference

502331 12 62 other char > U+0003E

498449 6 35 parameter

500258 12 49 other char 1 U+00031

502577 12 60 other char < U+0003C

502729 21 2 parameter reference

503124 12 62 other char > U+0003E

504197 2 125 right brace

Now, when we look at these details, it might become clear why for instance we have

‘variable’ names like #4 and not #whatever (with or without hash). Macros are essen

tially token lists and token lists can be seen as a sequence of numbers. This is not

that different from other programming environments. When you run into buzzwords

like ‘bytecode’ and ‘virtual machines’ there is actually nothing special about it: some

high level programming (using whatever concept, and in the case of TEX it's macros)

eventually ends up as a sequence of instructions, say bytecodes. Then you need some

machinery to run over that and act upon those numbers. It's something you arrive at

naturally when you play with interpreting languages.5

So, internally a #4 is just one token, a operator-operand combination where the operator

is “grab a parameter” and the operand tells “where to store” it. Using names is of course

5 I actually did when I wrote an interpreter for some computer assisted learning system, think of a kind of

interpreted Pascal, but later realized that it was a a bytecode plus virtual machine thing. I'd just applied

what I learned when playing with eight bit processors that took bytes, and interpreted opcodes and such.

There's nothing spectacular about all this and I only realized decades later that the buzzwords describes

old natural concepts.



93

nesting

an option but then one has to do more parsing and turn the name into a number6, add

additional checking in the macro body, figure out some way to retain the name for the

purpose of reporting (which then uses more token memory or strings). It is simply not

worth the trouble, let alone the fact that we loose performance, and when TEX showed

up those things really mattered.

It is also important to realize that a # becomes either a preamble token (grab an argu

ment) or a reference token (inject the passed tokens into a new input level). Therefore

the duplication of hash tokens ## that you see in macro nested bodies also makes sense:

it makes it possible for the parser to distinguish between levels. Take:

\def\foo#1{\def\oof##1{#1##1#1}}

Of course one can think of this:

\def\foo#fence{\def\oof#text{#fence#text#fence}}

But such names really have to be unique then! Actually ConTEXt does have an input

method that supports such names, but discussing it here is a bit out of scope. Now,

imagine that in the above case we use this:

\def\foo[#1][#2]{\def\oof##1{#1##1#2}}

If you're a bit familiar with the fact that TEX has a model of category codes you can

imagine that a predictable “hash followed by a number” is way more robust than en

forcing the user to ensure that catcodes of ‘names’ are in the right category (read: is

a bracket part of the name or not). So, say that we go completely arbitrary names, we

then suddenly needs some escaping, like:

\def\foo[#{left}][#{right}]{\def\oof#{text}{#{left}#{text}#{right}}}

And, if you ever looked into macro packages, you will notice that they differ in the

way they assign category codes. Asking users to take that into account when defining

macros makes not that much sense.

So, before one complains about TEX being obscure (the hash thing), think twice. Your

demand for simplicity for your coding demand will make coding more cumbersome for

the complex cases that macro packages have to deal with. It's comparable using TEX for

input or using (say) mark down. For simple documents the later is fine, but when things

become complex, you end up with similar complexity (or even worse because you lost

the enforced detailed structure). So, just accept the unavoidable: any language has its

peculiar properties (and for sure I do know why I dislike some languages for it). The
6 This is kind of what MetaPost does with parameters to macros. The side effect is that in reporting you get

text0, expr2 and such reported which doesn't make things more clear.



94

Prefixes

TEX system is not the only one where dollars, percent signs, ampersands and hashes

have special meaning.

6.6 Prefixes

Traditional TEX has three prefixes that can be used with macros: \global, \outer and

\long. The last two are no-op's in LuaMetaTEX and if you want to know what they do

(did) you can look it up in the TEXbook. The 𝜀-TEX extension gave us \protected.

In LuaMetaTEX we have \global, \protected, \tolerant and overload related prefixes

like \frozen. A protected macro is one that doesn't expand in an expandable context,

so for instance inside an \edef. You can force expansion by using the \expand primitive

in front which is also something LuaMetaTEX.

Frozenmacros cannot be redefined without some effort. This feature can to some extent

be used to prevent a user from overloading, but it also makes it harder for the macro

package itself to redefine on the fly. You can remove the lock with \unletfrozen and

add a lock with \letfrozen so in the end users still have all the freedoms that TEX

normally provides.

\def\foo{foo} 1: \meaning\foo

\frozen\def\foo{foo} 2: \meaning\foo

\unletfrozen \foo 3: \meaning\foo

\protected\frozen\def\foo{foo} 4: \meaning\foo

\unletfrozen \foo 5: \meaning\foo

1: macro:foo

2: macro:foo

3: macro:foo

4: protected macro:foo

5: protected macro:foo

This actually only works when you have set \overloadmode to a value that permits

redefining a frozen macro, so for the purpose of this example we set it to zero.

A \tolerant macro is one that will quit scanning arguments when a delimiter cannot

be matched. We saw examples of that in a previous section.

These prefixes can be chained (in arbitrary order):

\frozen\tolerant\protected\global\def\foo[#1]#*[#2]{...}



95

Prefixes

There is actually an additional prefix, \immediate but that one is there as signal for a

macro that is defined in and handled by Lua. This prefix can then perform the same

function as the one in traditional TEX, where it is used for backend related tasks like

\write.

Now, the question is of course, to what extent will ConTEXt use these new features.

One important argument in favor of using \tolerant is that it gives (hopefully) better

error messages. It also needs less code due to lack of indirectness. Using \frozen adds

some safeguards although in some places where ConTEXt itself overloads commands,

we need to defrost. Adapting the code is a tedious process and it can introduce errors

due to mistypings, although these can easily be fixed. So, it will be used but it will take

a while to adapt the code base.

One problem with frozen macros is that they don't play nice with for instance \fu

turelet. Also, there are places in ConTEXt where we actually do redefine some core

macro that we also want to protect from redefinition by a user. One can of course \un

letfrozen such a command first but as a bonus we have a prefix \overloaded that can

be used as prefix. So, one can easily redefine a frozen macro but it takes a little effort.

After all, this feature is mainly meant to protect a user for side effects of definitions,

and not as final blocker.7

A frozen macro can still be overloaded, so what if we want to prevent that? For this we

have the \permanent prefix. Internally we also create primitives but we don't have a

prefix for that. But we do have one for a very special case which we demonstrate with

an example:

\def\FOO % trickery needed to pick up an optional argument

{\noalign{\vskip10pt}}

\noaligned\protected\tolerant\def\OOF[#1]%

{\noalign{\vskip\iftok{#1}\emptytoks10pt\else#1\fi}}

\starttabulate[|l|l|]

\NC test \NC test \NC \NR

\NC test \NC test \NC \NR

\FOO

\NC test \NC test \NC \NR

\OOF[30pt]

\NC test \NC test \NC \NR

\OOF

7 As usual adding features like this takes some experimenting and we're now at the third variant of the

implementation, so we're getting there. The fact that we can apply such features in large macro package

like ConTEXt helps figuring out the needs and best approaches.



96

Colofon

\NC test \NC test \NC \NR

\stoptabulate

When TEX scans input (from a file or token list) and starts an alignment, it will pick up

rows. When a row is finished it will look ahead for a \noalign and it expands the next

token. However, when that token is protected, the scanner will not see a \noalign in

that macro so it will likely start complaining when that next macro does get expanded

and produces a \noalign when a cell is built. The \noaligned prefix flags a macro as

being one that will do some \noalign as part of its expansion. This trick permits clean

macros that pick up arguments. Of course it can be done with traditional means but

this whole exercise is about making the code look nice.

The table comes out as:

test test

test test

test test

test test

test test

One can check the flags with \ifflags which takes a control sequence and a number,

where valid numbers are:

1 frozen 2 permanent 4 immutable 8 primitive

16 mutable 32 noaligned 64 instance

The level of checking is controlled with the \overloadmode but I'm still not sure about

how many levels we need there. A zero value disables checking, the values 1 and 3 give

warnings and the values 2 and 4 trigger an error.

6.6 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



97

7 Grouping



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

grouping



98

Introduction

Contents

7.1 Introduction 98

7.2 Pascal 98

7.3 TEX 98

7.4 MetaPost 99

7.5 Lua 100

7.6 C 100

7.1 Introduction

This is a rather short explanation. I decided to write it after presenting the other topics

at the 2019 ConTEXt meeting where there was a question about grouping.

7.2 Pascal

In a language like Pascal, the language that TEX has been written in, or Modula, its

successor, there is no concept of grouping like in TEX. But we can find keywords that

suggests this:

for i := 1 to 10 do begin ... end

This language probably inspired some of the syntax of TEX and MetaPost. For instance

an assignment in MetaPost uses := too. However, the begin and end don't really group

but define a block of statements. You can have local variables in a procedure or function

but the block is just a way to pack a sequence of statements.

7.3 TEX

In TEX macros (or source code) the following can occur:

\begingroup

...

\endgroup

as well as:

\bgroup

...

\egroup



99

MetaPost

Here we really group in the sense that assignments to variables inside a group are

forgotten afterwards. All assignments are local to the group unless they are explicitly

done global:

\scratchcounter=1

\def\foo{foo}

\begingroup

\scratchcounter=2

\global\globalscratchcounter=2

\gdef\foo{FOO}

\endgroup

Here \scratchcounter is still one after the group is left but its global counterpart is

now two. The \foo macro is also changed globally.

Although you can use both sets of commands to group, you cannot mix them, so this

will trigger an error:

\bgroup

\endgroup

The bottomline is: if you want a value to persist after the group, you need to explicitly

change its value globally. This makes a lot of sense in the perspective of TEX.

7.4 MetaPost

The MetaPost language also has a concept of grouping but in this case it's more like a

programming language.

begingroup ;

n := 123 ;

engroup ;

In this case the value of n is 123 after the group is left, unless you do this (for numerics

there is actually no need to declare them):

begingroup ;

save n ; numeric n ; n := 123 ;

engroup ;

Given the use of MetaPost (read: MetaFont) this makes a lot of sense: often you use

macros to simplify code and you do want variables to change. Grouping in this language



100

Lua

serves other purposes, like hiding what is between these commands and let the last

expression become the result. In a vardef grouping is implicit.

So, in MetaPost all assignments are global, unless a variable is explicitly saved inside a

group.

7.5 Lua

In Lua all assignments are global unless a variable is defines local:

local x = 1

local y = 1

for i = 1, 10 do

local x = 2

y = 2

end

Here the value of x after the loop is still one but y is now two. As in LuaTEX we mix TEX,

MetaPost and Lua you can mix up these concepts. Another mixup is using :=, endfor,

fi in Lua after done some MetaPost coding or using end instead of endfor in MetaPost

which can make the library wait for more without triggering an error. Proper syntax

highlighting in an editor clearly helps.

7.6 C

The Lua language is a mix between Pascal (which is one reason why I like it) and C.

int x = 1 ;

int y = 1 ;

for (i=1; i<=10;i++) {

int x = 2 ;

y = 2 ;

}

The semicolon is also used in Pascal but there it is a separator and not a statement end,

while in MetaPost it does end a statement (expression).



101

Colofon

7.6 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



102

8 Security



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

security



103

Preamble

Contents

8.1 Preamble 103

8.2 Flags 103

8.3 Complications 106

8.4 Introspection 107

8.1 Preamble

Here I will discuss a moderate security subsystem of LuaMetaTEX and therefore Con

TEXt LMTX. This is not about security in the sense of the typesetting machinery doing

harm to your environment, but more about making sure that a user doesn't change

the behavior of the macro package in ways that introduce interference and thereby

unwanted side effect. It's all about protecting macros.

This is all very experimental and we need to adapt the ConTEXt source code to this.

Actually that will happen a few times because experiments trigger that. It might take

a few years before the security model is finalized and all files are updated accordingly.

There are lots of files and macros involved. In the process the underlying features in

the engine might evolve.

8.2 Flags

Before we go into the security levels we see what flags can be set. The TEX language

has a couple of so called prefixes that can be used when setting values and defining

macros. Any engine that has traditional TEX with 𝜀-TEX extensions can do this:

\def\foo{foo}

\global \def\foo{foo}

\global\protected\def\foo{foo}

And LuaMetaTEX adds another one:

\tolerant \def\foo{foo}

\global\tolerant \def\foo{foo}

\global\tolerant\protected\def\foo{foo}

What these prefixes do is discussed elsewhere. For now is is enough to know that

the two optional prefixes \protected and \tolerant make for four distinctive cases of

macro calls.



104

Flags

But there are more prefixes:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant

mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted

enforced all is permitted (but only in zero mode or ini mode)

aliased the macro gets the same flags as the original

These prefixed set flags to the command at hand which can be a macro but basically

any control sequence.

To what extent the engine will complain when a property is changed in a way that

violates the above depends on the parameter \overloadmode. When this parameter is

set to zero no checking takes place. More interesting are values larger than zero. If

that is the case, when a control sequence is flagged as mutable, it is always permitted to

change. When it is set to immutable one can never change it. The other flags determine

the kind of checking done. Currently the following overload values are used:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. In ConTEXt we plug in a callback that

deals with the messages. A value of 255 will freeze this parameter. At level five and

above the instance flag is also checked but no drastic action takes place. We use this

to signal to the user that a specific instance is redefined (of course the definition macros

can check for that too).

So, how does it work. The following is okay:

\def\MacroA{A}

\def\MacroB{B}



105

Flags

\let\MyMacro\MacroA

\let\MyMacro\MacroB

The first two macros are ordinary ones, and the last two lines just create an alias. Such

an alias shares the definition, but when for instance \MacroA is redefined, its newmean

ing will not be reflected in the alias.

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\let\MyMacro\MacroA

\let\MyMacro\MacroB

This also works, because the \let will create an alias with the protected property but

it will not take the permanent propery along. For that we need to say:

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\permanent\let\MyMacro\MacroA

\permanent\let\MyMacro\MacroB

or, when we want to copy all properties:

\permanent\protected\def\MacroA{A}

\permanent\protected\def\MacroB{B}

\aliased\let\MyMacro\MacroA

\aliased\let\MyMacro\MacroB

However, in ConTEXt we have commands that we like to protect against overloading but

at the same time have a different meaning depending on the use case. An example is

the \NC (next column) command that has a different implementation in each of the table

mechanisms.

