ConTgXt
Imtx

LLOWING UP

O

F

Table of contents

10

11

12

13

14

15

16

17

Introduction
Evolution
Stripping
Bitmap images
Logging
Directions
Performance
Cleanup
Rejected
Whatsits
Feedback
LUA
Compilation
Stubs
METAPOST
TeX

Retrospect

13

21

25

27

51

53

59

61

63

69

73

75

81

85

87

1 Introduction

This document, the fifth in a series, describes the follow up project on ConTgXt MKIV
& LuaTgX which carries the working title ConTgXt Imtx. This four letter acronym repre-
sents Lua, MetaPost and TgX, and if you want you can see the last character representing
xml, as that has been an integral part of ConTgXt for a long time. But the ‘x’ can also be
found in ‘experimental’, ‘extreme’, ‘experience’ and ‘extravagant’, so take your choice.

Of course ConTgXt is and will be a typesetting system using the TgX language and type-
setting core, but a rather substantial amount of the functionality is a hybrid of TgX
macros and Lua code. The built-in graphic support is driven by MetaPost, but there we
also use Lua as an extension language. The Lua machinery is used for alternative input
and handling data too. The same is true for xml, sql, csv, json, etc.

The output from ConTgXt is normally pdf and MkIV doesn’t even enable dvi output. Mid
2018 I started experimenting with a backend that no longer used the one provided by
the engine. After all, we only used page stream building, font embedding and bitmap in-
clusion and all other features were always done in Lua. The experiments also concerned
a MetaPost and Lua backend. Those familiar with ConTgXt know that there is already an
export feature which till now runs in parallel with the ConTgXt pdf backend (it started
as a kind of joke but in the end was seen as relevant and kept and maybe so some point
I will rewrite that code).

The idea behind ConTgXt Imtx is that we will use a minimalist engine. Being minimalist
also means that probably only ConTgXt will use it and therefore no other package will be
affected by further experiments, although at some point a sort of general low level layer
might be provided. The frontend is mostly the same as LuaTgX 1.1 but the backend and
related code is gone and/or different. Libraries have (and are) being cleaned up and
reorganized too. At least for a while, ConTgXt will work on LuaTgX 1.1 (stable) as well
as its (experimental) follow up, where the follow up will evolve over a few years and be
tested in the usual ConTgXt (garden) beta setting. The next chapters will explain this in
more detail.

Just to be clear I repeat: LuaTgX 1.1 will be supported by ConTgXt and maintained as
usual, including binaries generated on the ConTgXt garden. We’ve invested many years
in it and it serves its purpose well, but our experiments will happen in its follow up, so
thatitdoesn’t affect stable workflows. Of course there have been (and probably are) bugs
in LuaTgX but the engine could be used pretty well right from the start with ConTgXt. The
same will be true for the follow up.

One of the ideas of the follow up is to provide a combination of a stable engine indepen-
dent of libraries with a relative simple compilation setup and a macro package that has

Introduction 3

proven to exploit a mix of TgX, MetaPost and Lua. As a side effect I can explore some
postponed ideas. Of course there can be valid reasons to move to the successor sooner.
In that case we might create a stable snapshot of MkIV as was done with MKII. As to
be expected in ConTgXt, the user interfaces won’t change nor will the functionality, but
there will be two code paths, one for MKIV and one for Imtx. There will also be new func-
tionality in ConTgXt that is only available in Imtx. So, eventually we expect all users to
migrate.

In the beginning of december 2018 most of the work was done and users involved in
development could start testing. By the end of the year a reasonable stable state was
reached. In 2019 the code base was further overhauled and libraries got upgraded. The
code base became smaller and compilation easier, smoother and much faster. Eventu-
ally the source code (now some 11MB uncompressed and 3MB compressed) will be part
of the ConTgXt distribution, so that we have a complete package (also in the archival
sense).

The next chapters discuss the process and choices that were made. The chapters were
written in order so later chapters can amend earlier ones. Consider it a history, and
one cannot cheat by patching history. In some cases footnotes were added to earlier
chapters when writing later ones. It’s not a manual! Reported typos (for sure there are
many) will be fixed but changes in later versions of the follow discussed here will not
end up in this document.

This document is dedicated to Wolfgang Schuster, who has been instrumental in the
transition from MKII to MKIV, and often baffles me with his knowledge of the (even ob-
scure bits) of the ConTgXt internals. Without him checking the code base, fundamental
changes like those that are and might get introduced in this follow up are impossible.

I want to thank Alan Braslau who accompanies me on this journey and patiently com-
piles the lot for some platforms. He, Thomas Schmitz and Aditya Mahajan are examples
of power users who also are early adopters of something new like this and are willing
to take the risks. And of course there is Mojca Miklavec without whose enthusiasm and
optimism developments like this would never take place. In the meantime Luigi Scarso
made sure that the (frozen) LuaTgX code base served existing users. Itis hard to tell how
users experience the transition: there are no that many issues reported which can be a
good or bad sign. We will see.

Hans Hagen
PRAGMA ADE, Hasselt NL
August 2018 — May 2019

4 Introduction

2 Evolution

2.1 Introduction

The original idea behind TgX is that of a relatively small kernel with (either or not sys-
tem dependent) extensions. One such extension is the dvi backend, and later pdfTgX
added a pdf backend. Other extensions are ‘writing to files’ and ‘writing to the output
medium’ using so called specials. This extension mechanism permits TgX to support,
for instance, color and image inclusion.

The LuaTgX project started from pdfTgX, including its extensions like font expansion,
and combined that with (bi)directional typesetting from the, at that moment, stable
Omega variant Aleph. During the more than a decade development we integrated ex-
pansion in a more efficient way and limited directions to the four that made sense. The
assumption that Unicode has the future lead to utf8 being used all over the place.

The LuaTgX variant opens up the internals using the Lua extension language. The idea
was (and still is) that instead if adding more and more hard coded solutions, one can
use Lua to do it on demand. So, for instance OpenType fonts are supported by provid-
ing a font file reader but the implementation of features is up to Lua. From pdfTgX the
graphic inclusions were inherited but an image and pdf reading library provided a few
more possibilities, for instance for querying properties. An important integral part of
LuaTgX is the MetaPost library, but apart from that one, the amount of libraries is kept
at a minimum. That way we're free of dependencies and compilation hassles.

With version 1.0 the functionality became official and with version 1.1 the functionality
became more of less frozen. The main reason for this is that further extensions would
violate the principle of using Lua instead of hard coding solutions. Another reason is
that at some point you have to provide a stable machinery for macro packages so that
backward as well as forward compatibility over alonger period is possible. Also, because
one can use TgX in (unattended) workflows sudden changes become undesirable.

2.2 What next?

Does it stop here? We have reached a reasonable stable state with ConTgXt MKIV and can
basically do what we want to do. However, during the more than a decade development
of this MKII follow up, the idea surfaced that we can go more minimal in the engine. Ba-
sically we can go back to where TgX started: a core plus extension mechanism. What
does that mean? First of all, there is the very efficient frontend: scanning macros, ex-
panding them and constructing node lists, all within a powerful grouping mechanism.
There is no reason to reconsider that. The core of the interface is also well documented,

Evolution 5

for instance in the TgX book. We added some primitives to LuaTgX, but most of them are
of no real importance to users; they make more sense to macro package writers.

