
CLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLDCLDCLD

CLD
CLD

CLD

CLD

CL
D

CLD CLD

CLDCLD

CLD

CLD

CL
D

CLDCLDCLD

CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CLD
CLD
CLD

CLD
CLD

CL
D

CL
D

CLD
CLD
CLD

CLD

CLD

CLDCLD CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD
CLD

CL
D

CLD

CLDCLDCLD

CLD

CLD

CLD
CLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD CLD

CLD
CLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLDCLD

CLD

CLD CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
DCLD CLD

CL
D

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CL
D

CLD
CLD

CLDCLDCLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CLDCLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLDCLD
CLD

CLD

CLDCLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLDCLD

CLDCLD
CLD

CL
D

CLD CLD

CL
D

CLD

CLD
CLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD
CLD
CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CLD
CL

D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD
CLD

CLD
CLD

CLD
CLD

CLD

CLD

CLD

CLDCLD

CLD

CLD CLD
CLDCLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CL
D

CL
D

CLDCLD
CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CL
D

CLD

CLD CLD

CLD CLD

CLD

CLD CLD
CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
DCLD

CLD

CLDCLD

CLD
CLD
CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLDCLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CLDCLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CLD
CLDCLD

CLDCLD CLD

CLD CLD

CLD
CLD
CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CL
D

CLD

CLD
CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD
CLD
CLD

CLD

CLD

CLD

CLD CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLD CLD
CLD

CLD

CL
D

CLD CLD

CL
D

CLD

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD

CLDCLD CLD

CLD

CL
D

CLD
CLD

CL
D

CLD
CLDCLD

CL
D

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CL
D

CLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD CLD

CLD

CLD

CL
D

CL
D

CLD

CLDCLD

CLD

CLD

CLD
CLD

CLDCLD CLD
CLD CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CLDCLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLDCLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD
CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CLDCLD

CL
D

CLD CLD

CLD

CLD

CLDCLD
CLD

CLDCLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLDCLD

CL
D

CLD CLD

CLDCLD

CL
DCLD

CLD

CL
D

CLD

CL
D

CLD CLD

CLDCLD
CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CLDCLD
CLD
CLD

CL
D

CLD

CL
DCLD

CLDCLD

CLDCLD

CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD CLD

CLD
CLD

CL
DCLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CLD
CLD
CLD

CLD

CL
DCLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLDCLD CLD CLD
CLD

CL
D

CLD

CLD
CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD
CLD

CLDCLD

CL
D

CLD
CLD
CLDCLDCLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD CLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLD CLD

CLD

CL
D

CLD

CLD
CL

D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLDCLD CLD
CLD

CLD

CL
DCLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLDCLD CLDCLD CLD

CLD
CLD

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CLD
CLDCLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD CLD
CLD

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLDCLD

CL
D

CL
D

CLD CLD

CL
D

CLD
CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
DCLD

CLD

CL
D

CLD

CLD

CLD CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLD CLD

CLD CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD
CLD
CLD

CLD
CLD

CL
D

CLD

CLDCLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD CLD

CLD

CLD
CLD

CL
D

CL
D

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD CLD

CLD

CLD

CLD

CLD
CLD CLD

CLD

CLD
CLDCLD

CLD
CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CLDCLDCLD

CL
D

CLDCLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CL
D

CLD
CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLDCLD

CLDCLD

CLD

CLD

CL
D

CL
D

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLDCLD

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
DCLD CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD
CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CLDCLD CLDCLD

CLD

CLDCLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD CLD

CL
D

CLD
CLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD CLD

CLD
CLD

CL
D

CLD CLD
CLD

CLDCLD

CLD

CLD

CL
D

CLD
CL

D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLDCLDCLD

CLDCLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLDCLD

CLD
CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CL
D

CLD

CLDCLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD CLD

CLD

CLD
CL

D
CL

D

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CL

D

CLD

CL
D

CLD

CLD
CLD

CL
D

CLDCLD

CL
D

CLD

CLDCLD

CLD
CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CL
D

CLDCLD CLD

CLD

CLD

CLD

CL
D

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLDCLD

CL
D

CLD

CLD

CLDCLD CLD

CLD
CLD

CL
D

CL
D

CL
D

CLD
CLDCLD

CLD
CLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD
CLD
CLD

CLD

CLD

CLD

CLD

CL
DCLD

CL
D

CLD

CLD
CLD
CLD

CL
D

CLD
CLD

CLD

CLD
CL

D
CLD

CL
D

CLD

CLD

CLDCLD CLD

CLD

CLD
CLD

CL
D

CLD
CL

D

CLD

CL
D

CLD

CLD
CL

D

CLD

CLD

CL
D

CLDCLD

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CL
D

CLD CLD
CLD

CLD
CLD

CLDCLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD CLD

CLDCLD

CLD

CLD

CLD

CLDCLD CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CL
D

CLDCLD

CLD

CLD

CLD
CLD

CLDCLD

CLD

CLDCLD

CL
D

CLD
CL

D

CLD

CLDCLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CLD
CL

D

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLD
CLD
CLD
CLD

CLD

CLDCLD

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CLDCLD

CL
D

CLD
CLDCLD

CL
D

CL
DCLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CLDCLD

CLD

CLDCLD

CLDCLD

CLD
CL

D

CLD

CLD
CLDCLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
DCLD CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLDCLD

CL
D

CL
D

CLD CLD
CLD

CLD

CL
D

CL
D

CLD CLD CLD

CL
D

CLDCLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CLD
CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD
CLD
CLDCLD

CL
D

CLD

CLDCLD
CLD

CLDCLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLDCLDCLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLDCLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLDCLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD CLD
CLD

CLD

CLD CLD

CL
DCLD

CL
DCLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD CLD

CLD
CLD
CLD

CL
D

CLDCLD

CL
D

CLDCLD

CLD

CLD CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLDCLDCLD CLD

CL
D

CLDCLD
CLD

CLDCLD

CLD

CLD

CLD

CLD

CLD

CLDCLD

CLD

CLD CLD

CLD

CLD

CLDCLD
CLD

CLD
CLD

CLD CLD CLD

CLD

CL
D

CLD

CLDCLD

CL
D

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLDCLD

CLD
CL

D

CLD

CLD

CL
D

CLD
CL

D

CLD

CL
D

CL
D

CL
D

CLD
CLD

CLDCLD

CL
D

CLDCLD

CL
D

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD
CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD CLD

CLDCLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD

CLD
CLDCLD CLDCLD

CLD CLD

CL
D

CLD

CLD

CLD
CLD
CLD
CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD CLD

CLD
CLD

CLD CLD

CLD

CLD

CL
D

CLD CLD

CLDCLD

CL
D

CLD

CLD
CL

D
CL

D

CL
D

CL
D

CLD

CLDCLD

CLD
CLD

CLD

CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD
CLD
CLD

CLDCLD

CL
D

CL
D

CL
D

CL
D

CL
D

CL
D

CLD

CLD

CLDCLD
CLD

CLD

CLD
CLD

CLD CLD
CLD

CLDCLD

CL
D

CL
D

CL
D

CLD

CLDCLDCLD

CLD
CL

D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CLDCLD CLD
CLD

CL
D

CL
D

CL
D

CLD
CLD

CL
D

CLD
CLDCLD

CL
D

CLD

CL
D

CLD
CLD
CLDCLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD
CLD CLD

CLD

CLD

CL
D

CLD
CLD CLD

CLD

CLD
CLD
CLD
CLD

CL
D

CL
D

CLDCLD

CL
D

CL
D

CLD

CLDCLD

CLD
CLD CLD

CL
D

CL
D

CLD CLD

CLDCLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD CLD

CLD

CL
D

CLD
CLD

CL
D

CLD CLD
CL

D

CLD

CLD

CL
D

CLD

CLD CLD

CL
D

CLDCLD

CLD
CLD
CLDCLDCLD

CLD

CLD CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
DCLD

CLDCLD

CL
DCLD CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD

CLD

CL
D

CLD

CL
D

CLD

CLD
CLD

CLD

CLD CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD
CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD
CLDCLD

CL
D

CL
D

CLD

CLD
CLD

CLD

CLD
CLDCLD

CL
D

CLD
CLD

CL
D

CL
D

CLD
CLDCLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLD

CLD

CL
D

CLD

CLDCLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLDCLD

CLDCLD

CL
D

CL
D

CLD

CLD

CLDCLD
CLD

CLD
CLD

CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLDCLD CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CLD
CLDCLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLDCLD

CLD

CLDCLD CLD

CL
D

CLD

CL
D

CLD

CLDCLD CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD
CLD

CLDCLD

CLD
CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLDCLD

CLD
CLD
CLDCLD

CL
D

CL
D

CL
D

CLD
CLDCLD

CLDCLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLDCLD

CLD
CLD

CLDCLD
CLD CLDCLD

CLD

CLD

CLD

CL
D

CLD CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
DCLD CLD

CL
D

CLD CLD

CLD

CLD CLD

CL
D

CL
D

CLDCLD

CL
D

CLDCLD

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLDCLD

CLD
CLDCLD

CL
D

CLDCLDCLDCLD

CL
D

CLD

CL
DCLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLDCLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLDCLD
CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CLD CLD
CLD CLD

CL
D

CLD

CLD

CL
D

CLD CLD

CLD

CL
D

CL
D

CLDCLDCLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD
CLD
CLD

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD CLD

CL
D

CL
D

CLD

CL
D

CLD
CLD

CLD

CLDCLD

CLD
CLD

CLD CLD

CLD

CLD CLD

CLD

CLD
CLDCLD

CLD
CLD

CLDCLD
CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD

CL
D

CLD
CLD

CLD
CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD
CLD
CLD

CLD

CLDCLD

CLD
CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CLD

CL
D

CLDCLD

CLD

CLD

CL
D

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CL
DCLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLDCLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLDCLD

CL
D

CLD

CL
D

CLD
CLD
CLD

CL
D

CLD CLDCLD CLD

CL
D

CLD CLD

CLD

CLD

CL
D

CLDCLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD
CLD
CLD

CLD

CLD

CLD CLD

CLD

CL
D

CLD
CLDCLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD
CL

D

CLD
CLD

CLD

CLD

CL
DCLD

CL
D

CLD
CLD CLD

CLD

CL
D

CLDCLD
CLD

CLD
CLD

CL
D

CL
D

CLD
CL

D

CLDCLD

CL
D

CL
D

CL
DCLD

CL
D

CL
D

CLD
CLD

CL
D

CLDCLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLDCLD

CLD

CLD
CLDCLD

CLDCLD CLD

CL
D

CL
D

CL
D

CL
D

CLD

CLDCLD

CL
D

CLD

CL
D

CLDCLDCLD

CLD
CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CL
D

CLD
CL

D
CLD

CLD
CLD

CLD

CLD
CLD

CLD CLD

CLD

CLD

CLDCLD

CL
D

CLD

CLD

CLDCLD

CLD

CLDCLD

CL
D

CLD

CL
D

CLD

CLD CLD

CLD CLD

CL
D

CLDCLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLDCLD CLD

CLDCLD
CLD

CL
D

CLD

CLD

CL
D

CLD

ConTEXt Lua
Documents

Hans Hagen

preliminary, uncorrected version – June 25, 2020

1

preliminary, uncorrected version – June 25, 2020

Contents

Introduction 5

1 A bit of Lua 7
1.1 The language 7
1.2 Data types 7
1.3 TEX’s data types 11
1.4 Control structures 11
1.5 Conditions 12
1.6 Namespaces 13
1.7 Comment 14
1.8 Pitfalls 15
1.9 A few suggestions 16
1.10 Interfacing 17

2 Getting started 21
2.1 Some basics 21
2.2 The main command 22
2.3 Spaces and Lines 22
2.4 Direct output 24
2.5 Catcodes 26

3 More on functions 29
3.1 Why we need them 29
3.2 How we can avoid them 30
3.3 Trial typesetting 31
3.4 Steppers 32

4 A few Details 35
4.1 Variables 35
4.2 Modes 35
4.3 Token lists 36
4.4 Node lists 37

5 Some more examples 41
5.1 Appetizer 41
5.2 A few examples 42
5.3 Styles 45
5.4 A complete example 47
5.5 Interfacing 49
5.6 Using helpers 53
5.7 Formatters 55

6 Graphics 57
6.1 The regular interface 57
6.2 The LUA interface 61

2

preliminary, uncorrected version – June 25, 2020

7 Macros 63
7.1 Introduction 63
7.2 Parameters 63
7.3 User interfacing 63
7.4 Looking inside 65

8 Verbatim 67
8.1 Introduction 67
8.2 Special treatment 67
8.3 Multiple lines 68
8.4 Pretty printing 68

9 Logging 73

10 Lua Functions 75
10.1 Introduction 75
10.2 Tables 75
10.3 Math 84
10.4 Booleans 84
10.5 Strings 85
10.6 UTF 101
10.7 Numbers and bits 105
10.8 LPEG patterns 105
10.9 IO 110
10.10 File 112
10.11 Dir 115
10.12 URL 116
10.13 OS 118