\permanent\protected\def\NC_in_table {...}

\permanent\protected\def\NC_in_tabulate{...}

\aliased\let\NC\NC_in_table

\aliased\let\NC\NC_in_tabulate

Here the second aliasing of \NC fails (assuming of course that we enabled overload

checking). One can argue that grouping can be used but often no grouping takes place

when we redefine on the fly. Because frozen is less restrictive than primitive or

permanent, and of course immutable, the next variant works:

\frozen\protected\def\NC_in_table {...}



106

Complications

\frozen\protected\def\NC_in_tabulate{...}

\overloaded\let\NC\NC_in_table

\overloaded\let\NC\NC_in_tabulate

However, in practice, as we want to keep the overload checking, we have to do:

\frozen\protected\def\NC_in_table {...}

\frozen\protected\def\NC_in_tabulate{...}

\overloaded\frozen\let\NC\NC_in_table

\overloaded\frozen\let\NC\NC_in_tabulate

or use \aliased, but there might be conflicting permissions. This is not that nice, so

there is a kind of dirty trick possible. Consider this:

\frozen\protected\def\NC_in_table {...}

\frozen\protected\def\NC_in_tabulate{...}

\def\setNCintable {\enforced\let\frozen\let\NC\NC_in_table}

\def\setNCintabulate{\enforced\let\frozen\let\NC\NC_in_tabulate}

When we're in so called initexmode or when the overload mode is zero, the \enforced

prefix is internalized in a way that signals that the follow up is not limited by the overload

mode and permissions. This definition time binding mechanism makes it possible to use

permanentmacros that users cannot redefine, but existing macros can, unless of course

they tweak the mode parameter.

Now keep in mind that users can always cheat but that is intentional. If you really want

to avoid that you can set the overload mode to 255 after which it cannot be set any

more. However, it can be useful to set the mode to zero (or some warning level) when

foreign macro packages are used.

8.3 Complications

One side effect of all this is that all those prefixes can lead to more code. On the other

hand we save some due to the extended macro argument handling features. When you

take the size of the format file as reference, in the end we get a somewhat smaller file.

Every token that you add of remove gives a 8 bytes difference. The extra overhead that

got added to the engine is compensated by the fact that some macro implementations

can be more efficient. In the end, in spite of these new features and the more extensive

testing of flags performance is about the same.8

8 And if you wonder about memory, by compacting the used (often scattered) token memory before dumping

I manages to save some 512K on the format file, so often the loss and gain are somewhere else.



107

Introspection

8.4 Introspection

In case you want to get some details about the properties of a macro, you can check its

meaning. The full variant shows all of them.

% a macro with two optional arguments with optional spacing in between:

\permanent\tolerant\protected\def\MyFoo[#1]#*[#2]{(#1)(#2)}

\meaningless\MyFoo\par

\meaning \MyFoo\par

\meaningfull\MyFoo\par

[#1]#*[#2]->(#1)(#2)

tolerant protected macro:[#1]#*[#2]->(#1)(#2)

permanent tolerant protected macro:[#1]#*[#2]->(#1)(#2)

8.4 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



108

9 Characters



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

characters



109

Introduction

Contents

9.1 Introduction 109

9.2 History 109

9.3 The heritage 110

9.4 The LMTX approach 111

9.1 Introduction

This explanation is part of the low level manuals because in practice users will not have

to deal with these matters in MkIV and even less in LMTX. You can skip to the last

section for commands.

9.2 History

If we travel back in time to when TEX was written we end up in eight bit character

universe. In fact, the first versions assumed seven bits, but for comfortable use with

languages other than English that was not sufficient. Support for eight bits permits the

usage of so called code pages as supported by operating systems. Although ascii input

became kind of the standard soon afterwards, the engine can be set up for different

encodings. This is not only true for TEX, but for many of its companions, like MetaFont

and therefore MetaPost.9

Core components of a TEX engine are hyphenation of words, applying inter-character

kerns and build ligatures. In traditional TEX engines those processes are interwoven

into the par builder but in LuaTEX these are separate stages. The original approach is

the reason that there is a relation between the input encoding and the font encoding:

the character in the input is the slot used in a reference to a glyph. When producing

the final result (e.g. pdf) there can also be a mapping to an index in a font resource.

input A [tex ->] font slot A [backend ->] glyph index A

The mapping that TEX does is normally one-to-one but an input character can undergo

some transformation. For instance a character beyond ascii 126 can be made active

and expand to some character number that then becomes the font slot. So, it is the

expansion (or meaning) of a character that end up as numeric reference in the glyph

node. Virtual fonts can introduce yet another remapping but that's only visible in the

backend.
9 This remapping to an internal representation (e.g. ebcdic) is not present in LuaTEX where we assume

utf8 to be the input encoding. The MetaPost library that comes with LuaTEX still has that code but in

LuaMetaTEX it's gone. There one can set up the machinery to be utf8 aware too.



110

The heritage

Actually, in LuaTEX the same happens but in practice there is no need to go active

because (at least in ConTEXt) we assume a Unicode path so there the font slot is the

Unicode got from the utf8 input.

In the eight bit universe macro packages (have to) provide all kind of means to deal

with (in the perspective of English) special characters. For instance, \"a would put

a diaeresis on top of the a or even better, refer to a character in the encoding that

the chosen font provides. Because there are some limitations of what can go in an

eight bit font, and because in different countries the used TEX fonts evolved kind of

independent, we ended up with quite some different variants of fonts. It was only with

the Latin Modern project that this became better. Interesting is that when we consider

the fact that such a font has often also hardly used symbols (like registered or copyright)

coming up with an encoding vector that covers most (latin based) European languages

(scripts) is not impossible10 Special symbols could simply go into a dedicated font, also

because these are always accessed via a macro so who cares about the input. It never

happened.

Keep in mind that when utf8 is used with eight bit engines, ConTEXt will convert se

quences of characters into a slot in a font (depending on the font encoding used which

itself depends on the coverage needed). For this every first (possible) byte of a multi

byte utf sequence is an active character, which is no big deal because these are outside

the ascii range. Normal ascii characters are single byte utf sequences and fall through

without treatment.

Anyway, in ConTEXt MkII we dealt with this by supporting mixed encodings, depending

on the (local) language, referencing the relevant font. It permits users to enter the text

in their preferred input encoding and also get the words properly hyphenated. But we

can leave these MkII details behind.

9.3 The heritage

In MkIV we got rid of input and font encodings, although one can still load files in a

specific code page.11We also kept the means to enter special characters, if only because

text editors seldom support(ed) a wide range of visual editing of those. This is why we

still have

\"u \^a \v{s} \AE \ij \eacute \oslash

10 And indeed in the Latin Modern project we came up with one but it was already to late for it to become

popular.
11 I'm not sure if users ever depend on an input encoding different from utf8.



111

The LMTX approach

and many more. The ones with one character names are rather common in the TEX

community but it is definitely a weird mix of symbols. The next two are kind of outdated:

in these days you delegate that to the font handler, where turning them into ‘single’

character references depends on what the font offers, how it is set up with respect to

(for instance) ligatures, and even might depend on language or script.

The ones with the long names partly are tradition, but as we have a lot of them, in MkII

they actually serve a purpose. These verbose names are used in the so called encoding

vectors and are part of the utf expansion vectors. They are also used in labels so that

we have a good indication if what goes in there: remember that in those times editors

often didn't show characters, unless the font for display had them, or the operating

system somehow provided them from another font. These verbose names are used for

latin, greek and cyrillic and for some other scripts and symbols. They take up quite a

bit of hash space and the format file.12

9.4 The LMTX approach

In the process of tagging all (public) macros in LMTX (which happened in 2020-2021)

I wondered if we should keep these one character macros, the references to special

characters and the verbose ones. When asked on the mailing list it became clear that

users still expect the short ones to be present, often just because old bibTEX files are

used that might need them. However, in MkIV and LMTX we load bibTEX files in a

way that turn these special character references into proper utf8 input so it makes a

weak argument. Anyway, although they could go, for now we keep them because users

expect them. However, in LMTX the implementation is somewhat different now, a bit

more efficient in terms of hash and memory, potentially a bit less efficient in runtime,

but no one will notice that.

A new command has been introduced, the very short \chr.

\chr {à} \chr {á} \chr {ä}

\chr {`a} \chr {'a} \chr {"a}

\chr {a acute} \chr {a grave} \chr {a umlaut}

\chr {aacute} \chr {agrave} \chr {aumlaut}

In the first line the composed character using two characters, a base and a so called

mark. Actually, one doesn't have to use \chr in that case because ConTEXt does already

collapse characters for you. The second line looks like the shortcuts \`, \' and \". The

third and fourth lines could eventually replace the more symbolic long names, if we feel

12 In MkII we have an abstract front-end with respect to encodings and also an abstract backend with respect

to supported drivers but both approaches no longer make sense today.



112

The LMTX approach

the need. Watch out: in Unicode input the marks come after.

à á ä

à á ä

á à a˘mła˘t

á à a˘mła˘t

Currently the repertoire is somewhat limited but it can be easily be extended. It all

depends on user needs (doing Greek and Cyrillic for instance). The reason why we

actually save code deep down is that the helpers for this have always been there.13

The \" commands are now just aliases tomore verbose and less hackery lookingmacros:

\withgrave à \` à

\withacute á \' á

\withcircumflex â \^ â

\withtilde ã \~ ã

\withmacron ā \= ā

\withbreve ĕ \u ĕ

\withdotaccent ċ \. ċ

\withdiaeresis ë \" ë

\withring ů \r ů

\withhungarumlaut ű \H ű

\withcaron ě \v ě

\withcedilla ȩ \c ȩ

\withogonek ę \k ę

Not all fonts have these special characters. Most natural is to have them available as

precomposed single glyphs, but it can be that they are just two shapes with the marks

anchored to the base. It can even be that the font somehow overlays them, assuming

(roughly) equal widths. The compose font feature in ConTEXt normally can handle most

well.

An occasional ugly rendering doesn't matter that much: better have something than

nothing. But when it's the main language (script) that needs them you'd better look for

a font that handles them. When in doubt, in ConTEXt you can enable checking:

command equivalent to

\checkmissingcharacters \enabletrackers[fonts.missing]

\removemissingcharacters \enabletrackers[fonts.missing=remove]

13 So if needed I can port this approach back to MkIV, but for now we keep it as is because we then have a

reference.



113

The LMTX approach

\replacemissingcharacters \enabletrackers[fonts.missing=replace]

\handlemissingcharacters \enabletrackers[fonts.missing={decompose,replace}]

The decompose variant will try to turn a composed character into its components so

that at least you get something. If that fails it will inject a replacement symbol that

stands out so that you can check it. The console also mentions missing glyphs. You

don't need to enable this by default14 but you might occasionally do it when you use a

font for the first time.

In LMTX this mechanism has been upgraded so that replacements follow the shape and

are actually real characters. The decomposition has not yet been ported back to MkIV.

The full list of commands can be queried when a tracing module is loaded:

\usemodule[s][characters-combinations]

\showcharactercombinations

We get this list:

acute U+00301 ́ \withacute

breve U+00306 ̆ \withbreve

caron U+0030C ̌ \withcaron

caron below U+0032C ̬ \withcaronbelow

cedilla U+00327 ̧ \withcedilla

circumflex U+00302 ̂ \withcircumflex

circumflex below U+0032D ̭ \withcircumflexbelow

comma below U+00327 ̧ \withcommabelow

diaeresis U+00308 ̈ \withdiaeresis

dieresis U+00308 ̈ \withdieresis

dot U+00307 ̇ \withdot

dot below U+00323 ̣ \withdotbelow

double acute U+0030B ̋ \withdoubleacute

double grave U+0030F ̏ \withdoublegrave

double vertical line U+0030E ̎ \withdoubleverticalline

grave U+00300 ̀ \withgrave

hook U+00309 ̉ \withhook

hook below U+1FA9D \withhookbelow

hungarumlaut U+0030B ̋ \withhungarumlaut

inverted breve U+00311 ̑ \withinvertedbreve

line U+00304 ̄ \withline

14 There is some overhead involved here.



114

Colofon

line below U+00331 ̱ \withlinebelow

macron U+00304 ̄ \withmacron

macron below U+00331 ̱ \withmacronbelow

middle dot U+000B7 · \withmiddledot

ogonek U+00328 ̨ \withogonek

overline U+00305 ̅

ring U+0030A ̊ \withring

ring below U+00325 ̥ \withringbelow

slash U+0002F / \withslash

stroke U+0002F / \withstroke

tilde U+00303 ̃ \withtilde

tilde below U+00330 ̰ \withtildebelow

vertical line U+0030D ̍ \withverticalline

Some combinations are special for ConTEXt because Unicode doesn't specify decompo

sition for all composed characters.

9.4 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



115

10 Scope



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

scope



116

Introduction

Contents

10.1 Introduction 116

10.2 Registers 116

10.3 Allocation 118

10.4 Files 121

10.1 Introduction

When I visited the file where register allocations are implemented I wondered to what

extend it made sense to limit allocation to global instances only. This chapter deals with

this phenomena.

10.2 Registers

In TEX definitions can be local or global. Most assignments are local within a group.

Registers and definitions can be assigned global by using the \global prefix. There

are also some properties that are global by design, like \prevdepth. A mixed breed are

boxes. When you tweak its dimensions you actually tweak the current box, which can

be an outer level. Compare:

\scratchcounter = 1

here the counter has value 1

\begingroup

\scratchcounter = 2

here the counter has value 2

\endgroup

here the counter has value 1

with:

\setbox\scratchbox=\hbox{}

here the box has zero width

\begingroup

\wd\scratchbox=10pt

here the box is 10pt wide

\endgroup

here the box is 10pt wide

It all makes sense so a remark like “Assignments to box dimensions are always global”



117

Registers

are sort of confusing. Just look at this:

\setbox\scratchbox=\hbox to 20pt{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\setbox\scratchbox=\hbox{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\wd\scratchbox=15pt

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide

here the box is 0.0pt wide

here the box is 15.0pt wide

here the box is 15.0pt wide

here the box is 20.0pt wide

If you don't think about it, what happens is what you expect. Now watch the next

variant:

The \global is only effective for the current box. It is good to realize that when we talk

registers, the box register behaves just like any other register but the manipulations

happen to the current one.