Original TgX has a dvi backend which is a simple representation of a page: characters
and rules positioned on some grid. A separate program has to convert that into some-
thing for a printer. There is a basic extension mechanism that permits injection of so
called specials that get passed to the external program so that for instance an image can
beincluded. Given that LuaTgX is mostly used to generate pdf, using so called wide fonts
in a Unicode universe, a dvi backend is not that useful. In fact, one can then better use
the faster pdf TgX program or just e-TgX or TgX: use the best tool available for the job.

The backend however can be left out and can be implemented in Lua instead. In fact,
most of the backend related code in ConTgXt doesn’t really use the LuaTgX backend fea-
tures at all. The backend is only used to convert the page stream to a pdf content stream,
include images, include fonts and manage low level objects. Everything specific to pdf
is already done in Lua. Of course this has a performance penalty but given the overhead
already present in ConTgXt it is bearable.

Alongside the frontend the MetaPost library plays an important role in ConTgXt: inte-
gration between TgX, MetaPost and Lua is pretty tight and a unique property of ConTgXt.
But, forinstance the font readerlibrary is no longer used. Also the interfacing to the TgX
Directory Structure was done in Lua, originally for performance reasons as it reduced
startup time by more that a second. For some of the frontend code (like hyphenation
and par building) we can kick in Lua variants too but there is not much to gain there. (I
know that some users use them with success.)

So, traditional TgX can be summarized as:
tex core + dvi backend + tex extensions

where the extension interface provide a few goodies. If we would have to summarize
LuaTgX we could say:

tex core + dvi & pdf backend + tex extensions + lua callbacks

The core interprets the input and does the typesetting. In order to be able to typeset
TgX only needs the dimensions of characters and information about spacing (which in
principle are sort of independent) in math mode a few more properties are needed, like
snippets that make large symbols. In text mode ligature and kerning information can
be used too. However, in LuaTgX, where normally OpenType fonts are used, that infor-
mation is provided from Lua. This means that one can also think of:

tex core + basic font data + tex extensions + lua callbacks

6 Evolution

Compared to regular TgX this is not that different, and it’s what ConTgXt can do with.
So, it will be no surprise that when I wondered what LuaTgX 2.0 could be that a more
minimalistic approach was considered: back to the basics.

2.3 Roadmap

Before I continue it is good to mention the following. One of the burdens that ConTgXt
users (and developers) carry is that the outside world likes putting labels on ConTgXt,
like “A macro package depending on pdfTgX” in a time that we supported dvi at the
same level using a more of less generic driver model. The same is true for MKIV, e.g.
“ConTgXt uses a lot of Lua and moves away from TgX” while in fact we provide a hybrid
tool: you can use TgX input (which most users do) but also Lua (which can be handy) or
xml (which some publishers demand and definitely seems to be used by some ConTgXt
power users). A special one is “ConTgXt is kind of plain TgX, so you have to program all
yourself.” Reality is that ConTgXt is an integrated system, where TgX and MetaPost work
together to provide alot of integrated functionality. Because of LuaTgX development and
the relation between an updated engine and the beta version of ConTgXt, the impression
can be that we have an unstable system. This strategy of parallel adaptation is the only
way to really test of things work as expected. Because we have a rather fast update cycle
normally users don’t suffer that much from it.

The core of whatever we follow up with is and remains TgX, just because I like it. So,
when I talk about a small core, I actually still talk about TgX. The main reason is that
it’s way easier (and readable) to code some solutions in this hybrid fashion. A pure Lua
solution is no fun, maybe even a pain, and I have no use for it, but a pure TgX solution
can be cumbersome too. And TgX input is just very convenient and for that one needs a
TpX interpreter. I would already have dropped out when TgX was not part of the game:
an intriguing, puzzling and powerful toy. And MetaPost and Lua add even more fun.
So, I settle for a mix between three interesting languages. And, because I seldom run
into professional demand for LuaTgX related support (or high end, high performance
rendering), the fun factor has always been the driving force.

All that said, for practical reasons, when we explore a follow up in the perspective of
ConTgXt, we will use the working title LuaMetaTgX instead. LuaMetaTgX has the current
LuaTgX frontend, some Lua libraries, but no backend. Gone are the font reader, image
inclusion, dvi and pdf backend (including font inclusion) and the interface to the tds.
Can that work? As mentioned, the font reader was already not used in ConTgXt for quite
a while. An alternative page stream builder was also in good working condition in Con-
TeXt when LuaTgX 1.08 was released and around LuaTgX 1.09 image inclusion was re-
placed (pdf inclusion was already accompanied for a while by a Lua variant). Currently
(fall 2018) ConTgXt is able to completely construct the pdf file which also meant font in-
clusion. However, it didn’t make much sense to release that code yet because after all,

Evolution 7

there was minimal gain when using it with a full blown LuaTgX. Also, switching to this
variant involved some runtime adaption of code which might confuse users. But above
all, it needed more testing, and releasing something before an upcoming TgXLive code
freeze is a bad idea.

During LuaTgX development a few times we got suggestions for additional features but
merely looking at them already made clear that what works for someone in a particular
case, can introduce side effects that make (for instance) ConTgXt fail. And, how many
folks keep ConTgXt in mind? So, when LuaTgX goes into maintenance mode, specific
distributions could accept patches outside our control, which has the danger that a bi-
nary (suggesting to be LuaTgX) doesn’t work with ConTgXt. Of course we cannot change
something ourselves either without looking around. And I'm not even bringing possible
negative side effects on performance into the discussion here.

When developing LuaTgX some ideas were dropped or delayed and these can now be ex-
plored without the danger of messing up the stable version. It has always been relatively
easy to adapt ConTgXt to changes so an (at least for now) experimental follow up can be
dealt with too, but this time the concept of ‘experimental’ is really bound to ConTgXt.
When something is found useful (or can be improved) it can always (after testing it for a
while) be fed back into LuaTgX, as long as it doesn’t break something. I'll decide on that
later.

In the documentation of TgX, when discussing the extension mechanism, Donald Knuth
says:

“The goal of a TgX extender should be to minimize alterations to the standard parts
of the program, and to avoid them completely if possible. He or she should also
be quite sure that there’s no easy way to accomplish the desired goals with the
standard features that TgX already has. “Think thrice before extending”, because
that may save a lot of work, and it will also keep incompatible extensions of TgX
from proliferating.”

With the in the next chapters discussed reduction of backend and some frontend code,
combined with hooks that can trigger callbacks, we try to come close to this objective.
Now, the last sentence of this quote relates to stability and this is also a reason why we
enter this new thread: the smaller the core is, the less subjected we are to change. Think
ofthis: Thaven’t used ConTgXt MkIlin over a decade. A pdf TgX format still gets generated
but I have no clue if the engine has been changed in ways that make some code behave
differently (it could also be the ecosystem related to that engine), but I assume it’s still
behaving the same. The same has to become true for stock LuaTgX and MKIV and for
ConTgXt it can even become more true with LuaMetaTgX. We'll see.

