fun with
luametatex
and context

Table of contents

1

Introduction

TgX and Pi

Modern Type 3 fonts

ThreeSix, Don Knuths first colorfont?
Normalization

Expansion

20

32

44

1 Introduction

After five collections of ‘articles’ about the development of LuaTgX, ConTgXt MkIV, LuaMetaTgX and Con-
TEXt Imtx, there is even more to tell so here is number six. Wrapping up not only serves to inform the
users but for me it is also a way to get things right: if you cannot write it down it’s no good. It forces me to
(re)consider interfaces and also test new code but of course it comes with no guarantees.

When writing this introduction I just finished the first chapter, about some new font stuff, as follow up on
the (again) nice ConTgXt meeting in 2019. It’s always inspiring to meet and talk with my TgX friends and
see what they’re doing. It keeps me going.

Some chapters end up in user group journals first so they will be added once they have been published and
are available. The advantage is that these are then copy-edited. Many texts, also in previous development
updates, got better because Karl Berry checked them thoroughly for TUGboat, for which I'm grateful.

Hopefully, this document serves a purpose.

Hans Hagen
PRAGMA ADE, Hasselt NL
Started in October 2019

Introduction 4

5 Introduction

2 TgX and Pi

This is a short status report* on Pi, not the famous version number of TgX (among other things), but the
small machine, meant for education but nowadays also used for Internet Of Things projects, process con-
trol and toy projects. While the majority of TgX installations run on an Intel processor, the Raspberry Pi
has an arm central processing unit. In fact, its main chip has the same foundation as those found in settop
boxes all around the world. It’s made for entertainment, not for number crunching.

At the ConTgXt meetings, it has become tradition to play with electronic gadgets. Every year we are cu-
rious what Harald Konig might bring this time. The last couple of meetings we also had talks about us-
ing TgX and MetaPost for designing (home-scale, automated) railroad systems, using LuaTgX for running
domotica applications, using MetaPost for rendering high quality graphics from data from appliances,
presenting TgX at computer and electronics bootcamps, and more. This year Frans Goddijn also brought
back memories of low speed modem sounds, from the early days of TgX support. It is these things that
make the meetings fun.

This year the meeting was in Belgium, close to the border of the Netherlands, and on the way there Mojca
Miklavec traveled via my home, where the contextgarden compile farm runs on a server with plenty of
cores, lots of memory and big disks. But the farm also has an old Mac connected as well as a tiny under-
powered Raspberry Pi 2 for arm binaries that we had to fix: the small micro ssd card in it had finally given
up. This is no surprise if you realize that it does a daily compilation of the whole TgX Live setup and also
compiles LuaTgX, LuaMetaTgX and pplib when changes occur. Replacing the card worked out but never-
theless we decided to take the small machine with us to the meeting. We also took an external (2.5 inch)
ssd box with us. The idea was to order a Raspberry Pi 4 on location, the much praised successor of the
older models, the one with 4 GB of memory, real usb 3 ports and proper Ethernet.

At the meeting Harald showed us that he had version 1, 3 and 4 machines with him because he waslooking
into an energy control setup based on Zighee devices. So we had the full range of Pi’s there to play with.

This is a long introduction but the message is that we are dealing with a small but popular device with up
to now four generations, using an architecture supported in TgX distributions. So how does that relate to
ConTgXt? One of the reasons for LuaMetaTgX going lean and mean is that computers are no longer getting
much faster and ‘multiple small’ energy-wise has more appeal than ‘one large’. So then the question is:
how can we make TgX run fast on small instead of gambling on big becoming even bigger (which does not
seem to be happening anyway).

At the meeting Harald gave a talk “Which Raspberry Pi is the best for ConTgXt?” and [will use his data to
give an overview: see Table ??rpispec.

model 1 2 3 4
chipset BCM2835 BCM2835 BCM2835 BCM2835
CPUcore vblrev7 v7lrev5 v7lrev4 v7lrev3

cores 1 4 4 4

free mem 443080 948308 948304 3999784
idlemips 997.08 38.40 38.40 108.00
bogomips 997.08 57.60 76.80 270.00
read SD 23.0MB/s 23.2MB/s 23.2MB/s 45.1 MB/s
read USB 30.0 MB/s 30.0 MB/s 320.0 MB/s

1 This chapter appeared in TugBoat 40:3. Thanks to Karl Berry for corrections.

TgXandPi 6

After some discussion at the presentation we decided to discard the (absurd) bogomips value for the tiny
Pi 1 computing board and not take the values for the others too seriously. But it will be clear that, espe-
cially when we consider the external drive that things have improved. The table doesn’t mention Ethernet
speed but because the 4 now has real support for it (instead of sharing the usb bus) we get close to 1 GB/s
there.

The real performance test is of course processing a TgX document and what better to test than the TgX
book. The processing time in seconds, after initial caching of files and fonts is:

model 1 2 3 4
TgXbook 13.649 7.023 4.553 1.694
context --make 19.949 11.796 6.034

context --make TL 89.454 46.578 29.256 14.146

The test of making the ConTgXt format using LuaTgX gives an indication of how well the io performs:
it loads the file database, some 460 Lua modules and 355 TgX source files. On my laptop with Intel
i7-3840QM with 16GB memory and decent ssd it takes 3.5 seconds (and 1 second less for LuaMetaTgX be-
cause there we don’t compress the format file). Somehow a regular TgXLive installation performs much
worse than the one from the contextgarden.

We didn’t test real ConTgXt documents at the meeting but when I came home the Pi 4 was bound again to
the compile farm. Harald and Mojca had prepared the machine to boot from the internal micro ssd and
use the external disk for the rest. So, when we could compile LuaMetaTgX again, I made an arm installer
for Imtx, and after that could not resist doing a simple test. First of course came generating the format.
It took 6.3 seconds to make one, which is a bit more than Harald measured. I see a hiccup at the end so
I guess that it has to do with the (external) disk or maybe there is some throttling going on because the
machine sits on top of a (warm) server.

More interesting was testing a real document: the upcoming LuaMetaTgX manual. It has 226 pages, uses
21 font files, processes 225 MetaPost graphics, and in order to get it LuaMetaTgX does more than 50% of
the workin Lua, including all font and backend-related operations. On my laptop it needs 9.5 seconds and
on the Pi4 it uses 33 seconds. Of course, if I take a more modern machine than this 8-year-old workhorse,
I probably need half the time, but still the performance of the Raspberry Pi 4 is quite impressive. It uses
hardly any energy and can probably compete rather well with a virtual machine on a heavily loaded ma-
chine. It means that when we ever have to upgrade the server, I can consider replacement by an Ethernet
switch, with power over Ethernet, connected to a bunch of small Raspberries, also because normally one
would connect to some shared storage medium.

Because I was curious how the dedicated small Fitlet that I use for controlling my lights and heating per-
forms I also processed the manual there. After making the format, which takes 6 seconds, processing
the manual took a little less than 30 seconds. In that respect it performs the same as a Raspberry Pi 4.
But, inside that small (way more expensive) computer is an dual core AMD A10 Micro-6700T APU (with
AMD Radeon R6 Graphics), running a recent 64-bit Ubuntu. It does some 2400 bogomips (compare that
to the values of the Pi). I was a bit surprised that it didn’t outperform the Raspberry because the (fast ssd)
disk is connected to the main board and it has more memory and horsepower. It might be that in the end
an arm processor is simply better suited for the kind of byte juggling that TgX does, where special cpu
features and multiple cores don’t contribute much. It definitely demonstrates that we cannot neglect this
platform.

7 TgX and Pi

3 Modern Type 3 fonts

Support for Type3 fonts has been on my agenda for a couple of years now. Here [will take a look at them
from the perspective of LuaMetaTgX.? The reason is that they might be useful for embedding (for instance)
runtime graphics (such as symbols) in an efficient way. In TgX systems Type3 fonts are normally used for
bitmap fonts, the pk output that comes via METAFONT. Where for instance Typel fonts are defined using
a set of font specific rendering operators, a Type3 font can contain arbitrary code, in pdf files these are
pdf (graphic and text) operators.

A program like LuaTgX supports embedding of several font formats natively. A quick summary of relevant
formats is the following:?

« Typel: these are outline fonts using c £ f descriptions, a compact format for storing outlines. Normally
up to 256 characters are accessible but a font can have many more (as Latin Modern and TgX Gyre
demonstrate).

« OpenType: these also use the cff format. As with Typel the outlines are mostly cubic Bezier curves.
Because there is no bounding box data stored in the format the engine has to pseudo-render the glyphs
to get that information. When embedding a subset the backend code has to flatten the subroutine calls,
which is another reason the cff blob has to be disassembled.

- TrueType: these use the ttf format which uses quadratic B-splines. The font can have a separate
kerning table and stores information about the bounding box (which is then used by TgX to get the
right heights and depths of glyphs). Of course those details never make it into the pdf file as such.

- Type3: as mentioned this format is (traditionally) used to store bitmap fonts but as we will see it can
do more. It is actually the easiest format to deal with.

In LuaTgX any font can be a “wide” font, therefore in ConTgXt a Typel fontis not treated differently than an
OpenType font. The LuaTgX backend can even disguise a Typel font as an OpenType font. In the end, as
not that much information ends up in the pdffile, the differences are not that large for the first three types.
The content of a Type3 font is less predictable but even then it can have for instance a ToUnicode vector
so it has noreal disadvantages in, say, accessibility. In ConTgXt Imtx, which uses LuaMetaTgX without any
backend, all is dealt with in Lua: loading, tweaking, applying and embedding.

The difference between OpenType and TrueType is mostly in the kind of curves and specific data ta-
bles. Both formats are nowadays covered by the OpenType specification. If you Google for the differ-
ence between these formats you can easily end up with rather bad (or even nonsense) descriptions.
The best references are https://en.wikipedia.org/wiki/Bézier_curve and the ever-improving
https://docs.microsoft.com/en-us/typography website.

Support for so-called variable fonts is mostly demanding of the front-end because in the backend it is just
an instance of an OpenType or TrueType font being embedded. In this case the instance is generated by
the ConTgXt font machinery which interprets the cff and ttf binary formats in doing so. This feature is
not widely used but has been present from the moment these fonts showed up.

Type3 fonts don’t have a particularly good reputation, which is mainly due to the fact that viewers pay
less attention in displaying them, at least that was the case in the past. If they describe outlines, then

2 This chapter appeared in TugBoat 40:3. Thanks to Karl Berry for corrections.
3 Technically one can embed anything in the pdf file.

Modern Type 3 fonts 8

all is okay, apart from the fact that there is no anti-aliasing or hinting but on modern computers that is
hardly an issue. For bitmaps the quality depends on the resolution and traditionally TgX bitmap fonts are
generated for a specific device, but if you use a decent resolution (say 1200 dpi) then all should be okay.
The main drawback is that viewers will render such a font and cache the (then available) bitmap which in
some cases can have a speed penalty.

Using Type3 fonts in a pdf backend is not something new. Already in the pdf TgX era we were playing with
so-called pdf glyph containers. In practice that worked okay but not so much for MetaPost output from
METAFONT fonts. As a side note: it might actually work better now that in MetaFun we have some exten-
sions for rendering the kind of paths used in fonts. But glyph containers were dropped long ago already
and Type3 was limited to traditional TgX bitmap inclusion. However, in LuaMetaTgX it is easier to mess
around with fonts because we no longer need to worry about side effects of patching font related inclusion
(embedding) for other macro packages. All is now under Lua control: there is no backend included and
therefore no awareness of something built-in as Type3.

So, as aprelude to the 2019 ConTgXt meeting, I picked up this thread and turned some earlier experiments
into production code. Originally I meant to provide support for MetaPost graphics but that is still locked
in experiments. I do have an idea for its interface, now that we have more control over user interfaces in
MetaFun.

In addition to ‘just graphics’ there is another candidate for Type3 fonts — extensions to OpenType fonts:

1. Color fonts where stacked glyphs are used (a nice method).
2. Fonts where svg images are used.
3. Fonts that come with bitmap representations in png format.