11 The LUA interface code 121
11.1 Introduction 121
11.2 Characters 121
11.3 Fonts 128
11.4 Nodes 133
11.5 Resolvers 135
11.6 Mathematics (math) 138
11.7 Graphics (grph) 138
11.8 Languages (lang) 138
11.9 MetaPost (mlib) 138
11.10 LuaTEX (luat) 138
11.11 Tracing (trac) 138

12 Scanners 139
12.1 Introduction 139
12.2 A teaser first 139
12.3 Basic data types 140
12.4 Tables 141
12.5 Expansion 144
12.6 Boxes 145
12.7 Like CONTEXT 147

3

preliminary, uncorrected version – June 25, 2020

12.8 Verbatim 147
12.9 Macros 148
12.10 Token lists 148
12.11 Actions 149
12.12 Embedded LUA code 150

13 Variables 153
13.1 Introduction 153
13.2 Simple tables 153
13.3 Data tables 155
13.4 Named variables 157

14 Callbacks 159
14.1 Introduction 159
14.2 Actions 159
14.3 Tasks 161
14.4 Paragraph and page builders 165
14.5 Some examples 165

15 Backend code 167
15.1 Introduction 167
15.2 Structure 167
15.3 Data types 167
15.4 Managing objects 170
15.5 Resources 170
15.6 Annotations 171
15.7 Tracing 171
15.8 Analyzing 172

16 Font goodies 175
16.1 Introduction 175
16.2 Virtual math fonts 175
16.3 Math alternates 176
16.4 Math parameters 177
16.5 Unicoding 179
16.6 Typescripts 179
16.7 Font strategies 181
16.8 Postprocessing 184

17 Nice to know 185
17.1 Introduction 185
17.2 Templates 185
17.3 Extending 186

4

preliminary, uncorrected version – June 25, 2020

18 A sort of summary 189
18.1 Access to commands 189
18.2 METAFUN 192
18.3 Building blocks 192
18.4 Basic Helpers 192
18.5 Registers 193
18.6 Catcodes 193
18.7 Templates 196
18.8 Management 197
18.9 String handlers 197
18.10 Helpers 199
18.11 Tracing 200
18.12 States 200
18.13 Steps 201

19 Special commands 203
19.1 Tracing 203
19.2 Overloads 203
19.3 Steps 203

20 Files 209
20.1 Preprocessing 209

Index 211

Introduction 5

preliminary, uncorrected version – June 25, 2020

Introduction

Sometimes you hear folks complain about the TEX input language, i.e. the backslashed commands that
determine your output. Of course, when alternatives are being discussed every one has a favourite
programming language. In practice coding a document in each of them triggers similar sentiments
with regards to coding as TEX itself does.

So, just for fun, I added a couple of commands to CONTEXT MKIV that permit coding a document
in LUA. In retrospect it has been surprisingly easy to implement a feature like this using metatables.
Of course it’s a bit slower than using TEX as input language but sometimes the LUA interface is more
readable given the problem at hand.

After a while I decided to use that interface in non-critical core CONTEXT code and in styles (modules)
and solutions for projects. Using the LUA approach is sometimes more convenient, especially if the
code mostly manipulates data. For instance, if you process XML files of database output you can use
the interface that is available at the TEX end, or you can use LUA code to do the work, or you can use
a combination. So, from now on, in CONTEXT you can code your style and document source in (a
mixture of) TEX, XML, METAPOST and in LUA.

In the following chapters I will introduce typesetting in LUA, but as we rely on CONTEXT it is unavoid-
able that some regular CONTEXT code shows up. The fact that you can ignore backslashes does not
mean that you can do without knowledge of the underlying system. I expect that the user is somewhat
familiar with this macro package. Some chapters are follow ups on articles or earlier publications.

Some information (and mechanism) show up in more than one chapter. This is a side effect of LUA
being integrated in many places, so an isolated discussion is a bit hard.

In the meantime most of the code is rather stable and proven. However, this manual will never be
complete. You can find examples all over the code base, and duplicating everything here makes no
sense. If you find errors, please let me know. If you think that something is missing, you can try to
convince me to add it. It’s hard to keep up with what gets added so input is welcome.

Hans Hagen
Hasselt NL
2009 — 2016

6 Introduction

preliminary, uncorrected version – June 25, 2020

A bit of Lua 7

preliminary, uncorrected version – June 25, 2020

1 A bit of Lua

1.1 The language
Small is beautiful and this is definitely true for the programming language LUA (moon in Portuguese).
We had good reasons for using this language in LUATEX: simplicity, speed, syntax and size to mention
a few. Of course personal taste also played a role and after using a couple of scripting languages
extensively the switch to LUA was rather pleasant.

As the LUA reference manual is an excellent book there is no reason to discuss the language in great
detail: just buy ‘Programming in LUA’ by the LUA team. Nevertheless I will give a short summary of
the important concepts but consult the book if you want more details.

1.2 Data types
The most basic data type is nil. When we define a variable, we don’t need to give it a value:

local v

Here the variable v can get any value but till that happens it equals nil. There are simple data types
like numbers, booleans and strings. Here are some numbers:

local n = 1 + 2 * 3
local x = 2.3

Numbers are always floats1 and you can use the normal arithmetic operators on them as well as func-
tions defined in the math library. Inside TEX we have only integers, although for instance dimensions
can be specified in points using floats but that’s more syntactic sugar. One reason for using integers
in TEX has been that this was the only way to guarantee portability across platforms. However, we’re
30 years along the road and in LUA the floats are implemented identical across platforms, so we don’t
need to worry about compatibility.

Strings in LUA can be given between quotes or can be so called long strings forced by square brackets.

local s = "Whatever"
local t = s .. ' you want'
local u = t .. [[to know]] .. [[--[about Lua!]--]]

The two periods indicate a concatenation. Strings are hashed, so when you say:

local s = "Whatever"
local t = "Whatever"
local u = t

only one instance of Whatever is present in memory and this fact makes LUA very efficient with
respect to strings. Strings are constants and therefore when you change variable s, variable t keeps
its value. When you compare strings, in fact you compare pointers, a method that is really fast. This
compensates the time spent on hashing pretty well.

1 This is true for all versions upto 5.2 but following version can have a more hybrid model.

8 A bit of Lua

preliminary, uncorrected version – June 25, 2020

Booleans are normally used to keep a state or the result from an expression.

local b = false
local c = n > 10 and s == "whatever"

The other value is true. There is something that you need to keep in mind when you do testing on
variables that are yet unset.

local b = false
local n

The following applies when b and n are defined this way:

b == false true
n == false false
n == nil true
b == nil false
b == n false
n == nil true

Often a test looks like:

if somevar then
...

else
...

end

In this case we enter the else branch when somevar is either nil or false. It also means that by
looking at the code we cannot beforehand conclude that somevar equals true or something else. If
you want to really distinguish between the two cases you can be more explicit:

if somevar == nil then
...

elseif somevar == false then
...

else
...

end

or

if somevar == true then
...

else
...

end

but such an explicit test is seldom needed.

