
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

expansion

1

TEX primitives

Contents

1 Preamble 1

2 TEX primitives 1

3 𝜀-TEX primitives 4

4 LuaTEX primitives 6

5 LuaMetaTEX primitives 7

1 Preamble

This short manual demonstrates a couple of properties of the macro language. It is not

the in-depth philosophical expose about macro languages, tokens, expansion and such

that some TEXies like. I prefer to stick to the practical aspects.

2 TEX primitives

The TEX language provides quite some commands and those built in are called prim-

itives. User defined commands are called macros. A macro is a shortcut to a list of

primitives or macro calls. All can be mixed with characters that are to be typeset some-

how.

\def\MyMacro{b}

a\MyMacro c

When TEX reads this input the a gets turned into a glyph node with a reference to the

current font set and the character a. Then the parser sees a macro call, and it will enter

another input level where it expands this macro. In this case it sees just an b and it will

give this the same treatment as the a. The macro ends, the input level decrements and

the c gets its treatment.

A macro can contain references to macros so in practice the input can go several levels

down.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

When \MyMacroB is defined, its body gets three so called tokens: the character token a

with property ‘other’, a token that is a reference to the macro \MyMacroB, and a charac-

ter token 2, also with property ‘other’ The meaning of \MyMacroA became five tokens:

2

TEX primitives

a reference to a space token, then three character tokens with property ‘letter’, and

finally again a space token.

\def \MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

In the previous example an \edef is used, where the e indicates expansion. This time

the meaning gets expanded. So we get effectively the same as

\def\MyMacroB{1 and 2}

Characters are easy: they just expand, but not all primitives expand to their meaning

or effect.

\def\MyMacroA{\scratchcounter = 1 }

\def\MyMacroB{\advance\scratchcounter by 1}

\def\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:->\scratchcounter = 1

macro:->\advance \scratchcounter by 1

macro:->\the \scratchcounter

Let’s assume that \scratchcounter is zero to start with and use \edef's:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

3

TEX primitives

a b c d 0

macro:->\scratchcounter = 1

macro:->\advance \scratchcounter by 1

macro:->0

So, this time the third macro has basically its meaning frozen, but we can prevent this

by applying a \noexpand when we do this:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\noexpand\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:->\scratchcounter = 1

macro:->\advance \scratchcounter by 1

macro:->\the \scratchcounter

Of course this is a rather useless example but it serves its purpose: you’d better be

aware what gets expanded immediately in an \edef. In most cases you only need to

worry about \the and embedded macros (and then of course their meanings).

You can also store tokens in a so called token register. Here we use a predefined scratch

register:

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks {\MyMacroA}

The content of \scratchtoks is: “\MyMacroA”, so no expansion has happened here.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroA}

Now the content of \scratchtoks is: “ and ”, so this time expansion has happened.

4

𝜀-TEX primitives

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

Indeed the macro gets expanded but only one level: “1\MyMacroA 2”. Compare this

with:

\def\MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

The trick is to expand in two steps: “1 and 2”. Later we will see that other engines

provide some more expansion tricks. The only way to get a grip on expansion is to just

play with it.

The \expandafter primitive expands the token (which can be a macro) after the next

next one and injects its meaning into the stream. So:

\expandafter \MyMacroA \MyMacroB

works okay. In a normal document you will never need this kind of hackery: it only

happens in a bit more complex macros. Here is an example:

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\egroup

\the\scratchcounter

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\expandafter

\egroup

\the\scratchcounter

The first one gives 1, while the second gives 2.

3 𝜀-TEX primitives

In this engine a couple of extensions were added and later on pdfTEX added some more.

