
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

expansion

1

TEX primitives

Contents

1 Preamble 1

2 TEX primitives 1

3 𝜀-TEX primitives 6

4 LuaTEX primitives 8

5 LuaMetaTEX primitives 9

6 Dirty tricks 19

1 Preamble

This short manual demonstrates a couple of properties of the macro language. It is

not an in-depth philosophical expose about macro languages, tokens, expansion and

such that some TEXies like. I prefer to stick to the practical aspects. Occasionally it

will be technical but you can just skip those paragraphs (or later return to them) when

you can't follow the explanation. It's often not that relevant. I won't talk in terms of

mouth, stomach and gut the way the TEXbook does and although there is no way to

avoid the word ‘token’ I will do my best to not complicate matters by too much token

speak. Examples show best what we mean.

2 TEX primitives

The TEX language provides quite some commands and those built in are called prim

itives. User defined commands are called macros. A macro is a shortcut to a list of

primitives and/or macro calls. All can be mixed with characters that are to be typeset

somehow.

\def\MyMacro{b}

a\MyMacro c

When TEX reads this input the a gets turned into a glyph node with a reference to the

current font set and the character a. Then the parser sees a macro call, and it will enter

another input level where it expands this macro. In this case it sees just an b and it will

give this the same treatment as the a. The macro ends, the input level decrements and

the c gets its treatment.

Before we move on to more examples and differences between engines, it is good to

stress that \MyMacro is not a primitive command: we made our command here. The b

actually can be seen as a sort of primitive because in this macro it gets stored as so

2

TEX primitives

called token with a primitive property. That primitive property can later on be used to

determine what to do. More explicit examples of primitives are \hbox, \advance and

\relax. It will be clear that ConTEXt extends the repertoire of primitive commands

with a lot of macro commands. When we typeset a source using module m-scite the

primitives come out dark blue.

The amount of primitives differs per engine. It all starts with TEX as written by Don

Knuth. Later 𝜀-TEX added some more primitives and these became official extensions
adopted by other variants of TEX. The pdfTEX engine added quite some and as follow

up on that LuaTEX added more but didn't add all of pdfTEX. A few new primitives came

from Omega (Aleph). The LuaMetaTEX engine drops a set of primitives that comes with

LuaTEX and adds plenty new ones. The nature of this engine (no backend and less

frontend) makes that we need to implement some primitives as macros. But the basic

set is what good old TEX comes with.

Internally these so called primitives are grouped in categories that relate to their na

ture. They can be directly expanded (a way of saying that they get immediately inter

preted) or delayed (maybe stored for later usage). They can involve definitions, calcula

tions, setting properties and values or they can result in some typesetting. This is what

makes TEX confusing to new users: it is a macro programming language, an interpreter

but at the same time an executor of typesetting instructions.

A group of primitives is internally identified as a command (they have a cmd code) and

the sub commands are flagged by their chr code. This sounds confusing but just thing

of the fact that most of what we input are characters and therefore they make up most

sub commands. For instance the ‘letter cmd’ is used for characters that are seen as

letters that can be used in the name of user commands, can be typeset, are valid for

hyphenation etc. The letter related cmd can have many chr codes (all of Unicode). I'd

like to remark that the grouping is to a large extend functional, so sometimes primitives

that you expect to be similar in nature are in different groups. This has to do with the

fact that TEX needs to be a able to determine efficiently if a primitive is operating (or

forbidden) in horizontal, vertical and/or math mode.

There are more than 150 internal cmd groups. if we forget about the mentioned char

acter related ones, some, have only a few sub commands (chr) and others many more

(just consider all the OpenType math spacing related parameters). A handful of these

commands deal with what we call macros: user defined combinations of primitives and

other macros, consider them little programs. The \MyMacro example above is an ex

ample. There are differences between engines. In standard TEX there are \outer and

\long commands, and most engines have these. However, in LuaMetaTEX the later to

be discussed \protectedmacros have their own specific ‘call cmd’. Users don't need to

bother about this.

3

TEX primitives

So, when from now on we talk about primitives, we mean the built in, hard coded com

mands, and when we talk about macros we mean user commands. Although internally

there are less cmd categories than primitives, from the perspective of the user they are

all unique. Users won't consult the source anyway but when they do they are warned.