There are a few more data types: tables and functions. Tables are very important and you can recog-
nize them by the same curly braces that make TEX famous:

A bit of Lua 9

preliminary, uncorrected version – June 25, 2020

local t = { 1, 2, 3 }
local u = { a = 4, b = 9, c = 16 }
local v = { [1] = "a", [3] = "2", [4] = false }
local w = { 1, 2, 3, a = 4, b = 9, c = 16 }

The t is an indexed table and u a hashed table. Because the second slot is empty, table v is partially
indexed (slot 1) and partially hashed (the others). There is a gray area there, for instance, what
happens when you nil a slot in an indexed table? In practice you will not run into problems as you
will either use a hashed table, or an indexed table (with no holes), so table w is not uncommon.

We mentioned that strings are in fact shared (hashed) but that an assignment of a string to a variable
makes that variable behave like a constant. Contrary to that, when you assign a table, and then copy
that variable, both variables can be used to change the table. Take this:

local t = { 1, 2, 3 }
local u = t

We can change the content of the table as follows:

t[1], t[3] = t[3], t[1]

Here we swap two cells. This is an example of a parallel assigment. However, the following does the
same:

t[1], t[3] = u[3], u[1]

After this, both t and u still share the same table. This kind of behaviour is quite natural. Keep in
mind that expressions are evaluated first, so

t[#t+1], t[#t+1] = 23, 45

Makes no sense, as the values end up in the same slot. There is no gain in speed so using parallel
assignments is mostly a convenience feature.

There are a few specialized data types in LUA, like coroutines (built in), file (when opened), lpeg
(only when this library is linked in or loaded). These are called ‘userdata’ objects and in LUATEX we
have more userdata objects as we will see in later chapters. Of them nodes are the most noticeable:
they are the core data type of the TEX machinery. Other libraries, like math and bit32 are just collec-
tions of functions operating on numbers.

Functions look like this:

function sum(a,b)
print(a, b, a + b)

end

or this:

function sum(a,b)
return a + b

end

10 A bit of Lua

preliminary, uncorrected version – June 25, 2020

There can be many arguments of all kind of types and there can be multiple return values. A function
is a real type, so you can say:

local f = function(s) print("the value is: " .. s) end

In all these examples we defined variables as local. This is a good practice and avoids clashes. Now
watch the following:

local n = 1

function sum(a,b)
n = n + 1
return a + b

end

function report()
print("number of summations: " .. n)

end

Here the variable n is visible after its definition and accessible for the two global functions. Actually
the variable is visible to all the code following, unless of course we define a new variable with the
same name. We can hide n as follows:

do
local n = 1

sum = function(a,b)
n = n + 1
return a + b

end

report = function()
print("number of summations: " .. n)

end
end

This example also shows another way of defining the function: by assignment.

The do ... end creates a so called closure. There are many places where such closures are created, for
instance in function bodies or branches like if ... then ... else. This means that in the following
snippet, variable b is not seen after the end:

if a > 10 then
local b = a + 10
print(b*b)

end

When you process a blob of LUA code in TEX (using \directlua or \latelua) it happens in a closure
with an implied do ... end. So, local defined variables are really local.

A bit of Lua 11

preliminary, uncorrected version – June 25, 2020

1.3 TEX’s data types
We mentioned numbers. At the TEX end we have counters as well as dimensions. Both are numbers
but dimensions are specified differently

local n = tex.count[0]
local m = tex.dimen.lineheight
local o = tex.sp("10.3pt") -- sp or 'scaled point' is the smallest unit

The unit of dimension is ‘scaled point’ and this is a pretty small unit: 10 points equals to 655360 such
units.

Another accessible data type is tokens. They are automatically converted to strings and vice versa.

tex.toks[0] = "message"
print(tex.toks[0])

Be aware of the fact that the tokens are letters so the following will come out as text and not issue a
message:

tex.toks[0] = "\message{just text}"
print(tex.toks[0])

1.4 Control structures
Loops are not much different from other languages: we have for ... do, while ... do and repeat
... until. We start with the simplest case:

for index=1,10 do
print(index)

end

You can specify a step and go downward as well:

for index=22,2,-2 do
print(index)

end

Indexed tables can be traversed this way:

for index=1,#list do
print(index, list[index])

end

Hashed tables on the other hand are dealt with as follows:

for key, value in next, list do
print(key, value)

end

Here next is a built in function. There is more to say about this mechanism but the average user will
use only this variant. Slightly less efficient is the following, more readable variant:

12 A bit of Lua

preliminary, uncorrected version – June 25, 2020

for key, value in pairs(list) do
print(key, value)

end

and for an indexed table:

for index, value in ipairs(list) do
print(index, value)

end

The function call to pairs(list) returns next, list so there is an (often neglectable) extra over-
head of one function call.

The other two loop variants, while and repeat, are similar.

i = 0
while i < 10 do

i = i + 1
print(i)

end

This can also be written as:

i = 0
repeat

i = i + 1
print(i)

until i = 10

Or:

i = 0
while true do

i = i + 1
print(i)
if i = 10 then

break
end

end

Of course you can use more complex expressions in such constructs.

1.5 Conditions
Conditions have the following form:

if a == b or c > d or e then
...

elseif f == g then
...

else

A bit of Lua 13

preliminary, uncorrected version – June 25, 2020

...
end

Watch the double ==. The complement of this is ~=. Precedence is similar to other languages. In
practice, as strings are hashed. Tests like

if key == "first" then
...

end

and

if n == 1 then
...

end

are equally efficient. There is really no need to use numbers to identify states instead of more verbose
strings.

1.6 Namespaces
Functionality can be grouped in libraries. There are a few default libraries, like string, table, lpeg,
math, io and os and LUATEX adds some more, like node, tex and texio.

