
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

boxes

1

Preamble

Contents

1 Preamble 1

2 TEX primitives 2

3 𝜀-TEX primitives 4

4 LuaTEX primitives 5

5 LuaMetaTEX primitives 6

1 Preamble

1.1 Introduction

An average ConTEXt user will not use the low level box primitives but a basic under-

standing of how TEX works doesn’t hurt. In fact, occasionally using a box command

might bring a solution not easily achieved otherwise, simply because a more high level

interface can also be in the way.

The best reference is of course The TEXbook so if you’re really interested in the details

you should get a copy of that book. Below I will not go into details about all kind of

glues, kerns and penalties, just boxes it is.

This explanation will be extended when I feel the need (or users have questions that

can be answered here).

1.2 Boxes

This paragraph of text is made from lines that contain words that themselves contain

symbolic representations of characters. Each line is wrapped in a so called horizontal

box and eventually those lines themselves get wrapped in what we call a vertical box.

When we expose some details of a paragraph it looks like this:

This is a rather narrowH__

paragraph blown up aH__

bit. Here we use a flushH__

left, aka ragged right,H__

approach.H____V

LH:0.000
LS:0.000

IN:0.000ThisSP:3.497isSP:3.497aSP:3.497ratherSP:3.497narrow
RS:13.685

RH:0.000H__VP:2000BS:7.473

LH:0.000
LS:0.000
paragraphSP:3.497blownSP:3.497upSP:3.497a

RS:19.008
RH:0.000H__BS:5.185

LH:0.000
LS:0.000
bit.XS:5.500HereSP:3.497weSP:3.497useSP:3.497aSP:3.497flush

RS:7.557
RH:0.000H__BS:7.473

LH:0.000
LS:0.000
left,SP:3.497akaSP:3.497raggedSP:3.497right,

RS:19.706
RH:0.000H__VP:2000BS:5.185

LH:0.000
LS:0.000PL:0.000approach.HP:10000PR:86.442 RS:0.000

RH:0.000H____V

2

TEX primitives

The left only shows the boxes, the variant at the right shows (font) kerns and glue too.

Because we flush left, there is rather strong right skip glue at the right boundary of the

box. If font kerns show up depends on the font, not all fonts have them (or have only a

few). The glyphs themselves are also kind of boxed, as their dimensions determine the

area that they occupy:

This is a rather ...
But, internally they are not really boxed, as they already are a single quantity. The same

is true for rules: they are just blobs with dimensions. A box on the other hand wraps

a linked list of so called nodes: glyphs, kerns, glue, penalties, rules, boxes, etc. It is a

container with properties like width, height, depth and shift.

2 TEX primitives

The box model is reflected in TEX’s user interface but not by that many commands, most

noticeably \hbox, \vbox and \vtop. Here is an example of the first one:

\hbox width 10cm{text}

\hbox width 10cm height 1cm depth 5mm{text}

text \raise5mm\hbox{text} text

The \raise and \lower commands behave the same but in opposite directions. One

could as well have been defined in terms of the other.

text \raise 5mm \hbox to 2cm {text}

text \lower -5mm \hbox to 2cm {text}

text \raise -5mm \hbox to 2cm {text}

text \lower 5mm \hbox to 2cm {text}

text

textH__

text

textH__

text

textH__

text

textH__

A box can be moved to the left or right but, believe it or not, in ConTEXt we never use

that feature, probably because the consequences for the width are such that we can as

well use kerns. Here are some examples:

text \vbox{\moveleft 5mm \hbox {left}}text !

text \vbox{\moveright 5mm \hbox{right}}text !

3

TEX primitives

textlefttext ! text righttext !

text \vbox{\moveleft 25mm \hbox {left}}text !

text \vbox{\moveright 25mm \hbox{right}}text !

textleft text ! text righttext !

Code like this will produce a complaint about an underfull box but we can easily get

around that:

text \raise 5mm \hbox to 2cm {\hss text}

text \lower -5mm \hbox to 2cm {text\hss}

text \raise -5mm \hbox to 2cm {\hss text}

text \lower 5mm \hbox to 2cm {text\hss}

The \hss primitive injects a glue that when needed will fill up the available space. So,

here we force the text to the right or left.

text

textH__

text

textH__

text

textH__

text

textH__

We have three kind of boxes: \hbox, \vbox and \vtop:

\hbox{\strut height and depth\strut}

\vbox{\hsize 4cm \strut height and depth\par and width\strut}

\vtop{\hsize 4cm \strut height and depth\par and width\strut}

A \vbox aligns at the bottom and a \vtop at the top. I have added some so called struts

to enforce a consistent height and depth. A strut is an invisible quantity (consider it a

black box) that enforces consistent line dimensions: height and depth.

height and depthH__

height and depthH__

and widthH____V height and depthH__

and widthH__

T

You can store a box in a register but you need to be careful not to use a predefined one.