Also, when in LuaMetaTEX you use the low level interfacing to TEX you have to figure

out these subtle aspects because there this grouping does matter.

Before we continue I want to make clear that expansion (as discussed in this document)

can refer to a macro being expanded (read: its meaning gets injected into the input, so

the engine kind of sidetracks from what is was doing) but also to direct consequences

of running into a primitive. However, users only need to consider expansion in the

perspective of macros. If a user has \advance in the input it immediately gets done.

But when it's part of a macro definition it only is executed when the macro expands. A

good check in (traditional) TEX is to compare what happens in \def and \edef which

is why we will use these two in the upcoming examples. You put something in a macro

and then check what \meaning or \show reports.

Now back to user defined macros. A macro can contain references to macros so in

practice the input can go several levels up and some applications push back a lot so

this is why your TEX input stack can be configured to be huge.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

When \MyMacroB is defined, its body gets three so called tokens: the character token 1

with property ‘other’, a token that is a reference to the macro \MyMacroB, and a char

acter token 2, also with property ‘other’ The meaning of \MyMacroA is five tokens: a

reference to a space token, then three character tokens with property ‘letter’, and fi

nally a space token.

\def \MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

a\MyMacroA b

In the second definition an \edef is used, where the e indicates expansion. This time

the meaning gets expanded immediately. So we get effectively the same as in:

\def\MyMacroB{1 and 2}

Characters are easy: they just expand to themselves or trigger adding a glyph node,

4

TEX primitives

but not all primitives expand to their meaning or effect.

\def\MyMacroA{\scratchcounter = 1 }

\def\MyMacroB{\advance\scratchcounter by 1}

\def\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:\the \scratchcounter

Let's assume that \scratchcounter is zero to start with and use \edef's:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\the\scratchcounter}

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 0

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:0

So, this time the third macro has its meaning frozen, but we can prevent this by applying

a \noexpand when we do this:

\edef\MyMacroA{\scratchcounter = 1 }

\edef\MyMacroB{\advance\scratchcounter by 1}

\edef\MyMacroC{\noexpand\the\scratchcounter}

5

TEX primitives

\MyMacroA a

\MyMacroB b

\MyMacroB c

\MyMacroB d

\MyMacroC

a b c d 4

macro:\scratchcounter = 1

macro:\advance \scratchcounter by 1

macro:\the \scratchcounter

Of course this is a rather useless example but it serves its purpose: you'd better be

aware what gets expanded immediately in an \edef. In most cases you only need to

worry about \the and embedded macros (and then of course their meanings).

You can also store tokens in a so-called token register. Here we use a predefined scratch

register:

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks {\MyMacroA}

The content of \scratchtoks is: “\MyMacroA”, so no expansion has happened here.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroA}

Now the content of \scratchtoks is: “ and ”, so this time expansion has happened.

\def\MyMacroA{ and }

\def\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

Indeed the macro gets expanded but only one level: “1\MyMacroA 2”. Compare this

with:

\def\MyMacroA{ and }

\edef\MyMacroB{1\MyMacroA 2}

\scratchtoks \expandafter {\MyMacroB}

The trick is to expand in two steps with an intermediate \edef: “1 and 2”. Later we will

6

𝜀-TEX primitives

see that other engines provide some more expansion tricks. The only way to get some

grip on expansion is to just play with it.

The \expandafter primitive expands the token (which can be a macro) standing after

the next next one and then injects its meaning into the stream. So:

\expandafter \MyMacroA \MyMacroB

works okay. In a normal document you will never need this kind of hackery: it only

happens in a bit more complex macros. Here is an example:

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\egroup

\the\scratchcounter

\scratchcounter 1

\bgroup

\advance\scratchcounter 1

\expandafter

\egroup

\the\scratchcounter

The first one gives 1, while the second gives 2.

3 𝜀-TEX primitives
In this engine a couple of extensions were added and later on pdfTEX added some more.

We only discuss a few that relate to expansion. There is however a pitfall here. Before

𝜀-TEX showed up, ConTEXt already had a few mechanism that also related to expansion

and it used some names for macros that clash with those in 𝜀-TEX. This is why we will
use the \normal prefix here to indicate the primitive.1.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\edef\MyMacroABC{\MyMacroA\MyMacroB\MyMacroC}

These macros have the following meanings:

1 In the meantime we no longer have a low level \protected macro so one can use the primitive

7

𝜀-TEX primitives

macro:a

macro:b

protected macro:c

macro:ab\MyMacroC

In ConTEXt you will use the \unexpanded prefix instead, because that one did something

similar in older versions of ConTEXt. As we were early adopters of 𝜀-TEX, this later
became a synonym to the 𝜀-TEX primitive.

