
Graphics
Hans Hagen



1

Introduction

This manual is about integrating graphics your document. Doing this is not really that complex so this

manual will be short. Because graphic inclusion is related to the backend some options will discussed.

It’s typical one of these manuals that can grow over time.

Inclusion

The command to include an image is:

\externalfigure [...]
1

[...]
2

OPT

[..,..=..,..]
3

OPT

1 FILE

2 NAME

3 inherits: \setupexternalfigure

and its related settings are:

\setupexternalfigure [...,...]
1

OPT

[..,..=..,..]
2

1 NAME

2 width = DIMENSION

height = DIMENSION

label = NAME

page = NUMBER

object = yes no

prefix = TEXT

method = pdf mps jpg png jp2 jbig svg eps gif tif mov buffer tex cld auto

controls = yes no

preview = yes no

mask = none

resolution = NUMBER

color = COLOR

arguments = TEXT

repeat = yes no

factor = fit broad max auto default

hfactor = fit broad max auto default

wfactor = fit broad max auto default

maxwidth = DIMENSION

maxheight = DIMENSION

equalwidth = DIMENSION

equalheight = DIMENSION

scale = NUMBER

xscale = NUMBER

yscale = NUMBER

s = NUMBER

sx = NUMBER

sy = NUMBER

lines = NUMBER

location = local global default

directory = PATH

option = test frame empty

forgroundcolor = COLOR



2

reset = yes no

background = color foreground NAME

frame = on off

backgroundcolor = COLOR

xmax = NUMBER

ymax = NUMBER

frames = on off

interaction = yes all none reference layer bookmark

bodyfont = DIMENSION

comment = COMMAND TEXT

size = none media crop trim art

cache = PATH

resources = PATH

display = FILE

conversion = TEXT

order = LIST

crossreference = yes no NUMBER

transform = auto NUMBER

userpassword = TEXT

ownerpassword = TEXT

So you can say:

\externalfigure[cow.pdf][width=4cm]

The suffix is optional, which means that this will also work:

\externalfigure[cow][width=4cm]

Defining

todo

\useexternalfigure [...]
1

[...]
2

[...]
3

OPT

[..,..=..,..]
4

OPT
1 NAME

2 FILE

3 NAME

4 inherits: \setupexternalfigure

\defineexternalfigure [...]
1

[...]
2

OPT

[..,..=..,..]
3

OPT
1 NAME

2 NAME

3 inherits: \setupexternalfigure

\registerexternalfigure [...]
1

[...]
2

OPT

[..,..=..,..]
3

OPT
1 FILE

2 NAME

3 inherits: \setupexternalfigure



3

Analyzing

todo

\getfiguredimensions [...]
1

[..,..=..,..]
2

OPT

1 FILE

2 inherits: \setupexternalfigure

\figurefilename

\figurefilepath

\figurefiletype

\figurefullname

\figureheight

\figurenaturalheight

\figurenaturalwidth

\figuresymbol [...]
1

[..,..=..,..]
2

OPT

1 FILE NAME

2 inherits: \externalfigure

\figurewidth

\noffigurepages

Collections

todo



4

\externalfigurecollectionmaxheight {...}
*

* NAME

\externalfigurecollectionmaxwidth {...}
*

* NAME

\externalfigurecollectionminheight {...}
*

* NAME

\externalfigurecollectionminwidth {...}
*

* NAME

\externalfigurecollectionparameter {...}
1

{...}
2

1 NAME

2 KEY

\startexternalfigurecollection [...]
*

... \stopexternalfigurecollection

* NAME

Conversion

todo

Figure databases

todo

\usefigurebase [...]
*

* reset FILE

Overlays

todo



5

\overlayfigure {...}
*

* FILE

\pagefigure [...]
1

[..,..=..,..]
2

OPT

1 FILE

2 offset = default overlay none DIMENSION

Scaling

Images are normally scaled proportionally but if needed you can give an explicit height and width. The

\scale command shares this property and can be used to scale in the same way as \externalfigure.

I will illustrate this with an example.

You can define your own bitmaps, like I did with the cover of this manual:

\startluacode

local min, max, random = math.min, math.max, math.random

-- kind of self-explaining:

local xsize = 210

local ysize = 297

local colordepth = 1

local usemask = true

local colorspace = "rgb"

-- initialization:

local bitmap = graphics.bitmaps.new(xsize,ysize,colorspace,colordepth,usemask)

-- filling the bitmap:

local data = bitmap.data

local mask = bitmap.mask

local minmask = 100

local maxmask = 200

for i=1,ysize do

local d = data[i]

local m = mask[i]

for j=1,xsize do

d[j] = { i, max(i,j), j, min(i,j) }

m[j] = random(minmask,maxmask)

end

end

-- flushing the lot:



6

graphics.bitmaps.tocontext(bitmap)

\stopluacode

The actually inclusion of this image happened with:

\scale

[width=\paperwidth]

{\getbuffer[image]}

The backend

Traditionally TEX sees an image as just a box with dimensions and in LuaTEX it is actually a special kind

of rule that carries information about what to inject in the final (pdf) file. In regular LuaTEX the core

formats pdf, png, jpg and jp2 are dealt with by the backend but in ConTEXt we can use Lua instead.

We might default to that method at some point but for now you need to enable that explicitly:

\enabledirectrive[graphics.pdf.uselua]

\enabledirectrive[graphics.jpg.uselua]

\enabledirectrive[graphics.jp2.uselua]

\enabledirectrive[graphics.png.uselua]

All four can be enabled with:

\enabledirectrive[graphics.uselua]

Performance-wise only png inclusion can be less efficient, but only when you use interlaced images

or large images with masks. It makes no real sense in a professional workflow to use the (larger)

interlaced images, and masks are seldom used at high resolutions, so in practice one will not really

notice loss of performance.

The advantage of this method is that we can provide more options, intercept bad images that make

the backend abort and lessen the dependency on libraries.