\setbox\scratchbox=\hbox to 20pt{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\setbox\scratchbox=\hbox{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\global\wd\scratchbox=15pt

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide



118

Allocation

here the box is 0.0pt wide

here the box is 15.0pt wide

here the box is 15.0pt wide

here the box is 20.0pt wide

\scratchdimen=20pt

here the dimension is \the\scratchdimen\par

\begingroup

\scratchdimen=0pt

here the dimension is \the\scratchdimen\par

\begingroup

\global\scratchdimen=15pt

here the dimension is \the\scratchdimen\par

\endgroup

here the dimension is \the\scratchdimen\par

\endgroup

here the dimension is \the\scratchdimen\par

here the dimension is 20.0pt

here the dimension is 0.0pt

here the dimension is 15.0pt

here the dimension is 15.0pt

here the dimension is 15.0pt

10.3 Allocation

The plain TEX format has set some standards and one of them is that registers are

allocated with \new... commands. So we can say:

\newcount\mycounta

\newdimen\mydimena

These commands take a register from the pool and relate the given name to that entry.

In ConTEXt we have a bunch of predefined scratch registers for general use, like:

scratchcounter : \meaningfull\scratchcounter

scratchcounterone : \meaningfull\scratchcounterone

scratchcountertwo : \meaningfull\scratchcountertwo

scratchdimen : \meaningfull\scratchdimen

scratchdimenone : \meaningfull\scratchdimenone

scratchdimentwo : \meaningfull\scratchdimentwo



119

Allocation

The meaning reveals what these are:

scratchcounter : permanent \count257

scratchcounterone : permanent \count260

scratchcountertwo : permanent \count261

scratchdimen : permanent \dimen257

scratchdimenone : permanent \dimen260

scratchdimentwo : permanent \dimen261

You can use the numbers directly but that is a bad idea because they can clash! In

the original TEX engine there are only 256 registers and some are used by the engine

and the core of a macro package itself, so that leaves a little amount for users. The

𝜀-TEX extension lifted that limitation and bumped to 32K and LuaTEX upped that to

64K. One could go higher but what makes sense? These registers are taking part of

the fixed memory slots because that makes nested (grouped) usage efficient and access

fast. The number you see above is deduced from the so called command code (here

indicated by \count) and an index encoded in the same token. So, \scratchcounter

takes a single token contrary to the verbose \count257 that takes four tokens where

the number gets parsed every time it is needed. But those are details that a user can

forget.

As mentioned, commands like \newcount \foo create a global control sequence \foo

referencing a counter. You can locally redefine that control sequence unless in LuaMetaTEX

you have so called overload mode enabled. You can do local or global assignments to

these registers.

\scratchcounter = 123

\begingroup

\scratchcounter = 456

\begingroup

\global\scratchcounter = 789

\endgroup

\endgroup

And in both cases count register 257 is set. When an assignment is global, all current

values to that register get the same value. Normally this is all quite transparent: you

get what you ask for. However the drawback is that as a user you cannot know what

variables are already defined, which means that this will fail (that is: it will issue a

message):

\newcount\scratchcounter



120

Allocation

as will the second line in:

\newcount\myscratchcounter

\newcount\myscratchcounter

In ConTEXt the scratch registers are visible but there are lots of internally used ones

are protected from the user by more obscure names. So what if you want to use your

own register names without ConTEXt barking to you about not being able to define it.

This is why in LMTX (and maybe some day in MkIV) we now have local definitions:

\begingroup

\newlocaldimen\mydimena \mydimena1\onepoint

\newlocaldimen\mydimenb \mydimenb2\onepoint

(\the\mydimena,\the\mydimenb)

\begingroup

\newlocaldimen\mydimena \mydimena3\onepoint

\newlocaldimen\mydimenb \mydimenb4\onepoint

\newlocaldimen\mydimenc \mydimenc5\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc)

\begingroup

\newlocaldimen\mydimena \mydimena6\onepoint

\newlocaldimen\mydimenb \mydimenb7\onepoint

(\the\mydimena,\the\mydimenb)

\endgroup

\newlocaldimen\mydimend \mydimend8\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc,\the\mydimend)

\endgroup

(\the\mydimena,\the\mydimenb)

\endgroup

The allocated registers get zero values but you can of course set them to any value that

fits their nature:

(1.0pt,2.0pt)

(3.0pt,4.0pt,5.0pt)

(6.0pt,7.0pt)

(3.0pt,4.0pt,5.0pt,8.0pt)

(1.0pt,2.0pt)

You can also use the next variant where you also pass the initial value:

\begingroup



121

Files

\setnewlocaldimen\mydimena 1\onepoint

\setnewlocaldimen\mydimenb 2\onepoint

(\the\mydimena,\the\mydimenb)

\begingroup

\setnewlocaldimen\mydimena 3\onepoint

\setnewlocaldimen\mydimenb 4\onepoint

\setnewlocaldimen\mydimenc 5\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc)

\begingroup

\setnewlocaldimen\mydimena 6\onepoint

\setnewlocaldimen\mydimenb 7\onepoint

(\the\mydimena,\the\mydimenb)

\endgroup

\setnewlocaldimen\mydimend 8\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc,\the\mydimend)

\endgroup

(\the\mydimena,\the\mydimenb)

\endgroup

So, again we get:

(1.0pt,2.0pt)

(3.0pt,4.0pt,5.0pt)

(6.0pt,7.0pt)

(3.0pt,4.0pt,5.0pt,8.0pt)

(1.0pt,2.0pt)

When used in the body of the macro there is of course a little overhead involved in the

repetitive allocation but normally that can be neglected.

10.4 Files

When adding these new allocators I also wondered about the read and write allocators.

We don't use them in ConTEXt but maybe users like them, so let's give an example and

see what more demands they have:

\integerdef\StartHere\numexpr\inputlineno+2\relax

\starthiding

SOME LINE 1

SOME LINE 2

SOME LINE 3



122

Files

SOME LINE 4

\stophiding

\integerdef\StopHere\numexpr\inputlineno-2\relax

\begingroup

\newlocalread\myreada

\immediate\openin\myreada {lowlevel-scope.tex}

\dostepwiserecurse{\StopHere}{\StartHere}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\blank

\dostepwiserecurse{\StartHere}{\StopHere}{1}{

\read \myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\immediate\closein\myreada

\endgroup

Here, instead of hard coded line numbers we used the stored values. The optional line

keyword is a LMTX speciality.

281 : SOME LINE 4

280 : SOME LINE 3

279 : SOME LINE 2

278 : SOME LINE 1

278 : SOME LINE 1

279 : SOME LINE 2

280 : SOME LINE 3

281 : SOME LINE 4

Actually an application can be found in a small (demonstration) module:

\usemodule[system-readers]

This provides the code for doing this:

\startmarkedlines[test]

SOME LINE 1

SOME LINE 2

SOME LINE 3

\stopmarkedlines



123

Colofon

\begingroup

\newlocalread\myreada

\immediate\openin\myreada {\markedfilename{test}}

\dostepwiserecurse{\lastmarkedline{test}}{\firstmarkedline{test}}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\immediate\closein\myreada

\endgroup

As you see in these examples, we an locally define a read channel without getting a

message about it already being defined.

10.4 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



124

11 Paragraphs



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

paragraphs



125

Introduction

Contents

11.1 Introduction 125

11.2 Paragraphs 125

11.3 Properties 129

11.4 Wrapping up 131

11.5 Hanging 131

11.6 Shapes 132

11.7 Modes 150

11.8 Normalization 150

11.9 Dirty tricks 150

11.1 Introduction

This manual is mostly discussing a few low level wrappers around low level TEX features.

Its writing is triggered by an update to the MetaFun and LuaMetaFun manuals where

we mess a bit with shapes. It gave a good reason to also cover some more paragraph

related topics but it might take a while to complete. Remind me if you feel that takes

too much time.

Because paragraphs and their construction are rather central to TEX, you can imagine

that the engine exposes dealing with them. This happens via commands (primitives) but

only when it's robust. Then there are callbacks, and some provide detailed information

about what we're dealing with. However, intercepting node lists can already be hairy

and we do that a lot in ConTEXt. Intercepting and tweaking paragraph properties is

even more tricky, which is why we try to avoid that in the core. But . . . in the following

sections you will see that there are actually a couple of mechanism that do so. Often

new features like this are built in stepwise and enabled locally for a while and when

they seem okay they get enabled by default.15

11.2 Paragraphs

Before we demonstrate some trickery, let's see what a paragraph is. Normally a docu

ment source is formatted like this:

some text (line 1)

some text (line 2)

15 For this we have \enableexperiments which one can use in cont-loc.mkxl or cont-exp.mkxl, files that

are loaded runtime when on the system. When you use them, make sure they don't interfere; they are not

part of the updates, contrary to cont-new.mkxl.



126

Paragraphs

some more test (line 1)

some more test (line 2)

There are two blocks of text here separated by an empty line and they become two

paragraphs. Unless configured otherwise an empty line is an indication that we end a

paragraph. You can also explicitly do that:

some text (line 1)

some text (line 2)

\par

some more test (line 1)

some more test (line 2)

When TEX starts a paragraph, it actually also does something think of:

[\the\everypar]some text (line 1) some text (line 2) \par

[\the\everypar]some more test (line 1) some more test (line 2) \par

or more accurate:

[\the\everypar]some text some text \par

[\the\everypar]some more test some more test \par

because the end-of-line character has become a space. As mentioned, an empty line is

actually the end of a paragraph. But in LuaMetaTEX we can cheat a bit. If we have this:

line 1

line 2

We can do this (watch how we need to permit overloading a primitive when we have

enabled \overloadmode):

\pushoverloadmode

\def\linepar{\removeunwantedspaces !\ignorespaces}

\popoverloadmode

line 1

line 2

This comes out as:

line 1



127

Paragraphs

line 2

I admit that since it got added (as part of some cleanup halfway the overhaul of the

engine) I never saw a reason to use it, but it is a cheap feature. The \linepar primitive

is undefined (\undefined) by default so no user sees it anyway. Just don't use it unless

maybe for some pseudo database trickery (I considered using it for the database module

but it is not needed). In a similar fashion, just don't redefine \par: it's asking for

troubles and ‘not done’ in ConTEXt anyway.

Back to reality. In LuaTEX we get a node list that starts with a so called localpar node

and ends with a \parfillskip. The first node is prepended automatically. That list

travels through the system: hyphenation, applying font properties, break the effectively

one line into lines, wrap them and add them to a vertical list, etc. Each stage can be

intercepted via callbacks.

When the paragraph is broken into lines hanging indentation or a so called par shape

can be applied, and we will see more of that later, here we talk \par and show another

LuaMetaTEX trick:

\def\foo{{\bf test:} \ignorepars}

\foo

line

The macro typesets some text and then skips to the next paragraph:

test: line

Think of this primitive as being a more powerful variant of \ignorespaces. This leaves

one aspect: how do we start a paragraph. Technically we need to force TEX into so called

horizontal mode. When you look at plain TEX documents you will notice commands like

\noindent and \indent. In ConTEXt we have more high level variants, for instance we

have \noindentation.

A robust way to make sure that you get in horizontal mode is using \dontleavehmode

which is a wink to \leavevmode, a command that you should never use in ConTEXt, so

when you come from plain or LATEX, it's one of the commands you should wipe from your

memory.

When TEX starts with a paragraph the \everypar token list is expanded and again this

is a primitive you should not mess with yourself unless in very controlled situations.

If you change its content, you're on your own with respect to interferences and side

effects.



128

Paragraphs

One of the things that TEX does in injecting the indentation. Even when there is none, it

gets added, not as skip but as an empty horizontal box of a certain width. This is easier

on the engine when it constructs the paragraph from the one liner: starting with a skip

demands a bit more testing in the process (a nice trick so to say). However, in ConTEXt

we enable the LuaMetaTEX feature that does use a skip instead of a box. It's part of

the normalization that is discussed later. Instead of checking for a box with property

indent, we check for a skip with such property. This is often easier and cleaner.

A bit off topic is the fact that in traditional TEX empty lines or \par primitives can trigger

an error. This has to do with the fact that the program evolved in a time where paper

terminals were used and runtime could be excessive. So, in order to catch a possible

missing brace, a concept of \longmacros, permitting \par or equivalents in arguments,

was introduced as well as not permitting them in for instance display math. In ConTEXt

MkII most macros that could be sensitive for this were defined as \long so that users

never had to bother about it and probably were not even aware of it. Right from the

start in LuaTEX these error-triggers could be disabled which of course we enable in

ConTEXt and in LuaMetaTEX these features have been removed altogether. I don't think

users will complain about this.

If you want to enforce a newline but not a new paragraph you can use the \crlf com

mand. When used on its own it will produce an empty line. Don't use this to create

whitespace between lines.

If you want to do something after so called par tokens are seen you can do this:

\def\foo{{\bf >>>> }}

\expandafterpars\foo

this is a new paragraph ...

\expandafterpars\foo

\par\par\par\par

this is a new paragraph ...

This not to be confused with \everyparwhich is a token list that TEX itself injects before

each paragraph (also nested ones).

>>>> this is a new paragraph ...

>>>> this is a new paragraph ...

This is typically a primitive that will only be used in macros. You can actually program

it using macros: pickup a token, check and push it back when it's not a par equivalent

token. The primitive is is just nicer (and easier on the log when tracing is enabled).



129

Properties

11.3 Properties

A paragraph is just a collection of lines that result from one input line that got broken.

This process of breaking into lines is influenced by quite some parameters. In traditional

TEX and also in LuaMetaTEX by default the values that are in effect when the end of the

paragraph is met are used. So, when you change them in a group and then ends the

paragraph after the group, the values you've set in the group are not used.