A library is in fact nothing more than a bunch of functionality organized using a table, where the
table provides a namespace as well as place to store public variables. Of course there can be local
(hidden) variables used in defining functions.

do
mylib = { }

local n = 1

function mylib.sum(a,b)
n = n + 1
return a + b

end

function mylib.report()
print("number of summations: " .. n)

end
end

The defined function can be called like:

mylib.report()

You can also create a shortcut, This speeds up the process because there are less lookups then. In the
following code multiple calls take place:

local sum = mylib.sum

14 A bit of Lua

preliminary, uncorrected version – June 25, 2020

for i=1,10 do
for j=1,10 do

print(i, j, sum(i,j))
end

end

mylib.report()

As LUA is pretty fast you should not overestimate the speedup, especially not when a function is
called seldom. There is an important side effect here: in the case of:

print(i, j, sum(i,j))

the meaning of sum is frozen. But in the case of

print(i, j, mylib.sum(i,j))

The current meaning is taken, that is: each time the interpreter will access mylib and get the current
meaning of sum. And there can be a good reason for this, for instance when the meaning is adapted
to different situations.

In CONTEXT we have quite some code organized this way. Although much is exposed (if only because
it is used all over the place) you should be careful in using functions (and data) that are still exper-
imental. There are a couple of general libraries and some extend the core LUA libraries. You might
want to take a look at the files in the distribution that start with l-, like l-table.lua. These files
are preloaded.2 For instance, if you want to inspect a table, you can say:

local t = { "aap", "noot", "mies" }
table.print(t)

You can get an overview of what is implemented by running the following command:

context s-tra-02 --mode=tablet

todo: add nice synonym for this module and also add helpinfo at the to so that we can do context --styles

1.7 Comment
You can add comments to your LUA code. There are basically two methods: one liners and multi line
comments.

local option = "test" -- use this option with care

local method = "unknown" --[[comments can be very long and when entered
this way they and span multiple lines]]

The so called long comments look like long strings preceded by -- and there can be more complex
boundary sequences.

2 In fact, if you write scripts that need their functionality, you can use mtxrun to process the script, as mtxrun has the core
libraries preloaded as well.

A bit of Lua 15

preliminary, uncorrected version – June 25, 2020

1.8 Pitfalls
Sometimes nil can bite you, especially in tables, as they have a dual nature: indexed as well as
hashed.

\startluacode
local n1 = # { nil, 1, 2, nil } -- 3
local n2 = # { nil, nil, 1, 2, nil } -- 0

context("n1 = %s and n2 = %s",n1,n2)
\stopluacode

results in: n1 = 3 and n2 = 4

So, you cannot really depend on the length operator here. On the other hand, with:

\startluacode
local function check(...)

return select("#",...)
end

local n1 = check (nil, 1, 2, nil) -- 4
local n2 = check (nil, nil, 1, 2, nil) -- 5

context("n1 = %s and n2 = %s",n1,n2)
\stopluacode

we get: n1 = 4 and n2 = 5, so the select is quite useable. However, that function also has its spe-
cialities. The following example needs some close reading:

\startluacode
local function filter(n,...)

return select(n,...)
end

local v1 = { filter (1, 1, 2, 3) }
local v2 = { filter (2, 1, 2, 3) }
local v3 = { filter (3, 1, 2, 3) }

context("v1 = %+t and v2 = %+t and v3 = %+t",v1,v2,v3)
\stopluacode

We collect the result in a table and show the concatination:

v1 = 1+2+3 and v2 = 2+3 and v3 = 3

So, what you effectively get is the whole list starting with the given offset.

\startluacode
local function filter(n,...)

return (select(n,...))

16 A bit of Lua

preliminary, uncorrected version – June 25, 2020

end

local v1 = { filter (1, 1, 2, 3) }
local v2 = { filter (2, 1, 2, 3) }
local v3 = { filter (3, 1, 2, 3) }

context("v1 = %+t and v2 = %+t and v3 = %+t",v1,v2,v3)
\stopluacode

Now we get: v1 = 1 and v2 = 2 and v3 = 3. The extra () around the result makes sure that we only
get one return value.

Of course the same effect can be achieved as follows:

local function filter(n,...)
return select(n,...)

end

local v1 = filter (1, 1, 2, 3)
local v2 = filter (2, 1, 2, 3)
local v3 = filter (3, 1, 2, 3)

context("v1 = %s and v2 = %s and v3 = %s",v1,v2,v3)

1.9 A few suggestions
You can wrap all kind of functionality in functions but sometimes it makes no sense to add the over-
head of a call as the same can be done with hardly any code.

If you want a slice of a table, you can copy the range needed to a new table. A simple version with
no bounds checking is:

local new = { } for i=a,b do new[#new+1] = old[i] end

Another, much faster, variant is the following.

local new = { unpack(old,a,b) }

You can use this variant for slices that are not extremely large. The function table.sub is an equiv-
alent:

local new = table.sub(old,a,b)

An indexed table is empty when its size equals zero:

if #indexed == 0 then ... else ... end

Sometimes this is better:

if indexed and #indexed == 0 then ... else ... end

So how do we test if a hashed table is empty? We can use the next function as in:

A bit of Lua 17

preliminary, uncorrected version – June 25, 2020

if hashed and next(indexed) then ... else ... end

Say that we have the following table:

local t = { a=1, b=2, c=3 }

The call next(t) returns the first key and value:

local k, v = next(t) -- "a", 1

The second argument to next can be a key in which case the following key and value in the hash
table is returned. The result is not predictable as a hash is unordered. The generic for loop uses this
to loop over a hashed table:

for k, v in next, t do
...

end

Anyway, when next(t) returns zero you can be sure that the table is empty. This is how you can
test for exactly one entry:

if t and not next(t,next(t)) then ... else ... end

Here it starts making sense to wrap it into a function.

function table.has_one_entry(t)
t and not next(t,next(t))

end

On the other hand, this is not that usefull, unless you can spent the runtime on it:

function table.is_empty(t)
return not t or not next(t)

end

1.10 Interfacing
We have already seen that you can embed LUA code using commands like:

\startluacode
print("this works")

\stopluacode

This command should not be confused with:

\startlua
print("this works")

\stoplua

The first variant has its own catcode regime which means that tokens between the start and stop com-
mand are treated as LUA tokens, with the exception of TEX commands. The second variant operates
under the regular TEX catcode regime.

18 A bit of Lua

preliminary, uncorrected version – June 25, 2020

Their short variants are \ctxluacode and \ctxlua as in:

\ctxluacode{print("this works")}
\ctxlua{print("this works")}

In practice you will probably use \startluacodewhen using or defining a blob of LUA and \ctxlua
for inline code. Keep in mind that the longer versions need more initialization and have more over-
head.