It will be no surprise that we’re talking of emoji fonts here although the second category is now also used
for regular text fonts. When these fonts showed up support for them was not that hard to implement and
(as often) we could make TgX be among the first to support them in print (often such fonts are meant for
the web).

For category one, the stacked shapes, the approach was to define a virtual font where glyphs are flushed
while backtracking over the width in order to get the overlay. Of course color directives have to be injected
too. Thewholelotis wrappedin a container that tells a pdf handler what character actually is represented.
Due to the way virtual fonts work, every reference to a character results in the same sequence of glyph
references, (negative) kern operations and color directives plus the wrapper in the page stream. This is
not really an issue for emoji because these are seldom used and even then in small quantities. But it can
explode a pdf page stream for a color text font. All happens at runtime and because we use virtual fonts,
the commands are assembled beforehand for each glyph.

For the second category, svg images, we used a different approach. Each symbol was converted to pdf
using Inkscape and cached for later use. Instead of injecting a glyph reference, a reference to a so-called
XFormis injected, again with a wrapper to indicate what character we deal with. Here the overhead is not
that large but still present as we need the so-called ‘actual text’ wrapper.

The third category is done in a similar way but this time we use GraphicsMagick to convert the images
beforehand. The drawbacks are the same.

In ConTEXt Imtx a different approach is followed. The pdf stream that stacks the glyphs of category one
makes a perfect stream for a Type3 character. Apart from some juggling to relate a Type3 font to an
OpenType font, the page stream just contains references to glyphs (with the proper related Unicode slot).
The overhead is minimal.

9 Modern Type 3 fonts

For the second category ConTgXt Imtx uses its built-in svg converter. The xml code of the shape is con-
verted to (surprise): MetaPost. We could go directly to pdf but the MetaPost route is cheap and we can
then get support for color spaces, transformations, efficient paths and high quality all for free. It also
opens up the possibility for future manipulations. The Type3 font eventually has a sequence of drawing
operations, mixed with transformations and color switches, but only once. Most of the embedded code is
shared with the other categories (a plug-in model is used).

The third category follows a similar route but this time we use the built-in png inclusion code. Just like
the other categories, the page stream only contains references to glyphs.

It was interesting to find that most of the time related to the inclusion went into figuring out why viewers
don’tlike these fonts. For instance, in Acrobat there needs to be a glyph at index zero and all viewers seem
to be able to handle at most 255 additional characters in a font. But once that, and a few more tricks, had
become clear, it worked out quite well. It also helps to set the font bounding box to all zero values so
that no rendering optimizations kick in. Also, some dimensions can are best used consistently. With svg
there were some issues with reference points and bounding boxes but these could be dealt with. A later
implementation followed a slightly different route anyway.

The implementation is reasonably efficient because most work is delayed till a glyph (shape) is actually
injected (and most shapes in these fonts aren’t used at all). The viewers that I have installed, Acrobat
Reader, Acrobat X, and the mupdf-based Sumatrapdf viewer can all handle the current implementation.

An example of a category one font is Microsoft’s seguiemij. I have no clue about the result in the future
because some of these emoji fonts change every now and then, depending also on social developments.
This is a category one font which not only has emoji symbols but also normal glyphs:

\definefontfeature[colored] [default] [colr=yes]
\definefont[TestA][file:seguiemj.ttf*colored]
\definesymbol[bugl][\getglyphdirect{file:seguiemj.ttfxcolored}? {\char"1F41C%]
\definesymbol[bug2][\getglyphdirect{file:seguiemj.ttfxcolored}? {\char"1F41B%]

The example below demonstrates this by showing the graphic glyph surrounded by the x from the emoji
font, and from a regular text font.

$\TestA x\char"1F41C x\char"1F41B x3}%

\quad

ix\symbhol[bugl]x\symbol[bug2]x3%

\quad

1\showglyphs x\symbol[bugl]x\symbol[bug2]x%%

xJaxox xPaxhx xFpxdhx

In this mix we don’t use a Type3 font for the characters that don’t need stacked (colorful) glyphs, which is
more efficient. So the x characters are references to a regular (embedded) OpenType font.

The next example comes from a manual and demonstrates that we can (still) manipulate colors as we
wish.

\definecoloxr[emoji-red] [r=.4]
\definecolor[emoji-blue] [b=.4]
\definecolor[emoji-green] [g=.4]

Modern Type 3 fonts 10

\definecolor[emoji-yellow] [r=.4,g=.5]
\definecolor[emoji-gray] [s=1,t=.5,a=1]

\definefontcolorpalette
[emoji-red]
[emoji-red,emoji-gray]

\definefontcolorpalette
[emoji-green]
[emoji-green,emoji-gray]

\definefontcolorpalette
[emoji-blue]
[emoji-blue,emoji-gray]

\definefontcolorpalette
[emoji-yellow]
[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-x][default] [ccmp=yes,dist=yes,colr=emoji-red]
\definefontfeature[seguiemj-g][default] [ccmp=yes,dist=yes,colr=emoji-green]
\definefontfeature[seguiemj-b][default] [ccmp=yes,dist=yes,colr=emoji-blue]
\definefontfeature[seguiemj-y][default] [ccmp=yes,dist=yes,colr=emoji-yellow]

\definefont[MyColoredEmojiR] [seguiemj*seguiemj-xr]
\definefont[MyColoredEmojiG] [seguiemj*seguiemj-¢g]
\definefont[MyColoredEmojiB] [seguiemj*seguiemj-b]
\definefont[MyColoredEmojiY] [seguiemj*seguiemj-y]

©A0AeAdM

Let’s look in more detail at the woman emoji. On the left we see the default colors, and on the right we see
our own:

S8

The multi-color variant in ConTgXt MKIV ends up as follows in the page stream:

/Span << /ActualText <feffD83DDC69> >> BDC
q

0.000 g

BT

/F8 11.955168 Tf

10010 2.51596 Tm [<045B>]TJ

0.557 0.337 0.180 rg

10010 2.51596 Tm [<045C>]TJ

11 Modern Type 3 fonts

1.000 0.784 0.239 Ig
10010 2.51596 Tm [<045D>]T3J
0.000 g

10010 2.51596 Tm [<O45E>]TJ
0.969 0.537 0.290 rg

10010 2.51596 Tm [<O45F>]TJ
0.941 0.227 0.090 rg

10010 2.51596 Tm [<0460>]TJ
ET

Q

EMC

and the reddish one becomes:

/Span << /ActualText <feffD83DDC69> >> BDC

q

0.400 0 0 rg 0.400 0 O RG

BT

/F8 11.955168 Tf

10010 2.51596 Tm [<B45B>]TJ

1g1G /Txl gs

10010 2.51596 Tm [<045C>1373<045D>1373<045E>1373<045F>1373<0460>]T3J
ET

Q
EMC

Each time this shape is typeset these sequences are injected. In ConTgXt Imtx we get this in the page
stream:

BT

/F2 11.955168 Tf

10010 2.515956 Tm [<C8>] TJ
ET

This time the composed shape ends up in the Type3 character procedure. In the colorful case (reformat-
ted because it actually is a one-liner):

2812 0 do

0.000 g BT /v8 1 Tf [<045B>] TJ ET
0.557 0.337 0.180 rg BT /V8 1 Tf [<045C>] TJ ET
1.000 0.784 0.239 rg BT /V8 1 Tf [<045D>] TJ ET
0.000 g BT /v8 1 Tf [<Q45E>] TJ ET
0.969 0.537 0.290 rg BT /Vv8 1 Tf [<045F>] TJ ET
0.941 0.227 0.090 rg BT /Vv8 1 Tf [<0460>] TJ ET

and in the reddish case (where we have a gray transparent color):

2812 0 do

0.400 0 0 rg 0.400 O O RG
BT /v8 1 Tf [<045B>] TJ ET
1¢g1G /Trl gs

BT /v8 1 Tf [<045C>] TJ ET

Modern Type 3 fonts 12

BT /v8 1 Tf [<045D>] TJ ET
BT /v8 1 Tf [<045E>] TJ ET
BT /v8 1 Tf [<045F>] TJ ET
BT /v8 1 Tf [<0460>] TJ ET

but this time we only get these verbose compositions once in the pdf file. We could optimize the last
variant by a sequence ofindices and negative kerns but it hardly pays off. Thereis noneed forActualText
here because we have an entry in the ToUnicode vector:

<C8> <D83DDC69>

To be clear, the /V8 is a sort of local reference to a font which can have an /F8 counterpart elsewhere.
These Type3 fonts have their own resource references and I found it more clear to use a different prefix
in that case. If we only use a few characters of this kind, of course the overhead of extra fonts has a penalty
but as soon we refer to more characters we gain a lot.

When we have svg fonts, the gain is a bit less. The pdf resulting from the MetaPost run can of course be
large but they are included only once. In MKIV these would be (shared) so-called XForms. In the page
stream we then see a simple reference to such an XForm but again wrapped into an ActualText. In Imtx
we get just a reference to a Type3 character plus of course an extra font.

The emojionecolor-svginot font is somewhat problematic (although maybe in the meantime it has
become obsolete). As usual with new functionality, specifications are not always available or complete
(especially when they are application specs turned into standards). This is also true with for instance
svg fonts. The current documentation on the Microsoft website is reasonable and explains how to deal
with the viewport but when I first implemented support for svg it was more trial and error. The original
implementation in ConTgXt used Inkscape to generate pdf files with a tight bounding box and mix that
with information from the font (in MKIV and the generic loader we still use this method). This results
in a reasonable placement for emoji (that often sit on top of the baseline) but not for characters. More
accurate treatment, using the origin and bounding box, fail for graphics with bad viewports and strange
transform attributes. Now one can of course argue that I read the specs wrong, but inconsistencies are
hard to deal with. Even worse is that successive versions of a font can demand different hacks. (I would
not be surprised if some programs have built-in heuristics for some fonts that apply fixes.) Here is an
example:

<svg transform="translate(® -1788) scale(2.048)" viewBox="0 0 64 64" ...>
<path d="... all within the viewBox ..." ... />
</svg>

It is no problem to scale up the image to normal dimensions, often 1000, or 2048 but I've also seen 512.
The 2.048 suggests a 2048 unit approach, as does the 1788 shift. Now, we could scale up all dimensions
by 1000/64 and then multiply by 2.048 and eventually shift over 1788, but why not scale the 1788 by 2.048
or scale 64 by 2.048? Even if we can read the standard to suit this specification it’s just a bit too messy for
my taste. In fact I tried all reasonable combinations and didn’t (yet) get the right result. In that case it’s
easier to just discard the font. If a user complains that it (kind of) worked in the past, a counter-argument
can be that other (more recent) fonts don’t work otherwise. In the end we ended up with an option: when
the svg feature value is £ixdepth the vertical position will be fixed.

\definefontfeature[whatever] [default] [color=yes,svg=fixdepth]
\definefont[TestB] [file:emojionecolor-svginot.ttfxwhatever]

13 Modern Type 3 fonts

The newer emojionecolor font doesn’t need this because it hasa viewBox of 0 54.4 64 64 which fixes
the baseline.

\definefontfeature[whatever] [default] [color=yes, svg=yes]
\definefont[TestB] [file:emojionecolor.otf*xwhatever]

Another example of a pitfall is running into category one glyphs made from several pieces that all have
the same color. If that color is black, one starts to wonder what is wrong. In the end the ConTgXt code
was doing the right thing after all, and I would not be surprised if that glyph gets colors in an update
of the font. For that reason it makes no sense to include them as examples here. After all, we can hardly
complain about free fonts (and I'm also guilty of imposing bugs on users). By the way, for the font referred
to here (twemojimozilla), another pitfall was that all shapes in my copy had a zero bounding box which
means that although a width is specified, rendering in documents can give weird side effects. This can
be corrected by the dimensions feature that forces the ascender and descender values to be used.