If you need a lot of boxes you can reserve some for your own:

\newbox\MySpecialBox

but normally you can do with one of the scratch registers, like 0, 2, 4, 6 or 8, for local

4

𝜀-TEX primitives

boxes, and 1, 3, 5, 7 and 9 for global ones. Registers are used like:

\setbox0\hbox{here}

\global\setbox1\hbox{there}

In ConTEXt you can also use

\setbox\scratchbox \hbox{here}

\setbox\scratchboxone\hbox{here}

\setbox\scratchboxtwo\hbox{here}

and some more. In fact, there are quite some predefined scratch registers (boxes, di-

mensions, counters, etc). Feel free to investigate further.

When a box is stored, you can consult its dimensions with \wd, \ht and \dp. You can of

course store them for later use.

\scratchwidth \wd\scratchbox

\scratchheight\ht\scratchbox

\scratchdepth \dp\scratchbox

\scratchtotal \dimexpr\ht\scratchbox+\dp\scratchbox\relax

\scratchtotal \htdp\scratchbox

The last line is ConTEXt specific. You can also set the dimensions

\wd\scratchbox 10cm

\ht\scratchbox 10mm

\dp\scratchbox 5mm

So you can cheat! A box is placed with \copy, which keeps the original intact or \box

which just inserts the box and then wipes the register. In practice you seldom need a

copy, which is more expensive in runtime anyway. Here we use copy because it serves

the examples.

\copy\scratchbox

\box \scratchbox

3 𝜀-TEX primitives

The 𝜀-TEX extensions don’t add something relevant for boxes, apart from that you can

use the expressions mechanism to mess around with their dimensions. There is a mech-

anism for typesetting r2l within a paragraph but that has limited capabilities and doesn’t

5

LuaTEX primitives

change much as it’s mostly a way to trick the backend into outputting a stretch of text in

the other direction. This feature is not available in LuaTEX because it has an alternative

direction mechanism.

4 LuaTEX primitives

The concept of boxes is the same in LuaTEX as in its predecessors but there are some

aspects to keep in mind. When a box is typeset this happens in LuaTEX:

1. A list of nodes is constructed. In LuaTEX this is a double linked list (so that it can

easily be manipulated in Lua) but TEX itself only uses the forward links.

2. That list is hyphenated, that is: so called discretionary nodes are injected. This

depends on the language properties of the glyph (character) nodes.

3. Then ligatures are constructed, if the font has such combinations. When this built-in

mechanism is used, in ConTEXt we speak of base mode.

4. After that inter-character kerns are applied, if the font provides them. Again this is

a base mode action.

5. Finally the box gets packaged:

– In the case of a horizontal box, the list is packaged in a hlist node, basically one

liner, and its dimensions are calculated and set.

– In the case of a vertical box, the paragraph is broken into one or more lines, with-

out hyphenation, with optimal hyphenation or in the worst case with so called

emergency stretch applied, and the result becomes a vlist node with its dimen-

sions set.

In traditional TEX the first four steps are interwoven but in LuaTEX we need them split

because the step 5 can be overloaded by a callback. In that case steps 3 and 4 (and

maybe 2) are probably also overloaded, especially when you bring handling of fonts

under Lua control.

New in LuaTEX are three packers: \hpack, \vpack and \tpack, which are companions

to \hbox, \vbox and \vtop but without the callbacks applied. Using them is a bit tricky

as you never know if a callback should be applied, which, because users can often add

their own Lua code, is not something predictable.

Another box related extension is direction. There are four possible directions but be-

cause in LuaMetaTEX there are only two. Because this model has been upgraded, it will

6

LuaMetaTEX primitives

be discusses in the next section. A ConTEXt user is supposed to use the official ConTEXt

interfaces in order to be downward compatible.

5 LuaMetaTEX primitives

There are two possible directions: left to right (the default) and right to left for Hebrew

and Arabic. Here is an example that shows how it’d done with low level directives:

\hbox direction 0 {from left to right}

\hbox direction 1 {from right to left}

from left to right

fromrighttoleft

A low level direction switch is done with:

\hbox direction 0

{from left to right \textdirection 1 from right to left}

\hbox direction 1

{from right to left \textdirection 1 from left to right}

from left to right fromrighttoleft

fromrighttoleftfromlefttoright

but actually this is kind of not done in ConTEXt, because there you are supposed to use

the proper direction switches:

\naturalhbox {from left to right}

\reversehbox {from right to left}

\naturalhbox {from left to right \righttoleft from right to left}

\reversehbox {from right to left \lefttoright from left to right}

from left to right

fromrighttoleft

from left to right fromrighttoleft

fromrighttoleftfrom left to right

Often more is needed to properly support right to left typesetting so using the ConTEXt

commands is more robust.