However, in LuaMetaTEX we can optionally store them with the paragraph. When that

happens the values current at the start are frozen. You can still overload them but that

has to be done explicitly then. The advantage is that grouping no longer interferes with

the line break algorithm. The magic primitive is \snapshotpar which takes a number

made from categories mentioned below:

variable category code

\hsize hsize 0x01

\leftskip skip 0x02

\rightskip skip 0x02

\hangindent hang 0x04

\hangafter hang 0x04

\parindent indent 0x08

\parfillleftskip par fill 0x10

\parfillrightskip par fill 0x10

\adjustspacing adjust 0x20

\adjustspacingstep adjust 0x20

\adjustspacingshrink adjust 0x20

\adjustspacingstretch adjust 0x20

\protrudechars protrude 0x40

\pretolerance tolerance 0x80

\tolerance tolerance 0x80

\emergencystretch stretch 0x100

\looseness looseness 0x200

\lastlinefit last line 0x400

\linepenalty line penalty 0x800

\interlinepenalty line penalty 0x800

\interlinepenalties line penalty 0x800

\clubpenalty club penalty 0x1000

\clubpenalties club penalty 0x1000

\widowpenalty widow penalty 0x2000

\widowpenalties widow penalty 0x2000

\displaywidowpenalty display penalty 0x4000



130

Properties

\displaywidowpenalties display penalty 0x4000

\brokenpenalty broken penalty 0x8000

\adjdemerits demerits 0x10000

\doublehyphendemerits demerits 0x10000

\finalhyphendemerits demerits 0x10000

\parshape shape 0x20000

\baselineskip line 0x40000

\lineskip line 0x40000

\lineskiplimit line 0x40000

\hyphenationmode hyphenation 0x80000

As you can see here, there are more paragraph related parameters than in for instance

pdfTEX and LuaTEX and these are (to be) explained in the LuaMetaTEX manual. You

can imagine that keeping this around with the paragraph adds some extra overhead

to the machinery but most users won't notice that because is is compensated by gains

elsewhere.

This is pretty low level and there are a bunch of helpers that support this but these are

not really user level macros. As with everything TEX you can mess around as much as

you like, and the code gives plenty of examples but when you do this, you're on your

own because it can interfere with ConTEXt core functionality.

In LMTX taking these snapshots is turned on by default and because it thereby fun

damentally influences the par builder, users can run into compatibility issues but in

practice there has been no complaints (and this feature has been in use quite a while

before this document was written). One reason for users not noticing is that one of the

big benefits is probably handled by tricks mentioned on the mailing list. Imagine that

you have this:

{\bf watch out:} here is some text

In this small example the result will be as expected. But what if something magic with

the start of a paragraph is done? Like this:

\placefigure[left]{A cow!}{\externalfigure[cow.pdf]}

{\bf watch out:} here is some text ... of course much more is needed to

get a flow around the figure!

The figure will hang at the left side of the paragraph but it is put there when the text

starts and that happens inside the bold group. It means that the properties we set in

order to get the shape around the figure are lost as soon as we're at ‘here is some

text’ and definitely is wrong when the paragraph ends and the par builder has to use



131

Wrapping up

them to get the shape right. We get text overlapping the figure. A trick to overcome

this is:

\dontleavehmode {\bf watch out:} here is some text ... of course much

more is needed to get a flow around the figure!

where the first macro makes sure we already start a paragraph before the group is

entered (using a \strut also works). It's not nice and I bet users have been bitten by

this and by now know the tricks. But, with snapshots such fuzzy hacks are not needed

any more! The same is true with this:

{\leftskip 1em some text \par}

where we had to explicitly end the paragraph inside the group in order to retain the

skip. I suppose that users normally use the high level environments so they never had

to worry about this. It's also why users probably won't notice that this new mechanism

has been active for a while. Actually, when you now change a parameter inside the para

graph its new value will not be applied (unless you prefix it with \frozen or snapshot

it) but no one did that anyway.

11.4 Wrapping up

In ConTEXt LMTX we have a mechanism to exercise macros (or content) before a para

graph ends. This is implemented using the \wrapuppar primitive. The to be wrapped

up material is bound to the current paragraph which in order to get this done has to be

started when this primitive is used.

Although the high level interface has been around for a while it still needs a bit more

testing (read: use cases are needed). In the few cases where we already use it applica

tion can be different because again it relates to snapshots. This because in the past we

had to use tricks that also influenced the user interface of some macros (which made

them less natural as one would expect). So the question is: where do we apply it in old

mechanisms and where not.

todo: accumulation, interference, where applied, limitations

11.5 Hanging

There are two mechanisms for getting a specific paragraph shape: rectangular hang

ing and arbitrary shapes. Both mechanisms work top-down. The first mechanism



132

Shapes

uses a combination of \hangafter and \hangindent, and the second one depends on

\parshape. In this section we discuss the rectangular one.

\hangafter 4 \hangindent 4cm \samplefile{tufte} \page

\hangafter -4 \hangindent 4cm \samplefile{tufte} \page

\hangafter 4 \hangindent -4cm \samplefile{tufte} \page

\hangafter -4 \hangindent -4cm \samplefile{tufte} \page

As you can see in figure 11.1, the four cases are driven by the sign of the values. If

you want to hang into the margin you need to use different tricks, like messing with the

\leftskip, \rightskip or \parindent parameters (which then of course can interfere

with other mechanisms uses at the same time).

11.6 Shapes

In ConTEXt we don't use \parshape a lot. It is used in for instance side floats but even

there not in all cases. It's more meant for special applications. This means that in

MkII and MkIV we don't have some high level interface. However, when MetaFun got

upgraded to LuaMetaFun, and themanual also needed an update, one of the examples in

that manual that used shapes also got done differently (read: nicer). And that triggered

the arrival of a new low level shape mechanism.

One important property of the \parshape mechanism is that it works per paragraph.

You define a shape in terms of a left margin and width of a line. The shape has a fixed

number of such pairs and when there is more content, the last one is used for the rest

of the lines. When the paragraph is finished, the shape is forgotten.16

The high level interface is a follow up on the example in the MetaFun manual and uses

shapes that carry over to the next paragraph. In addition we can cycle over a shape. In

this interface shapes are defined using keyword. Here are some examples:

\startparagraphshape[test]

left 1mm right 1mm

left 5mm right 5mm

\stopparagraphshape

This shape has only two entries so the first line will have a 1mmmargin while later lines

will get 5mm margins. This translates into a \parshape like:

\parshape 2
16 Not discussed here is a variant that might end up in LuaMetaTEX that works with the progression, i.e. takes

the height of the content so far into account. This is somewhat tricky because for that to work vertical skips

need to be frozen, which is no real big deal but has to be done careful in the code.



133

Shapes

1

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmonize,
synthesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog,
classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish,

screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff
and separate the sheep from the goats.

2

We thrive in information--thick worlds because of our mar
velous and everyday capacity to select, edit, single out, struc
ture, highlight, group, pair, merge, harmonize, synthesize, fo
cus, organize, condense, reduce, boil down, choose, categorize,

catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, distin
guish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, item
ize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.

\hangafter +4

\hangindent +4cm

\hangafter -4

\hangindent +4cm

3

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmonize,
synthesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog,
classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish,
screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff
and separate the sheep from the goats.

4

We thrive in information--thick worlds because of our mar
velous and everyday capacity to select, edit, single out, struc
ture, highlight, group, pair, merge, harmonize, synthesize, fo
cus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, distin
guish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, item
ize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.

\hangafter +4

\hangindent -4cm

\hangafter -4

\hangindent -4cm

Figure 11.1 Hanging indentation



134

Shapes

1mm \dimexpr\hsize-1mm\relax

5mm \dimexpr\hsize-5mm\relax

Watch the number 2: it tells how many specification lines follow. As you see, we need

to calculate the width.

\startparagraphshape[test]

left 1mm right 1mm

left 5mm right 5mm

repeat

\stopparagraphshape

This variant will alternate between 1mm and 5mm margins. The repeating feature is

translated as follows. Maybe at some point I will introduce a few more options.

\parshape 2 options 1

1mm \dimexpr\hsize-1mm\relax

5mm \dimexpr\hsize-5mm\relax

A shape can have some repetition, and we can save keystrokes by copying the last entry.

The resulting \parshape becomes rather long.

\startparagraphshape[test]

left 1mm right 1mm

left 2mm right 2mm

left 3mm right 3mm

copy 8

left 4mm right 4mm

left 5mm right 5mm

left 5mm hsize 10cm

\stopparagraphshape

Also watch the hsize keyword: we don't calculate the hsize from the left and right

values but explicitly set it.

\startparagraphshape[test]

left 1mm right 1mm

right 3mm

left 5mm right 5mm

repeat

\stopparagraphshape



135

Shapes

When a right keywords comes first the left is assumed to be zero. In the examples

that follow we will use a couple of definitions:

\startparagraphshape[test]

both 1mm both 2mm both 3mm both 4mm both 5mm both 6mm

both 7mm both 6mm both 5mm both 4mm both 3mm both 2mm

\stopparagraphshape

\startparagraphshape[test-repeat]

both 1mm both 2mm both 3mm both 4mm both 5mm both 6mm

both 7mm both 6mm both 5mm both 4mm both 3mm both 2mm

repeat

\stopparagraphshape

The last one could also be defines as:

\startparagraphshape[test-repeat]

\rawparagraphshape{test} repeat

\stopparagraphshape

In the previous code we already introduced the repeat option. This will make the shape

repeat at the engine level when the shape runs out of specified lines. In the application

of a shape definition we can specify a method to be used and that determine if the

next paragraph will start where we left off and discard afterwards (shift) or that we

move the discarded lines up front so that we never run out of lines (cycle). It sounds

complicated but just keep in mind that repeat is part of the \parshape and act within

a paragraph while shift and cycle are applied when a new paragraph is started.

In figure 11.2 you see the following applied:

\startshapedparagraph[list=test]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

\startshapedparagraph[list=test-repeat]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

In figure 11.3 we use this instead:

\startshapedparagraph[list=test,method=shift]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph



136

Shapes

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.

discard, finite shape, page 1 discard, finite shape, page 2

1

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.

discard, repeat in shape, page 1 discard, repeat in shape, page 2

Figure 11.2 Discarded shaping



137

Shapes

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and every
day capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose, cat
egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.

shift, finite shape, page 1 shift, finite shape, page 2

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and every
day capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose, cate
gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

2

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.
We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate, dis
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re
fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats.

shift, repeat in shape, page 1 shift, repeat in shape, page 2

Figure 11.3 Shifted shaping



138

Shapes

Finally, in figure 11.4 we use:

\startshapedparagraph[list=test,method=cycle]

\dorecurse{8}{\showparagraphshape\samplefile{tufte} \par}

\stopshapedparagraph

These examples are probably too small to see the details but you can run them yourself

or zoom in on the details. In the margin we show the values used. Here is a simple

example of (non) poetry. There are other environments that can be used instead but

this makes a good example anyway.

\startparagraphshape[test]

left 0em right 0em

left 1em right 0em

repeat

\stopparagraphshape

\startshapedparagraph[list=test,method=cycle]

verse line 1.1\crlf verse line 2.1\crlf

verse line 3.1\crlf verse line 4.1\par

verse line 1.2\crlf verse line 2.2\crlf

verse line 3.2\crlf verse line 4.2\crlf

verse line 5.2\crlf verse line 6.2\par

\stopshapedparagraph

verse line 1.1

verse line 2.1

verse line 3.1

verse line 4.1

verse line 1.2

verse line 2.2

verse line 3.2

verse line 4.2

verse line 5.2

verse line 6.2

Because the idea for this feature originates in MetaFun, we will now kick in some Meta

Post. The following code creates a shape for a circle. We use a 2mm offset here:

\startuseMPgraphic{circle}

path p ; p := fullcircle scaled TextWidth ;

build_parshape(p,



139

Shapes

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har
monize, synthesize, focus, organize, condense, reduce, boil down, choose, catego
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

We thrive in information--thick worlds because of our marvelous and every
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,

2

lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har
monize, synthesize, focus, organize, condense, reduce, boil down, choose, catego
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

We thrive in information--thick worlds because of our marvelous and every
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

cycle, finite shape, page 1 cycle, finite shape, page 2

1

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har
monize, synthesize, focus, organize, condense, reduce, boil down, choose, catego
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

We thrive in information--thick worlds because of our marvelous and every
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

We thrive in information--thick worlds because of our marvelous and everyday ca
pacity to select, edit, single out, structure, highlight, group, pair, merge, harmo
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,

2

lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har
monize, synthesize, focus, organize, condense, reduce, boil down, choose, catego
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discriminate,
distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,
lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline,
summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from
the chaff and separate the sheep from the goats.

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

We thrive in information--thick worlds because of our marvelous and every
day capacity to select, edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into, idealize,
isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus
ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

11.38109 404.02525

14.22636 398.33470

17.07164 392.64415

19.91692 386.95360

17.07164 392.64415

14.22636 398.33470

11.38109 404.02525

8.53581 409.71581

5.69054 415.40636

2.84526 421.09691

5.69054 415.40636

8.53581 409.71581

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

cycle, repeat in shape, page 1 cycle, repeat in shape, page 2

Figure 11.4 Cycled shaping



140

Shapes

2mm, 0, 0,

LineHeight, StrutHeight, StrutDepth, StrutHeight

) ;

\stopuseMPgraphic

We plug this into the already described macros:

\startshapedparagraph[mp=circle]%

\setupalign[verytolerant,stretch,last]%

\samplefile{tufte}

\samplefile{tufte}

\stopshapedparagraph

And get ourself a circular shape. Watch out, at this moment the shape environment does

not add grouping so when as in this case you change the alignment it can influence the

document.

We thrive in information--thick

worlds because of our marvelous and every

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat

alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats. We thrive in information--

thick worlds because of our marvelous and everyday capacity to select, edit, single

out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,

condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan,

look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort,

integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus

ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats.