\definefontfeature[colored:x] [default] [colr=yes]
\definefontfeature[colored:y] [default][colr=yes,dimensions={1,max,max}]
\definefont[TestC][file:twemojimozilla.ttfxcolored:x]
\definefont[TestD] [file:twemojimozilla.ttfxcolored:y]

i Y T T

An example of a png-enhanced font is the applecoloremoji font. The bitmaps are relatively large for
the quality they provide and some look like scans.

\definefontfeature[sbix] [default] [sbix=yes]
\definefont[TestE][file:applecoloremoji.ttcxshix at 10bp]

DS

As mentioned above, there are fonts that color characters other than emoji. We give two examples (some-
times fonts are mentioned on the ConTgXt mailing list).

\definefontfeature
[whatever]
[default,color:svg]
[script=1atn,

language=dflt]

\definefont[TestF] [file:Abelone-FREE.otfxwhatever @ 13bp]
\definefont[TestG][file:Gilbert-ColorBoldPreview5+whatever @ 13bp]
\definefont[TestH] [file:ColoxrTube-Regularxwhatever @ 13bp]

Of course one can wonder about the readability of these fonts and unless one used random colors (which
bloats the file immensely) it might become boring, but typically such fonts are only meant for special
purposes.

Modern Type 3 fonts 14

CONING BACK TO THE USE OF TYPEFACES IN BLECTPONIC PUBLISH~-
ING: NMANY OF THE NEBW TYPOUGPAPHERS PECEIVE THEIP UNOWLEDGE
AND INFOPN ATION ABQUT THE PULES OF TYPUGPRAPHY FPON BOOLI'S,
FRON CONPUTER NAGAZINES OF THE INSTRPUCTION MANUVALS WHICH
THEY GEBT VWITH THE PURPCHASE OF A PC UP SOUFTWARE, THEPE (8 NOT
€O MUCH PASIC INSTPUCTION, AS OF NOW, AS THERE WAS IN THE OLD
DAYSE, SHOWING THE DIFFEPENCES BETWEEN GOOD AND BAD TY?0-
GRAPHIC DESIGN. N ANY PBUPLE APE JUST FASCINATED BY THEI® °C'S
TRICIS, AND THINK THAT A VIDEBLY=="RAISED "RPOGPRAN, CALLED U®
ON THE SCPREEN, WIiLL NAIE BYVERYTHING AVUTOUNATICTFPOM NOV ON.

The previous font is the largest and as a consequence also puts some strain on the viewer, especially when
zooming in. But, because viewers cache Type3 shapes it’s a one-time penalty.

Coming bacs to the use of tyoetaces in electronic publishing: many ot the new tyoographers
receive their anowledge and in‘ormation about the rules of tyoography from booss, from computer
magazines or the instruction manuals which they get with the ourchase ot a PC or software. There
is not so much basic instruction, as of now, as there was in the cld days, showing the dif*erences
between good and bad tyoographic design. Nlany pecple are just fascinated by their PC s tricas,
and thina that a widely—praised orogram, called up on the screen, will mare everything automatic
rom now on.

This font is rather lightweight. Contrary to what one might expect, there is no transparency used (but of
course we do support that when needed).

coming back to the use of typefaces in elec
tronic publishing many of the new typoagra
phers receive their knowledge and information
about the rules of typography from books from
computer magazines or the instruction manuals
‘which they get ‘with the purchase of a pc or
software. there is not so much basic instruc
tion as of now as there was in the old days
showing the differences between good and bad
typographic design. many people are just fas
cinated by their pcs tricks and think that a
‘widelypraised program called up on the screen
'will make everything automatic from now on.

This third example is again rather lightweight. Such fonts normally have a rather limited repertoire al-
though there are some accented characters included. But they are not really meant for novels anyway. If
you look closely you will also notice that some characters are missing and kerning is suboptimal.

15 Modern Type 3 fonts

I considered testing some more fonts but when trying to download some interesting looking ones I got a

popup asking me for my email address in order to subscribe me to something: a definite no-go.

Ialready mentioned that we have a built-in converter that goes from svg to MetaPost. Although this article
deals with fonts, the following code demonstrates that we can also access such graphics in MetaFun itself.
The nice thing is that because we get pictures, they can be manipulated.

\startMPcodeidoublefunt?

picture p ; p :
numeric w ; w :
draw p ;

Imt_svg [filename = "mozilla-svg-001.svg"] ;
bbwidth(p) ;

draw p xscaled -1 shifted (2.5%w,0);
draw p rotatedaround(center p,45) shifted (3.0xw,0) ;

draw image (
for i within

p : if filled i :

draw pathpart i withcolor green ;

fi endfor ;

) shifted (4.5x*w,

draw image (
for i within

0);

p : if filled i :

fill pathpart i withcolor red withtransparency (1,.25)

fi endfor ;

) shifted (6%w,0);

\stopMPcode

This graphic is a copy from a glyph from an emoji font, so we have plenty of such images to play with. The
above manipulations result in:

ray vy
S)l ©
S <>

E>

LERRANY AA\'IAl

ﬁ;‘OJ/ 1‘ '\
1:5 - .

Now that we’re working with MetaPost we may as well see if we can also load a specific glyph, and indeed

this is possible.

\startMPcodefdoublefunt

picture 1lb, b ;

1b := 1mt_svg [fontname = "Gilbert-ColorBoldPreview5", unicode
rb := 1mt_svg [fontname = "Gilbert-ColorBoldPreview5", unicode

numeric dx ; dx
draw 1b ;

:= 1.25 % bbwidth(1lb) ;

draw rb shifted (dx,0) ;

pickup pencircle

for i within 1b :

scaled 2mm ;

draw 1mt_arrow [

path = pathpart i,
pen = "auto",
alternative = "curved",
penscale =8

Modern Type 3 fonts

123]
125]

14

14

16

shifted (3dx,0)
withcolor "darkblue"
withtransparency (1,.5)
endfor ;
for i within rb :
draw 1mt_arrow [

path = pathpart i,
pen = "auto",
alternative = "curved",
penscale =8
]
shifted (4dx,0)
withcolor "darkred"
withtransparency (1,.5)
endfor ;
\stopMPcode

Here we first load two character shapes from a font. The Unicode slots (which here are the same as the
ascii slots) might look familiar: they indicate the curly brace characters. We get two pictures and use the
withinloop torunoverthe paths within these shapes. Each shape is made from three curves. As a bonus
a few more characters are shown.

Nt

Itis not hard to imagine that a collection of such graphics could be made into a font (at runtime). One only
needs to find the motivation. Of course one can always use a font editor (or Inkscape) and tweak there,
which probably makes more sense, but sometimes a bit of MetaPost hackery is a nice distraction. Editing
the svg code directly is not that much fun. The overall structure often doesn’t look that bad (apart from
often rather redundant grouping):

<svg xmlns="http://www.w3.0rg/2000/svg">
<path fill="4d87512" d="..."/>
<g fill="4bc600d">
<path d="..."/>
</g>
<g £ill="4#d87512">
<path d="..."/>
<path d="..."/>
</g>
<g fill="4#bc600d">
<path d="..."/>
</g>

</svg>

17 Modern Type 3 fonts

In addition to paths there can be 1ine, circle and similar elements but often fonts just use the path
element. This element has a d attribute that holds a sequence of one character commands that each can
be followed by numbers. Here are the start characters of four such attributes:

M11.585 43.742s.387 1.248.104 3.05c0 0 2.045-.466 1.898-2.27 ...
M53.33 39.37c0-4.484-35.622-4.484-35.622 0 0 10.16.05

M42.645 56.04c1.688 2.02 9.275.043 10.504-2.28 5.01-9.482-.006 ...
M54.2 41.496s-.336 4.246-4.657 9.573c0 0 4.38-1.7 5.808-4.3

Indeed, numbers can be pasted together, also with the operators, which doesn’t help with see-
ing at a glance what happens. Probably the best reference can be found at https://devel-
oper.mozilla.org/en-US/docs/Web/SVG where it is explained that a path can have move, line, curve,
arc and other operators, as well use absolute and relative coordinates. How that works is for another
article.

How would the TgX world look like today if Don Knuth had made METAFONT support colors? Of course one
can argue that it is a bitmap font generator, but in our case using high resolution bitmaps might even work
out better. In the example above the first text fragment uses a font that is very inefficient: it overlays many
circles in different colors with slight displacements. Here a bitmap font would not only give similar effects
but probably also be more efficient in terms of storage as well as rendering. The MetaPost successor does
support color and with mplib in LuaTgX we can keep up quite well . . . as hopefully has been demonstrated
here.

Modern Type 3 fonts 18

19 Modern Type 3 fonts

4 ThreeSix, Don Knuths first colorfont?

In the process of reaching completion and perfection Don Knuth occasionally posts links to upcoming
parts of the TAOCP series on his web pages. Now, I admit that much is way beyond me but I do understand
(andlike) the graphics and I know that Don uses MetaPost. The next example code is just a proof of concept
but might eventually become a decent module (with helpers) for making (runtime) fonts. After all, we need
to adapt to current developments and TgXies always are willing to adapt and experiment. This chapter
was written at the same time as the previous one on Type3 fonts so you might want to read that first.

The font explored here is FONT36, used in “A potpourri of puzzles” and flagged as “a special font designed
for dissection puzzles” (in fascicle 9b for Volume 4). Playing with and visualizing for me often works better
than formulas, which then distracts me from the original purpose, but let’s have a closer look anyway.

0000000 0000000 000000 OO0 000000 1 000000 00000000 000000 000000000000
000000 0O 000000 00 OOV) /000008 L 00 00 00000000 .00 /00 00) 00 V0000000
([l o (000 || 00 | 00000 | 000 | O | 60 000000 | 000006 0000 | ' o 06 [0 0000 | | 6000 |
0000 | 00000006 [00 [l 060 (o0 o0 ([o6 (o 00 000 [000 [l 00 (o6 [| 00ee |]
0000 | 000000 | | 000000 | [l o000 [00 6000 | 00 (0000 (00 || o | | 000e |)
cooe ([oeoe 000 [leo0 [l [l 11] O0000C | | O00C | 000 [00 | 0000 | 000006 | .6 660 |

900000000 00000 008)))) . 1 000 L 000 | | 00 | 000e | O | O | 900000
0000000000000008 000000 OO 000 00000000 000000 .0 0000 000000 _ 000000 0000 0

200 00 X b+ 4 000009090009 909900000 0000000000
Td8s, 338785 $338°0e8383° "¢ 333°073088° 7000038 08 338 28833333 333 087 333332 33, 588
@00 | o | 060 O 0000 o | 00 900 o 1T ooecees |1 000 | 00000000 | 06 | | 00000 | 60000006 06 | 06 6
o [o0 | . 60 | 00 00000 | 0 Lol ol 000 . 60 0C 1 00 | 6 0000 000 | 606 . . ' O | 0 QC 0000000 06 | 06 O
Q o0 | 00 00000 | 0) [000 @ | 0000C | | 0006 60 00006 0606 | 000606 . 06 | 06 |0 | 066 | 060006 | O 06006006 O
[0 0000 .6 || 00 000 00¢ 0O eeC | | ‘o0 © |1 @ o .00 el o0 6] 0000 | | 060006 |]
000! OO0 OOCD e 1 & oo [@ eoeeeee |}
000000080 00 000000000000
T S
)¢ OO0 000000

o] los! 1 110 I o000 I 0!] 00000 |00 | lols! 0@ | o 1o, 3 o/ | o] eleoevee o | oeeseee. | oeee I ! seee]
0080 08 80000 elele ! loles! I e | ool o | loloee. ! vl I 1! eeue | ee0ee eeesel | e seeee I e I le sees | see I ee 111 e I lse00 |
[1 oe'e! a6 OO0 e ‘e M o isee 1!t isesee 1 {1 seneee I soesees ! o seees ! s 100 0000060

The font has a fixed maximum height of 8 quantities. There is no depth in the characters. Some characters
are wider. In this example we use a tight bounding box. In ConTgXt speak this font is just a regular font
but with a special feature enabled.