8 Evolution

2.4 Experiments

This (still sort of) prototype of what LuaMetaTgX could be boils down to a much smaller
binary, and not that much more Lua code on top of what we already have. There are no
longer dependencies on third party code, apart from Lua (pplibistuned for LuaTgX and
permanent part of the code base). Performance wise the backend of the experimental
version makes a run upto 5% slower than when using a native backend (on processing
the LuaTgX manual) but history has learned that we can gain some of that back in due
time. Performance also depends a bit on the properties of the document. Interesting is
that better control over the output showed that pdf output of the mentioned manual was
a bit smaller (but that might change).!

The experiments actually started already years ago with no longer using the font loader.
It sort of went this way:

- Stepwise ConTgXt functionality started using a combination of TgX and Lua code and
we got an idea of what was needed. The most demanding part was support for fonts.

- Font handling was done in Lua because it’s flexible which is what TgXies are accus-
tomed to. The OpenType and pdf standards would not be called standards if some
implementation was impossible and so far we’re ok. (Some more script support will
be provided in future versions.)

+ We stopped using the fontforge font loader but use one written in Lua instead. One
reason for this was that when variable fonts showed up we wanted to support it in
ConTgXt right from the start (not that there has been much demand). The same is
true for fonts using color (like emoji). Also, fighting the built-in FontForge heuristics
was hard.

« The (large and dependent on C* ") poppler library used for pdf embedding has been
replaced by a small lightweight library in pure C. This was triggered at a chat during
a bachoTgX meeting.

« Thehard coded pdfinclusion can be swapped with a Lua based one so that we can for
instance filter the page stream. We already had a hybrid solution in ConTgXt anyway
for other reasons (merging annotations, layers, bookmarks, etc.).

« The page stream constructor got a (shipout and xforms) by a Lua variant, but I de-
cided not to make that an independent option in stock LuaTgX with ConTgXt MKIV,
although for a while I had the option - -1mtx for activating that experimental code.

In the meantime the experimental version can process the LuaTgX manual 5-10% faster and the result is
still smaller.

Evolution 9

« Then of course bitmap image inclusion had to be done by Lua code, in order to see if
we can get rid of another external dependency as some of these libraries get frequent
updates while in practice we only use a very small subset of functionality. Indeed this
was possible.?

« With some effort (deciphering specs and such) the font inclusion could also be done
by a Lua. This was made possible by the fact that we already had support for variable
fonts. More tricks are possible and will be explored.

« Finally the pdf file construction and pdf object management had to be implemented.
This was actually the easiest part.

Performance wise the Lua font loader is faster than the built in one. The same is true for
pdf inclusion but in practice that is unnoticeable. Bitmap inclusion is currently slower
for interlaced images (seldom used in print) and just as efficient for other types. The
page stream constructor is definitely slower but this is compensated by the faster font
inclusion and pdf file construction. Of course it all depends on the kind of content, but
these are the observation as of fall 2018. Anyway, they were enough reason to continue
this experiment.

One thing to keep in mind is that the smaller the binary and the less code paths we have,
the better future performance might be. Computers are not becoming much faster for
single thread processes like TgX, so the less we jump around code space (memory) the
better it probably is for cpu caching (as caches are not growing much either).

2.5 Conclusion

Normally when writing this kind of code I make sure that I can enable such new mecha-
nisms on top of others but at some point one has to decide how to really integrate them.
For instance, we can do font inclusion independent of pdf generation or page stream
construction independent of pdf generation and/or font inclusion but in the end that
doesn’t make sense and makes the code base a bit of a mess. So, this is how it will go.

Stock LuaTgX with MKIV will use the normal backend but probably there might be an
option to overload the built-in image inclusion so that one can avoid the abortion of
a run in case of problematic images. Complete pdf file construction, which then also
includes page stream construction, font embedding and object management might be
available as option for MKIV with LuaTgX 1.10 (for a while) but will be default when us-
ing LuaMetaTgX. When we move on Imtx support might evolve in more sophisticated
trickery.>

I have a pure Lua parser for pdf too, so at some point that might get included in the ConTgXt code base.
A few months later I decided that this made no sense, and that it was cleaner to just leave that approach
for Imtx only. So, now both engines use different code exclusively.

10 Evolution

Once tested a bit in real documents experimental code will end up in the distribution.
That code can then be turned into production code (read: cleaned up and reshuffled a
bit). We can streamline the engine code base: strip the components that are not needed
any more, remove some obsolete features, optimize the code, strip some functions from
Lua libraries, rename some helpers, and finally add some documentation. There are
some plans to extend MetaPost so also things can get added. Concerning the Lua inter-
face it means that slunicode is removed, the embedded socket related Lua code goes
external (but the library stays), the font loader gets removed, the img library goes away,
no longer png libraries are embedded, synctex is stripped out (but the fields in nodes
stay or get extended).* The resulting binary will be much smaller and the code base more
independent and smaller too. In the process LuaJIT support might be dropped as well,
simply because it no longeris in sync with stock Lua, but that also depends on how com-
plex long term maintenance becomes.®

Because such a stripped down binary is no longer what got presented as LuaTgX ver-
sion 1, it will basically become LuaTgX version 2, but then we have the problem that its
binary name clashes with the original. This is why it will be run as luametatex. For
ConTgXt it’s not that relevant as it will run on both LuaTgX 1.10 and its lean and mean
successor. I might also provide a plain TgX (read: generic) version but that is to be de-
cided because it probably doesn’t make much sense to spend time on it. As usual we will
test this within the ConTgXt beta program. The good thing is that it doesn’t interact with
LuaTgX, so that other macro packages are not affected. Another side effect can be that
we uncover issues with LuaTgX 1.10 and that we can experiment with some improve-
ments that we feed back into the parent.

At the ConTgXt end of this there are some plans to extend the export, maybe improve al-
ready present pdf tagging (if found useful), add some more input (xml) manipulations,
and maybe extend (virtual) font handling a bit, now that we no longer are bound to the
currently used packet model. Contrary to what one might expect this is not really de-
pendent on the engine.

How do we proceed? As with the transition from MKII to MKIV, it will all happen step-
wise. This means that for a while the code base will be a bit hybrid but at some point it
might be partially split to make things cleaner, not that I expect many fundamental dif-
ferences (certainly not in the front-end). This dualistic approach means more work but
also makes that we keep a working ConTgXt. We also need to keep an eye on for instance
generic commands as used in tikz: we can’t drop them so we emulate them (so far with
success). As the time of this writing, begin November 2018, the ConTgXt test suite can

Much later I also decided to remove the zip file reader library.
5 Aswe will see in following chapters, indeed support for LuaJIT has been dropped while Lua got upgraded
to 5.4.

Evolution 11

be processed in Imtx mode without problems so I'm confident that it will work out ok.
The next chapter describes the results of how we did the above in more detail.