There are some more commands. For instance \ctxcommand can be used as an efficient way to access
functions in the commands namespace. The following two calls are equivalent:

\ctxlua {commands.thisorthat("...")}
\ctxcommand {thisorthat("...")}

There are a few shortcuts to the context namespace. Their use can best be seen from their meaning:

\cldprocessfile#1{\directlua{context.runfile("#1")}}
\cldloadfile #1{\directlua{context.loadfile("#1")}}
\cldcontext #1{\directlua{context(#1)}}
\cldcommand #1{\directlua{context.#1}}

The \directlua{} command can also be implemented using the token parser and LUA itself. A
variant is therefore \luascript{} which can be considered an alias but with a bit different error
reporting. A variant on this is the \luathread{name} {code} command. Here is an example of
their usage:

\luascript { context("foo 1:") context(i) } \par
\luathread {test} { i = 10 context("bar 1:") context(i) } \par
\luathread {test} { context("bar 2:") context(i) } \par
\luathread {test} {} % resets
\luathread {test} { context("bar 3:") context(i) } \par
\luascript { context("foo 2:") context(i) } \par

These commands result in:

foo 1:
bar 1:10
bar 2:10
bar 3:
foo 2:

The variable i is local to the thread (which is not really a thread in LUA but more a named piece
of code that provides an environment which is shared over the calls with the same name. You will
probably never need these.

Each time a call out to LUA happens the argument eventually gets parsed, converted into tokens, then
back into a string, compiled to bytecode and executed. The next example code shows a mechanism
that avoids this:

\startctxfunction MyFunctionA
context(" A1 ")

A bit of Lua 19

preliminary, uncorrected version – June 25, 2020

\stopctxfunction

\startctxfunctiondefinition MyFunctionB
context(" B2 ")

\stopctxfunctiondefinition

The first command associates a name with some LUA code and that code can be executed using:

\ctxfunction{MyFunctionA}

The second definition creates a command, so there we do:

\MyFunctionB

There are some more helpers but for use in document sources they make less sense. You can always
browse the source code for examples.

20 A bit of Lua

preliminary, uncorrected version – June 25, 2020

Getting started 21

preliminary, uncorrected version – June 25, 2020

2 Getting started

2.1 Some basics
I assume that you have either the so called CONTEXT standalone (formerly known as minimals) in-
stalled or TEXLIVE. You only need LUATEX and can forget about installing PDFTEX or XƎTEX, which
saves you some megabytes and hassle. Now, from the users perspective a CONTEXT run goes like:

context yourfile

and by default a file with suffix tex, mkvi or mkvi will be processed. There are however a few other
options:

context yourfile.xml
context yourfile.rlx --forcexml
context yourfile.lua
context yourfile.pqr --forcelua
context yourfile.cld
context yourfile.xyz --forcecld
context yourfile.mp
context yourfile.xyz --forcemp

When processing a LUA file the given file is loaded and just processed. This options will seldom be
used as it is way more efficient to let mtxrun process that file. However, the last two variants are what
we will discuss here. The suffix cld is a shortcut for CONTEXT LUA Document.

A simple cld file looks like this:

context.starttext()
context.chapter("Hello There!")
context.stoptext()

So yes, you need to know the CONTEXT commands in order to use this mechanism. In spite of what
you might expect, the codebase involved in this interface is not that large. If you know CONTEXT, and
if you know how to call commands, you basically can use this LUA method.

The examples that I will give are either (sort of) standalone, i.e. they are dealt with from LUA, or they
are run within this document. Therefore you will see two patterns. If you want to make your own
documentation, then you can use this variant:

\startbuffer
context("See this!")
\stopbuffer

\typebuffer \ctxluabuffer

I use anonymous buffers here but you can also use named ones. The other variant is:

\startluacode
context("See this!")

22 Getting started

preliminary, uncorrected version – June 25, 2020

\stopluacode

This will process the code directly. Of course we could have encoded this document completely in
LUA but that is not much fun for a manual.

2.2 The main command
There are a few rules that you need to be aware of. First of all no syntax checking is done. Second
you need to know what the given commands expects in terms of arguments. Third, the type of your
arguments matters:

nothing : just the command, no arguments
string : an argument with curly braces
array : a list between square backets (sometimes optional)
hash : an assignment list between square brackets
boolean : when true a newline is inserted

: when false, omit braces for the next argument

In the code above you have seen examples of this but here are some more:

context.chapter("Some title")
context.chapter({ "first" }, "Some title")
context.startchapter({ title = "Some title", label = "first" })

This blob of code is equivalent to:

\chapter{Some title}
\chapter[first]{Some title}
\startchapter[title={Some title},label=first]

You can simplify the third line of the LUA code to:

context.startchapter { title = "Some title", label = "first" }

In case you wonder what the distinction is between square brackets and curly braces: the first category
of arguments concerns settings or lists of options or names of instances while the second category
normally concerns some text to be typeset.

Strings are interpreted as TEX input, so:

context.mathematics("\\sqrt{2^3}")

and if you don’t want to escape:

context.mathematics([[\sqrt{2^3}]])

are both correct. As TEX math is a language in its own and a de-facto standard way of inputting math
this is quite natural, even at the LUA end.

2.3 Spaces and Lines
In a regular TEX file, spaces and newline characters are collapsed into one space. At the LUA end the
same happens. Compare the following examples. First we omit spaces:

Getting started 23

preliminary, uncorrected version – June 25, 2020

context("left")
context("middle")
context("right")

leftmiddleright

Next we add spaces:

context("left")
context(" middle ")
context("right")

left middle right

We can also add more spaces:

context("left ")
context(" middle ")
context(" right")

left middle right

In principle all content becomes a stream and after that the TEX parser will do its normal work: col-
lapse spaces unless configured to do otherwise. Now take the following code:

context("before")
context("word 1")
context("word 2")
context("word 3")
context("after")

beforeword 1word 2word 3after

Here we get no spaces between the words at all, which is what we expect. So, how do we get lines
(or paragraphs)?

context("before")
context.startlines()
context("line 1")
context("line 2")
context("line 3")
context.stoplines()
context("after")

before

line 1line 2line 3

after

This does not work out well, as again there are no lines seen at the TEX end. Newline tokens are
injected by passing true to the context command:

24 Getting started

preliminary, uncorrected version – June 25, 2020

context("before")
context.startlines()
context("line 1") context(true)
context("line 2") context(true)
context("line 3") context(true)
context.stoplines()
context("after")

before

line 1
line 2
line 3

after

Don’t confuse this with:

context("before") context.par()
context("line 1") context.par()
context("line 2") context.par()
context("line 3") context.par()
context("after") context.par()

before

line 1

line 2

line 3

after

There we use the regular \par command to finish the current paragraph and normally you will use
that method. In that case, when set, whitespace will be added between paragraphs.