\definefontfeature
[fontthreesix]
[default]
[metapost=fontthreesix]

\definefont[DEKFontA] [Serifxfontthreesix]

After this the \DEKFontA command will set this font as current font. The definition mentions Serif as
font name. In ConTgXt this name will resolve in the currently defined Serif, so when your document uses
Latin Modern that will be the one. The fontthreesix will make this instance use that feature set, and the
feature definition has the defaults as parent (so we get kerning, ligatures, etc.) but as extra feature also
metapost. This means that the new glyphs that are about to be defined will actually be injected in the
Serif! We will replace characters in that instance. So, the following:

This font is used in \quotation {The Art Of Computer Programming} by
Don Knuth, not in volume~1, 2 or~3, but in number~4!

comes out as:

EEhis font is used in “BZhe Zrt Bf Bomputer Brogramming” by Eon Enuth, not in volume &, & or &,
but in number &!

But that doesn’t look too good, so we will tweak the font a bit:

ThreeSix, Don Knuths first colorfont? 20

\definefontfeature
[fontthreesix-coloxr]
[default]
[metapost={category=fontthreesix,spread=.1%]

\definefont[DEKFontD] [Serifxfontthreesix]

The spread (multiplied by the font unit, which is 12 basepoints here) will add a bit more spacing around
the blob:

Bhis fontis used in “B@he Ert Bf Bomputer Brogramming” by Hion Enuth, notin volume &, & or &,
but in number &!

Now, keep in mind that we’re talking of a real font here. You can cut and paste these characters. It’s just
the default uppercase Latin alphabet plus digits.

Before we go and look at some of the code needed to render this, a few more examples will be given.

¢ % ¢ 66664 8000 D & ¢ 66666680% 6666680% o4 0008 > 6664
6664 ©4 %9 666664 566%%.6.¢ 666666 ¢ 00884»0 [& ¢ 2 &< 2999
Q9904)& 3800 > @ L o6 db% e %% ¢ 9 99 9& 223

ol -4 L od 04» 0 6.6¢ 9% & 6.¢ L 66%% 668D 6 ¢ L od
0 64 0 6.6.6 1 66664 0 66 dD 666%%.6 ¢ ¢ 064 5666% 68> o¢ L od
 oe < < 2909099 29 99 564 % 064 99 90 L o d
0 6666666¢ ® 9 L 24 6 6.80% o< 0 &.4 L & ¢ 06 80% &4 008 6664
990000000 L2 44 2 2 JReL 2 L 4 L 4 L 22 22 2 2 2% 222 2 2 2V (2 2222 £ A2 22 22 24 9999
33833338 3 O3L3223E $ILLLLLC $32228S $SLLLLLS CITREVEC $2800EEE $294498 09289888 29809090 923988000 $400OCO0ES
£5328555 & PEIS2T $3TCLL SEILLCT B2IRLT $4ISTTTC BTARATT L20LL SITTLILL BELITCL TTLIILC $R208238
29322523 & BISS08 STaassas SIIRTCs SITIETCL FIELCILS CTERERES ST CISCCHE 3 SEITLLST STISIILY SE3IELES
666666 °80% %0200 TRYS & 6%0%0% 6 0% © 6°0%% 0% ¢ %% IR £ & 295000 SOV 2996%0% ¢°E%% ¢ 0% % %00% © ¢%% © 0°00% ¢ %6 ¢%°00% ¢ €%%%% & EB% %0 %9992 &%
193 2%%%% & 2D ¢ 00%%% &b 6 ¢ 0%%% %D 60 %% %GB 666 6%% 0 6 ¢ %%% 20 ¢ 6 %% oo db o ¢ o4 <>00<><><m<> D 00%% 6% 66 6%%%% o db 6 ettt 2 4
E2 22 qo%es 2 2 3 2 1222 SR £ 22 2 2 oXolR 222 2 22 2K 2 2 2 2 2] 06 OO0 9000000 s o s a2olR 2222 2 2 2R 222 22 22 2R 2 Jev e 2 4
D e 0o D' 55564 CL999800 & 5000555080 66556055080 669066604 2383 3232828238 233338832 $32833288 22828822
D 666%%% 68D ¢ 0%%%% 6 €66 050%% o & ¢ %%% ¢ % 04»4 L 06 ¢%0%%% ¢ 0000000000 L 6666°%-6664 0%6%6.66-8b ¢ 6-6%% % €. 6%6%%% ¢ 6.4
383 :
2 I35 3
48382 33333 L% 058 282

In the above example we not only use color, but also a different shape and random colors (that is: random
per TgX job). The feature definition for this is:

\definefontfeature
[fontthreesix-color]
[default]
[metapost=1{%
category=fontthreesix, shape=diamond, %
color=random, pen=fancy, spread=.1%

£]

Possible shapes are circle, diamond and square and instead of a random color one can give a known
color name. Using transparency makes no sense in this font.

A nice usage for this font are initials:

\setupinitial[font=Serifxfontthreesix-initial sa 5]
{\DEKFontB \placeinitial \input zapf\par?}

The initial feature is defined as:

\definefontfeature
[fontthreesix-initial]
[metapost={category=fontthreesix,color=random,shape=circle}]

We use this in quoting Hermann Zapf, one that for sure is very applicable in a case like this:

21 ThreeSix, Don Knuths first colorfont?

(% 3 +4 oming back to the use of typefaces in electronic publishing: many of the new typographers
; %g%% receive their knowledge and information about the rules of typography from books, from

computer magazines or the instruction manuals which they get with the purchase of a &
or software. E#here is not so much basic instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. &any people are just fascinated by their
##’s tricks, and think that a widely—praised program, called up on the screen, will make everything
automatic from now on.

Some combinations of sub-features are shown in figure 4.1. We blow up the diamond with fancy pen
example in figure 4.2. Alas, the TgX logo doesn’t look that good in such a font. Using it for acronyms is not
a good idea anyway, but maybe you can figure out figure 4.3.

0000000 0000000 HENEEN | EeEEEE 1666660000 66666684 56 66%
00000000 0000000 || ||| ® 195% & ¢ Q0 @ 95 e %%
Q000000 00VOVO®) 1966 020°0% ¢ €52 ¢ 0 0% 0% ¢ %% %%
Q000000 0000) 1966 626%% ¢ ¢ & 6%0% p &% 0% %
Q000000 @0V 19 ¢ 6%%% ¢ €% ¢ 0% %% . 66%0%%
o) oo | Ne | 000] (92 6 6%%% 6. 40% ¢ ¢%%% 5% ¢ ¢% & ¢ %%
(1l ooe ON || 000] ® 5%% 2D ¢ %% &b < % & 0%
00000000 0000000 122 22 2 OClE 22222 2 2R 4 000

shape=cizrcle shape=diamond

6666

od

é

28355088

*6
4

shape=circle, pen=fancy shape=diamond, pen=fancy

00000000 0000000 90000000 833229358 2382228 So8008e8
000 OO0 0000000 @000 V800 & 285 TSGR 2ISSTLS
0! T o0 I e 1o, o We. | o /00 ETEILT ITTLELL 23S
QO8C0000 Q088) Qe NN 2 SN2 2 ? O 00
o] T l0/0'0! . Je! I o] (oole! I 11 e/0/® 22 223 oooéggg +4<
008C0000 00000 OO 880N S0 * 2085 3320855
00000080 8000000 00000080 ¢ 0 3885338 ¢
00000500 0000080 00000000 222222 IWL L2222 IR 4 2222
shape=circle, random=yes shape=square, random=yes shape=diamond, random=yes

Figure 4.1

190959%%% & ¢
5 6 6%%%% & ¢
) 6.6%%%% & ¢
.6%.6%% 6.6 ¢
196%% & & ¢ %%
9% & & &% %%
) 66 .6%%.¢% ¢
56 6%%%% & ¢
) & 6%%%% & ¢
OO0

Figure 4.2

You can quit reading now or expose yourself to how this is coded. We use a combination of Lua and Meta-
Post, but different solutions are possible. The shapes are entered (or course) with zeros and ones.

\startluacode
local font36 = %
["0"] = "00111160 01111110 11600011 11006011 110600011 ...",

ThreeSix, Don Knuths first colorfont? 22

0000000000 OO0 00 V000000 V0000000 00000000
0000000 000 OOV VOO 00000 00 00000000 9000000
(o0 L o0 (Moo [[l OON | 0000 LI | [0000 MO [006, [
0000 | ooo0Noe. [o I OON | 0000 ' I [l 0000 MO/ [1@
o000 | cooome. | o0 | I ON | 0000 ' N | | OOOOONO. | 00000
oo, cooome [[l 1l . O (0000 | I [[OOOOONE | 00000
QOO0 0) OOV @000 00000000 00000000
0000000000 000000000 0000000 (0000000 000000 0

Figure 4.3

["1"] = "00011100 11111100 11101100 00001100 00001160 ...",
= "11111100 11100010 01100011 011600011 01106011 ...",
= "1111111 1110001 0110101 0111100 0110100 60110001 ...",

["K"] = "11101110 11100100 01101000 01110000 01111000 ...",

\stopluacode

We also use Lua to register this font. The actual code looks slightly different because it uses some helpers
from the ConTgXt Lua libraries. We remap the bits pattern onto MetaPost macro calls.

\startluacode

local replace = %
["0"] = "N;",
["1"] = "Y;",
[" "1 = "L,

function MP.registerthreesix(name)
fonts.dropins.registerglyphs 1§

name = name,
units =12,
usecolor = true,
k
for u, v in table.sortedhash(font36) do
local ny =8
local nx = (kv - ny + 1) // ny
local height = ny « 1.1 - 0.1
local width = nx x 1.1 - 0.1
local code = string.gsub(v,".",replace)
fonts.dropins.registerglyph {
category = name,
unicode = utf.byte(u),
width = width,
height = height,
code = string.format("ThreeSix(%s);",code),
§
end

end

MP.registerthreesix("fontthreesix")

23 ThreeSix, Don Knuths first colorfont?

\stopluacode

So, after this the font fontthreesix is known to the system but we still need to provide MetaPost code to
generate it. The glyphs themselves are now just sequences of N, Y and L with some wrapper code around
it. The definitions are put in the MP namespace simply because a first version initialized in MetaPost, and
there could create variants, but in the end I settled on the parameter interface at the TgX end.

The next definition looks a bit complex but normally such a macro is stepwise constructed. Notice how
we can query the sub features. In order to make that possible the regular MetaFun parameter handling
code is used. We just push the sub-features into to mpsfont namespace.

\startMPcalculation{simplefun}

def InitializeThreeSix =
save Y, N, L, S ; save dx, dy, nx, ny ; save currentpen ;
save shape, fillcolor, mypen, random, spread, hoffset ;
string shape, fillcolor, mypen ; boolean random ;
pen currentpen ;

dx := 11/10 ;

dy := - 11/10 ;

nx := - dx ;

ny := 0 ;

shape = getparameterdefault "mpsfont" "shape" "circle" ;
random = hasoption "mpsfont" "random" "true" ;
fillcolor := getparameterdefault "mpsfont" "color" "" ;
mypen := getparameterdefault "mpsfont" "pen" "" ;

spread = getparameterdefault "mpsfont" "spread" 0 ;
hoffset = 12 * spread / 2 ;

currentpen := pencizrcle

if mypen = "fancy"
xscaled 1/20 yscaled 2/20 rotated 45
else :
scaled 1/20
fi ;
if shape == "square"
def S =
unitsquare if random : randomized 1/10 fi
shifted (nx,ny)
enddef ;
elseif shape = "diamond"
def S =
unitdiamond if random : randomized 1/10 fi
shifted (nx,ny)
enddef ;
else :
def S =
unitcircle if random : randomizedcontrols 1/20 fi
shifted (nx,ny)
enddef ;
fi ;
def N =

ThreeSix, Don Knuths first colorfont? 24

nx := nx + dx ;

draw S ;
enddef ;
if fillcolor = "random"
def Y =
nx := nx + dx ;
fillup S withcolor white randomized (2/3,2/3,2/3) ;
enddef ;
elseif fillcolor = ""
def Y =
nx := nx + dx ;
fillup S ;
enddef ;
else
def Y =
nx := nx + dx ;
fillup S withcolor fillcolor ;
enddef ;
fi ;
def L =
nx := - dx ;
ny :=ny + dy ;
enddef ;
enddef ;

vardef ThreeSix (text code) =
InitializeThreeSix ; % todo: once per instance run
draw image (code) shifted (hoffset,-ny) ;

enddef ;

\stopMPcalculation

This code is not that efficient in the sense that there’s quite some MetaPost-Lua-MetaPost traffic going on,
for instance each parameter check involves this, but in practice performance is quite okay, certainly for
such a small font. There will be an initializer option some day soon. The simplefun is a reference to an
mplib instance that does load MetaFun but only the modules that make no sense for this kind of usage.
It also enforces double mode. The calculations wrapper just executes the code and does not place some
(otherwise empty) graphic.