12 Evolution

3 Stripping

3.1 Introduction

Normally I need a couple of iterations to reach the implementation that I like (an average
of three rewrites is rather normal). So, I sat down and started stripping the engine and
did soafewtimesin order to get an idea of how to proceed. One drawback of going public
too soon (and we ran into that with LuaTgX) is that as soon as there are more users, one
gets stuck into the situation that a different approach is not really possible. This is why
from now on experimental is really experimental, even if that means: it works ok in Con-
TgXt (even for production) but we can change interfaces be better, e.g. more consistent
(although we’re also stuck with existing TgX terminology). Anyway, let’s proceed.

3.2 The binary

In 2014 the LuaTgX binary was some 10.9 MB large. The version 1.09 binary of October
2018 was about 6.8MB, and the reduction was due to removing the bitmap generation
from mplib as well as replacing poppler by pplib. As an exercise I decided to see how
easy it was to make a small version suitable for ConTgXt Imtx, and as expected the binary
shrunk to below 3MB (plus a Lua and kpse dll). This is a reasonable size given what is
still present.

There is hardly any file related code left because in practice the backend used the most
different file types. That also meant that we could remove kpse related code and keep
all that in the library part. In principle one can load that library and hook it into the
few callbacks that relate to loading files. Once we’re stable I'll probably write some code
for that.® Launching the binary with a startup script can deal with all matters needed,
because the command line arguments are available.

We could actually go even smaller by removing the built-in tfm and vf readers. For in-
stance it made not much sense to read and store information that is never used anyway,
like virtual font data: as long as the backend has access to what it needs it’s fine. By
removing unused code and stripping no longer used fields in the internal font tables
(which is also good for memory consumption), and cleaning up a bit here and there the
experimental binary ended up at a bit above 2.5MB (plus a Lua dll).”

In the meantime I think it makes not much sense to do that.
Mid January we were just below 2.7 MB with a static, all inclusive, binary. In March the static ended up at
2.9 MB on MS Windows and 2.6 MB in Unix.

Stripping 13

3.3 Functionality

There is no real reason to change much in the functionality of the frontend but as we
have no backend now, some primitives are gone. These have to be implemented as part
of creating a backend.

\dviextension \dvivariable \dvifeedback
\pdfextension \pdfvariable \pdffeedback

The already obsolete related dimensions are also removed:

\pageleftoffset \pagerightoffset
\pagetopoffset \pagebottomoffset

And we no longer need the page dimensions because they are just registers that are
normally used in the backend. So, we got rid of:

\pageheight
\pagewidth

Some font related inheritances from pdfTgX have also been dropped:

\letterspacefont
\copyfont
\expandglyphsinfont
\ignoreligaturesinfont
\tagcode

Internally all backend whatsits are gone, but generic 1literal, save, restore and
setmatrix nodes can still be created. Under consideration is to let them be so called
user nodes but for testing it made sense to keep them around for a while.®

The resource relates primitives are backend dependent so the primitives have been re-
moved. As with other backend related primitives, their arguments depend on the im-
plementation. So, no more:

\saveboxresource
\useboxresource
\lastsavedboxresourceindex

and:

\saveimageresource

Don’t take this as a reference: later we will see that more was changed.

14 Stripping

\useimageresource
\lastsavedimageresourceindex
\lastsavedimageresourcepages

Of course the rule nodes subtypes are still there, so the typesetting machinery will han-
dle them fine. It is no big deal to define a pseudo-primitive that provides the function-
ality at the TgX level.

The position related primitives are also backend dependent so again they were re-
moved.’

\savepos
\lastxpos
\lastypos

We could have kept \savepos but better is to be consistent. We no longer need these:

\outputmode
\draftmode
\synctex

These could gobecause we nolonger have a backend and if one needs itit’s easy to define
a meaningful variable and listen to that.

The \shipout primitive does no ship out but just flushes the content of the box, if that
hasn’t happened already.

Because we have Lua on board, and because we can now use the token scanners to im-
plement features, we no longer need the hard coded randomizer extensions. In fact,
also the MetaPost should now use the Lua randomizer, so that we are consistent. Any-
way, removed are:

\randomseed
\setrandomseed
\normaldeviate
\uniformdeviate

plus the helpers in the tex library.

There was some sentimental element in this. Long ago, even before pdf TgX showed up, ConTgXt already
had a positional mechanism. It worked by using specials in combination with a program that calculated
the positions from the dvi file. At some point that functionality was integrated into pdfTgX. For me it
always was a nice example of demonstrating that complaints like “TgX is limited because we don’t know
the position of an element in the text.” make no sense: TgX can do more than one thinks, given that one
thinks the right way.

Stripping 15

3.4 Fonts

Fonts are sort of special. We need the data at the Lua end in order to process OpenType
fonts and the backend code needs the virtual commands. The par builder also needs
to access font properties, as does the math renderer, but here is no real reason to carry
virtual font information around (which involves packing and unpacking virtual pack-
ets). So, in the end it made much sense to also delegate the tfm and vfloading to Lua as
well. And, as a consequence dumping and undumping font information could go away
too, which is okay, as we didn’t preload fonts in ConTgXt anyway. The saving in binary
bytes is not impressive but keeping unused code around neither. In principle we can
get rid of the internal representation if we fetch relevant data from the Lua tables but
that might be unwise from the perspective of performance. By removing the no longer
needed fields the memory footprint became somewhat smaller and font loading (pass-
ing from Lua to TgX) more efficient.

3.5 FilelO

What came next? A program like LuaTgX interacts with its environment and one of the
nice things about TgX is that it has a standard ecosystem, organized as the “TgX Direc-
tory Structure”. There is library that interfaces with this structure: kpse, but in ConTgXt
MKIV we implement its functionality in Lua. The primary reason for this was perfor-
mance. When we started with LuaTgX the startup on my machine (MS Windows) and
a few servers (linux) of a TgX engine took seconds and most fo that was due to loading
the rather large file databases, because a TgX Live installation was a gigabyte adventure.
With the Lua variant I could bring that down to milliseconds, because I could pre-hash
the database and limit it to files relevant for ConTgXt (still a lot, as fonts made up most).
Nowadays we have ssd disks and plenty of memory for caching, so these things are less
urgent, but on network shares it still matters.

So, as we don’t use kpse, we can remove that library. By doing that we simplify compi-
lation a lot as then all dependencies are in the engine’s source tree, and we’re no longer
dependent on updates. One can argue that we then sacrifice too much, but already for
a decade we don’t use it and the Lua variant does the job well within the tds ecosystem.
Also, in our by now stripped down engine, there is not that much lookup going on any-
way: we're already in Lua when we do fonts. But on the other hand, some generic usage
could benefit from the library to be present, so we face a choice. The choice is made
even more difficult by the fact that we can remove all kind of tweaks once we delegate
for instance control over command execution to Lua completely. But, we might provide
kpse as loadable Lua module so that when needed one can use a stub to start the pro-
gram with a Lua script that as first action loads this library that then can take care of
further file management. As command line arguments are available in Lua, one can
also implement the relevant extra switches (and even more if needed).

16 Stripping

Now, the interesting thing is that because we have a Lua interface to kpse we can actually
drop some hard coded solutions. This means that we can have a binary without kpse, in
which case one has to cook up callbacks that do what this library does. But in a version
with kpse embedded one also has to define some file related callbacks although they can
be rather simple. By keeping a handful of file related callbacks the code base could be
simplified a lot. In the process the recorder option went away (not that we ever used it).
It is relatively easy to support this in the ‘find’ related callbacks and one has to deal with
other files (like images and fonts) also, so keeping this feature was a cheat anyway.

