
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

registers



1

TEX primitives

Contents

1 Preamble 1

2 TEX primitives 1

3 𝜀-TEX primitives 4

4 LuaTEX primitives 4

5 LuaMetaTEX primitives 5

1 Preamble

Registers are sets of variables that are accessed by index and a such resemble regis-

ters in a processing unit. You can store a quantity in a register, retrieve it, and also

manipulate it.

There is hardly any need to use them in ConTEXt so we keep it simple.

2 TEX primitives

There are several categories:

• Integers (int): in order to be portable (at the time it surfaced) there are only integers

and no floats. The only place where TEX uses floats internally is when glue gets

effective which happens in the backend.

• Dimensions (dimen): internally these are just integers but when they are entered

they are sliced into two parts so that we have a fractional part. The internal repre-

sentation is called a scaled point.

• Glue (skip): these are dimensions with a few additional properties: stretch and

shrink. Being a compound entity they are stored differently and thereby a bit less

efficient than numbers and dimensions.

• Math glue (muskip): this is the same as glue but with a unit that adapts to the current

math style properties. It’s best to think about them as being relative measures.

• Token lists (toks): these contain a list of tokens coming from the input or coming

from a place where they already have been converted.

The original TEX engine had 256 entries per set. The first ten of each set are normally

reserved for scratch purposes: the even ones for local use, and the odd ones for global

usage. On top of that macro packages can reserve some for its own use. It was quite



2

TEX primitives

easy to reach the maximum but there were tricks around that. This limitation is no

longer present in the variants in use today.

Let’s set a few dimension registers:

\dimen 0 = 10 pt

\dimen2=10pt

\dimen4 10pt

\scratchdimen 10pt

We can serialize them with:

\the \dimen0

\number \dimen2

\meaning\dimen4

\meaning\scratchdimen

The results of these operations are:

10.0pt

655360

\dimen4

\dimen257

The last two is not really useful but it is what you see when tracing options are set. Here

\scratchdimen is a shortcut for a register. This is not a macro but a defined register.

The low level \dimendef is used for this but in a macro package you should not use that

one but the higher level \newdimen macro that uses it.

\newdimen\MyDimenA

\def \MyDimenB{\dimen999}

\dimendef\MyDimenC998

\meaning\MyDimenA

\meaning\MyDimenB

\meaning\MyDimenC

Watch the difference:

\dimen757

macro:->\dimen 999

\dimen998



3

TEX primitives

The first definition uses a yet free register so you won’t get a clash. The second one

is just a shortcut using a macro and the third one too but again direct shortcut. Try to

imagine how the second line gets interpreted:

\MyDimenA10pt \MyDimenA10.5pt

\MyDimenB10pt \MyDimenB10.5pt

\MyDimenC10pt \MyDimenC10.5pt

Also try to imagine what messing around with \MyDimenC will do when we also have

defined a few hundred extra dimensions with \newdimen.

In the case of dimensions the \number primitive will make the register serialize as scaled

points without unit sp.

Next we see some of the other registers being assigned:

\count 0 = 100

\skip 0 = 10pt plus 3pt minus 2pt

\skip 0 = 10pt plus 1fill

\muskip 0 = 10mu plus 3mu minus 2mu

\muskip 0 = 10mu minus 1 fil

\toks 0 = {hundred}

When a number is expected, you can use for instance this:

\scratchcounter\scratchcounterone

Here we use a few predefined scratch registers. You can also do this:

\scratchcounter\numexpr\scratchcounterone+\scratchcountertwo\relax

There are some quantities that also qualify as number:

\chardef\MyChar=123 % refers to character 123 (if present)

\scratchcounter\MyChar

In the past using \chardef was a way to get around the limited number of registers,

but it still had (in traditional TEX) a limitation: you could not go beyond 255. The

\mathchardef could fo higher as it also encodes a family number and class. This limi-

tation has been lifted in LuaTEX.

A character itself can also be interpreted as number, in which case it has to be prefixed

with a reverse quote: `, so:

\scratchcounter\numexpr`0+5\relax



4

𝜀-TEX primitives

\char\scratchcounter

produces “5” because the `0 expands into the (ascii and utf8) slot 48 which represents

the character zero. In this case the next makes more sense:

\char\numexpr`0+5\relax

If you want to know more about all these quantities, “TEX By Topic” provides a good

summary of what TEX has to offer, and there is no need to repeat it here.

3 𝜀-TEX primitives

Apart from the ability to use expressions, the contribution to registers that 𝜀-TEX brought

was that suddenly we could use upto 65K of them, which is more than enough. The ex-

tra registers were not as efficient as the first 256 because they were stored in the hash

table, but that was not really a problem. In Omega and later LuaTEX regular arrays

were used, at the cost of more memory which in the meantime has become cheap. As

ConTEXt moved to 𝜀-TEX rather early its users never had to worry about it.

4 LuaTEX primitives

The LuaTEX engine introduced attributes. These are numeric properties that are bound

to the nodes that are the result of typesetting operations. They are basically like integer

registers but when set their values get bound and when unset they are kind of invisible.

• Attribute (attribute): a numeric property that when set becomes part of the current

attribute list that gets assigned to nodes.

Attributes can be used to communicate properties to Lua callbacks. There are several

functions available for setting them and querying them.

\attribute999 = 123

Using attributes this way is dangerous (of course I can only speak for ConTEXt) because

an attribute value might trigger some action in a callback that gives unwanted side

effects. For convenience ConTEXt provides:

\newattribute\MyAttribute

Which currently defines \MyAttribute as \count1284 and is meant to be used as:1

1 The low level \attributedef command is rather useless in the perspective of ConTEXt.



5

LuaMetaTEX primitives

\attribute\MyAttribute = 123

Just be aware that defining attributes can have an impact on performance. As you

cannot access them at the TEX end you seldom need them. If you do you can better use

the proper more high level definers (not discussed here).

5 LuaMetaTEX primitives

todo