This newline issue is a somewhat unfortunate inheritance of traditional TEX, where \n and \r mean
something different. I’m still not sure if the CLD do the right thing as dealing with these tokens also
depends on the intended effect. Catcodes as well as the LUATEX input parser also play a role. Anyway,
the following also works:

context.startlines()
context("line 1\n")
context("line 2\n")
context("line 3\n")
context.stoplines()

2.4 Direct output
The CONTEXT user interface is rather consistent and the use of special input syntaxes is discouraged.
Therefore, the LUA interface using tables and strings works quite well. However, imagine that you

Getting started 25

preliminary, uncorrected version – June 25, 2020

need to support some weird macro (or a primitive) that does not expect its argument between curly
braces or brackets. The way out is to precede an argument by another one with the value false. We
call this the direct interface. This is demonstrated in the following example.

\unexpanded\def\bla#1{[#1]}

\startluacode
context.bla(false,"***")
context.par()
context.bla("***")
\stopluacode

This results in:

[*]**

[***]

Here, the first call results in three * being passed, and #1 picks up the first token. The second call
to bla gets {***} passed so here #1 gets the triplet. In practice you will seldom need the direct
interface.

In CONTEXT for historical reasons, combinations accept the following syntax:

\startcombination % optional specification, like [2*3]
{\framed{content one}} {caption one}
{\framed{content two}} {caption two}

\stopcombination

You can also say:

\startcombination
\combination {\framed{content one}} {caption one}
\combination {\framed{content two}} {caption two}

\stopcombination

When coded in LUA, we can feed the first variant as follows:

context.startcombination()
context.direct("one","two")
context.direct("one","two")

context.stopcombination()

To give you an idea what this looks like, we render it:

one one
two two

So, the direct function is basically a no-op and results in nothing by itself. Only arguments are
passed. An equivalent but bit more ugly looking is:

context.startcombination()
context(false,"one","two")

26 Getting started

preliminary, uncorrected version – June 25, 2020

context(false,"one","two")
context.stopcombination()

2.5 Catcodes
If you are familiar with the inner working of TEX, you will know that characters can have special
meanings. This meaning is determined by their catcodes.

context("$x=1$")

This gives: 𝑥 = 1 because the dollar tokens trigger inline math mode. If you think that this is annoy-
ing, you can do the following:

context.pushcatcodes("text")
context("$x=1$")
context.popcatcodes()

Now we get: $x=1$. There are several catcode regimes of which only a few make sense in the per-
spective of the cld interface.

ctx, ctxcatcodes, context the normal CONTEXT catcode regime
prt, prtcatcodes, protect the CONTEXT protected regime, used for modules
tex, texcatcodes, plain the traditional (plain) TEX regime
txt, txtcatcodes, text the CONTEXT regime but with less special characters
vrb, vrbcatcodes, verbatim a regime specially meant for verbatim
xml, xmlcatcodes a regime specially meant for XML processing

In the second case you can still get math:

context.pushcatcodes("text")
context.mathematics("x=1")
context.popcatcodes()

When entering a lot of math you can also consider this:

context.startimath()
context("x")
context("=")
context("1")
context.stopimath()

Module writers of course can use unprotect and protect as they do at the TEX end.

As we’ve seen, a function call to context acts like a print, as in:

context("test ")
context.bold("me")
context(" first")

test me first

Getting started 27

preliminary, uncorrected version – June 25, 2020

When more than one argument is given, the first argument is considered a format conforming the
string.format function.

context.startimath()
context("%s = %0.5f",utf.char(0x03C0),math.pi)
context.stopimath()

𝜋 = 3.14159

This means that when you say:

context(a,b,c,d,e,f)

the variables b till f are passed to the format and when the format does not use them, they will not
end up in your output.

context("%s %s %s",1,2,3)
context(1,2,3)

The first line results in the three numbers being typeset, but in the second case only the number 1 is
typeset.

28 Getting started

preliminary, uncorrected version – June 25, 2020

More on functions 29

preliminary, uncorrected version – June 25, 2020

3 More on functions

3.1 Why we need them
In a previous chapter we introduced functions as arguments. At first sight this feature looks strange
but you need to keep in mind that a call to a context function has no direct consequences. It generates
TEX code that is executed after the current LUA chunk ends and control is passed back to TEX. Take
the following code:

context.framed({
frame = "on",
offset = "5mm",
align = "middle"

},
context.input("knuth")

)

We call the function framed but before the function body is executed, the arguments get evaluated.
This means that input gets processed before framed gets done. As a result there is no second argu-
ment to framed and no content gets passed: an error is reported. This is why we need the indirect
call:

context.framed({
frame = "on",
align = "middle"

},
function() context.input("knuth") end

)

This way we get what we want:

Thus, I came to the conclusion that the designer of a new system must not only be the
implementer and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been

made, because I would never have thought of them or perceived why they were important.
But a system cannot be successful if it is too strongly influenced by a single

person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

The function is delayed till the framed command is executed. If your applications use such calls a
lot, you can of course encapsulate this ugliness:

mycommands = mycommands or { }

function mycommands.framed_input(filename)
context.framed({

frame = "on",
align = "middle"

30 More on functions

preliminary, uncorrected version – June 25, 2020

},
function() context.input(filename) end

end

mycommands.framed_input("knuth")

Of course you can nest function calls:

context.placefigure(
"caption",
function()

context.framed({
frame = "on",
align = "middle"

},
function() context.input("knuth") end

)
end

)

Or you can use a more indirect method:

function text()
context.framed({

frame = "on",
align = "middle"

},
function() context.input("knuth") end

)
end

context.placefigure(
"none",
function() text() end

)

You can develop your own style and libraries just like you do with regular LUA code. Browsing the
already written code can give you some ideas.

3.2 How we can avoid them
As many nested functions can obscure the code rather quickly, there is an alternative. In the following
examples we use test:

\def\test#1{[#1]}

context.test("test 1 ",context("test 2a")," test 3")

This gives: test 2a[test 1] test 3. As you can see, the second argument is executed before the encap-
sulating call to test. So, we should have packed it into a function but here is an alternative:

More on functions 31

preliminary, uncorrected version – June 25, 2020

context.test("test 1 ",context.delayed("test 2a")," test 3")

Now we get: [test 1]test 2a test 3. We can also delay functions themselves, look at this:

context.test("test 1 ",context.delayed.test("test 2b")," test 3")

The result is: [test 1][test 2b] test 3. This feature also conveniently permits the use of temporary
variables, as in:

local f = context.delayed.test("test 2c")
context("before ",f," after")

Of course you can limit the amount of keystrokes even more by creating a shortcut:

local delayed = context.delayed

context.test("test 1 ",delayed.test("test 2")," test 3")
context.test("test 4 ",delayed.test("test 5")," test 6")

So, if you want you can produce rather readable code and readability of code is one of the reasons
why LUA was chosen in the first place. This is a good example of why coding in TEX makes sense as
it looks more intuitive:

\test{test 1 \test{test 2} test 3}
\test{test 4 \test{test 5} test 6}

The context.nested variant is now an alias to context.delayed and no longer builds a string
representation.