Assuming that the shape definition above is in a buffer we can do this:

\startshapedparagraph[mp=circle]%

\setupalign[verytolerant,stretch,last]%

\samplefile{tufte}



141

Shapes

\samplefile{tufte}

\stopshapedparagraph

The result is shown in figure 11.5. Because all action happens in the framed environ

ment, we can also use this definition:

\startuseMPgraphic{circle}

path p ; p := fullcircle scaled \the\dimexpr\framedwidth+\framedoffset

*2\relax ;

build_parshape(p,

\framedoffset, 0, 0,

LineHeight, StrutHeight, StrutDepth, StrutHeight

) ;

draw p ;

\stopuseMPgraphic

We thrive in information--thick

worlds because of our marvelous and every

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat

alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats. We thrive in information--

thick worlds because of our marvelous and everyday capacity to select, edit, single

out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,

condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan,

look into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort,

integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approximate, clus

ter, aggregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats.

Figure 11.5 A framed circular shape

A mechanism like this is often never completely automatic in the sense that you need to

keep an eye on the results. Depending on user demands more features can be added.

With weird shapes you might want to set up the alignment to be tolerant and have



142

Shapes

some stretch.

The interface described in theMetaFunmanual is pretty old, the time stamp of the origi

nal code ismid 2000, but the principles didn't change. The examples in meta-imp-txt.mkxl

can now be written as:

\startshapetext[test 1,test 2,test 3,test 4]

\setupalign[verytolerant,stretch,normal]%

\samplefile{douglas} % Douglas R. Hofstadter

\stopshapetext

\startcombination[2*2]

{\framed[offset=overlay,frame=off,background=test 1]{\getshapetext}}

{test 1}

{\framed[offset=overlay,frame=off,background=test 2]{\getshapetext}}

{test 2}

{\framed[offset=overlay,frame=off,background=test 3]{\getshapetext}}

{test 3}

{\framed[offset=overlay,frame=off,background=test 4]{\getshapetext}}

{test 4}

\stopcombination

In figure 11.6 we see the result. Watch how for two shapes we have enabled tracing. Of

course you need to tweak till all fits well but we're talking of special situations anyway.

Here is a bit more extreme example. Again we use a circle:

\startuseMPgraphic{circle}

lmt_parshape [

path = fullcircle scaled 136mm,

offset = 2mm,

bottomskip = - 1.5LineHeight,

] ;

\stopuseMPgraphic

But we output a longer text:

\startshapedparagraph[mp=circle,repeat=yes,method=cycle]%

\setupalign[verytolerant,stretch,last]\dontcomplain

{\darkred \samplefile{tufte}}\par

{\darkgreen \samplefile{tufte}}\par

{\darkblue \samplefile{tufte}}\par

{\darkcyan \samplefile{tufte}}\par



143

Shapes

Donald Knuth has

spent the past several

years working on a sys

tem allowing him to control

many aspects of the design of

his forthcoming books—from

the typesetting and lay

out down to the very

shapes of the

let

ters! Sel

dom has an au

thor had anything

remotely like this power

to control the final appear

ance of his or her work.

Knuth's TEX type

setting sys

tem has

be

test 1 test 2

come well-known and is

available in many coun

tries around the world.

By contrast, his Meta

Font system for design

ing families of type

faces has not become

as well known or as

available.

In his article “The Con

cept of a Meta-Font”,

Knuth sets forth for

the first time the

underlying philos

ophy of MetaFont,

as well as some of

its products. Not

only is the concept

exciting and clearly

well executed, but in

test 3 test 4

Figure 11.6

{\darkmagenta \samplefile{tufte}}\par

\stopshapedparagraph

We get a multi-page shape:

We thrive in information--thick

worlds because of our marvelous and every

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat

alog, classify, list, abstract, scan, look into, idealize, isolate, discrimi



144

Shapes

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, in

spect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggre

gate, outline, summarize, itemize, review, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday ca

pacity to select, edit, single out, structure, highlight, group, pair, merge, harmonize,

synthesize, focus, organize, condense, reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen,

pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip

into, flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,

synopsize, winnow the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and every

day capacity to select, edit, single out, structure, highlight, group, pair,

merge, harmonize, synthesize, focus, organize, condense, reduce, boil

down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeon

hole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster,

aggregate, outline, summarize, itemize, re

view, dip into, flip through, browse,

glance into, leaf

through, skim, refine, enumer

ate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the

goats.

We thrive in information--thick worlds because of our marvelous

and everyday capacity to select, edit, single out, structure, highlight,

group, pair, merge, harmonize, synthesize, focus, organize, condense, re

duce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over,

sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, average, approxi

mate, cluster, aggregate, outline, summarize, itemize, review, dip into, flip through,

browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow

the wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our marvelous and everyday capacity

to select, edit, single out, structure, highlight, group, pair, merge, harmonize, synthe



145

Shapes

size, focus, organize, condense, reduce, boil down, choose, categorize, catalog, classify,

list, abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pi

geonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip

into, flip through, browse, glance into, leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from the chaff and separate the sheep

from the goats.

Compare this with:

\startshapedparagraph[mp=circle,repeat=yes,method=cycle]%

\setupalign[verytolerant,stretch,last]\dontcomplain

{\darkred \samplefile{tufte}}

{\darkgreen \samplefile{tufte}}

{\darkblue \samplefile{tufte}}

{\darkcyan \samplefile{tufte}}

{\darkmagenta \samplefile{tufte}}

\stopshapedparagraph

Which gives:

We thrive in information--thick

worlds because of our marvelous and every

day capacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize, synthesize, focus,

organize, condense, reduce, boil down, choose, categorize, cat

alog, classify, list, abstract, scan, look into, idealize, isolate, discrim

inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,

inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag

gregate, outline, summarize, itemize, review, dip into, flip through, browse,

glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the

wheat from the chaff and separate the sheep from the goats. We thrive in in

formation--thick worlds because of our marvelous and everyday capacity to select,

edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, fo

cus, organize, condense, reduce, boil down, choose, categorize, catalog, classify, list,

abstract, scan, look into, idealize, isolate, discriminate, distinguish, screen, pigeon

hole, pick over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk, aver

age, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into,

flip through, browse, glance into, leaf through, skim, refine, enumerate, glean,

synopsize, winnow the wheat from the chaff and separate the sheep from the

goats. We thrive in information--thick worlds because of our marvelous and

everyday capacity to select, edit, single out, structure, highlight, group, pair,



146

Shapes

merge, harmonize, synthesize, focus, organize, condense, reduce, boil

down, choose, categorize, catalog, classify, list, abstract, scan, look

into, idealize, isolate, discriminate, distinguish, screen, pigeon

hole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster,

aggregate, outline, summarize, itemize, re

view, dip into, flip through, browse,

glance into, leaf

through, skim, refine, enumer

ate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from the

goats. We thrive in information--thick worlds because of

our marvelous and everyday capacity to select, edit, single out,

structure, highlight, group, pair, merge, harmonize, synthesize, fo

cus, organize, condense, reduce, boil down, choose, categorize, catalog,

classify, list, abstract, scan, look into, idealize, isolate, discriminate, distin

guish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summa

rize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim,

refine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate

the sheep from the goats. We thrive in information--thick worlds because of our mar

velous and everyday capacity to select, edit, single out, structure, highlight, group, pair,

merge, harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,

categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrimi

nate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter,

lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum

marize, itemize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from the chaff and

separate the sheep from the goats.

Here the bottomskip takes care of subtle rounding issues as well as discarding the last

line in the shape so that we get nicer continuation. There is no full automated solution

for all you can come up with.

Mixing a MetaPost specification into a regular one is also possible. The next example

demonstrates this as well as the option to remove some lines from a specification:

\startparagraphshape[test]

left 0em right 0em

left 1em right 0em

metapost {circle}



147

Shapes

delete 3

metapost {circle,circle,circle}

delete 7

metapost {circle}

repeat

\stopparagraphshape

You can combine a shape with narrowing a paragraph. Watch the absolute keyword in

the next code. The result is shown in figure 11.7.

\startuseMPgraphic{circle}

lmt_parshape [

path = fullcircle scaled TextWidth,

bottomskip = - 1.5LineHeight,

] ;

\stopuseMPgraphic

\startparagraphshape[test-1]

metapost {circle} repeat

\stopparagraphshape

\startparagraphshape[test-2]

absolute left metapost {circle} repeat

\stopparagraphshape

\startparagraphshape[test-3]

absolute right metapost {circle} repeat

\stopparagraphshape

\startparagraphshape[test-4]

absolute both metapost {circle} repeat

\stopparagraphshape

\showframe

\startnarrower[4*left,2*right]

\startshapedparagraph[list=test-1,repeat=yes,method=repeat]%

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-2,repeat=yes,method=repeat]%



148

Shapes

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-3,repeat=yes,method=repeat]%

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\page

\startshapedparagraph[list=test-4,repeat=yes,method=repeat]%

\setupalign[verytolerant,stretch,last]\dontcomplain

\dorecurse{3}{\samplefile{thuan}}

\stopshapedparagraph

\stopnarrower

The shape mechanism has a few more tricks but these are really meant for usage in

specific situations, where one knows what one deals with. The following examples are

visualized in figure 11.8.

\useMPlibrary[dum]

\usemodule[article-basics]

\startbuffer

\externalfigure[dummy][width=6cm]

\stopbuffer

\startshapedparagraph[text=\getbuffer]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,

hoffset=-2em]

\dorecurse{3}{\samplefile{ward}\par}



149

Shapes

1

Had our
solar system in

cluded two suns, the prob
lem would have involved three bod

ies (the two suns and each planet), and
chaos would have been immediately obvious.

Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets
would never have been able to percieve the slightest
harmony. Nor would it have occurred to them that the
universe might be ruled by laws and that it is up to man's
intellect to discover them. Besides, it is not at all obvi
ous that life and conscience could even emerge in such a
chaotic system. Had our solar system included two suns, the
problem would have involved three bodies (the two suns and
each planet), and chaos would have been immediately ob
vious. Planets would have had erratic and unpredictable
orbits, and creatures living on one of these planets would
never have been able to percieve the slightest harmony.
Nor would it have occurred to them that the uni
verse might be ruled by laws and that it is up to
man's intellect to discover them. Besides, it is
not at all obvious that life and conscience
could even emerge in such a chaotic
system. Had our solar system

included two suns, the
problem would
have in

volved three bod
ies (the two suns and each

planet), and chaos would have been
immediately obvious. Planets would have

had erratic and unpredictable orbits, and crea
tures living on one of these planets would never
have been able to percieve the slightest harmony. Nor
would it have occurred to them that the universe might
be ruled by laws and that it is up to man's intellect to
discover them. Besides, it is not at all obvious that life and
conscience could even emerge in such a chaotic system.

2

Had our solar system
included two suns, the problem

would have involved three bodies (the two
suns and each planet), and chaos would have been

immediately obvious. Planets would have had erratic
and unpredictable orbits, and creatures living on one of these

planets would never have been able to percieve the slightest har
mony. Nor would it have occurred to them that the universe might
be ruled by laws and that it is up to man's intellect to discover them.
Besides, it is not at all obvious that life and conscience could even emerge
in such a chaotic system. Had our solar system included two suns, the
problem would have involved three bodies (the two suns and each planet),
and chaos would have been immediately obvious. Planets would have had
erratic and unpredictable orbits, and creatures living on one of these planets
would never have been able to percieve the slightest harmony. Nor would it
have occurred to them that the universe might be ruled by laws and that
it is up to man's intellect to discover them. Besides, it is not at all obvi
ous that life and conscience could even emerge in such a chaotic system.
Had our solar system included two suns, the problem would have in
volved three bodies (the two suns and each planet), and chaos would
have been immediately obvious. Planets would have had erratic
and unpredictable orbits, and creatures living on one of these
planets would never have been able to percieve the slight
est harmony. Nor would it have occurred to them
that the universe might be ruled by laws and

that it is up to man's intellect to dis
cover them. Besides, it is not
at all obvious that life

and conscience could even emerge
in such a chaotic system.

test 1 test 2, left

3

Had our solar
system included two suns,

the problem would have involved
three bodies (the two suns and each planet),

and chaos would have been immediately obvious.
Planets would have had erratic and unpredictable or

bits, and creatures living on one of these planets would
never have been able to percieve the slightest harmony. Nor
would it have occurred to them that the universe might be ruled
by laws and that it is up to man's intellect to discover them. Be
sides, it is not at all obvious that life and conscience could even
emerge in such a chaotic system. Had our solar system included two
suns, the problem would have involved three bodies (the two suns and
each planet), and chaos would have been immediately obvious. Plan
ets would have had erratic and unpredictable orbits, and creatures
living on one of these planets would never have been able to percieve
the slightest harmony. Nor would it have occurred to them that the
universe might be ruled by laws and that it is up to man's intellect
to discover them. Besides, it is not at all obvious that life and
conscience could even emerge in such a chaotic system. Had
our solar system included two suns, the problem would have
involved three bodies (the two suns and each planet),
and chaos would have been immediately obvious.
Planets would have had erratic and unpre
dictable orbits, and creatures living on

one of these planets would never
have been able to per
cieve the slight

est harmony. Nor would it
have occurred to them that the uni

verse might be ruled by laws and that it is
up to man's intellect to discover them. Besides,

it is not at all obvious that life and conscience could
even emerge in such a chaotic system.