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded{\scratchtoks{\MyMacroA\MyMacroB\MyMacroC}}

Here the wrapper around the token register assignment will expand the three macros,

unless they are protected, so its content becomes “ab\MyMacroC”. This saves either a

lot of more complex \expandafter usage or the need to use an intermediate \edef. In

ConTEXt the \expanded macro does something simpler but it doesn't expand the first

token as this is meant as a wrapper around a command, like:

\expanded{\chapter{....}} % a ConTeXt command

where we do want to expand the title but not the \chapter command (not that this

would happen actually because \chapter is a protected command.)

The counterpart of \normalexpanded is \normalunexpanded, as in:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{c}

\normalexpanded {\scratchtoks

{\MyMacroA\normalunexpanded {\MyMacroB}\MyMacroC}}

The register now holds “a\MyMacroB \MyMacroC”: three tokens, one character token

and two macro references.

Tokens can represent characters, primitives, macros or be special entities like starting

math mode, beginning a group, assigning a dimension to a register, etc. Although you

can never really get back to the original input, you can come pretty close, with:

\detokenize{this can $ be anything \bgroup}

This (when typeset monospaced) is: this can $ be anything \bgroup. The detok

8

LuaTEX primitives

enizer is like \string applied to each token in its argument. Compare this to:

\normalexpanded {

\normaldetokenize{10pt}

}

We get four tokens: 10pt.

\normalexpanded {

\string 1\string 0\string p\string t

}

So that was the same operation: 10pt, but in both cases there is a subtle thing going on:

characters have a catcode which distinguishes them. The parser needs to know what

makes up a command name and normally that's only letters. The next snippet shows

these catcodes:

\normalexpanded {

\noexpand\the\catcode`\string 1 \noexpand\enspace

\noexpand\the\catcode`\string 0 \noexpand\enspace

\noexpand\the\catcode`\string p \noexpand\enspace

\noexpand\the\catcode`\string t \noexpand

}

The result is “12 12 11 11”: two characters are marked as ‘letter’ and two fall in the

‘other’ category.

4 LuaTEX primitives

This engine adds a little to the expansion repertoire. First of all it offers a way to extend

token lists registers:

\def\MyMacroA{a}

\def\MyMacroB{b}

\normalprotected\def\MyMacroC{b}

\scratchtoks{\MyMacroA\MyMacroB}

The result is: “\MyMacroA \MyMacroB”.

\toksapp\scratchtoks{\MyMacroA\MyMacroB}

We're now at: “\MyMacroA \MyMacroB \MyMacroA \MyMacroB \MyMacroA \MyMacroB”.

9

LuaMetaTEX primitives

\etoksapp\scratchtoks{\MyMacroA\space\MyMacroB\space\MyMacroC}

The register has this content: “\MyMacroA \MyMacroB \MyMacroA \MyMacroB a b \My

MacroC a b \MyMacroC”, so the additional context got expanded in the process, except

of course the protected macro \MyMacroC.

There is a bunch of these combiners: \toksapp and \tokspre for local appending and

prepending, with global companions: \gtoksapp and \gtokspre, as well as expanding

variant: \etoksapp, \etokspre, \xtoksapp and \xtokspre.

These are not beforehand more efficient that using intermediate expanded macros or

token lists, simply because in the process TEX has to create tokens lists too, but some

times they're just more convenient to use. In ConTEXt we actually do benefit from these.

5 LuaMetaTEX primitives

We already saw that macro's can be defined protected which means that

\def\TestA{A}

\protected \def\TestB{B}

\edef\TestC{\TestA\TestB}

gives this:

\TestC : A\TestB

One way to get \TestB expanded it to prefix it with \expand:

\def\TestA{A}

\protected \def\TestB{B}

\edef\TestC{\TestA\TestB}

\edef\TestD{\TestA\expand\TestB}

We now get:

\TestC : A\TestB

\TestD : AB

There are however cases where one wishes this to happen automatically, but that will

also make protected macros expand which will create havoc, like switching fonts.