Those who have seen (and/or read) “Concrete Mathematics” will have noticed the use of inline images,
like dice. Dice are also used in “pre-fascicle 5a” (I need a few more lives to grasp that, so I stick to the
images for now!). So, to compensate the somewhat complex code above, I will show how to accomplish
that. This time we do all in MetaPost:

This is not that hard to follow. We define some shapes first. These could have been assigned to the code
parameter directly but this is nicer. Next we register the font itself and after that we set glyphs. We also
set the official Unicode slots. So, copying a dice can either result in a digit or in a Unicode slot for a dice.
In the example below we switch to a color which demonstrates that our dice can be colored at the TgX
end. It’s either that or coloring at the MetaPost end as both demand a different kind of Type3 embedding
trickery.

25 ThreeSix, Don Knuths first colorfont?

We actually predefine three features. The digits one will map regular digit in the input to dice. We accom-
plish that via a font feature:

\startluacode
fonts.handlers.otf.addfeature("dice:digits", %
type = "substitution",
order = { "dice:digits" },
nocheck = true,
data =9

[Ox30] = "invaliddice",
[0x31] = 0x2680,
[0x32] = 0x2681,
[0x33] = 0x2682,
[0x34] = 0x2683,
[Ox35] = 0x2684,
[0x36] = 0x2685,
[0x37] = "invaliddice",
[0x38] = "invaliddice",
[6x39] = "invaliddice",
[
£)

\stopluacode

This kind of trickery is part of the font machinery used in ConTgXt and permits runtime adaption of fonts,
so we just use the same mechanism. The nocheck is needed to avoid this feature not kicking in due to
lack of (at the time of checking) yet undefined dice.

\definefontfeature
[dice:normal]
[default]
[metapost={category=dicet]
\definefontfeature
[dice:reverse]
[default]
[metapost={category=dice,option=reverse}]
\definefontfeature
[dice:digits]
[dice:digits=yes]

\definefont[DiceN] [Serifxdice:normall]
\definefont[DiceD] [Serifxdice:normal,dice:digits]
\definefont[DiceR] [Serifxdice:reverse,dice:digits]

+\DiceD Does 1 it 4 work? And {\darkgreen 3% too?} {\DiceR And how about
$\darkred 3% then? But 8 should sort of fail!t?

Does[HitEwork? And [too? And how about [1then? But X should sort of fail!
The six digits and Unicode characters come out the same:

\red \DiceD \dostepwiserecurse {13 {1 63{1t$\char#l\quadi%

ThreeSix, Don Knuths first colorfont? 26

\blue \DiceN \dostepwiserecurse{"2680%{"2685%{1}t{\char#l\quad}¥

It is tempting to implement for instance 7 as two dice (a one to multi mapping in OpenType speak) but
then one has to decide what combination is taken. One can also implement ligatures so that for instance
12 results in two six dice. But I think that’s over the top and only showing TgX muscles. It is anyway not
that hard to do as we have an interface for that already.

So why not do the dominos as well? Because there are so many dominos we predefine the shapes and then
register the lotin aloop. We have horizontal and vertical variants. Beinglazy Ijust made two helpers while
one could have done but with some rotation and shifting of the horizontal one. The loop could be a macro
but we don’t save much code that way.

\startMPcalculation{simplefun}

picture Dominos[] ;

Dominos[0] image() ;

Dominos[1] := image(draw(4,4);) ;

Dominos[2] := image(draw(2,6);draw(6,2););

Dominos[3] := image(draw(2,6);draw(4,4);draw(6,2););

Dominos[4] := image(draw(2,6);draw(6,6);draw(2,2);draw(6,2););

Dominos[5] := image(draw(2,6);draw(6,6);draw(4,4);draw(2,2);draw(6,2););
Dominos[6] := image(draw(2,6);draw(4,6);draw(6,6);draw(2,2);draw(4,2);draw(6,2););

Imt_registerglyphs [

name = "dominos",
units =12,

width = 16,

height = 8,

depth =0,
usecolor = true,

def DrawDominoH(expr a, b) =
draw image (
pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "coloxr" "") = "black"
fillup unitsquare xyscaled (16,8) ;
draw (8,.5) -- (8,7.5) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]
withpen currentpen
withcolor white ;
draw Dominos[b] shifted (8,0)
withpen currentpen
withcolor white ;
else :
draw unitsquare xyscaled (16,8) ;

27 ThreeSix, Don Knuths first colorfont?

draw (8,0) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]
withpen currentpen ;
draw Dominos[b] shifted (8,0)
withpen currentpen ;
fi ;
)
enddef ;

def DrawDominoV(expr a, b) = % is H rotated and shifted
draw image (
pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "coloxr" "") = "black"
fillup unitsquare xyscaled (8,16) ;
draw (.5,8) -- (7.5,8) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)
withpen currentpen
withcolor white ;
draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)
withpen currentpen
withcolor white ;
else :
draw unitsquare xyscaled (8,16) ;
draw (0,8) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)
withpen currentpen ;
draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)
withpen currentpen ;
fi ;
)
enddef ;

begingroup
save unicode ; numeric unicode ; unicode := 127025 ; % 1F031

for i=0 upto 6 :
for j=0 upto 6 :
Imt_registerglyph [

category = "dominos",
unicode = unicode,
code = "DrawDominoH(" & decimal i & "," & decimal j & ");",
width = 16,
height = 8,

1

unicode := unicode + 1 ;

endfor ;

endfor ;

ThreeSix, Don Knuths first colorfont?

28

save unicode ; numeric unicode ; unicode := 127075 ;

for i=0 upto 6 :
for j=0 upto 6 :
Imt_registerglyph [

category = "dominos",
unicode = unicode,
code = "DrawDominoV(" & decimal i & "," & decimal § & ");",
width = 8,
height = 16,
1
unicode := unicode + 1 ;
endfor ;
endfor ;
endgroup ;
\stopMPcalculation

Again we predefine a couple of features:

\definefontfeature
[dominos:white]
[default]
[metapost={category=dominost]

\definefontfeature
[dominos:black]
[default]
[metapost={category=dominos,color=black}]

\definefontfeature
[dominos:digits]
[dominos:digits=yes]

This last feature is yet to be defined. We could deal with the invalid dominos with some substitution
trickery but let’s keep it simple.

\startluacode
local ligatures = { %
local unicode 127025

for i=0x30,0x36 do
for j=0x30,0x36 do
ligatures[unicode] = { i, j }
unicode = unicode + 1 ;
end
end

fonts.handlers.otf.addfeature("dominos:digits", %

type = "ligature",
order = { "dominos:digits" %,

29 ThreeSix, Don Knuths first colorfont?

nocheck = true,
data ligatures,

£)

\stopluacode
That leaves showing an example. We define a few fonts and again we just extend the Serif:

\definefont[DominoW] [Serifxdominos:white]
\definefont[DominoB] [Serifxdominos:black]
\definefont[DominoD] [Serifxdominos:white,dominos:digits]

The example is:

\DominoW
\char"1F043\quad \quad
\char"1F052\quad \quad
\char"1F038\quad \quad
\darkgreen\char"1F049\quad \char"1F07B\quad
\DominoB
\char"1F087\quad
\char"1F088\quad
\char"1F089\quad
\DominoD
\darkred 12\quad56\quad64

Watch the ligatures in action:

2B B
L] | B

To what extent the usage of symbols like dice and dominos as characters in the mentioned book are re-
sponsible for them being in Unicode, I don’t know. Now with all these emoji showing up one can wonder
about graphics in such a standard anyway. But for sure, even after more than three decades, Don still
makes nice fonts.

Atreasure of tiny graphics can be found in “pre-fascicle 5¢” and many are in color! In fact, it has dominos
too. It must have been a lot of fun writing this! I'm thinking of turning the pentominoes into a font where
a GPOS feature can deal with the inter-pentomino kerning (which mighty work out okay for example 36.
The windmill dominos also make a nice example for a font where ligatures will boil down to the base form
and the (one or more) blades are laid over. It’s definitely an inspiring read.

ThreeSix, Don Knuths first colorfont? 30

31 ThreeSix, Don Knuths first colorfont?

5 Normalization

What I describe here was long due. I delayed it because when enabled it had best also be used and I need
to (check and) adapt some code to it in order to profit from it. So, if used at all, it will take some time to
have an effect on the ConTgXt code base. But first some background information.

When TgX builds a paragraph it splits the current text stream (that makes up the paragraph) into lines
where each line becomes an horizontal box. In LuaTgX, this process is split into distinctive steps, contrary
to regular TgX where the splitting is combined with hyphenation, ligature construction and font kerning.
But what all engines have in common is that after the decision is made about what a line is, the result gets
packages into the horizontal box.

The decision making is influenced by quite some factors, like:

- The indentation of the first line, driven by the presence of a box of with a certain width and no height
and depth (its always there, also when the indentation is zero).

- Hanging indentation, which can happen at each corner of the paragraph, or alternatively a specific
parshape.

- Left and/or right margins, aka left skip and right skip. A right skip is always present, even when zero.

- The way the last line gets aligns, aka parfill skip.

- Directional changes that need to be carries over to the next line.

- Optional protrusion of characters to the left of right of the line, something that is sensitive for direc-
tional changes.

- Expansion of characters in order to get better inter-word spacing and/or to prevent lines being too
bad. There can be stretch as well as shrink but on a per line basis. Inter-character kerns can also get
that treatment.

« The penalties associated to hyphenation: the pre-last line, the last two lines, a list of penalties (e-TgX),
specific penalties bound to hyphenation pints (LuaTgX).

« The wish to have more or less lines than optimal, aka looseness. I have to admit that I never use that
feature.

In traditional TgX it doesn’t really matter how the resulting boxes look like, as long as the following steps
can handle them, and those steps don’t look into those boxes. In fact, unless you unpack a box, only the
backend deals with the content. Butin LuaTgX we have callbacks that hook into several stages and can look
into the constructed boxes. In LuaTgX these boxes also have embedded directional information (needed
by the backend) and (although that is seldom used) left or right boxed material, a features inherited from
Aleph/Omega. And when messing around with the content of boxes one has to know what can be seen
there. In principle the code can be reorganized a it but adding additional functionality is not that triv-
ial because we want to stay close to the original implementation, even if it has been messed up a bit by
successive additions. Eventually I might give it a try to integrate all these features a bit better, but on the
other hand: it works.

In the next examples we show how the result of typesetting a paragraph looks like. We use the Sapolsky
quote from the distribution. The cyan glue nodes are the left and right skip nodes, and the gray one at
the end of the last line represents the parfill skip. The magenta ones at the edge are baseline skips. An
indentation is shown in gray too. As experiment we have four normalization levels but in the end only
the highest level makes sense, simply because normalization makes no sense unless one consistently
normalizes all. We just keep the granularity because it makes it possible to explain what gets done.