In LuaMetaTEX the box model has been extended a bit, this as a consequence of drop-

ping the vertical directional typesetting, which never worked well. In previous sections

7

LuaMetaTEX primitives

we discussed the properties width, height and depth and the shift resulting from a

\raise, \lower, \moveleft and \moveright. Actually, the shift is also used in for in-

stance positioning math elements.

The way shifting influences dimensions can be somewhat puzzling. Internally, when

TEX packages content in a box there are two cases:

• When a horizontal box is made, and height - shift is larger than the maximum

height so far, that delta is taken. When depth + shift is larger than the current

depth, then that depth is adapted. So, a shift up influences the height and a shift

down influences the depth.

• In the case of vertical packaging, when width + shift is larger than the maximum

box (line) width so far, that maximum gets bumped. So, a shift to the right can

contribute, but a shift to the left cannot result in a negative width. This is also why

vertical typesetting, where height and depth are swapped with width, goes wrong:

we somehow need to map two properties onto one and conceptually TEX is really

set up for horizontal typesetting. (And it’s why I decided to just remove it from the

engine.)

This is one of these cases where TEX behaves as expected but it also means that there is

some limitation to what can be manipulated. Setting the shift using one of the four com-

mands has a direct consequence when a box gets packaged which happens immediately

because the box is an argument to the foursome.

There is in traditional TEX, probably for good reason, no way to set the shift of a box,

if only because the effect would normally be none. But in LuaTEX we can cheat, and

therefore, for educational purposed ConTEXt has implements some cheats.

We use this sample box:

\setbox\scratchbox\hbox\bgroup

\middlegray\vrule width 20mm depth -.5mm height 10mm

\hskip-20mm

\darkgray \vrule width 20mm height -.5mm depth 5mm

\egroup

When we mess with the shift using the ConTEXt \shiftbox helper, we see no immediate

effect. We only get the shift applied when we use another helper, \hpackbox.

\hbox\bgroup

\showstruts \strut

\quad \copy\scratchbox

8

LuaMetaTEX primitives

\quad \shiftbox\scratchbox -20mm \copy\scratchbox

\quad \hpackbox\scratchbox \box \scratchbox

\quad \strut

\egroup

When instead we use \vpackbox we get a different result. This time we move left.

\hbox\bgroup

\showstruts \strut

\quad \copy\scratchbox

\quad \shiftbox\scratchbox -10mm \copy\scratchbox

\quad \vpackbox\scratchbox \copy\scratchbox

\quad \strut

\egroup

The shift is set via Lua and the repackaging is also done in Lua, using the low level

hpack and vpack helpers and these just happen to look at the shift when doing their

job. At the TEX end this never happens.

This long exploration of shifting serves a purpose: it demonstrates that there is not

that much direct control over boxes apart from their three dimensions. However this

was never a real problem as one can just wrap a box in another one and use kerns

to move the embedded box around. But nevertheless I decided to see if the engine

can be a bit more helpful, if only because all that extra wrapping gives some overhead

and complications when we want to manipulate boxes. And of course it is also a nice

playground.

We start with changing the direction. Changing this property doesn’t require repackag-

ing because directions are not really dealt with in the frontend. When a box is converted

to (for instance pdf) the reversion happens.

9

LuaMetaTEX primitives

\setbox\scratchbox\hbox{whatever}

\the\boxdirection\scratchbox: \copy\scratchbox \crlf

\boxdirection\scratchbox 1

\the\boxdirection\scratchbox: \copy\scratchbox

0: whatever

1: whatever

Another property that can be queried and set is an attribute. In order to get a private

attribute we define one.

\newattribute\MyAt

\setbox\scratchbox\hbox attr \MyAt 123 {whatever}

[\the\boxattribute\scratchbox\MyAt]

\boxattribute\scratchbox\MyAt 456

[\the\boxattribute\scratchbox\MyAt]

[\ifnum\boxattribute\scratchbox\MyAt>400 okay\fi]

[123] [456] [okay]

The sum of the height and depth is available too. Because for practical reasons setting

that property is also needed then, the choice was made to distribute the value equally

over height and depth.

\setbox\scratchbox\hbox {height and depth}

[\the\ht\scratchbox]

[\the\dp\scratchbox]

[\the\boxtotal\scratchbox]

\boxtotal\scratchbox=20pt

[\the\ht\scratchbox]

[\the\dp\scratchbox]

[\the\boxtotal\scratchbox]

[8.35742pt] [2.44385pt] [10.80127pt] [10.0pt] [10.0pt] [20.0pt]

We’ve now arrived to a set of properties that relate to each other. They are a bit complex

and given the number of possibilities one might need to revert to some trial and error:

orientations and offsets. As with the dimensions, directions and attributes, they are

passed as box specification. We start with the orientation.