\def\TestA{A}

\protected \def\TestB{B}

10

LuaMetaTEX primitives

\semiprotected \def\TestC{C}

\edef\TestD{\TestA\TestB\TestC}

\edef\TestE{\normalexpanded{\TestA\TestB\TestC}}

\edef\TestF{\semiexpanded {\TestA\TestB\TestC}}

This time \TestC looses its protection:

\TestA : A

\TestB : B

\TestC : C

\TestD : A\TestB \TestC

\TestE : A\TestB \TestC

\TestF : A\TestB C

Actually adding \fullyexpanded would be trivial but it makes not much sense to add

the overhead (at least not now). This feature is experimental anyway so it might go

away when I see no real advantage from it.

When you store something in a macro or token register you always need to keep an

eye on category codes. A dollar in the input is normally treated as math shift, a hash

indicates a macro parameter or preamble entry. Characters like ‘A’ are letters but ‘[’

and ‘]’ are tagged as ‘other’. The TEX scanner acts according to these codes. If you ever

find yourself in a situation that changing catcodes is no option or cumbersome, you can

do this:

\edef\TestOA{\expandtoken\othercatcode `A}

\edef\TestLA{\expandtoken\lettercatcode`A}

In both cases the meaning is A but in the first case it's not a letter but a character

flagged as ‘other’.

A whole new category of commands has to do with so called local control. When TEX

scans and interprets the input, a process takes place that is called tokenizing: (se

quences of) characters get a symbolic representation and travel through the system as

tokens. Often they immediately get interpreted and are then discarded. But when for

instance you define a macro they end up as a linked list of tokens in the macro body. We

already saw that expansion plays a role. In most cases, unless TEX is collecting tokens,

the main action is dealt with in the so-called main loop. Something gets picked up from

the input but can also be pushed back, for instance because of some lookahead that

didn't result in an action. Quite some time is spent in pushing and popping from the

so-called input stack.

When we are in Lua, we can pipe back into the engine but all is collected till we're

11

LuaMetaTEX primitives

back in TEX where the collected result is pushed into the input. Because TEX is a mix

of programming and action there basically is only that main loop. There is no real way

to start a sub run in Lua and do all kind of things independent of the current one. This

makes sense when you consider the mix: it would get too confusing.

However, in LuaTEX and even better in LuaMetaTEX, we can enter a sort of local state

and this is called ‘local control’. When we are in local control a newmain loop is entered

and the current state is temporarily forgotten: we can for instance expand where one

level up expansion was not done. It sounds complicated an indeed it is complicated so

examples have to clarify it.

1 \setbox0\hbox to 10pt{2} \count0=3 \the\count0 \multiply\count0 by 4

This snippet of code is not that useful but illustrates what we're dealing with:

• The 1 gets typeset. So, characters like that are seen as text.

• The \setbox primitive triggers picking up a register number, then goes on scanning

for a box specification and that itself will typeset a sequence of whatever until the

group ends.

• The count primitive triggers scanning for a register number (or reference) and then

scans for a number; the equal sign is optional.

• The the primitive injects some value into the current input stream and it does so by

entering a new input level.

• The multiply primitive picks up a register specification and multiplies that by the

next scanned number. The by is optional.

We now look at this snippet again but with an expansion context:

\def \TestA{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

These two macros have a slightly different body. Make sure you see the difference

before reading on.

control sequence: TestA

501992 12 49 other char 1 U+00031

214118 10 32 spacer

351830 116 0 set box setbox

12

LuaMetaTEX primitives

386699 12 48 other char 0 U+00030

501919 30 10 make box hbox

499872 1 123 left brace

450367 12 50 other char 2 U+00032

501945 2 125 right brace

501760 10 32 spacer

499875 109 0 register count

501966 12 48 other char 0 U+00030

502253 12 61 other char = U+0003D

260185 12 51 other char 3 U+00033

502173 10 32 spacer

509449 129 0 the the

30523 109 0 register count

499870 12 48 other char 0 U+00030

control sequence: TestB

501909 12 49 other char 1 U+00031

501761 10 32 spacer

501916 116 0 set box setbox

502146 12 48 other char 0 U+00030

82910 30 10 make box hbox

450456 1 123 left brace

450436 12 50 other char 2 U+00032

501774 2 125 right brace

30540 10 32 spacer

502304 109 0 register count

502158 12 48 other char 0 U+00030

502122 12 61 other char = U+0003D

339751 12 51 other char 3 U+00033

158336 10 32 spacer

501832 12 49 other char 1 U+00031

We now introduce a new primitive \localcontrolled:

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestC{1 \setbox0\hbox{2} \localcontrolled{\count0=3} \the\count0}

Again, watch the subtle differences:

13

LuaMetaTEX primitives

control sequence: TestB

502044 12 49 other char 1 U+00031

502094 10 32 spacer

94730 116 0 set box setbox

186448 12 48 other char 0 U+00030

30483 30 10 make box hbox

386727 1 123 left brace

30480 12 50 other char 2 U+00032

501844 2 125 right brace

450449 10 32 spacer

501764 109 0 register count

214115 12 48 other char 0 U+00030

30545 12 61 other char = U+0003D

502033 12 51 other char 3 U+00033

502291 10 32 spacer

502197 12 49 other char 1 U+00031

control sequence: TestC

386736 12 49 other char 1 U+00031

502131 10 32 spacer

502155 116 0 set box setbox

502204 12 48 other char 0 U+00030

497886 30 10 make box hbox

509452 1 123 left brace

502132 12 50 other char 2 U+00032

507020 2 125 right brace

501914 10 32 spacer

30554 10 32 spacer

502006 12 51 other char 3 U+00033

Another example:

\edef\TestB{1 \setbox0\hbox{2} \count0=3 \the\count0}

\edef\TestD{\localcontrolled{1 \setbox0\hbox{2} \count0=3 \the\count0}}

1 3 ← Watch how the results end up here!

control sequence: TestB

14

LuaMetaTEX primitives

502281 12 49 other char 1 U+00031

502335 10 32 spacer

386722 116 0 set box setbox

225583 12 48 other char 0 U+00030

501837 30 10 make box hbox

502421 1 123 left brace

177416 12 50 other char 2 U+00032

186451 2 125 right brace

497894 10 32 spacer

497805 109 0 register count

386730 12 48 other char 0 U+00030

30510 12 61 other char = U+0003D

501790 12 51 other char 3 U+00033

502014 10 32 spacer

502205 12 51 other char 3 U+00033

control sequence: TestD

<no tokens>

We can use this mechanism to define so called fully expandable macros:

\def\WidthOf#1%

{\beginlocalcontrol

\setbox0\hbox{#1}%

\endlocalcontrol

\wd0 }

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

When you want to add some grouping, it quickly can become less pretty:

\def\WidthOf#1%

{\dimexpr

\beginlocalcontrol

\begingroup

\setbox0\hbox{#1}%

\expandafter

15

LuaMetaTEX primitives

\endgroup

\expandafter

\endlocalcontrol

\the\wd0

\relax}

\scratchdimen\WidthOf{The Rite Of Spring}

\the\scratchdimen

104.72021pt

A single token alternative is available too and its usage is like this:

\def\TestA{\scratchcounter=100 }

\edef\TestB{\localcontrol\TestA \the\scratchcounter}

\edef\TestC{\localcontrolled{\TestA} \the\scratchcounter}

The content of \TestB is ‘100’ and of course the \TestC macro gives ‘ 100’.

We now move to the Lua end. Right from the start the way to get something into TEX

from Lua has been the print functions. But we can also go local (immediate). There are

several methods:

• via a set token register

• via a defined macro

• via a string

Among the things to keep in mind are catcodes, scope and expansion (especially in when

the result itself ends up in macros). We start with an example where we go via a token

register:

\toks0={\setbox0\hbox{The Rite Of Spring}}

\toks2={\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal(0) context("[1: %p]",tex.box[0].width)

tex.runlocal(2) context("[2: %p]",tex.box[0].width)

\stopluacode

[1: 104.72021pt][2: 109.14062pt]

We can also use a macro:

16

LuaMetaTEX primitives

\def\TestA{\setbox0\hbox{The Rite Of Spring}}

\def\TestB{\setbox0\hbox{The Rite Of Spring!}}

\startluacode

tex.runlocal("TestA") context("[3: %p]",tex.box[0].width)

tex.runlocal("TestB") context("[4: %p]",tex.box[0].width)