Normalization 32

1111

normalization 0, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0

,,,,,,,,,,,,, . Agriculturesissasairlyzecenthumansdnvention,anddnsmanywaysstswassoneofdthessm

. greatsstupidemovessof-allstime..Hunter-gatherers:havesthousandssofswild-sourcessofssm

@u ,,,,,,,,,,,,,,,, foodstessubsistson..Agriculture.changedsthat.all,sgeneratingsanseverwhelmingseliancesss

L

L

onsasfew.dozen.domesticated-feod:sources,smaking:yousextremely.suilnerablestosthesss

next:famine,thesnextlacust.infestation,.the.next.potatosblight..:Agriculture.allowedssm

normalization 0, sample-2

\parindent = Opt
\leftskip = 0Opt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

JAgriculturedssadairlysecenthumandnvention sanddnsnanywayssitswassonesofthesgreatsstupidanove Sk
ofiall-time...Hunter-gatherers-have.thousands.oef:wild-sources:oef:food:to.s11bsist=0n ... Agriculturesm
changedsthatsall .generating.an.overwhelmingsreliance.on.asfew.dozen.domesticated-feod:sources,sm
_makingsyousextremelysvallnerablestasthe-nextfamine,sthesnextdacustdinfestation sthesnextspotatosblight

(Agriculturesallowedsforsstockpilingsefssurplussresources:andsthus,sinevitably,sthesunequalsstockpilingse

.000

theme=stratificationsefisocietysandsthesinventionseficlasses..Ehus,sitsalloweddfortheinventionefpoverty.

Ighinkdthatthespunchdineoftheprimatechumansdifferencesissthatashenshumans.dinventedspoverty,sthey
Icamesupwith-aswaysefssubjugatingthedew-rankinglikesnothing.eversseenshefore.dintheprimatesworld. ...

s:

normalization 0, sample-3

\parindent = Opt
\leftskip = O0pt
\rightskip = Opt
\hangindent = 20pt
\hangafter = 3

33 Normalization

.000

\oriculture-issa-fairly.recent:hiimansinvention sand-in.many-wayssit-was-one-of-the.great-stupid=move Sk
lofialltime.-Hunter-gatherersshavesthousands.efswild:sourcessef-foodsta.subsistson..Agriculturesehangedss
. that.all sgeneratinganoverwhelmingzelianceonasfew.dozendomesticatedsfeod.seurces,;makingyou.ex-
= tremelyszulnerabledadhemnextfamine,shemnextdocustinfestation, themnextpotatohlight..Agricultures
= allowedfarsstockpilingsefssurplussresourcessandsthus,sinevitably,.;thesunequalsstockpiling.efihemmmsum
. + stratification.ef.seciety.and.the.invention.of-classes...khus,itsallowed.fer-the.invention.ef.poverty..ls
« thinkethatsthespunch.linesofsthesprimate-human.differencesissthatswhen-humans.inventedspoverty,sm
e - theyseamesapswil thsaswaysofssubjugatingsthedewr-rankingdikesnothingeversseenheforednstheprimatess
L world.swe

2

z

normalization 0, sample-4

\parindent = Opt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,,F,!@ldﬂmoyesmm;aulhumemlﬂunteizmgather,,er,smay,espmo,us,andsmfspwaldmsourc,essgouﬂyf@,Q,dsemmszubSJStwon‘mm ,,,,,,,,,
mmhgricultureschangedsthat.all s;generating.anseverwhelmingsseliancesonsasfew.dozen.domesticatedssm
. sed00dsspurces,.making.yousextremely.vailnerable:te-the.next-famine,-the.nextdecust-infes-
= =mtationsthesnextspotato:blight..Agriculturesallowed.fer:stockpiling.ef-suirplus.resources:an dsus
= swihusdnevitablystheanequalstockpilingefithemenstiratificationefsociety.and.;theinventionsus
= swOfselasses.s.Thus,siteallowed.for.the.inventionsofspoverty...sthink.thatsthespunchelinesof.th esum
s smpTimatechumansdifferencesissthatswhenshumanssinventedspoverty,they.camesup:with-aswaysuu
| ussofssubjugatingsthedewrrankingdlikesnothingeverseensheforesdindhesprimatesworld s

You might have noticed that the right skip is always there but the left skip is absent when it is zero. As
said, as long as the result is okay, it does not really matter. But ... in LuaTgX (and therefore ConTgXt) it
can have consequences because there we can kick in a callback that does something with lines. Such a
callback often has to deal with these specific glues and them being optional makes for more testing. The
more predictable the order is, the better. Although we can easily normalize lines (in a callback) to always
have a left skip too it is also an option in the engine.

normalization 1, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0

Normalization 34

LRl

L

Icameupwith-aswayvsefisubjugatingthedew-rankinglikesnothing.eversseensbefore.indheprimatesmorld.c..

,,,,,,,,,,,,, . Agriculturesissasdairlyszecenthumansnvention,anddnsmanywaysit=wassoneofthess
. greatsstupidsmovessofsallstime..Hunterngatherersshavesthousandssofswildssourcessofssm
. foodstessubsistson.sAgricultureschangedsthatsall sgeneratingsanseverwhelmingzeliancessm
o onsasfew.dozen.domesticated-foods-sources,-making-yousextremelysviillnerablesto:thessm
. next:famine,thesnextlacust.infestation,.the.next.potatosblight...Agriculture.allowedsss

forsstockpiling.of-surplussresourcessandsthus,-inevitably.thesunequalsstockpiling-ofssm

.
=1
9]
2
:
=
o
=]
e
5
%
3
Q
@
<
]
B
=
o
5
o)
=}
o
g
>
1)
@
gl
=
=
c
EIJ
E;r
)
o
=
o©
&
5§
g
=
)
E

1

o inventionsefspoverty..dsthinksthat.the.punchsline.ofsthe.primate-humansdifferencesigessm
o thatswhenshumanssinventedspoverty,theyscamesuapswith-aswaysefisubjugating.thedow-

normalization 1, sample-2

\parindent = Opt
\leftskip = O0pt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

Agriculturedssadairlysrecenthumansdnvention,anddinsmanywaysiitswasoneofthegreatsstupidiamoveSsm
allstime.s-Hunter-gatherers-have:thousandssof-wildssourcessof:food«te.s11bsist:0n .« Agriculturesms
anged.that.all sgenerating.ansoverwhelming.relianceson.asfew-dozensdomesticated-feodssources ks

makingyousextremely.vulnerableste.thesnext.famine,thesnextlacustinfestation,sthesnext:potatosblight s

Agriculturesallowedsfar:stockpiling-ofssurplussresourcessandsthus,sinevitablythesunequalsstockpiling:offms

hems=stratificationsefiseciety.and:thesinventionseficlasses.sFhus itsallowedferihednventionefipoverty.sum
Lthinksthatshespunchdinesefithesprimate-humansdifferencesissthatswhenshumanssinventedspoverty,stheyim

normalization 1, sample-3

\parindent = Opt
\leftskip = Opt
\rightskip = Opt
\hangindent = 20pt
\hangafter = 3

|Agriculturesis-asfairly.-recent-humansinvention,.and.:in-many.wayssit:wassonesofsthe.great.stupidsmoveskms

feallstime..Hunter-gatherersshavesthousandssefswildsseurces:of:feodstessubsistson..Agriculturesehangedss
hat.all .generating.anoverwhelmingseliance.on.adfew.dozen.domesticated.feod:seurces,;making:you.ex-
tremelysvulnerablesosthemnextfamine shesnextdocustinfestation sthesnextpotatodhlight..Agricul turess

—_
- allowedsfer:stockpilingsefssurplussresources.andsthus,sinevitably,sthesunequalsstockpilingsefithemszmsos
.= Stratificationsefsseciety.andsthe.invention.ef.elasses..Ehus,itsallowed.fer.theinvention.ef:poverty.dss
|
|

. think.that.thespunchslinesef:the.primatechuman.differencesis-thats-whenshumanssinventeds-poverty,sum
= theyseamesupswith.asnvay.ofssubjugatingthedew-rankingdike:snothing.eversseensbeforedntheprimateyss
JVVOI'ld PE:447.560

normalization 1, sample-4

\parindent = Opt
\leftskip 10pt

35 Normalization

\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,mep1ds,m,o,yessgu.fmallsyfmmem]ﬂ,unteI,:mgathererssﬁnuay,espf[lmo,u.:s,a_ndsﬂQ]fsp_vml,ds,;sm,ur,(:essganfﬂ)fmo,dsgmﬂl_saab51sts,;oummm ,,,,,,,,,
LA griculture.changed:that.all,sgenerating.ansoverwhelmingsrelianceonafew.dozen.domesticatedssm
.ssfoodssources,making:yousextremely.uuilnerable:to-the.next.famine,.thesnext.locustsinfes-
Lsstation,sthesnextspotatosblight..Agriculturesallowedsforsstockpilingsofssurplussresourcessandssm
sthus,dnevitablyshesnequalsstockpilingsefithemsmstratificationsefsseciety.andshednventionssm
= swOfeclasses.s:Thus,sif-allowed.for.the.invention.ofspoverty...lsthink.that.the.punch.line-ofithesss
= smprimateshumansdifferenceds-thatsmhenhumansdnventedspoverty,theyscamemp:witheaswayses
Lm0fisubjugatingdhedowrrankingdikesnothing.ever:seen:beforedndheprimatesnorld.sse

14.625

:4.625

:4.625

In the previous examples there are always left skips as well as right skips. It makes no sense to have an
option to omit both zero left and right skips, because that again is unpredictable. But we can go further.

normalization 2, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0

. e Agriculturedssasairlyssecentshumansnvention,andsdnsmanywaysdtwasoneofthese

Fﬂ!ﬂ

; F’”ﬂ ,,,,,,,,,,,,,,,, forsstockpiling.ofsstirplussresourcessand.thus,inevitablysthesunequalsstockpiling-ofssm
. Fm ,,,,,,,,,,,,,,,, thems==westratificationsefssocietysandsthesinventionsefsclasses.«.Ehussitsallowedsforsthess
; Fm ,,,,,,,,,,,,,,,, inventionsefspoverty..dsthinksthat.the.punchsline.ofsthe.primate-humansdifferencesigesss
. thatswhenshumanssinventedspoverty,stheyscamesupswith-aswaysefisubjugatingsdhedow-
e rankinglikesnothingeversseensbeforedndhesprimatesworldoese |

normalization 2, sample-2

\parindent = Opt
\leftskip = 0Opt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

JAgriculturedssadairlysecenthumansdnvention sandinsmanywayssitswassonesofthesgreatsstupidanove Sk
lofeallctime.«.Hunter-gatherers:have.thousands-oef:wild.sources:of:food:t0.s11bsist-0n «.Agriculturess
changedsthat.all -generating.an-overwhelming:reliancesonsas:few-dozen-domesticated-feodssources ks
. making.yousextremely.vallnerablese-thenext.famine the.nextdacust.infestation,the:next.potato.blight

:0.000

.thems=sstratificationsefsseciety-andsthednventionseficlasses.<Ehus,sitsallowedfarsthednventionefpoverty.

Agriculturesallowedsfersstockpilingsefssurplusscesourcessandsthus,sinevitablysthesunequalsstockpilin g:0fi.

:0.000

Lcameupswith.asway-ofisubjugating.thedew-rankinglikesnothing.eversseenheforesinthesprimatesamor]d....