At this point it is important to notice that while we’re dropping some command line op-
tions, they can still be passed and intercepted at the Lua end. So, providing compatible
(or alternative solution) is no big deal. For instance, execution of (shell) programs is a
Lua activity and can be managed from there.

3.6 Callbacks

Callbacks can be organized in groups. First there are those related to io. We only have to
deal with a few types: all kind of TgX files (data files), format files and Lua modules (but
these to are on the list of potentially dropped files as this can be programmed in Lua).

find _write file
find_data_file open_data_file read_data_file
find _format_file find lua_file find _clua_file

The callbacks related to errors stay:'°

show_error_hook show_lua_error_hook,
show_error_message show_warning_message

The management hooks were kept (but the edit one might go):**

process_jobname

call edit

start_run stop_run wrapup_zxrun
pre_dump

start_file stop_file

Of course the typesetting callbacks remain too as they are the backbone of the opening
up:

buildpage_filter hpack_filter vpack_filter

10 Some more error handling was added later, as was intercepting user input related to it.
11 And indeed, that one went away.

Stripping 17

hyphenate ligaturing kerning

pre_output_filter contribute_filter build_page_insert
pre_linebreak_filter linebreak_filter post_linebreak_filter
insert_local_par append_to_vlist_filter new_graf
hpack_quality vpack_quality

mlist_to_hlist make_extensible

Finally we mention one of the important callbacks:
define_font

Without that one defined not much will happen with respect to typesetting. I could ac-
tually remove the \font primitive but that would be a bit weird as other font related
commands stay. Also, it’s one of the fundamental frontend primitives, so removal was
never really considered.

3.7 Bits and pieces

In the process some helpers and status queries were removed. From the summary
above you can deduce that this concerns images, backend, and file management.
Also not used variables (some inherited from the past and predecessors) were re-
moved. These and other changes are the reason why there is a separate manual for
LuaMetaTgX.!?

One of my objectives was to see how lean and mean the code base could be. But even
if we don’t use that many files, the rather complex build system makes that we need to
have (make and configure) files in the tree that are not really used but even then omitting
them aborts a build. I played a bit with that but the problem is that it needs to be dealt
with upstream in order to prevent repetitive work. So, this is something to sort out later.
Eventually it would be nice to be able to compile with a minimal set of source files, also
because other programs (all kind of TgX variants) that are checked for but not compiled
depend on libraries that we don’t need (and therefore want) to have in the stripped down
source tree.

For now we also brought down the number of catcode tables (to 256)'4, and the number
of languages (to 8192)'° as that saves some initially allocated memory.

12 Relatively late in the project I decided to be more selective in what got initialized in Lua only mode.
13 In the end, the source tree was redesigned completely.

14 As with math families, and if more tables are needed one should wonder about the TgX code used.
15 This is already a lot and because languages are loaded run time, we can go much lower than this.

18 Stripping

16
17

18

3.8 What’s next

Basically the experiment ends here. A next step is to create a stable code base, make
compilation easy and consider the way the code is packages. Then some cleanup can
take place. Also, as it’s a window to the outside world, ££i support will move to the code
base and be integral to LuaMetaTgX. And of course the decision about LuaJIT support
has to be made some day soon. The same is true for Lua 5.4: in LuaTgX for now we stick
to 5.3 but experimenting with 5.4 in LuaMetaTgX can’t harm us.®

To what extend the ConTgXt code base will have a special files for Imtx is yet to be de-
cided, but we have some ideas about new features that might make that desirable from
the perspective of maintenance. The main question is: do I want to have hybrid files or
clean files for each variant (stock MkIV and Imtx).

For the record: at the time of wrapping this up, processing the LuaTgX manual of 294
pages took 13.5 seconds using stock LuaTgX while using the stripped down binary,
where Lua takes over some tasks, took 13.9 seconds.!” The LuajitTgX variant needed
10.9 and 10.8 seconds. So, there is no real reason to not explore this route, although
... the pdffile size shrinks from 1.48MB to 1.18MB (and optionally we can squeeze out
more) but one can wonder if I didn’t make big mistakes. It is good to realize that there is
not much performance to gain in the engine simply because most code is already pretty
well optimized. The sameis true for the ConTgXt code: there might be a few places where
we can squeeze out a few milliseconds but probably it will go unnoticed.

On the todo list went removal of \primitive which we never use (need) and the possible
introduction of a way to protect primitives and macros against redefinition, but on the
other hand, it might impact performance and be not worth the trouble. In the end it is a
macro package issue anyway and we never really ran into users redefining primitives.!2

The choice has been made: LuaMetaTgX will not have a LuaJIT based companion.

In the meantime we’re down to around 11.6MB. These are all rough numbers and mostly indicate relative
speeds at some point.

Indeed this primitive has been removed.

Stripping 19

20 Stripping

19

4 Bitmap images

4.1 Introduction

In TgX image inclusion is traditionally handled by specials. Think of a signal added
someplace in the page stream that says:

\specialiimage: foo.png 2000 3000%

Here the number for instance indicate a scale factor to be divided by 1000. Because TgX
has no floating point numbers, normally one uses an integer and the magic multiplier
1000 representing 1.000. Such a special is called a ‘whatsit’ and is one reason why TgX
is so flexible and adaptive.

In pdfTEX instead of a \special the command \pdfximage and its companions are
used. In LuaTgX this concept has been generalized to \useimageresource which in-
ternally is not a so called whatsit (an extension node) but a special kind of rule. This
makes for nicer code as now we don’t need to check if a certain whatsit node is actually
one with dimensions, while rules already are part of calculating box dimensions, so no
extra overhead in checking for whatsits is added. In retrospect this was one of the more
interesting conceptual changes in LuaTgX.

In LuaMetaTgX we don’t have such primitives but we do have these special rule nodes;
we’re talking of subtypes and the frontend doesn’t look at those details. Depending on
what the backend needs one can easily define a scanner that implements a primitive.
We already did that in ConTgXt. More important is that inclusion is not handled by the
engine simply because there is no backend. This means that we need to do it ourselves.
There are two steps involved in this that we will discuss below.

4.2 Identifying

There is only a handful of image formats that makes sense in a typesetting workflow.
Because pdf inclusion is supported (but not discussed here) one can actually take any
format aslong as it converts to pdf, and tools like graphic magic do a decent job on that.*®
The main bitmap formats that we care about are jpeg, jpeg2000, and png. We could deal
with jbig files but I never encountered them so let’s forget about them for now.

One of the problems with a built-in analyzer (and embedder) is that it can crash or just
abort the engine. The main reason is that when the used libraries run into some issue,

Although one really need to check a converted image. When we moved to pplib, I found out that lots of
converted images in a project had invalid pdf objects, but apart from a warning nothing bad resulted from
this because those objects were not used.