\stopluacode

[3: 104.72021pt][4: 109.14062pt]

A third variant is more direct and uses a (Lua) string:

\startluacode

tex.runstring([[\setbox0\hbox{The Rite Of Spring}]])

context("[5: %p]",tex.box[0].width)

tex.runstring([[\setbox0\hbox{The Rite Of Spring!}]])

context("[6: %p]",tex.box[0].width)

\stopluacode

[5: 104.72021pt][6: 109.14062pt]

A bit more high level:

context.runstring([[\setbox0\hbox{(Here \bf 1.2345)}]])

context.runstring([[\setbox0\hbox{(Here \bf %.3f)}]],1.2345)

Before we had runstring this was the way to do it when staying in Lua was needed:

\startluacode

token.setmacro("TestX",[[\setbox0\hbox{The Rite Of Spring}]])

tex.runlocal("TestX")

context("[7: %p]",tex.box[0].width)

\stopluacode

[7: 104.72021pt]

\startluacode

tex.scantoks(0,tex.ctxcatcodes,[[\setbox0\hbox{The Rite Of Spring!}]])

tex.runlocal(0)

context("[8: %p]",tex.box[0].width)

\stopluacode

17

LuaMetaTEX primitives

[8: 109.14062pt]

The order of flushing matters because as soon as something is not stored in a token list

or macro body, TEX will typeset it. And as said, a lot of this relates to pushing stuff into

the input which is stacked. Compare:

\startluacode

context("[HERE 1]")

context("[HERE 2]")

\stopluacode

[HERE 1][HERE 2]

with this:

\startluacode

tex.pushlocal() context("[HERE 1]") tex.poplocal()

tex.pushlocal() context("[HERE 2]") tex.poplocal()

\stopluacode

[HERE 2][HERE 1]

You can expand a macro at the Lua end with token.expandmacro which has a peculiar

interface. The first argument has to be a string (the name of a macro) or a userdata (a

valid macro token). This macro can be fed with parameters by passing more arguments:

string serialized to tokens

true wrap the next string in curly braces

table each entry will become an argument wrapped in braces

token inject the token directly

number change control to the given catcode table

There are more scanner related primitives, like the 𝜀-TEX primitive \detokenize:

[\detokenize {test \relax}]

This gives: [test \relax] . In LuaMetaTEX we also have complementary primi

tive(s):

[\tokenized catcodetable \vrbcatcodes {test {\bf test} test}]

[\tokenized {test {\bf test} test}]

[\retokenized \vrbcatcodes {test {\bf test} test}]

18

LuaMetaTEX primitives

The \tokenized takes an optional keyword and the examples above give: [test {\bf test} test]

[test test test] [test {\bf test} test] . The LuaTEX primitive \scantextokens

which is a variant of 𝜀-TEX's \scantokens operates under the current catcode regime
(the last one honors \everyeof). The difference with \tokenized is that this one first

serializes the given token list (just like \detokenize).2

With \retokenized the catcode table index is mandatory (it saves a bit of scanning and

is easier on intermixed \expandafter usage. There often are several ways to accom

plish the same:

\def\MyTitle{test {\bf test} test}

\detokenize \expandafter{\MyTitle}: 0.46\crlf

\meaningless \MyTitle : 0.47\crlf

\retokenized \notcatcodes{\MyTitle}: 0.87\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}: 0.93% \crlf

test {\bf test} test: 0.46

test {\bf test} test: 0.47

test {\bf test} test: 0.87

test {\bf test} test: 0.93

Here the numbers show the relative performance of these methods. The \detokenize

and \meaninglesswin because they already know that a verbose serialization is needed.

The last two first serialize and then reinterpret the resulting token list using the given

catcode regime. The last one is slowest because it has to scan the keyword.

There is however a pitfall here:

\def\MyText {test}

\def\MyTitle{test \MyText\space test}

\detokenize \expandafter{\MyTitle}\crlf

\meaningless \MyTitle \crlf

\retokenized \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

The outcome is different now because we have an expandable embedded macro call.

The fact that we expand in the last two primitives is also the reason why they are

‘slower’.

2 The \scan *tokens primitives now share the same helpers as Lua, but they should behave the same as in

LuaTEX.