4

Had our solar system included
two suns, the problem would have involved

three bodies (the two suns and each planet), and
chaos would have been immediately obvious. Planets

would have had erratic and unpredictable orbits, and creatures
living on one of these planets would never have been able to per

cieve the slightest harmony. Nor would it have occurred to them that
the universe might be ruled by laws and that it is up to man's intellect to
discover them. Besides, it is not at all obvious that life and conscience could
even emerge in such a chaotic system. Had our solar system included two suns,
the problem would have involved three bodies (the two suns and each planet),
and chaos would have been immediately obvious. Planets would have had erratic
and unpredictable orbits, and creatures living on one of these planets would never
have been able to percieve the slightest harmony. Nor would it have occurred to
them that the universe might be ruled by laws and that it is up to man's intellect to
discover them. Besides, it is not at all obvious that life and conscience could even
emerge in such a chaotic system. Had our solar system included two suns, the
problem would have involved three bodies (the two suns and each planet), and
chaos would have been immediately obvious. Planets would have had erratic
and unpredictable orbits, and creatures living on one of these planets would
never have been able to percieve the slightest harmony. Nor would it
have occurred to them that the universe might be ruled by laws and
that it is up to man's intellect to discover them. Besides, it is not
at all obvious that life and conscience could even emerge in

such a chaotic system.

test 3, right test 4, both

Figure 11.7 Skip compensation



150

Modes

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,

voffset=-2ex,hoffset=-2em]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[text=\getbuffer,distance=1em,

voffset=-2ex,hoffset=-2em,lines=1]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

\page

\startshapedparagraph[width=4cm,lines=4]

\dorecurse{3}{\samplefile{ward}\par}

\stopshapedparagraph

11.7 Modes

todo: some of the side effects of so called modes

11.8 Normalization

todo: users don't need to bother about this but it might be interesting anyway

11.9 Dirty tricks

todo: explain example for combining paragraphs



151

Colofon

1

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-
age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-

age patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

2

state: unknown

The Earth, as a habitat for animal life, is in old
age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever
evolved or not. But our presence is like the effect
of an old-age patient who smokes many packs
of cigarettes per day—and we humans are the
cigarettes.
The Earth, as a habitat for animal life, is in old
age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever

evolved or not. But our presence is like the effect of an old-age patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

3

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day
—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-

age patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

4

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day
—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-

age patient who smokes many packs of cigarettes per day—and we humans are the
cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

5

state: unknown

The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day
—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per day

—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

6

The Earth, as a habitat for animal life, is in old age and has a
fatal illness. Several, in fact. It would be happening whether
humans had ever evolved or not. But our presence is like
the effect of an old-age patient who smokes many packs of
cigarettes per day—and we humans are the cigarettes.

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.
The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
in fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day—and we humans are the cigarettes.

Figure 11.8 Flow around something

11.9 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



152

12 Alignments



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

alignments



153

Introduction

Contents

12.1 Introduction 153

12.2 Between the lines 155

12.3 Pre-, inter- and post-tab skips 157

12.4 Cell widths 160

12.5 Plugins 161

12.6 Pitfalls and tricks 164

12.7 Remark 167

12.1 Introduction

TEX has a couple of subsystems and alignments is one of them. This mechanism is used

to construct tables or alike. Because alignments use low level primitives to set up and

construct a table, and because such a setup can be rather extensive, in most cases users

will rely on macros that hide this.

\halign {

\alignmark\hss \aligntab

\hss\alignmark\hss \aligntab

\hss\alignmark \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

That one doesn't look too complex and comes out as:

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

This is how the previous code comes out when we use one of the ConTEXt table mecha

nism.

\starttabulate[|l|c|r|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC \NR

\stoptabulate



154

Introduction

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

That one looks a bit different with respect to spaces, so let's go back to the low level

variant:

\halign {

\alignmark\hss \aligntab

\hss\alignmark\hss \aligntab

\hss\alignmark \cr

1.1\aligntab 2,2\aligntab 3=3\cr

11.11\aligntab 22,22\aligntab 33=33\cr

111.111\aligntab 222,222\aligntab 333=333\cr

}

Here we don't have spaces in the content part and therefore also no spaces in the result:

1.1 2,2 3=3

11.11 22,22 33=33

111.111222,222333=333

You can automate dealing with unwanted spacing:

\halign {

\ignorespaces\alignmark\unskip\hss \aligntab

\hss\ignorespaces\alignmark\unskip\hss \aligntab

\hss\ignorespaces\alignmark\unskip \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

We get:

1.1 2,2 3=3

11.11 22,22 33=33

111.111222,222333=333

By moving the space skipping and cleanup to the so called preamble we don't need to

deal with it in the content part. We can also deal with inter-column spacing there:

\halign {



155

Between the lines

\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr

1.1 \aligntab 2,2 \aligntab 3=3 \cr

11.11 \aligntab 22,22 \aligntab 33=33 \cr

111.111 \aligntab 222,222 \aligntab 333=333 \cr

}

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

If for the moment we forget about spanning columns (\span) and locally ignoring pre

amble entries (\omit) these basic commands are not that complex to deal with. Here

we use \alignmark but that is just a primitive that we use instead of # while \aligntab

is the same as &, but using the characters instead also assumes that they have the cat

code that relates to a parameter and alignment tab (and in ConTEXt that is not the case).

The TEXbook has plenty alignment examples so if you really want to learn about them,

consult that must-have-book.

12.2 Between the lines

The individual rows of a horizontal alignment are treated as lines. This means that, as

we see in the previous section, the interline spacing is okay. However, that also means

that when we mix the lines with rules, the normal TEX habits kick in. Take this:

\halign {

\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\alignmark\unskip \tabskip 0pt \cr

\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr

\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr

\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr

\noalign{\hrule}

}

The result doesn't look pretty and actually, when you see documents produced by TEX

using alignments you should not be surprised to notice rather ugly spacing. The user



156

Between the lines

(or the macropackage) should deal with that explicitly, and this is not always the case.

1.1 2,2 3=3
11.11 22,22 33=33
111.111 222,222 333=333

The solution is often easy:

\halign {

\ignorespaces\strut\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\strut\alignmark\unskip\hss \tabskip 1em \aligntab

\hss\ignorespaces\strut\alignmark\unskip \tabskip 0pt \cr

\noalign{\hrule}

1.1 \aligntab 2,2 \aligntab 3=3 \cr

\noalign{\hrule}

11.11 \aligntab 22,22 \aligntab 33=33 \cr

\noalign{\hrule}

111.111 \aligntab 222,222 \aligntab 333=333 \cr

\noalign{\hrule}

}

1.1 2,2 3=3

11.11 22,22 33=33

111.111 222,222 333=333

The user will not notice it but alignments put some pressure on the general TEX scan

ner. Actually, the scanner is either scanning an alignment or it expects regular text

(including math). When you look at the previous example you see \noalign. When the

preamble is read, TEX will pick up rows till it finds the final brace. Each row is added

to a temporary list and the \noalign will enter a mode where other stuff gets added to

that list. It all involves subtle look ahead but with minimal overhead. When the whole

alignment is collected a final pass over that list will package the cells and rows (lines)

in the appropriate way using information collected (like the maximum width of a cell

and width of the current cell. It will also deal with spanning cells then.

So let's summarize what happens:

1. scan the preamble that defines the cells (where the last one is repeatedwhen needed)

2. check for \cr, \noalign or a right brace; when a row is entered scan for cells in

parallel the preamble so that cell specifications can be applied (then start again)

3. package the preamble based on information with regards to the cells in a column

4. apply the preamble packaging information to the columns and also deal with pending

cell spans



157

Pre-, inter- and post-tab skips

5. flush the result to the current list

The second (repeated) step is complicated by the fact that the scanner has to look

ahead for a \noalign, \cr, \omit or \span and when doing that it has to expand what

comes. This can give side effects and often results in obscure error messages. When

for instance an \if is seen and expanded, the wrong branch can be entered. And when

you use protected macros embedded alignment commands are not seen at all. Also,

nesting \noalign is not permitted.

All these side effects are to be handled in a macro package when it wraps alignments

in a high level interface and ConTEXt does that for you. But because the code doesn't

always look pretty then, in LuaMetaTEX the alignment mechanism has been extended a

bit over time.

The first extension was to permit nested usage of \noalign. This has resulted of a little

reorganization of the code. A next extension showed up when overload protection was

introduced and extra prefixes were added. We can signal the scanner that a macro is

actually a \noalign variant:17

\noaligned\protected\def\InBetween{\noalign{...}}

This extension resulted in a second bit of reorganization (think of internal command

codes and such) but still the original processing of alignments was there.

A third overhaul of the code actually did lead to some adaptations in the way alignments

are constructed so let's move on to that.

12.3 Pre-, inter- and post-tab skips

The basic structure of a preamble and row is actually not that complex: it is a mix of

tab skip glue and cells (that are just boxes):

\tabskip 10pt

\halign {

\strut\alignmark\tabskip 12pt\aligntab

\strut\alignmark\tabskip 14pt\aligntab

\strut\alignmark\tabskip 16pt\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

17 A better prefix would have been \peekaligned because in the meantime other alignment primitives also

can use this property.



158

Pre-, inter- and post-tab skips

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

The tab skips are set in advance and apply to the next cell (or after the last one).

TB:10.000cellSP:3.4971.1TB:12.000cellSP:3.4971.2TB:14.000cellSP:3.4971.3TB:16.000

TB:10.000cellSP:3.4972.1TB:12.000cellSP:3.4972.2TB:14.000cellSP:3.4972.3TB:16.000

In the ConTEXt table mechanisms the value of \tabskip is zero in most cases. As in:

\tabskip 0pt

\halign {

\strut\alignmark\aligntab

\strut\alignmark\aligntab

\strut\alignmark\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

When these ships are zero, they still show up in the end:

TB:0.000cellSP:3.4971.1TB:0.000cellSP:3.4971.2TB:0.000cellSP:3.4971.3TB:0.000

TB:0.000cellSP:3.4972.1TB:0.000cellSP:3.4972.2TB:0.000cellSP:3.4972.3TB:0.000

Normally, in order to achieve certain effects there will be more align entries in the

preamble than cells in the table, for instance because you want vertical lines between

cells. When these are not used, you can get quite a bit of empty boxes and zero skips.



159

Pre-, inter- and post-tab skips

Now, of course this is seldom a problem, but when you have a test document where you

want to show font properties in a table and that font supports a script with some ten

thousand glyphs, you can imagine that it accumulates and in LuaTEX (and LuaMetaTEX)

nodes are larger so it is one of these cases where in ConTEXt we get messages on the

console that node memory is bumped.

After playing a bit with stripping zero tab skips I found that the code would not really

benefit from such a feature: lots of extra tests made if quite ugly. As a result a first

alternative was to just strip zero skips before an alignment got flushed. At least we're

then a bit leaner in the processes that come after it. This feature is now available as

one of the normalizer bits.

But, as we moved on, a more natural approach was to keep the skips in the preamble,

because that is where a guaranteed alternating skip/box is assumed. It also makes that

the original documentation is still valid. However, in the rows construction we can be

lean. This is driven by a keyword to \halign:

\tabskip 0pt

\halign noskips {

\strut\alignmark\aligntab

\strut\alignmark\aligntab

\strut\alignmark\cr

\noalign{\hrule}

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

\noalign{\hrule}

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

\noalign{\hrule}

}

No zero tab skips show up here:

cellSP:3.4971.1cellSP:3.4971.2cellSP:3.4971.3

cellSP:3.4972.1cellSP:3.4972.2cellSP:3.4972.3
When playing with all this the LuaMetaTEX engine also got a tracing option for align

ments. We already had one that showed some of the \noalign side effects, but showing



160

Cell widths

the preamble was not yet there. This is what \tracingalignments = 2 results in:

<preamble>

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

\alignrecord

..{\strut }

..<content>

..{\endtemplate }

\glue[ignored][...] 0.0pt

The ignored subtype is (currently) only used for these alignment tab skips and it trig

gers a check later on when the rows are constructed. The <content> is what get in

jected in the cell (represented by \alignmark). The pseudo primitives are internal and

not public.

12.4 Cell widths

Imagine this:

\halign {

x\hbox to 3cm{\strut \alignmark\hss}\aligntab

x\hbox to 3cm{\strut\hss\alignmark\hss}\aligntab

x\hbox to 3cm{\strut\hss\alignmark }\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

which renders as:



161

Plugins

xcell 1.1H__H__ x cell 1.2H__H__ x cell 1.3H__H__H__

xcell 2.1H__H__ x cell 2.2H__H__ x cell 2.3H__H__H____VH__H____VH__

A reason to have boxes here is that it enforces a cell width but that is done at the cost

of an extra wrapper. In LuaMetaTEX the hlist nodes are rather large because we have

more options than in original TEX, for instance offsets and orientation. So, in a table with

10K rows of 4 cells yet get 40K extra hlist nodes allocated. Now, one can argue that

we have plenty of memory but being lazy is not really a sign of proper programming.

\halign {

x\tabsize 3cm\strut \alignmark\hss\aligntab

x\tabsize 3cm\strut\hss\alignmark\aligntab

x\tabsize 3cm\strut\hss\alignmark\hss\cr

cell 1.1\aligntab cell 1.2\aligntab cell 1.3\cr

cell 2.1\aligntab cell 2.2\aligntab cell 2.3\cr

}

If you look carefully you will see that this time we don't have the embedded boxes:

xcell 1.1H__ x cell 1.2H__ x cell 1.3H__H__

xcell 2.1H__ x cell 2.2H__ x cell 2.3H__H____VH__H____VH__

So, both the sparse skip and new \tabsize feature help to make these extreme tables

(spanning hundreds of pages) not consume irrelevant memory and also make that later

on we don't have to consult useless nodes.

12.5 Plugins

Yet another LuaMetaTEX extension is a callback that kicks in between the preamble pre

roll and finalizing the alignment. Initially as test and demonstration a basic character

alignment feature was written but that works so well that in some places it can replace

(or compliment) the already existing features in the ConTEXt table mechanisms.

\starttabulate[|lG{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a 0xFF \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC b 0xFFF \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC c 0xFFFF \NC \NR

\stoptabulate



162

Plugins

The tabulate mechanism in ConTEXt is rather old and stable and it is the preferred way

to deal with tabular content in the text flow. However, adding the G specifier (as variant

of the g one) could be done without interference or drop in performance. This new G

specifier tells the tabulate mechanism that in that column the given character is used

to vertically align the content that has this character.

1.1 2,2 3=3 a 0xFF

11.11 22,22 33=33 b 0xFFF

111.111 222,222 333=333 c 0xFFFF

Let's make clear that this is not an engine feature but a ConTEXt one. It is however

made easy by this callback mechanism. We can of course use this feature with the low

level alignment primitives, assuming that you tell the machinery that the plugin is to be

kicked in.