Bitmap images 21

20

the engine is not always able to recover from it: a converter just aborts which then cleans
up (potentially messed up) memory. In LuaTgX we also abort, simply because we have
no clue to what extend further on the libraries are still working as expected. We play
safe. For the average user this is quite ok as it signals that an image has to be fixed.

In a workflow that runs unattended on a server and where users push images to a re-
source tree, there is a good change that a TgX job fails because of some problem with
images. A crash is not really an option then. This is one reason why converting bitmaps
to pdf makes much sense. Anotherreasonisthat some color profiling might be involved.
Runtime manipulations make no sense, unless there is only one typesetting run.

Because in Imtx we do the analyzing ourselves?® we can recover much easier. The main
reason is of course that because we use Lua, memory management and garbage collec-
tion happens pretty well controlled. And crashing Lua code can easily be intercepted by
apcall.

Most (extensible) file formats are based on tables that gets accessed from an index of
names and offsets into the file. This means that filtering for instance metadata like di-
mensions and resolutions is no big deal (we always did that). I can extend analyzing
when needed without a substantial change in the engine that can affect other macro
packages. And Lua is fast enough (and often faster) for such tasks.

4.3 Embeding

Once identified the frontend can use that information for scaling and (if needed) reuse
of the same image. Embedding of the image resource happens when a page is shipped
out. For jpeg images this is actually quite simple: we only need to create a dictionary
with the right information and push the bitmap itself into the associated stream.

For png images it’s a bit different. Unfortunately pdf only supports certain formats, for
instance masks are separated and transparency needs to be resolved. This means that
there are two routes: either pass the bitmap blob to the stream, or convert it to a suitable
format supported by pdf. In LuaTgX that is normally done by the backend code, which
uses a library for this. It is a typical example of a dependency of something much larger
than actually needed. In LuaTgX the original poppler library used for filtering objects
from a pdf file as well as the png library also have tons of code on board that relates
to manipulating (writing) data. But we don’t need those features. As a side note: this is
something rather general. You decide to use a small library for a simple task only to find
out after a decade that it has grown a lot offering features and having extra dependencies

Actually, in MKIV this was also possible but not widely advertised, but we now exclusively keep this for
Imtx.

22 Bitmap images

that you really don’t want. Even worse: you end up with constant updates due to fixed
security (read: bug) fixes.

Passing the png blob unchanged in itself to the pdffile is trivial, but massaging it into an
acceptable form when it doesn’t suit the pdf specification takes a bit more code. In fact,
pdf does not really support png as format, but it supports png compression (aka filters).

Trying to support more complex png files is a nice way to test if you can transform a
public specification into a program as for instance happens with pdf, OpenType, and
font embedding in ConTgXt. So this again was a nice exercise in coding. After a while
I was able to process the png test suite using Lua. Optimizing the code came with un-
derstanding the specification. However, for large images, especially interlaced ones,
runtime was definitely not to be ignored. It all depended on the tasks at hand:

+ Apngblobiscompressed with zip compression, so first it needs to be decompressed.
This takes a bit of time (and in the process we found out that the z1ib library used in
LuaTgX had a bug that surfaced when a mostly zero byte image was uncompressed
and we can then hit a filled up buffer condition.

« Theresulting uncompressed stream is itself compressed with a so called filter. Each
row starts with a filter byte that indicates how to convert bytes into other bytes. The
most commonly used methods are deltas with preceding pixels and/or pixels on a
previous row. When done the filter bytes can go away.

« Sometimes an image uses 1, 2 or 4 bits per pixel, in which case the rows needs to be
expanded. This can involve a multiplication factor per pixel (it can also be an index
in a palette).

« Animage can be interlaced which means that there are seven parts of the image that
stepwise build up the whole. In professional workflows with high res images inter-
lacing makes no sense as transfer over the internet is not an issue and the overhead
due toreassembling the image and the potentially larger file size (due to independent
compression of the seven parts) are not what we want either.

« There can be an image mask that needs to be separated from the main blob. A single
byte gray scale image then has two bytes per pixel, and a double byte pixel has four
bytes of information. An rgb image has three bytes per pixel plus an alpha byte, and
in the case of double byte pixels we get eight bytes per pixel.

« Finally the resulting blob has to be compressed again. The current amount of time
involved in that suggests that there is room for improvement.

The process is controlled by number of rows and columns, the number of bytes per pixel
(one or two) and the color space which effectively means one or three bytes. These num-
bers get fed into the filter, deinterlacer, expander and/or mask separator. In order to

Bitmap images 23

speed up the embedding these basic operations can be assisted by a helpers written in
C. Because Lua is quite good with strings, we pass strings and get back strings. So, most
of the logic stays at the Lua end.

4.4 Conclusion

Going for a library-less solution for bitmap inclusion is quite doable and in most cases
as efficient. Because we have a pure Lua implementation for testing and an optimized
variant for production, we can experiment as we like. A positive side effect is that we
can more robustly intercept bad images and inject a placeholder instead.

24 Bitmap images

21

22
23

5 Logging

5.1 Introduction

In ConTgXt we have quite some logging enabled by default and even more when you
enable trackers. Most logging is done with Lua, which is quite efficient. Information
from the TgX machinery follows a different path and one reason for that is that it often
happens on a character (or small strings) basis.

The runtime of a job is, in spite of what one may expect, also dependent on the speed of
the console: what fonts are used (there can be font features being applied), is the output
buffered, and with what delays, how large is the history, etc. When more complex fonts
arrived I found out that on os-x generating a format was impacted by seconds. When on
MS Windows the normal console was used its character-by-character flushing made it
sluggish, and on linux it depended on the font, kind of console, delays, etc. Lucky me,
the SciTE editors log pane beats them all.?!

At the TgX end a few decades of coding has made the system also complex.?? Each string
goes through a mechanism that checks with line ending to apply and where to cut off
lines exceeding a preset maximum length, where LuaTgX also needs to take utf into ac-
count. Some characters can (optionally) be escaped with A and occasionally the line
length gets reset by explicit newline commands.

In ConTgXt already for a long time we always used an (at least) 10K line length and dis-
abled output escaping. We have consoles that can handle long lines and live in an utf
world so escaping makes no sense. And, when OpenType features get applied random
line breaks can interfere badly. Just in case one wonders what happens with so called
null characters: as all goes through C anyway, such a character just terminates a string.
Therefore the line length limitations have been removed and the line-ending substitu-
tion be optimized. In principle this gives simpler codes and less overhead.

The logis not always compatible with LuaTgX. For instance we output more details about
node lists. This is natural because we have more subtypes and these can provide addi-
tional information (clues) when debugging TgX code.

In LuaTgX the error handling is already such that some can be delegated to Lua, and later
I will look into more isolation. But, error handling is quite interwoven in the code and I
don’t want to mess up the original concept too much.??

I use the linux subsystem on MS Windows for cross compiling LuaTgX, and with the advent of that sub-
system the regular console was also rewritten so most of the delays are gone now.

Interfaces like that are only partly defined by TgX and left to the implementation.

Indeed the error handling was redone in such a way that we now have an even better isolation.