We only discuss a few that relate to expansion. There is however a pitfall here. Before

𝜀-TEX showed up, ConTEXt already had a few mechanism that also related to expansion

5

𝜀-TEX primitives

and it used some names for macros that clash with those in 𝜀-TEX. This is why we will

use the \normal prefix here to indicate the primitive.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\edef\MyMacroABC{\MyMacroA\MyMacroB\MyMacroC}

These macros have the following meanings:

macro:->a

macro:->b

protected macro:->c

macro:->ab\MyMacroC

In ConTEXt you will use the \unexpanded prefix instead because that one did something

similar in older versions of ConTEXt. As we were early adopters of 𝜀-TEX, this later

became a synonym to the 𝜀-TEX primitive.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded{\scratchtoks{\MyMacroA\MyMacroB\MyMacroC}}

Here the wrapper around the token register assignment will expand the three macros,

unless they are protected, so its content becomes “ab\MyMacroC”. This saves either a

lot of more complex \expandafter usage or using an intermediate \edef. In ConTEXt

the \expanded macro does something simpler but it doesn’t expand the first token as it

is meant as a wrapper around a command, like:

\expanded{\chapter{....}} % a ConTeXt command

where we do want to expand the title but not the \chapter command, not that this

would happen actually because \chapter is a protected command.

The counterpart of \normalexpanded is \normalunexpanded, as in:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded {\scratchtoks

{\MyMacroA\normalunexpanded {\MyMacroB}\MyMacroC}}

6

LuaTEX primitives

The register now holds “a\MyMacroB \MyMacroC”: three tokens, one character token

and two macro references.

Tokens can represent characters, primitives, macros or be special entities like starting

math mode, beginning a group, assigning a dimension to a register, etc. Although you

can never really get back to the original input, you can come pretty close, with:

\normaldetokenize{this can $ be anything \bgroup}

This (when typeset monospaced) is: this can $ be anything \bgroup. The detok-

enizer is like \string applied to each token in its argument. Compare this:

\normalexpanded {

\normaldetokenize{10pt}

}

We get four tokens: 10pt.

\normalexpanded {

\string 1\string 0\string p\string t

}

So that was the same operation: 10pt, but in both cases there is a subtle thing going on:

characters have a catcode which distinguishes them. The parser needs to know what

makes up a command name and normally that’s only letters. The next snippet shows

these catcodes:

\normalexpanded {

\noexpand\the\catcode`\string 1 \noexpand\enspace

\noexpand\the\catcode`\string 0 \noexpand\enspace

\noexpand\the\catcode`\string p \noexpand\enspace

\noexpand\the\catcode`\string t \noexpand

}

The result is “12 12 11 11”: two characters are marked as ‘letter’ and two fall in the

‘other’ category.

4 LuaTEX primitives

This engine adds a little in the expansion arena. First of all it offers a way to extend

token lists registers

\def\MyMacroA{a}

7

LuaMetaTEX primitives

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{b}

\scratchtoks{\MyMacroA\MyMacroB}

The result is: “\MyMacroA \MyMacroB”.

\toksapp\scratchtoks{\MyMacroA\MyMacroB}

We’re now at: “\MyMacroA \MyMacroB \MyMacroA \MyMacroB \MyMacroA \MyMacroB”.

\etoksapp\scratchtoks{\MyMacroA\space\MyMacroB\space\MyMacroC}

The register has this content: “\MyMacroA \MyMacroB \MyMacroA \MyMacroB \MyMacroA

\MyMacroB a b \MyMacroC a b \MyMacroC”, so the additional context got expanded in the

process, except of course the protected macro \MyMacroC.

There is a bunch of these combiners: \toksapp and \tokspre for local appending and

prepending, with global companions: \gtoksapp and \gtokspre, as well as expanding

variant: \etoksapp, \etokspre, \xtoksapp and \xtokspre.

There are not beforehand more efficient that using intermediate expanded macros or

token lists, simply because in the process TEX has to create tokens lists too, but some-

times they’re just more convenient to use.

A second extension is \immediateassignment which instead in tokenizing the assign-

ment directive applies it right now.

\edef\MyMacroA

{\scratchcounter 123

\noexpand\the\scratchcounter}

\edef\MyMacroB

{\immediateassignment\scratchcounter 123

\noexpand\the\scratchcounter}

These two macros now have the meaning:

macro:->\scratchcounter 123 \the \scratchcounter

macro:->\the \scratchcounter

5 LuaMetaTEX primitives

todo