\halign noskips \alignmentcharactertrigger \bgroup

\tabskip2em

\setalignmentcharacter.\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter,\ignorespaces\alignmark\unskip\hss \aligntab

\hss\setalignmentcharacter=\ignorespaces\alignmark\unskip \aligntab

\hss \ignorespaces\alignmark\unskip\hss \cr

1.1 \aligntab 2,2 \aligntab 3=3 \aligntab \setalignmentcharacter{.}\relax 4.4\cr

11.11 \aligntab 22,22 \aligntab 33=33 \aligntab \setalignmentcharacter{,}\relax 44,44\cr

111.111 \aligntab 222,222 \aligntab 333=333 \aligntab \setalignmentcharacter{!}\relax 444!444\cr

x \aligntab x \aligntab x \aligntab \setalignmentcharacter{/}\relax /\cr

.1 \aligntab ,2 \aligntab =3 \aligntab \setalignmentcharacter{?}\relax ?4\cr

.111 \aligntab ,222 \aligntab =333 \aligntab \setalignmentcharacter{=}\relax 44=444\cr

\egroup

This rather verbose setup renders as:

1.1 2,2 3=3 4 . 4

11.11 22,22 33=33 44 , 44

111.111 222,222 333=333 444 ! 444

x x x /

.1 ,2 =3 ?4

.111 ,222 =333 44=444

Using a high level interface makes sense but local control over such alignment too, so

here follow some more examples. Here we use different alignment characters:

\starttabulate[|lG{.}|cG{,}|rG{=}|cG{x}|]

\NC 1.1 \NC 2,2 \NC 3=3 \NC a 0xFF \NC \NR

\NC 11.11 \NC 22,22 \NC 33=33 \NC b 0xFFF \NC \NR

\NC 111.111 \NC 222,222 \NC 333=333 \NC c 0xFFFF \NC \NR

\stoptabulate



163

Plugins

1.1 2,2 3=3 a 0xFF

11.11 22,22 33=33 b 0xFFF

111.111 222,222 333=333 c 0xFFFF

In this example we specify the characters in the cells. We still need to add a specifier

in the preamble definition because that will trigger the plugin.

\starttabulate[|lG{}|lG{}|]

\NC \showglyphs \setalignmentcharacter{.}1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \showglyphs \setalignmentcharacter{,}11,11 \NC \setalignmentcharacter{,}11,11 \NC\NR

\NC \showglyphs \setalignmentcharacter{=}111=111 \NC \setalignmentcharacter{=}111=111 \NC\NR

\stoptabulate

1 . 1 1 . 1

11 , 11 11 , 11

111=111 111=111

You can mix these approaches:

\starttabulate[|lG{.}|lG{}|]

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC 11.11 \NC \setalignmentcharacter{.}11.11 \NC\NR

\NC 111.111 \NC \setalignmentcharacter{.}111.111 \NC\NR

\stoptabulate

1.1 1.1

11.11 11.11

111.111 111.111

Here the already present alignment feature, that at some point in tabulate might use

this new feature, is meant for numbers, but here we can go wild with words, although

of course you need to keep in mind that we deal with typeset text, so there may be no

match.

\starttabulate[|lG{.}|rG{.}|]

\NC foo.bar \NC foo.bar \NC \NR

\NC oo.ba \NC oo.ba \NC \NR

\NC o.b \NC o.b \NC \NR

\stoptabulate

foo.bar foo.bar

oo.ba oo.ba

o.b o.b



164

Pitfalls and tricks

This feature will only be used in know situations and those seldom involve advanced

typesetting. However, the following does work:18

\starttabulate[|cG{d}|]

\NC \smallcaps abcdefgh \NC \NR

\NC xdy \NC \NR

\NC \sl xdy \NC \NR

\NC \tttf xdy \NC \NR

\NC \tfd d \NC \NR

\stoptabulate

abc d efgh

x d y

x d y

x d y

d
As always with such mechanisms, the question is “Where to stop?” But it makes for nice

demos and as long as little code is needed it doesn't hurt.

12.6 Pitfalls and tricks

The next example mixes bidirectional typesetting. It might look weird at first sight but

the result conforms to what we discussed in previous paragraphs.

\starttabulate[|lG{.}|lG{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC\NR

\NC 1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC\NR

\NC 1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC\NR

\NC 1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1

1.1 1.1

1.11 1.11

1.11 1.11

1.111 1.111

1.111 1.111

In case of doubt, look at this:

18 Should this be an option instead?



165

Pitfalls and tricks

\starttabulate[|lG{.}|lG{}|lG{.}|lG{}|]

\NC \righttoleft 1.1 \NC \righttoleft \setalignmentcharacter{.}1.1 \NC

1.1 \NC \setalignmentcharacter{.}1.1 \NC\NR

\NC \righttoleft 1.11 \NC \righttoleft \setalignmentcharacter{.}1.11 \NC

1.11 \NC \setalignmentcharacter{.}1.11 \NC\NR

\NC \righttoleft 1.111 \NC \righttoleft \setalignmentcharacter{.}1.111 \NC

1.111 \NC \setalignmentcharacter{.}1.111 \NC\NR

\stoptabulate

1.1 1.1 1.1 1.1

1.11 1.11 1.11 1.11

1.111 1.111 1.111 1.111

The next example shows the effect of \omit and \span. The first one makes that in this

cell the preamble template is ignored.

\halign \bgroup

\tabsize 2cm\relax [\alignmark]\hss \aligntab

\tabsize 2cm\relax \hss[\alignmark]\hss \aligntab

\tabsize 2cm\relax \hss[\alignmark]\cr

1\aligntab 2\aligntab 3\cr

\omit 1\aligntab \omit 2\aligntab \omit 3\cr

1\aligntab 2\span 3\cr

1\span 2\aligntab 3\cr

1\span 2\span 3\cr

1\span \omit 2\span \omit 3\cr

\omit 1\span \omit 2\span \omit 3\cr

\egroup

Spans are applied at the end so you see a mix of templates applied.



166

Pitfalls and tricks

[1]H__ [2]H__ [3]H__H__

1H__ 2H__ 3H__H__

[1]H__ [2] [3]H__ H__H__

[1] [2]H__ H__ [3]H__H__

[1] [2] [3]H__ H__ H__H__

[1] 23H__ H__ H__H__

123H__ H__ H__H____VH__H____VH__

When you define an alignment inside a macro, you need to duplicate the \alignmark

signals. This is similar to embedded macro definitions. But in LuaMetaTEX we can get

around that by using \aligncontent. Keep in mind that when the preamble is scanned

there is no doesn't expand with the exception of the token after \span.

\halign \bgroup

\tabsize 2cm\relax \aligncontent\hss \aligntab

\tabsize 2cm\relax \hss\aligncontent\hss \aligntab

\tabsize 2cm\relax \hss\aligncontent\cr

1\aligntab 2\aligntab 3\cr

A\aligntab B\aligntab C\cr

\egroup

1 2 3

A B C

In this example we still have to be verbose in the way we align but we can do this:

\halign \bgroup

\tabsize 2cm\relax \aligncontentleft \aligntab

\tabsize 2cm\relax \aligncontentmiddle\aligntab

\tabsize 2cm\relax \aligncontentright \cr



167

Remark

1\aligntab 2\aligntab 3\cr

A\aligntab B\aligntab C\cr

\egroup

Where the helpers are defined as:

\noaligned\protected\def\aligncontentleft

{\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentmiddle

{\hss\ignorespaces\aligncontent\unskip\hss}

\noaligned\protected\def\aligncontentright

{\hss\ignorespaces\aligncontent\unskip}

The preamble scanner see such macros as candidates for a single level expansion so it

will inject the meaning and see the \aligncontent eventually.

1 2 3

A B C

The same effect could be achieved by using the \span prefix:

\def\aligncontentleft{\ignorespaces\aligncontent\unskip\hss}

\halign { ... \span\aligncontentleft ...}

One of the reasons for not directly using the low level \halign command is that it's a

lot of work but by providing a set of helpers like here might change that a bit. Keep in

mind that much of the above is not new in the sense that we could not achieve the same

already, it's just a bit programmer friendly.

12.7 Remark

It can be that the way alignments are interfaced with respect to attributes is a bit dif

ferent between LuaTEX and LuaMetaTEX but because the former is frozen (in order not

to interfere with current usage patterns) this is something that we will deal with deep

down in ConTEXt LMTX.

In principle we can have hooks into the rows for pre and post material but it doesn't

really pay of as grouping will still interfere. So for now I decided not to add these.



168

Colofon

12.7 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



169

13 Marks



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

marks



170

Introduction

Contents

13.1 Introduction 170

13.2 The basics 171

13.3 Migration 172

13.4 Tracing 174

13.5 High level commands 175

13.6 Pitfalls 178

13.1 Introduction

Marks are one of the subsystems of TEX, as are for instance alignments and math as well

as inserts which they share some properties with. Both inserts and marks put signals

in the list that later on get intercepted and can be used to access stored information. In

the case of inserts this is typeset materials, like footnotes, and in the case of marks it's

token lists. Inserts are taken into account when breaking pages, and marks show up

when a page has been broken and is presented to the output routine. Marks are used

for running headers but other applications are possible.

In MkII marks are used to keep track of colors, transparencies and more properties that

work across page boundaries. It permits picking up at the top of a page from where

one left at the bottom of the preceding one. When MkII was written there was only

one mark so on top of that a multiple mark mechanism was implemented that filtered

specific marks from a collection. Later, 𝜀-TEX provided mark classes so that mechanism

could be simplified. Although it is not that hard to do, this extension to TEX didn't add

any further features, so we can assume that there was no real demand for that.19

But, marks have some nasty limitations, so from the ConTEXt perspective there always

was something to wish for. When you hide marks in boxes they will not be seen (the

same is true for inserts). You cannot really reset them either. Okay, you can set them to

nothing, but even then already present marks are still there. The LuaTEX engine has a

\clearmarks primitive but that works global. In LuaMetaTEX a proper mark flusher is

available. That engine also can work around the deeply nested disappearing marks. In

addition, the current state of a mark can be queried and we have some tracing facilities.

In MkIV the engine's marks were not used at all and an alternative mechanism was

written using Lua. It actually is one of the older MkIV features. It doesn't have the side

19 This is probably true for most LuaTEX and LuaMetaTEX extensions, maybe example usage create retrospec

tive demand. But one reason for picking up on engine development is that in the ConTEXt perspective we

actually had some demands.



171

The basics

effects that native marks have but it comes at the price of more overhead, although that

is bearable.

In this document we discuss marks but assume that LuaMetaTEX is used with ConTEXt

LMTX. There we experiment with using the native marks, complemented by a few Lua

mechanisms, but it is to be seen if that will be either a replacement or an alternative.

13.2 The basics

Although the original TEX primitives are there, the plural 𝜀-TEX mark commands are to

be used. Marks, signals with token lists, are set with:

\marks0{This is mark 0} % equivalent to: \mark{This is mark 0}

\marks4{This is mark 4}

When a page has been split off, you can (normally this only makes sense in the output

routine) access marks with:

\topmarks 4

\firstmarks4

\botmarks 4

A ‘top’ mark is the last one on the previous page(s), the ‘first’ and ‘bottom’ refer to the

current page. A mark is a so called node, something that ends up in the current list

and the token list is stored with it. The accessors are just commands and they fetch the

token list from a separately managed storage. When you set or access a mark that has

not yet been used, the storage is bumped to the right size, so it doesn't make sense to

use e.g. \marks 999 when there are no 998 ones too: it not only takes memory, it also

makes TEX run over all these mark stores when synchronization happens. The best way

to make sure that you are sparse is:

\newmarks\MyMark

Currently the first 16 marks are skipped so this makes \MyMark become mark 17. The

reason is that we want to make sure that users who experiment with marks have some

scratch marks available and don't overload system defined ones. Future versions of

ConTEXt might become more restrictive.

Marks can be cleared with:

\clearmarks 4



172

Migration

which clears the storage that keeps the top, first and bot marks. This happens immedi

ately. You can delay this by putting a signal in the list:

\flushmarks 4

This (LuaMetaTEX) feature makes it for instance easy to reset marks that keep track of

section (and lower) titles when a new chapter starts. Of course it still means that one

has to implement some mechanism that deals with this but ConTEXt always had that.

The current, latest assigned, value of a mark is available too:

\currentmarks 4

Using this value in for instance headers and footers makes no sense because the last

node set can be on a following page.

13.3 Migration

In the introduction we mentioned that LuaMetaTEX has migration built in. In MkIV we

have this as option too, but there it is delegated to Lua. It permits deeply nested inserts

(notes) and marks (but we don't use native marks in MkIV).