Ithinkdthatsthespunchdinesofitheprimate-humansdifferencesdssthatawhenshumans.inventedspoverty,stheys

Normalization 36

normalization 2, sample-3

\parindent = 0Opt
\leftskip = Opt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

[Agriculturesissasfairlysrecent-humansinvention,-and-in-many-wayssitswas-onesof:the.great.stupidsmoves

ofialltime.-Hunter-gatherersshavesthousandssefswild:sourcessef-feodste-subsistson.Agriculturesehanged

. that.all sgeneratinganoverwhelmingseliance.onasfew.dozendomesticatedsfaod.seurces,;makingyou.ex-

4,625

14,625

4,625

pS:4.625

BS:4.6%5

.tremelysvulnerablesaesthemnextfamine shesnextlacustinfestation sthesnextspotatohlight..Agriculture;
. allowedsfaersstockpiling.efssurplussresourcessandsthus,sinevitably,.;thesunequalsstockpiling.efithem:==

. stratificationsefssociety.andsthe.inventionsefsclasses...khussitsallowed.fer.thesinvention.efspoverty.:d

. think.thatsthespunchslinesof:thesprimate-humansdifferencesissthatswzhenshumanssinventedspoverty,
. theyseameupswithsaswaysefssubjugatingthedew-rankingilikesnothingeversseensheforednsthesprimate;

w"NOrld PE-4407 560

normalization 2, sample-4

\parindent = Opt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L

idsmoves:of-allstime...Hunter-gatherers:have.thousands.ofswildssourcess-of:food:te.subsist-0n.sum

g gricultureschangedsthat.all s;generating.anseverwhelmingseliancesonsasfew.dozendomesticatedssm

14,625

14,625

14,625

14,625

BS:4.6%5

. smfo0dss0Urces,-making.you-extremely.vuilnerable.to-the.next.famine,.the.nextlocust.infes-
. =mtation,sthesnextspotatosblight..Agriculturesallowed:fersstockpiling:efssuirplus.resourcessandsom
=mthus,dnevitablytheanequalsstockpilingsefthems==siratificationsefssociety.andstheinventionsus
sm0fsclasses.ssThussitsallowedsfer-thesinventionsof:poverty..:lsthinksthat«:thespunch.line-ofsthesus
smprimate-humansdifferencesissthatashenshumanssinventedspoverty,stheyseamespswith-aswaysam
Jsm0fssubjugatingsthedew-rankingilikesnothingseversseensheforednstheprimatesnorld e

In these examples the indentation has been turned into a glue as well (actually it is more a kern but using
a glue makes more sense). The hanging indentation however is not seen here: it is not represented by
glue but instead sort of hidden in the width of the box and a shift of its content.

normalization 3, sample-1

\parindent = 20pt
\leftskip = 40pt
\rightskip = 50pt
\hangindent = Opt
\hangafter = 0
37 Normalization

g

LRl

L

makingsyousextremelysvallnerableste-the:next-famine sthesnextlecustinfestation sthesnext:potatosblight

,,,,,,,,,,,,, . Agriculturesissadairlyszecenthumansnvention,anddnsmanywaysdtswassoneofthesse
. greatsstupidsmovessofsallstime..Hunterngatherersshavesthousandssofswildssourcessofssm
. foodstessubsistson.sAgricultureschangedsthatsall sgeneratingsanseverwhelmingeliancessm
o onsasfew.dozen.domesticated-foodssources,-making-yous-extremely.vaillnerablesto:thessm
,,,,,,,,,,,,,,,, next:famine,thesnextdacust.infestation,.the.next.potatosblight...Agriculture.allowedsss

_forsstockpiling:ofssurplussresourcessandsthus,-inevitably,sthe.-unequalsstockpiling.0fsam

.
=3
o
=
:
=
o
=]
o
5
=h
8
Q
@
g
d
—t
=
o
5
@
=
S
:
3
1)
@
gl
=
=
c
EIJ
f’;
)
ol
=
o
&
5§
g
=
o©
E

3

o inventionsefspoverty..dsthinksthat.the.punchsline.ofsthe.primate-humans.differencesigesss
o thatswhenshumanssinventedspoverty,stheyscamesupswith-aswaysefisubjugatingsdhedow-

normalization 3, sample-2

\parindent = Opt
\leftskip = O0pt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

Agriculturedssadairlysrecentshumansdnvention,anddinsmanywaysitswasoneofthegreatsstupidiamove Ssm
allstime.s-Hunterngatherers-have:thousandssof-wildssourcessof:food«te-s11bsist:0n .« Agriculturesms
angedsthat.all sgenerating.ansoverwhelming.reliance.on.asfew-dozensdomesticated-feodssources s

:0.000

Agriculturesallowedsfar.stockpiling-ofssurplussresourcessandsthus,sinevitablythesunequalsstockpiling:ofm

hems=stratificationefisociety.andsthesinventionseficlasses.sFhus,itsallowedferihednvention.efipoverty.s
Lthinksthatshespunchdinesefithesprimate-humansdifferencesissthatswhenshumanssinventedspoverty,stheys

000

.000

camesupswithsaswaysefisubjugatingsthedew-rankinglikesnothing.eversseensheforedntheprimatesmorld.z..

normalization 3, sample-3

\parindent = Opt
\leftskip = Opt
\rightskip = Opt
\hangindent = 20pt
\hangafter = 3

Agriculturesissasfairlysrecent-humansinvention sand.in:manys.wayssit=wassonesofithe.great.stupid-movessms

feallstime..Hunter-gatherersshave.thousandssefswildsseurces:of:feodstessubsistson..Agriculturesehangedss
hatsall sgeneratingsaneverwhelmingselianceson.asdfew.dozendomesticatedsfeodsseurces,;makingyou.ex-
e o tremelysvalnerablestosthemnextdfamine,thesnextdocustinfestation,shesnextspotatodblight.cAgriculturess
- allowedsfer:stockpilingsefssurplussresources.andsthus,sinevitably,sthesunequalsstockpilingsefithemsmsos
= +stratificationsefssociety.and.thesinventionsof-classes...Ehus,sitsallowed.for:the.invention.ef:poverty..ds
A
A

g

= thinksthatsthe.punchdlinesof:the.primatechumansdifference:is.that-whenhumanssinvented-poverty,sss
= theyseamesupswith.asvay.of:ssubjugatingthedew-rankingdikesnothing.eversseensbeforedntheprimatess
J\NOI‘ld PE-447.560

normalization 3, sample-4

\parindent = Opt
\leftskip 10pt

Normalization 38

\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,J#g),ldsymoyessgoi;yaallﬂnme,m]@[unteltmgatherersmavespmo,us,andsﬂoﬂﬂpwuldy_sour,cessganfsymo,dsgmﬂmabsmtwunmm ,,,,,,,,,
LA griculture.changed:that.all,sgenerating.anoverwhelmingselianceonafew.dozen.domesticatedssm
= =wioodssources,makingsyou-extremely-uvulnerablesto-the.next.faminethe:nextlocustsdinfes-
= swiation,thesnextspotato:blight..Agriculture.allowed.for.stockpilingsefssurplussresourcessandsss
= mthusdnevitably,theanequalstockpilingsefithemenstratificationsefseciety.andsthednventionsss
= smisclasses..Thus,-it-allowed-fer-the-inventionsef-poverty..dsthink-that-the.punch.ine-ofsthesss
= smprimateshumansdifferencedssthatsmwhenhumansdnventedspoverty,they.camemp:with.aswayses
0fisubjugatingdhedowrrankingdikesnothing.eversseen:beforedndheprimatesnorld.sse

In the previous examples the hanging indentation is turned into left and right hang skips. These cannot
be set at the TgX end, but are injected when we instruct the normalizer to do so.

normalization 4, sample-1

\parindent = 20pt

\leftskip = 40pt

\rightskip = 50pt

\hangindent = Opt

\hangafter = 0

hbﬂu ,,,,,,,,,,,,, e Agriculturedssasfairlysrecentshumansdnventionandinsmanywayssdt:=wassoneofdthessm

normalization 4, sample-2

\parindent = Opt
\leftskip = 0Opt
\rightskip = Opt
\hangindent =-20pt
\hangafter = -3

JAgriculturedssadairlysecenthumandnvention sandinsmanywayssitswassonesofthegreatsstupidanove ks
lofeallctime.«.Hunter-gatherers:have.thousands:-oef-wild.sources:of:food:to.s11bsist-0n «.Agriculturess
changedsthat.all -generating.ansoverwhelming:reliancesonsasfew-dozen-domesticated-feodssources ks
.making-yeu.extremelysvulnerable:te;the:next-famine,the-nextdacustinfestation,the-nextpotatosblight

000

thems=sstratificationsefsseciety-andsthednventionseficlasses.cEhus,sitsallowedfarsthednventionefpoverty.

JAgriculture.alloweddfar.stockpiling«ef.surplus.resources.and.thus,inevitably,thesunequal:stockpiling.ofi.

00

thinksthatthespunchdinesefthesprimate-human.differencedssthatawhenshumanssdinventedspoverty,theys
Lcamesupswithsaswaysofssubjugatingsthedew-rankingdlikesnothing.eversseensheforedinthesprimatesmorld....

39 Normalization

normalization 4, sample-3

\parindent = Opt
\leftskip = Opt
\rightskip = 0pt
\hangindent = 20pt
\hangafter = 3

Agriculturesissasfairly.recent:huumansinventionsand-in:many-wayssit=was-onesof:the.great.stupid=move Sk
lofialltime.-Hunter-gatherersshavesthousandssefswild:sourcessofifeodsta.subsistson..Agriculturesehangedss
. that.all sgeneratinganoverwhelmingzelianceonasfew.dozendomesticatedsfeod.seurces,;makingyou.ex-
.tremelysvulnerablesasthemnextfamine shesnextldacustinfestation sthesnextpotatoshlight..Agricultures
. allowedsfarsstockpilingsefssurplussresourcessandsthus,sinevitably,;thesunequalsstockpiling.efihemmmsm
. stratificationsefssocietysandsthesinventionsefsclasses...khus,itsallowed.fer;thesinventionsofpoverty..ds
. think.thatsthespunchslinesofsthesprimatechumansdifferencesis-thatswhenshumanssinventedspoverty, s
e . theyseamesapswilthsaswaysofssubjugatingsthedewr-rankingdikesnothingeversseenheforednstheprimatess
. world.suwwa

z

14,605

14,625

z

14,625

BS:4.625

normalization 4, sample-4

\parindent = O0pt
\leftskip = 10pt
\rightskip = 30pt
\hangindent = 20pt
\hangafter = 3

L,,@@ldﬂmoyesmﬂ&allmmemlﬂunteizmgather,,er,sma,v,espmo,us,andsmfspwaldmsourc,essgauﬂyfm,Q,dsemmszubSJSt@.onmm ,,,,,,,,,
mmhgricultureschangedsthat.all ;generating.anseverwhelmingseliancesonsasfew.dozendomesticatedssm
= sofoodssources,.making.you.extremely.uailnerable.to.the.next.famine,the.next.locust.infes-
. =mtation,sthesnext:potatosblight..Agriculturesallowed:fersstockpiling:efsstirplus.:resourcessandssm
=mthus,dnevitablythesnequalsstockpilingefithem==stratificationsefiseciety.andsthedinventionsee
sm0fsclasses.ssThussitsallowedsfersthesinventionsofspoverty.«sthinksthatsthespunchsline-ofstheses
e - smbrimate-humansdifferencesssthatswhenshumansdnventedspoverty,they.cameapswith-aswayssm
| ussofssubjugatingsthedewrrankingdlikesnothingeverseensheforesdindhesprimatesworld.iss

14,625

14,605

14,625

The previous examples differ from the previous set in that they push these hang related glue nodes before
the left and after the right skip. As I couldn’t make up my mind yet, I let LuaMetaTgX just provide both
variants.