19

Dirty tricks

test \MyText \space test

test \MyText \space test

test test test

test test test

To complete this picture, we show a variant than combines much of what has been

introduced in this section:

\semiprotected\def\MyTextA {test}

\def\MyTextB {test}

\def\MyTitle{test \MyTextA\space \MyTextB\space test}

\detokenize \expandafter{\MyTitle}\crlf

\meaningless \MyTitle \crlf

\retokenized \notcatcodes{\MyTitle}\crlf

\retokenized \notcatcodes{\semiexpanded{\MyTitle}}\crlf

\tokenized catcodetable \notcatcodes{\MyTitle}\crlf

\tokenized catcodetable \notcatcodes{\semiexpanded{\MyTitle}}

This time compare the last four lines:

test \MyTextA \space \MyTextB \space test

test \MyTextA \space \MyTextB \space test

test \MyTextA test test

test test test test

test \MyTextA test test

test test test test

Of course the question remains to what extend we need this and eventually will apply

in ConTEXt. The \detokenize is used already. History shows that eventually there is a

use for everything and given the way LuaMetaTEX is structured it was not that hard to

provide the alternatives without sacrificing performance or bloating the source.

6 Dirty tricks

When I was updating this manual Hans vd Meer and I had some discussions about

expansion and tokenization related issues when combining of xml processing with TEX

macros where he did some manipulations in Lua. In these mixed cases you can run

into catcode related problems because in xml you want for instance a # to be a hash

mark (other character) and not an parameter identifier. Normally this is handled well

in ConTEXt but of course there are complex cases where you need to adapt.

20

Dirty tricks

Say that youwant to compare two strings (officially we should say token lists) withmixed

catcodes. Let's also assume that you want to use the normal \if construct (which was

part of the discussion). We start with defining a test set. The reason that we present

this example here is that we use commands discussed in previous sections:

\def\abc{abc}

\semiprotected \def\xyz{xyz}

\edef\pqr{\expandtoken\notcatcodes`p%

\expandtoken\notcatcodes`q%

\expandtoken\notcatcodes`r}

1: \ifcondition\similartokens{abc} {def}YES\else NOP\fi (NOP) \quad

2: \ifcondition\similartokens{abc}{\abc}YES\else NOP\fi (YES)

3: \ifcondition\similartokens{xyz} {pqr}YES\else NOP\fi (NOP) \quad

4: \ifcondition\similartokens{xyz}{\xyz}YES\else NOP\fi (YES)

5: \ifcondition\similartokens{pqr} {pqr}YES\else NOP\fi (YES) \quad

6: \ifcondition\similartokens{pqr}{\pqr}YES\else NOP\fi (YES)

So, we have a mix of expandable and semi expandable macros, and also a mix of cat

codes. A naive approach would be:

\permanent\protected\def\similartokens#1#2%

{\iftok{#1}{#2}}

but that will fail on some cases:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: NOP(YES)

So how about:

\permanent\protected\def\similartokens#1#2%

{\iftok{\detokenize{#1}}{\detokenize{#2}}}

That one is even worse:

1: NOP(NOP) 2: NOP(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: NOP(YES)

We need to expand so we end up with this:

21

Dirty tricks

\permanent\protected\def\similartokens#1#2%

{\normalexpanded{\noexpand\iftok

{\noexpand\detokenize{#1}}

{\noexpand\detokenize{#2}}}}

Better:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: NOP(YES)

5: YES(YES) 6: YES(YES)

But that will still not deal with the mildly protected macro so in the end we have:

\permanent\protected\def\similartokens#1#2%

{\semiexpanded{\noexpand\iftok

{\noexpand\detokenize{#1}}

{\noexpand\detokenize{#2}}}}

Now we're good:

1: NOP(NOP) 2: YES(YES)

3: NOP(NOP) 4: YES(YES)

5: YES(YES) 6: YES(YES)

Finally we wrap this one in the usual \doifelse... macro:

\permanent\protected\def\doifelsesimilartokens#1#2%

{\ifcondition\similartokens{#1}{#2}%

\expandafter\firstoftwoarguments

\else

\expandafter\secondoftwoarguments

\fi}

so that we can do:

\doifelsesimilartokens{pqr}{\pqr}{YES}{NOP}

A companion macro of this is \wipetoken but for that one you need to look into the

source.

