
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

grouping



1

Introduction

Contents

1 Introduction 1

2 Pascal 1

3 TEX 1

4 MetaPost 2

5 Lua 3

6 C 3

1 Introduction

This is a rather short explanation. I decided to write it after presenting the other topics

at the 2019 ConTEXt meeting where there was a question about grouping.

2 Pascal

In a language like Pascal, the language that TEX has been written in, or Modula, its

successor, there is no concept of grouping like in TEX. But we can find keywords that

suggests this:

for i := 1 to 10 do begin ... end

This language probably inspired some of the syntax of TEX and MetaPost. For instance

an assignment in MetaPost uses := too. However, the begin and end don't really group

but define a block of statements. You can have local variables in a procedure or function

but the block is just a way to pack a sequence of statements.

3 TEX

In TEX macros (or source code) the following can occur:

\begingroup

...

\endgroup

as well as:

\bgroup

...

\egroup



2

MetaPost

Here we really group in the sense that assignments to variables inside a group are

forgotten afterwards. All assignments are local to the group unless they are explicitly

done global:

\scratchcounter=1

\def\foo{foo}

\begingroup

\scratchcounter=2

\global\globalscratchcounter=2

\gdef\foo{FOO}

\endgroup

Here \scratchcounter is still one after the group is left but its global counterpart is

now two. The \foo macro is also changed globally.

Although you can use both sets of commands to group, you cannot mix them, so this

will trigger an error:

\bgroup

\endgroup

The bottomline is: if you want a value to persist after the group, you need to explicitly

change its value globally. This makes a lot of sense in the perspective of TEX.

4 MetaPost

The MetaPost language also has a concept of grouping but in this case it's more like a

programming language.

begingroup ;

n := 123 ;

engroup ;

In this case the value of n is 123 after the group is left, unless you do this (for numerics

there is actually no need to declare them):

begingroup ;

save n ; numeric n ; n := 123 ;

engroup ;

Given the use of MetaPost (read: MetaFont) this makes a lot of sense: often you use

macros to simplify code and you do want variables to change. Grouping in this language



3

Lua

serves other purposes, like hiding what is between these commands and let the last

expression become the result. In a vardef grouping is implicit.

So, in MetaPost all assignments are global, unless a variable is explicitly saved inside a

group.

5 Lua

In Lua all assignments are global unless a variable is defines local:

local x = 1

local y = 1

for i = 1, 10 do

local x = 2

y = 2

end

Here the value of x after the loop is still one but y is now two. As in LuaTEX we mix TEX,

MetaPost and Lua you can mix up these concepts. Another mixup is using :=, endfor,

fi in Lua after done some MetaPost coding or using end instead of endfor in MetaPost

which can make the library wait for more without triggering an error. Proper syntax

highlighting in an editor clearly helps.

6 C

The Lua language is a mix between Pascal (which is one reason why I like it) and C.

int x = 1 ;

int y = 1 ;

for (i=1; i<=10;i++) {

int x = 2 ;

y = 2 ;

}

The semicolon is also used in Pascal but there it is a separator and not a statement end,

while in MetaPost it does end a statement (expression).



4

Colofon

6 Colofon

Author Hans Hagen

ConTEXt 2021.09.06 11:47

LuaMetaTEX 2.0923

Support www.pragma-ade.com

contextgarden.net