\hbox \bgroup \showboxes

\hbox orientation 0 {right}

10

LuaMetaTEX primitives

\quad \hbox orientation 1 {up}

\quad \hbox orientation 2 {left}

\quad \hbox orientation 3 {down}

\egroup

rightH__

u
p

H__ leftH__ d
o
w
n

H__

When the orientation is set, you can also set an offset. Where shifting around a box

can have consequences for the dimensions, an offset is virtual. It gets effective in the

backend, when the contents is converted to some output format.

\hbox \bgroup \showboxes

\hbox orientation 0 yoffset 10pt {right}

\quad \hbox orientation 1 xoffset 10pt {up}

\quad \hbox orientation 2 yoffset -10pt {left}

\quad \hbox orientation 3 xoffset -10pt {down}

\egroup

right
H__

u
p

H__

left

H__ d
o
w
n

H__

The reason that offsets are related to orientation is that we need to know in what di-

rection the offsets have to be applied and this binding forces the user to think about it.

You can also set the offsets using commands.

\setbox\scratchbox\hbox{whatever}%

1 \copy\scratchbox

2 \boxorientation\scratchbox 2 \copy\scratchbox

3 \boxxoffset \scratchbox -15pt \copy\scratchbox

4 \boxyoffset \scratchbox -15pt \copy\scratchbox

5

1 whatever2 whatever 3 whatever 4

whatever

5

\setbox\scratchboxone\hbox{whatever}%

\setbox\scratchboxtwo\hbox{whatever}%

1 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

2 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

3 \boxxoffset \scratchboxone -15pt \copy\scratchboxone

4 \boxyoffset \scratchboxone -15pt \copy\scratchboxone

11

LuaMetaTEX primitives

5 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

6 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

7 \boxxmove \scratchboxtwo -15pt \copy\scratchboxtwo

8 \boxymove \scratchboxtwo -15pt \copy\scratchboxtwo

1whatever 2

whatever

3

whatever

4

whatever

5whatever6

whatever

7

whatever

8

whatever

The move commands are provides as convenience and contrary to the offsets they do

adapt the dimensions. Internally, with the box, we register the orientation and the off-

sets and when you apply these commands multiple times the current values get over-

written. But . . . because an orientation can be more complex you might not get the

effects you expect when the options we discuss next are used. The reason is that we

store the original dimensions too and these come into play when these other options

are used: anchoring. So, normally you will apply an orientation and offsets once only.

The orientation specifier is actually a three byte number that best can be seen hexa-

decimal (although we stay within the decimal domain). There are three components:

x-anchoring, y-anchoring and orientation:

0x<X><Y><O>

or in TEX speak:

"<X><Y><O>

The landscape and seascape variants both sit on top of the baseline while the flipped

variant has its depth swapped with the height. Although this would be enough a bit

more control is possible.

The vertical options of the horizontal variants anchor on the baseline, lower corner,

upper corner or center.

\ruledhbox orientation "002 {\TEX} and

\ruledhbox orientation "012 {\TEX} and

\ruledhbox orientation "022 {\TEX} and

\ruledhbox orientation "032 {\TEX}

TEX and

TEX

and TEX and TEX

The horizontal options of the horizontal variants anchor in the center, left, right, halfway

left and halfway right.

12

LuaMetaTEX primitives

\ruledhbox orientation "002 {\TEX} and

\ruledhbox orientation "102 {\TEX} and

\ruledhbox orientation "202 {\TEX} and

\ruledhbox orientation "302 {\TEX} and

\ruledhbox orientation "402 {\TEX}

TEX and TEX and TEXand TEX and TEX

The orientation has consequences for the dimensions so they are dealt with in the ex-

pected way in constructing lines, paragraphs and pages, but the anchoring is virtual,

like the offsets. There are two extra variants for orientation zero: on top of baseline or

below, with dimensions taken into account.

\ruledhbox orientation "000 {\TEX} and

\ruledhbox orientation "004 {\TEX} and

\ruledhbox orientation "005 {\TEX}

TEX and TEX and
TEX

The anchoring can look somewhat confusing but you need to keep in mind that it is

normally only used in very controlled circumstances and not in running text. Wrapped

in macros users don’t see the details. We’re talking boxes here, so for instance:

test\quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "012 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "022 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "032 \bgroup\strut test\egroup test%

\egroup \quad

\hbox orientation 3 \bgroup

\strut test\hbox orientation "042 \bgroup\strut test\egroup test%

13

LuaMetaTEX primitives

\egroup

\quad test

test te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

te
s
t

test