Migrated marks end up in the postmigrated sublist of a box. In other lowlevel manuals

we discuss these pre- and postmigrated sublists. As example we use this definition:

\setbox0\vbox\bgroup

test \marks 4 {mark 4.1}\par

test \marks 4 {mark 4.1}\par

test \marks 4 {mark 4.1}\par

\egroup

When we turn migration on (officially the second bit):

\automigrationmode"FF \showbox0

we get this:

> \box0=

2:4: \vbox[normal][...], width 483.69687, height 63.43475, depth 0.15576, direction l2r

2:4: .\list

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4: ....\glue[left hang][...] 0.0pt

2:4: ....\glue[left][...] 0.0pt

2:4: ....\glue[parfillleft][...] 0.0pt

2:4: ....\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ....\glue[indent][...] 0.0pt

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s



173

Migration

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4: ....\penalty[line][...] 10000

2:4: ....\glue[parfill][...] 0.0pt plus 1.0fil

2:4: ....\glue[right][...] 0.0pt

2:4: ....\glue[right hang][...] 0.0pt

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4: ....\glue[left hang][...] 0.0pt

2:4: ....\glue[left][...] 0.0pt

2:4: ....\glue[parfillleft][...] 0.0pt

2:4: ....\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ....\glue[indent][...] 0.0pt

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4: ....\penalty[line][...] 10000

2:4: ....\glue[parfill][...] 0.0pt plus 1.0fil

2:4: ....\glue[right][...] 0.0pt

2:4: ....\glue[right hang][...] 0.0pt

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4: ....\glue[left hang][...] 0.0pt

2:4: ....\glue[left][...] 0.0pt

2:4: ....\glue[parfillleft][...] 0.0pt

2:4: ....\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ....\glue[indent][...] 0.0pt

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4: ....\penalty[line][...] 10000

2:4: ....\glue[parfill][...] 0.0pt plus 1.0fil

2:4: ....\glue[right][...] 0.0pt

2:4: ....\glue[right hang][...] 0.0pt

2:4: .\postmigrated

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

When we don't migrate, enforced with:

\automigrationmode"00 \showbox0

the result is:
> \box0=

2:4: \vbox[normal][...], width 483.69687, height 63.43475, depth 0.15576, direction l2r

2:4: .\list

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4: ....\glue[left hang][...] 0.0pt

2:4: ....\glue[left][...] 0.0pt

2:4: ....\glue[parfillleft][...] 0.0pt

2:4: ....\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ....\glue[indent][...] 0.0pt

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4: ....\penalty[line][...] 10000

2:4: ....\glue[parfill][...] 0.0pt plus 1.0fil

2:4: ....\glue[right][...] 0.0pt

2:4: ....\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r



174

Tracing

2:4: ...\list

2:4: ....\glue[left hang][...] 0.0pt

2:4: ....\glue[left][...] 0.0pt

2:4: ....\glue[parfillleft][...] 0.0pt

2:4: ....\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ....\glue[indent][...] 0.0pt

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4: ....\penalty[line][...] 10000

2:4: ....\glue[parfill][...] 0.0pt plus 1.0fil

2:4: ....\glue[right][...] 0.0pt

2:4: ....\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

2:4: ..\glue[par][...] 11.98988pt plus 3.99663pt minus 3.99663pt

2:4: ..\glue[baseline][...] 8.34883pt

2:4: ..\hbox[line][...], width 483.69687, height 7.48193, depth 0.15576, glue 459.20468fil, direction l2r

2:4: ...\list

2:4: ....\glue[left hang][...] 0.0pt

2:4: ....\glue[left][...] 0.0pt

2:4: ....\glue[parfillleft][...] 0.0pt

2:4: ....\par[newgraf][...], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 200, adjdemerits 10000, linepenalty 10, doublehyphendemerits 10000,

finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

2:4: ....\glue[indent][...] 0.0pt

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000065 e

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000073 s

2:4: ....\glyph[32768][...], language (n=1,l=2,r=3), hyphenationmode "79F3F, options "80, font <8: DejaVuSerif @ 11.0pt>, glyph U+000074 t

2:4: ....\glue[space][...] 3.49658pt plus 1.74829pt minus 1.16553pt, font 8

2:4: ....\penalty[line][...] 10000

2:4: ....\glue[parfill][...] 0.0pt plus 1.0fil

2:4: ....\glue[right][...] 0.0pt

2:4: ....\glue[right hang][...] 0.0pt

2:4: ..\mark[4][...]

2:4: ..{mark 4.1}

When you say \showmakeup or in this case \showmakeup[mark] the marks are visualized:

test

test

test

testSM:4

testSM:4

testSM:4

enabled disabled

Here sm means ‘set mark’ while rm would indicate a ‘reset mark’. Of course migrated

marks don't show up because these are bound to the box and thereby have become a a

specific box property as can be seen in the above trace.

13.4 Tracing

The LuaMetaTEX engine has a dedicated tracing option for marks. The fact that the

traditional engine doesn't have this can be seen as indication that this is seldom needed.

\tracingmarks1

\tracingonline2

When tracing is set to 1 we get a list of marks for the just split of page:



175

High level commands

2:7: <mark class 51, top := bot>

2:7: ..{sample 9.1}

2:7: <mark class 51: first := mark>

2:7: ..{sample 10.1}

2:7: <mark class 51: bot := mark>

2:7: ..{sample 10.1}

2:7: <mark class 51, page state>

2:7: ..top {sample 9.1}

2:7: ..first {sample 10.1}

2:7: ..bot {sample 10.1}

When tracing is set to 2 you also get details we get a list of marks of the analysis:

1:9: <mark class 51, top := bot>

1:9: ..{sample 5.1}

1:9: <mark class 51: first := mark>

1:9: ..{sample 6.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 6.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 7.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 8.1}

1:9: <mark class 51: bot := mark>

1:9: ..{sample 9.1}

1:9: <mark class 51, page state>

1:9: ..top {sample 5.1}

1:9: ..first {sample 6.1}

1:9: ..bot {sample 9.1}

13.5 High level commands

I think that not that many users define their own marks. They are useful for showing

section related titles in headers and footers but the implementation of that is hidden.

The native mark references are top, first and bottom but in the ConTEXt interface we

use different keywords.

ConTEXt TEX column page

previous top last before sync last on previous page

top first first in sync first on page



176

High level commands

bottom bot last in sync last on page

first top first not top in sync first on page

last bot last not bottom in sync last on page

default the same as first

current the last set value

In order to separate marks in ConTEXt from those in TEX, the term ‘marking’ is used.

In MkIV the regular marks mechanism is of course there but, as mentioned, not used.

By using a different namespace we could make the transition from MkII to MkIV (the

same is true for some more mechanisms).

A marking is defined with

\definemarking[MyMark]

A defined marking can be set with two equivalent commands:

\setmarking[MyMark]{content}

\marking [MyMark]{content}

The content is not typeset but stored as token list. In the sectioning mechanism that

uses markings we don't even store titles, we store a reference to a title. In order to use

that (deep down) we hook in a filter command. By default that command does nothing:

\setupmarking[MyMark][filtercommand=\firstofoneargument]

The token list does not get expanded by default, unless you set it up:

\setupmarking[MyMark][expansion=yes]

The current state of a marking can be cleared with:

\clearmarking[MyMark]

but because that en is not synchronized the real deal is:

\resetmarking[MyMark]

Be aware that it introduces a node in the list. You can test if a marking is defined with (as

usual) a test macro. Contrary to (most) other test macros this one is fully expandable:

\doifelsemarking {MyMark} {

defined

} {



177

High level commands

undefined

}

Because there can be a chain involved, we can relate markings. Think of sections below

chapters and subsections below sections:

\relatemarking[MyMark][YourMark]

When a marking is set its relatives are also reset, so setting YourMark will reset MyMark.

It is this kind of features that made for marks being wrapped into high level commands

very early in the ConTEXt development (and one can even argue that this is why a pack

age like ConTEXt exists in the first place).

The rest of the (relatively small) repertoire of commands has to do with fetching mark

ings. The general command is \getmarking that takes two or three arguments:

\getmarking[MyMarking][first]

\getmarking[MyMarking][page][first]

\getmarking[MyMarking][page][first]

\getmarking[MyMarking][column:1][first]

There are (normally) three marks that can be fetched so we have three commands that

do just that:

\fetchonemark [MyMarking][which one]

\fetchtwomarks[MyMarking]

\fetchallmarks[MyMarking]

You can setup a separator key which by default is:

\setupmarking[MyMarking][separator=\space\emdash\space]

Injection is enabled by default due to this default:

\setupmarking[MyMarking][state=start]

The following three variants are (what is called) fully expandable:

\fetchonemarking [MyMarking][which one]

\fetchtwomarkings[MyMarking]

\fetchallmarkings[MyMarking]



178

Pitfalls

13.6 Pitfalls

The main pitfall is that a (re)setting a mark will inject a node which in vertical mode

can interfere with spacing. In for instance section commands we wrap them with the

title so there it should work out okay.

13.6 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net



179

14 Inserts



\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

inserts



180

Introduction

Contents

14.1 Introduction 180

14.2 The page builder 180

14.3 Inserts 182

14.4 Storing 184

14.5 Callbacks 184

14.1 Introduction

This document is a mixed bag. We do discuss inserts but also touch elements of the

page builder because inserts and regular page content are handled there. Examples of

mechanisms that use inserts are footnotes. These have an anchor in the running text

and some content that ends up (normally) at the bottom of the page. When considering

a page break the engine tries to make sure that the anchor (reference) and the content

end up on the same page. When there is too much, it will distribute (split) the content

over pages.

We can discuss page breaks in a (pseudo) scientific way and explore how to optimize

this process, taking into accounts also inserts that contain images but it doesn't make

much sense to do that because in practice we can encounter all kind of interferences.

Theory and practice are too different because a document can contain a wild mix of

text, figures, formulas, notes, have backgrounds and location dependent processing. It

get seven more complex when we are dealing with columns because TEX doesn't really

know that concept.

I will therefore stick to some practical aspects and the main reason for this document

is that I sort of document engine features and at the same time give an impression of

what we deal with. I will do that in the perspective of LuaMetaTEX, which has a few

more options and tracing than other engines.

Currently this document is mostly for myself to keep track of the state of inserts and

the page builder in LuaMetaTEX and ConTEXt LMTX. The text is not yet corrected and

can have errors.

14.2 The page builder

When your document is processed content eventually gets added to the so called main

vertical list (mvl). Content first get appended to the list of contributions and at specific

moments it will be handed over to the mvl. This process is called page building. There

we can encounter the following elements (nodes):



181

The page builder

glue a vertical skip

penalty a vertical penalty

kern a vertical kern

vlist a a vertical box

hlist a horizontal box (often a line)

rule a horizontal rule

boundary a boundary node

whatsit a node that is used by user code (often some extension)

mark a token list (as used for running headers)

insert a node list (as used for notes)

The engine itself will not insert anything other than this but Lua code can mess up the

contribution list and the mvl and that can trigger an error. Handing over the contribu

tions is done by the page builder and that one kicks in in several places:

• When a penalty gets inserted it is part of evaluating if the output routine should be

triggered. This triggering can be enforced by values equal or below 10.000 that then

can be checked in the set routine.

• The builder is not exercised when a glue or kern is injected so there can be multiple

of them before another element triggers the builder.

• Adding a box triggers the builder as does the result of an alignment which can be a

list of boxes.

• When the output routine is finished the builder is executed because the routine can

have pushed back content.

• When a new paragraph is triggered by the \par command the builder kicks in but

only when the engine was able to enter vertical mode.

• When the job is finished the builder will make sure that pending content is handled.

• An insert and vadjust can trigger the builder but only at the nesting level zero which

normally is not the case (I need an example).

• At the beginning of a paragraph (like text), before display math is entered, and when

display math ends the builder is also activated.



182

Inserts

At the TEX the builder is triggered automatically in the mentioned cases but at the Lua

end you can use tex.triggerbuildpage() to flush the pending contributions.

The properties that relate to the page look like counter and dimension registers ut they

are not. These variables are global and managed differently.

\pagegoal the available space

\pagetotal the accumulated space

\pagestretch the possible zero order stretch

\pagefilstretch the possible one order stretch

\pagefillstretch the possible second order stretch

\pagefilllstretch the possible third order stretch

\pageshrink the possible shrink

\pagedepth the current page depth

\pagevsize the initial page goal

When the first content is added to an empty page the \pagegoal gets the value of \vsize

and gets frozen but the value is diminished by the space needed by left over inserts.

These inserts are managed via a separate list so they don't interfere with the page that

itself of course can have additional inserts. The \pagevsize is just a (LuaMetaTEX) sta

tus variable that hold the initial \pagegoal but it might play a role in future extensions.

Another variable is \deadcycles that registers the number of times the output routine

is called without returning result.

14.3 Inserts

We now come to inserts. In traditional TEX an insert is a data structure that runs on

top of registers: a box, count, dimension and skip. An insert is accessed by a number

so for instance insert 123 will use the four registers of that number. Because TEX only

offers a command alias mechanism for registers (like \countdef) a macro package will

implement some allocator management subsystem (like \newcount). A \newinsert has



183

Inserts

to be defined in a way that the four registers are not clashing with other allocators.

When you start with TEX seeing code that deals with in (in plain TEX) can be puzzling

but it follows from the way TEX is set up. But inserts are probably not what you start

exploring right away away.

In LuaMetaTEX you can set \insertmode to 1 and that is what we do in ConTEXt. In

that mode inserts are taken from a pool instead of registers. A side effect is that like

the page properties the insert properties are global too but that is normally no problem

and can be managed well by a macro package (that probably would assign register the

values globally too). The insert pool will grow dynamically on demand so one can just

start at 1; in ConTEXt MkIV we use the range 127 upto 255 in order to avoid a clash

with registers. In LMTX we start at 1 because there are no clashes.

A consequence of this approach is that we use dedicated commands to set the insert

properties:

\insertdistance glue the space before the first instance (on a page)

\insertmultiplier count a factor that is used to calculate the height used

\insertlimit dimen the maximum amount of space on a page to be taken

\insertpenalty count the floating penalty (used when set)

\insertmaxdepth dimen the maximum split depth (used when set)

\insertstorage count signals that the insert has to be stored for later

\insertheight dimen the accumulated height of the inserts so far

\insertdepth dimen the current depth of the inserts so far

\insertwidth dimen the width of the inserts

These commands take a number and an integer, dimension or glue specification. They

can be set and queried but setting the dimensions can have side effects. The accumu

lated height of the inserts is available in \insertheights (which can be set too). The

\floatingpenalty variable determines the penalty applied when a split is needed.

In the output routine the original TEX variable \insertpenalties is a counter that keeps

the number of insertions that didn't fit on the page while otherwise if has the accumu



184

Storing

lated penalties of the split insertions. When \holdinginserts is non zero the inserts

in the list are not collected for output, which permits the list to be fed back for repro

cessing.

The LuaMetaTEX specific storage mode \insertstoring variable is explained in the

next section.

14.4 Storing

This feature is kind of special and still experimental. When \insertstoring is set 1,

all inserts that have their storage flag set will be saved. Think of a multi column setup

where inserts have to end up in the last column. If there are three columns, the first

two will store inserts. Then when the last column is dealt with \insertstoring can be

set to 2 and that will signal the builder that we will inject the inserts. In both cases, the

value of this register will be set to zero so that it doesn't influence further processing.

14.5 Callbacks

Todo, nothing new there, so no hurry.

14.5 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net