Logging 25

26 Logging

6 Directions

6.1 Introduction

In LuaTgX the directional model taken from Omega has been upgraded a bit. For in-
stance in addition to the *dir commands we have \xdirection commands that take
anumber instead of a keyword. This is a bit more efficient and consistent as using these
keywords was kind of un-TgX. Internally direction related nodes (text directions) are not
whatsits but first class nodes. We also use a subtype that indicates the push or pop state.

The LuaTgX directional model provides four directions which is a subset of the many
that Omega provided, indicated by three letters, like TRT and LTT. In the beginning we
had them all fixed?* and thereby implemented but being in doubt about their usefulness
we dropped most of them, just four were kept. However, in practice only right-to-left
makes sense. Going from top to bottom in Japanese or Mongolian can also involve glyph
rotation, which actually is not implemented in the engine at all. Spacing and inter-char-
acter breaks have to be implemented and in the end one has to combine the results into
a page body. So, in practice you end up with juggling node list and macro magic in the
page builder. The LTL (number 2) and RTT (number 3) directions are not used for seri-
ous work. Therefore, in LuaMetaTgX the model has been adapted. In the end, it was not
entirely clear anyway what the three letters were indicating in each direction property
(page, body, par, text, math) as most had no real meaning.

As a side note: if you leave the (not really working well) vertical directions out of the
picture, directional typesetting is not that hard to deal with and has hardly any conse-
guences for the code. This is because horizontal dimensions are not affected by direc-
tion, only the final ship out is: when a run (wrapped in an hbox) goes the other way, the
backend effectively has to skip the width and then with each component goes back. Not
much more is involved. This means that a bidirectional engine is rather simple. The
complications are more in the way a macro package deals with it, in relation to the in-
put as well as the layout. The backend has to do the real work.?®

6.2 Two directions

We now have only two directions left: the default left-to-right (12r) and right-to-left (r2l).
They work the same as before and in the backend we can get rid of the fuzzy parallel and
rotation (which actually was just stacking nodes) heuristics.

24 This was doen by Hartmut by rigorously checking all possible combinations
25 0Of course when one hooks in Lua code taking care of direction can be needed!

Directions 27

Reducing the lot to two directions simplifies some code in the engine. This is because
when calculating dimensions a change in horizontal direction doesn’t influence the
width, height and depth in an orthogonal way. Because there are no longer top-down
items we don’t need to swap the height and or depth with the width. This also means that
we don’t need to keep much track of direction changes. Technically an hpack doesn’t
need to know its own direction and we can set it to any value afterwards if we want be-
cause the calculation are not influenced by it; so that also simplified matters.

The \bodydir and \pagedir already didn’t make much sense, and in ConTgXt we ac-
tually intercepted them, so now they are removed. The body direction is always left-to-
right and the page direction was only consulted in the backend code which we no longer
have. Another side effect of going with only two directions is that rules no longer need to
carry the direction property: there is no flipping of width with height and depth needed.

6.3 Four orientations

Instead of the top-bottom variants we now have four orientations plus a bunch of an-
choring options. Of course one could use the backend save, restore and matrix whatsits
but a natural feature makes more sense. Let’s start with what happens normally:

| This is a LuaMetaTgX goodie. |

This line has height and depth. We can rotate this sentence by 180 degrees around the
baseline in which case the depth and height are flipped.

| *o1p003 XdBlIo|WenT e ST SIYL |

or we flip part:

Thisisa goodie.
| a

xdrelopent

or flip nested:

but we’re talking boxes, so the above examples are defined as:

SIpOOg uaMetalg B STSIUL

This is a \LUAMETATEX\ goodie.
\hbox orientation 2{This is a \LUAMETATEX\ goodie.}
This is a \hbox orientation 2{\LUAMETATEX}% goodie.

\hbox orientation 2{This is a \hbox orientation 0023{\LUAMETATEX} goodie.}

28 Directions

The orientation keyword does the magic here. There are four such orientations with
zero being the default. We saw that two rotates over 180 degrees, so one and three are
left for up and down.

—

b
| ﬂ@(and%&and - andELiJ |
= X4l

This is codes as:

\hbox orientation 0 {\TEX} and
\hbox orientation 1 3$\TEX}% and
\hbox orientation 2 3$\TEX}% and
\hbox orientation 3 $\TEX?}

The landscape and seascape variants both sit on top of the baseline while the flipped
variant has its depth swapped with the height. Although this would be enough a bit more
control is possible. The number is actually a three byte hex number:

Ox<X><Y><0>
or in TgX syntax
X><Y><0>

We saw that the last byte regulates the orientation. The first and second one deal with
anchoring horizontally and vertically. The vertical options of the horizontal variants
anchor on the baseline, lower corner, upper corner or center.

\hbox orientation "002 $\TEX% and
\hbox orientation "012 $\TEX} and
\hbox orientation "022 $\TEX} and
\hbox orientation "032 $\TEX%

The horizontal options of the horizontal variants anchorin the center, left, right, halfway
left and halfway right.

-, and X4l and _ WaHdXﬂL

\hbox orientation "002 $\TEX}% and
\hbox orientation "102 $\TEX} and
\hbox orientation "202 $\TEX} and
\hbox orientation "302 {\TEX}% and
\hbox orientation "402 {\TEX}

| N d .. and

Directions 29

All combinations will be shown on the next pages, so we suffice with telling that for the
vertical variants we can vertically anchor on the baseline, top, bottom or center, while
horizontally we center, hang left or right, halfway left or right, and in addition align on
the (rotated) baseline left or right.

The orientation has consequences for the dimensions so they are dealt with in the ex-
pected way in constructing lines, paragraphs and pages, but the anchoring is virtual.
As a bonus, we have two extra variants for orientation zero: on top of baseline or below,
with dimensions taken into account.

\hbox orientation "G00 3$\TEX?}! and
\hbox orientation "004 $\TEX% and
\hbox orientation "005 3$\TEX}?

| TeX and TEX and |
IE

The anchoring can look somewhat confusing but you need to keep in mind that it is
normally only used in very controlled circumstances and not in running text. Wrapped
in macros users don’t see the details. We're talking boxes here, so or instance:

test\quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test¥
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "002 \bgroup\strut test\egroup test®
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "012 \bgroup\strut test\egroup test¥
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "022 \bgroup\strut test\egroup test®
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "032 \bgroup\strut test\egroup test%
\egroup \quad
\hbox orientation 3 \bgroup

\strut test\hbox orientation "042 \bgroup\strut test\egroup test¥
\egroup
\quad test

gives:

30 Directions

0x500

0x600

0x010

-

0x510

-

0x610

0x530

0x630

Figure 6.1 orientation O

Directions 31

0x001

.

0x101

0x201

0x301

IR

0x401

i

0x501

o

Ox601

Ox011

0x111

0x121

0x221

-
=

Ox6

B

0x031

)

0x131

0x231

y

0x331

B

0x431

0x531

0x631

32 Directions

Figure 6.2 orientation 1

0x102 0x112 0x122 0x132

0x222 0x232

0x322

0x402 0x412 0x422 0x432
0x502 0x512 0x522 0x532

0x602 0x612 0x622 0x632

Figure 6.3 orientation 2

Directions 33

0x003

0x103

0x203

0x303

a

0x403

_ N

0x503

1

0x603

0x013

0x113

413

0x123

0x223

L

.
L
=

B

0x033

n

0x133

0x233

hy

0x333

B

0x433

0x533

-

0x633

34 Directions

Figure 6.4 orientation 3

JEX

0x000

X .