The option to keep hang related information explicitly in the line has some consequences. First of all, we
now have glue and not some shift/width combination. Second, we have introduced an incompatibility: the
lines now always have the proper width. You might have noticed that but we can show it more explicitly.
We use two parameter sets

normalization 0, sample-5

\hangindent = 20pt
\hangafter 0]

Normalization 40

= LAgriculturesis-asfairly.zecent:humansinvention,.and.in.many.wayseit-was:one.of-the.great.stupidss
= +movessof-all-time...Hunter-gatherers:have.thousands:.oef-wild.sources:of.food-te.s11bsist-0n ... Agri-
- culture.changedsthat.all,.generating.an.overwhelming.reliance.on-as-few.dozen.domesticated-feodk«
= . sources,.making.yousextremely.vailnerable.to.the.next.famine,the.nextlacust.infestation,.the.nexts.
- . potato:blight..Agriculture.allowedsfersstockpiling.efssurplussresourcessandsthus,sinevitably,-the.un-
- . equalsstockpiling.efithems=stratificationsef:society.andsthedinventionsefclasses.«Ehus,itallowedfark.
- . thesinventionsefspoverty.sdsthinksthatthespunchslinesefsthesprimate-humansdifferencesissthatswheni
e . humanssinventedspoverty,stheyseamemupswith-aswaysefssubjugatingsthedew-rankinglikesnothing.ever;

. seensheforesinshesprimatesnorld.cuwsa

normalization 4, sample-5

\hangindent
\hangafter

20pt
0

= LAgriculturesis-asfairly.zecent:humansinvention,.and.in.many.wayseit-was:one:of-the.great.stupidss
= +movessof-all-time...Hunter-gatherers:have.thousands:.oef-wild.sources:of.food-te.s11bsist-0n ... Agri-
- culture.changedsthat.all,.generating.an.overwhelming.reliance.on-as-few.dozen.domesticated-feodk.
= . sources,.making.yousextremely.vailnerable.to.the.next.famine,the.nextlacust.infestation,.the.nexts.
- . potato:blight..Agriculture.allowedsfersstockpilingsefssurplussresourcessandsthus,sinevitably,-the.un-
- equalsstockpiling.efithems=sstratificationsefisociety.andsthedinventionsefclasses.«Ehus,itallowedfark.
_ . thesinventionsefspoverty.sdsthinksthatsthespunchslinesofsthesprimate-humansdifferencesissthatswhen;
e . humanssinventedspoverty,stheyseamemupswith-aswaysefssubjugatingsthedew-rankinglikesnothing-ever;

.seensheforesinshesprimatesnorld.suwa

normalization 0, sample-6

\hangindent =-20pt
\hangafter = 0

[Agriculturesissasfairly.zecent:human<invention,sand-in.many.wayssif-was-onesof-the.great.stupidsms
movessof-all-time...Hunter-gatherers-have.thousands:of-wildssources:of-food:te.subsist-on...Agri-

culture.changed.that.all,.generating.an.overwhelming.reliance.on-a.few.dozen.domesticated-feo
Isgurces,;makingsyousextremelysviilnerablestosthe-next.famine,the:next:lacust.infestation,.the.nex

000

000

potatoshlight..Agricultures.allowedsfersstockpiling.efssuirplussresourcessandsthus,sinevitably,sthesun-

gqualsstockpilingefithems=siratificationsefiseciety.andsthesinventionseficlasses..Ehus,itallowed.fan

00

{hy' 3

the-<inventionsefspoverty..dsthinks.that.thespunchs.linesefsthesprimate-humansdifferencesissthatswhe

00

humanssdnventedspoverty,sthey.camesupswith-aswaysefismbjugatingsthedew-rankingdikesnothing.ever

00

seensheforesinsthesprimatesworld.suwa

normalization 4, sample-6

\hangindent =-20pt
\hangafter = 0

41 Normalization

sgurces,smaking.yousextremely.vtilnerablesto-the.next.famine,the:nextdacust.infestation,.the.nex
potatoshlight..Agricultures.allowedsfersstockpiling.efssuirplussresourcessandsthus,sinevitably,sthesun-

thesinventionsefipoverty..dsthink.that-the:punch.line.of:thesprimate-human.differencesissthat.-whe
humanssdnventedspoverty,sthey.camesupswithsaswaysefismbjugatingsthedew-rankingdikesnothing.ever
seensheforesinsthesprimatesworld.suwa

Agriculturesissa=fairly.recent-humansinvention .and-in.many.ways-it-wassene-of.the.great.stupidim
movessof:all.time...Hunter-gatherers:have.thousandssoef:wild.sourcessof-food:te-subsist-0n ... Agri-
culture.changed.that.all,.generating.an.overwhelming.reliance.on-a.few.dozen.domesticated-feo

00

00

00

equalsstockpiling-efithems=stratificationsefsseciety.andstheinventionsefselasses..Ehus,sitsallowed far

00

00

A not yet mention part of the normalization is that, because they are no longer of relevance, the special
local par nodes have been removed. The one that starts a paragraph is turned into a normal directional
node if needed, so that we get properly balanced pairs of directional nodes. It must been said that the
code that does all this is a bit of a mess. We want to stay close to the original code, but we also need to deal
with all these extensions, like directions, protrusion, extra boxes, etc.

Not shown here is that there is a fifth mode of operation. When we enable that level an overfull box will
get a correction skip so that the right skip etc are properly aligned. How useful this is: we’ll see.

Now, when I decide to keep this feature, which can be set at the Lua end to do the previously mentioned
tasks, depending on a feature level ranging from zero to four, I also need to check the impact on existing
ConTgXt code, which (currently) is complicated by the fact that most is shared between MKIV and Imtx,
and only LuaMetaTgX has this normalization feature. Iwill probably enable it for a while locally in order to
seeifthere are side effects. Then, when the code base gets adapted, we have to assume that normalization
happens, so there is no way back.

Normalization 42

43 Normalization

6 Expansion

Character expansion was introduced in pdfTgX a couple of decades ago. It is a mechanism that scales
glyphs horizontally in order to reduce excessive whitespace that is needed to properly justify a paragraph.
I must admit that I never use it myself but there are users who do. Although this mechanism evolved a
bit, and in LuaTgX is implemented a bit different, the basics remained the same. If you have no clue what
this is about, you can just quite reading here.

A font can be set up to expand characters by a certain amount: they can shrink or stretch. This is driven
by three parameters: step, stretch and shrink. The values are in thousands because TgX has no float
quantity. Originally these values were percentages of the width of a glyph, later they became related to
the em width but in LuaTgX we went back to the former definition.

In ConTgXt MKIV we have an interface that works as follows:

\startluacode
local classes = fonts.expansions.classes

classes.qualitya = §

vector = "default",
factor =1,
stretch = 4,
shrink = 2,
step = .5,

k

classes.qualityb = {
vector = "default",
factor =1,
stretch = 8,
shrink = 4,
step = .5,

%

\stopluacode

The default vector looks like this:

vectors['default'] = {
[0x0041] = 0.5, -- A
[Ox0042] = 0.7, -- B
-- and some more

%

The values that we pass to the engine are stretch 40, shrink 20, and step 5 for qualitya and stretch 80,
shrink 40, and step 5 for qualityb, so we multiply by 10. In the engine the step is limited to 100, the
stretch to 1000 and the shrink to 500. But these extremes produce quite bad results.

The expansion class is set with the expansion feature, as in:

\definefontfeature [basea] [default] [expansion=qualitya]
\definefontfeature [baseb] [default] [expansion=qualityb]

Expansion 44

\definefont [FontA] [Serifxbaseal]
\definefont [FontB] [Serifxbaseb]

In figure 6.1 we see this in action, using the following code:

\setupalign[verytolerant,stretch,hz] % hz triggers expansion
\dorecurse $30% %
$\FontB \darkred test me #1,} \FontA \dorecursesi#ltitest HFL, 1%

f\par

test me 1, test 1, test me 2, test 1, test 2, test me 3, test 1, test 2, test 3, test me 4, test 1, test 2, test 3, test 4,
test me 5, test 1, test 2, test 3, test 4, test 5, test me 6, test 1, test 2, test 3, test 4, test 5, test 6, test me 7, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test me 8, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §,
test me 9, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test me 10, test 1, test 2, test 3, test 4,
test 5, test 6, test 7, test 8, test 9, test 10, test me 11, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test me 12, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test me 13, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12, test
13, test me 14, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13,
test 14, test me 15, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test me 16, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test 13, test 14, test 15, test 16, test me 17, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test
9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test me 18, test 1, test 2, test 3, test 4, test
5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test me
19, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test
15, test 16, test 17, test 18, test 19, test me 20, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test me 21, test 1, test
2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test
17, test 18, test 19, test 20, test 21, test me 22, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test
me 23, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test me 24, test 1, test 2, test 3, test 4,
test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test
19, test 20, test 21, test 22, test 23, test 24, test me 25, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §,
test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test 24, test 25, test me 26, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test
11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24,
test 25, test 26, test me 27, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test
12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test me 28, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test
12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test 28, test me 29, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test
11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24,
test 25, test 26, test 27, test 28, test 29, test me 30, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test
9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test
23, test 24, test 25, test 26, test 27, test 28, test 29, test 30,

Figure 6.1

There is one drawback with this method, although so far I never heard a user complain, which can be an
indication of how this mechanism is used: you cannot mix fonts with different step, stretch and/or shrink.
As we just did this in the example, this statement is not really true in LuaMetaTgX: there we only need to
keep the step the same. This is compatible in the sense that otherwise we would quit the run, so at least

45 Expansion

we carry on: the smallest stretch and shrink is taken. But, we do issue a warning (once) because there
can be side effects! This is not that pretty a solution anyway because it depends on what font is used first.

It is for this reason that we have another option: in ConTgXt Imtx you can define a specific expansion:

\defineexpansion
[myexpansion]
[step=1, % default
stretch=50,
shrink=20]

There is no need to have a different step than 1. In pdfTgX instances are created per step used, but in
LuaTgX this is more fluid. There is no gain in using different steps. We just keep it for compatibility
reasons. This specific expansion is enables with:

\setexpansion[myexpansion]

and the result is shown in figure 6.2. This time the set expansion wins over the one set in the font. All
fonts that have the expansion feature set are treated the same. By using this method you can locally have
different values.

Deep down we use some new primitives:

\adjustspacingstep
\adjustspacingstretch
\adjustspacingshrink

The step is limited to 100 (10%) and the stretch and shrink to 500 (50%) and the stretch to 1000 (100%)
but these extremes are only useful for examples.

Expansion 46

test me 1, test 1, test me 2, test 1, test 2, test me 3, test 1, test 2, test 3, test me 4, test 1, test 2, test 3, test 4,
test me 5, test 1, test 2, test 3, test 4, test 5, test me 6, test 1, test 2, test 3, test 4, test 5, test 6, test me 7, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test me 8§, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test
8, test me 9, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test me 10, test 1, test 2, test 3, test
4, test 5, test 6, test 7, test 8, test 9, test 10, test me 11, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8,
test 9, test 10, test 11, test me 12, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11,
test 12, test me 13, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test me 14, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13,
test 14, test me 15, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test me 16, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10,
test 11, test 12, test 13, test 14, test 15, test 16, test me 17, test 1, test 2, test 3, test 4, test 5, test 6, test
7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test me 18, test 1, test 2, test
3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test
18, test me 19, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test 16, test 17, test 18, test 19, test me 20, test 1, test 2, test 3, test 4, test 5, test 6,
test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test
20, test me 21, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test
13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test me 22, test 1, test 2, test 3, test
4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test
18, test 19, test 20, test 21, test 22, test me 23, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test me 24, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test me
25, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test me 26, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15,
test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test me 27, test
1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14, test 15,
test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test 27, test me
28, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9, test 10, test 11, test 12, test 13, test 14,
test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25, test 26, test 27,
test 28, test me 29, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test §, test 9, test 10, test 11, test 12,
test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22, test 23, test 24, test 25,
test 26, test 27, test 28, test 29, test me 30, test 1, test 2, test 3, test 4, test 5, test 6, test 7, test 8, test 9,
test 10, test 11, test 12, test 13, test 14, test 15, test 16, test 17, test 18, test 19, test 20, test 21, test 22,
test 23, test 24, test 25, test 26, test 27, test 28, test 29, test 30,

Figure 6.2

47 Expansion