0x100

. HJEX

0x200

TEX .

0x300

0x010

X |

0x110

| IEX

0x210

0x610

0x020

TE

0x120

0x220

0x030

Figure 6.5 orientation O

| est -??Mtest

Directions 35

XL
e

1
AL

X

[©]
=
=
©
&
N
=

0Ox031

-

—
-

S

[©]
X
RN
[©]
=
[©]
X
[RY
i=
X
[N
N
=
o
X
[N
w
R

-
X

]

=

L

]
0x201 0x211 Ox22% 0x231
r§< %.
2 1 [l
3|
0x301 0x321 B%321 0x331
[: [i
]
0x401 OxA11 0x&21 0x431
L-§< %.
£ L.
0x501 OXE\L} X521 0x531
-
0x601 0x611 0x64 0x631

Figure 6.6 orientation 1

36 Directions

S

Ox002 Ox012 0Ox022 Ox032
XL
AL o X
0x102 0x112 0Ox122 0Ox132
iy,
© AL . G\
0x202 0x212 0x222 0x232
' XL
YL - € A
Ox302 Ox312 0x322 Ox332
. G 1 P —
© AL e R
Ox402 0x412 Ox422 Ox432
i
Ox502 Ox512 0Ox522 0Ox532
in
Ox602 Ox612 Ox622 Ox632

Figure 6.7 orientation 2

6.4 Right-to-left typesetting

Another aspect to keep in mind when we transform is the already mentioned right-to-
left direction. We show some examples where we do things like this:

\hbox3 \hbox
orientation #1
$\strut abcdt?

Directions 37

s
E %.
QI’-L'I.
0x003 ><0x013 Gx023 0x033
i pos
% o
B
<
M
0x103 Oxl:gé —0x123 0x133
— >
F
& | | T
(]
0x203 >Qx213 0x223 0x233
A
|
0x303 0)%.3 FOx323 0x333
ey >
[
0x403 >@x4l3 0423 0x433
cl i =
]
0x503 05513 F0x523 0x533
E ﬁ
S
0x603 0x613 0k623 0x633
Figure 6.8 orientation 3
\hbox{\hbox

38 Directions

orientation #1

to 15mm

$\strut abcd$?
\hbox3 \hbox

orientation #1

direction 1

i\righttoleft\strut abcd}}
\hbox3{\hbox

orientation #1

direction 1

to 15mm {\righttoleft\strut abcd}}?

Xbbcdk Xbbcdwwk ﬁdcba& ﬁwwdcba& ﬂpaqef ﬂwwpﬁqEF XPquF ﬂequ ,,,,,,,, F
orientation O orientation 2
= 3
[«}) o [as] (S
XAX X X X®X X®X X®@X X®X XTX X X
orientation 1 orientation 3
Figure 6.9 Horizontal boxes.
xbbcd& xbbcdwwk ﬁdcba& ﬁwwdcbak ﬂ"" X X X XX X X
poqe” © poqe” “Bqdp. “BQIP
orientation O orientation 2
= 3
[«) (@] [a+] QO
XAX X X X®X X®X X@®X X®X XTX X X
orientation 1 orientation 3

Figure 6.10 Vertical boxes.

6.5 Vertical typesetting

I’'m no expert on vertical typesetting and have no application for it either. But from what
I've seen vertically positioned glyphs are normally used in rather straightforward situa-
tions. Here I will just give some examples of how transformations can be used to achieve
certain effects. It is no big deal to make macros or use Lua to apply magic to node lists
but it is beyond this description to discuss that.

Before we fine tune this example we have to discuss another feature. When a orien-
tation keyword is given optionally xoffset and yoffset can be specified. These off-
sets are not taken into account when calculating dimensions. This is different from the

Directions 39

offsets (at the Lua end) used in glyphs because there the vertical offset is taken into ac-
count. Here are some examples of offsets in packaged lists:

\hbox
itest 1t
\hbox
orientation 0O
yoffset 15pt
xoffset 150pt
{test?
\vbox
orientation O
$1\hboxitest}?
\vbox
orientation O
yoffset -5pt
xoffset 130pt
$\hbox3testt?
\vbox
orientation O
yoffset 2pt

i\hbox3testt?
test1 test
test

test

In order to demonstrate some hacking, we first define a font that supports chinese
glyphs:

\definefont[NotoCJK] [NotoSansCJKtc-Regularxdefault @ 24pt]

We put some text in a horizontal box; it doesn’t show up in verbatim but you get the idea
nevertheless:

\hbox$\NotoCJIK %

BERAMENER

Let’s now rotate this line of text:

40 Directions

\hbox orientation 1 3$\NotoCJK %

The resultis shown in a while. Because we also need to rotate the glyphs we deconstruct
the box.

\hbox orientation 1 \bgroup \NotoCJK %
\vbox $\hbox $%}%%
\vbox $\hbox $%}%%
\vbox {\hbox %1%
\vbox 3\hbox {test}i%
\vbox {\hbox $%1%
\vbox $\hbox $%}%%
\vbox {\hbox $%1%
\vbox {\hbox %1%
\egroup

Next we rotate the glyphs.

\hbox orientation 1 \bgroup \NotoCJK %
\vbox orientation 3 3$\hbox 3$%%%
\vbox orientation 3 3$\hbox 3$%$%
\vbox orientation $\hbox $$3t%
\vbox orientation $\hbox $testti%
\vbox orientation 1\hbox %1%
\vbox orientation i\hbox %%
\vbox orientation i\hbox $%%%
\vbox orientation i\hbox $%%t%

\egroup

w w wwow

This still looks bad so we kick in some offsets and glue:

\dontleavehmode\hbox orientation 1 \bgroup \NotoCJK

\vbox

orientation O yoffset -.lex

i\hbox orientation 3 {}$#\hskip.2ex
\vbox

orientation O yoffset -.lex

i\hbox orientation 3 {}3}\hskip.2ex
\vbox

orientation 0 yoffset -.lex

{\hbox orientation 3 {}$\hskip.6ex
\vbox

i \hbox $testit\hskip.2ex

Directions 41

\vbox

orientation O yoffset -.lex
{\hbox orientation 3 {}}\hskip.2ex

\vbox

orientation O yoffset -.lex
i\hbox orientation 3 {}$\hskip.2ex

\vbox

orientation O yoffset -.lex
i1\hbox orientation 3 {$i\hskip.2ex

\vbox

orientation O yoffset -.lex
{\hbox orientation 3 {}$\hskip.2ex

\egroup

Now we’re ready to compare the results

A A -
H = X ﬂ d
%% 1y g S‘" é_Ell'
X< 5 55 X

<]
i}
P

2L
- ZEIX!

AT

- T

This could of course also be done with traditional kerns, raising and/or lowering and
messing around with dimensions. It’s just that when manipulating such rather complex
constructs alittle help (and efficiency)