3.3 Trial typesetting
Some typesetting mechanisms demand a preroll. For instance, when determining the most optimal
way to analyse and therefore typeset a table, it is necessary to typeset the content of cells first. Inside
CONTEXT there is a state tagged ‘trial typesetting’ which signals other mechanisms that for instance
counters should not be incremented more than once.

Normally you don’t need to worry about these issues, but when writing the code that implements
the LUA interface to CONTEXT, it definitely had to be taken into account as we either or not can free
cached (nested) functions.

You can influence this caching to some extend. If you say

function()
context("whatever")

end

the function will be removed from the cache when CONTEXT is not in the trial typesetting state. You
can prevent removal of a function by returning true, as in:

function()
context("whatever")
return true

32 More on functions

preliminary, uncorrected version – June 25, 2020

end

Whenever you run into a situation that you don’t get the outcome that you expect, you can consider
returning true. However, keep in mind that it will take more memory, something that only matters
on big runs. You can force flushing the whole cache by:

context.restart()

An example of an occasion where you need to keep the function available is in repeated content, for
instance in headers and footers.

context.setupheadertexts {
function()

context.pagenumber()
return true

end
}

Of course it is not needed when you use the following method:

context.pagenumber("pagenumber")

Because here CONTEXT itself deals with the content driven by the keyword pagenumber.

3.4 Steppers
The context commands are accumulated within a \ctxlua call and only after the call is finished,
control is back at the TEX end. Sometimes you want (in your LUA code) to go on and pretend that
you jump out to TEX for a moment, but come back to where you left. The stepper mechanism permits
this.

A not so practical but nevertheless illustrative example is the following:

\startluacode
context.stepwise (function()

context.startitemize()
context.startitem()

context.step("BEFORE 1")
context.stopitem()
context.step("\\setbox0\\hbox{!!!!}")
context.startitem()

context.step("%p",tex.getbox(0).width)
context.stopitem()
context.startitem()

context.step("BEFORE 2")
context.stopitem()
context.step("\\setbox2\\hbox{????}")
context.startitem()

context.step("%p",tex.getbox(2).width)
context.startitem()

More on functions 33

preliminary, uncorrected version – June 25, 2020

context.step("BEFORE 3")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2")
context.stopitem()
context.startitem()

context.step("BEFORE 4")
context.startitemize()

context.stepwise (function()
context.step("\\bgroup")
context.step("\\setbox0\\hbox{>>>>}")
context.startitem()

context.step("%p",tex.getbox(0).width)
context.stopitem()
context.step("\\setbox2\\hbox{<<<<}")
context.startitem()

context.step("%p",tex.getbox(2).width)
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2")
context.stopitem()
context.step("\\egroup")

end)
context.stopitemize()

context.stopitem()
context.startitem()

context.step("AFTER 1\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()
context.startitem()

context.step("AFTER 2\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()

context.stopitemize()
end)

34 More on functions

preliminary, uncorrected version – June 25, 2020

\stopluacode

This gives an (ugly) itemize with a nested one:

• BEFORE 1

• 12.23376pt

• BEFORE 2

• 19.53882pt

• BEFORE 3

• !!!!????

• BEFORE 4

– 33.75287pt

– 33.75287pt

– >>>><<<<

– >>>><<<<

• AFTER 1

• !!!!????

• !!!!????

• AFTER 2

• !!!!????

• !!!!????

As you can see in the code, the step call accepts multiple arguments, but when more than one argu-
ment is given the first one is treated as a formatter.

A few Details 35

preliminary, uncorrected version – June 25, 2020

4 A few Details

4.1 Variables
Normally it makes most sense to use the English version of CONTEXT. The advantage is that you can
use English keywords, as in:

context.framed({
frame = "on",

},
"some text"

)

If you use the Dutch interface it looks like this:

context.omlijnd({
kader = "aan",

},
"wat tekst"

)

A rather neutral way is:

context.framed({
frame = interfaces.variables.on,

},
"some text"

)

But as said, normally you will use the English user interface so you can forget about these matters.
However, in the CONTEXT core code you will often see the variables being used this way because there
we need to support all user interfaces.

4.2 Modes
Context carries a concept of modes. You can use modes to create conditional sections in your style
(and/or content). You can control modes in your styles or you can set them at the command line or
in job control files. When a mode test has to be done at processing time, then you need constructs
like the following:

context.doifmodeelse("screen",
function()

... -- mode == screen
end,
function()

... -- mode ~= screen
end

)

36 A few Details

preliminary, uncorrected version – June 25, 2020

However, often a mode does not change during a run, and then we can use the following method:

if tex.modes["screen"] then
...

else
...

end

Watch how the modes table lives in the tex namespace. We also have systemmodes. At the TEX end
these are mode names preceded by a *, so the following code is similar:

if tex.modes["*mymode"] then
-- this is the same

elseif tex.systemmodes["mymode"] then
-- test as this

else
-- but not this

end

Inside CONTEXT we also have so called constants, and again these can be consulted at the LUA end:

if tex.constants["someconstant'] then
...

else
...

end

But you will hardly need these and, as they are often not public, their meaning can change, unless of
course they are documented as public.

4.3 Token lists
There is normally no need to mess around with nodes and tokens at the LUA end yourself. However,
if you do, then you might want to flush them as well. Say that at the TEX end we have said:

\toks0 = {Don't get \inframed{framed}!}

Then at the LUA end you can say:

context(tex.toks[0])

and get: Don’t get framed ! In fact, token registers are exposed as strings so here, register zero has
type string and is treated as such.

context("< %s >",tex.toks[0])

This gives: < Don’t get framed ! >. But beware, if you go the reverse way, you don’t get what you
might expect:

tex.toks[0] = [[\framed{oeps}]]

If we now say \the\toks0 we will get \framed{oeps} as all tokens are considered to be letters.

A few Details 37

preliminary, uncorrected version – June 25, 2020

4.4 Node lists
If you’re not deep into TEX you will never feel the need to manipulate node lists yourself, but you
might want to flush boxes. As an example we put something in box zero (one of the scratch boxes).

\setbox0 = \hbox{Don't get \inframed{framed}!}

At the TEX end you can flush this box (\box0) or take a copy (\copy0). At the LUA end you would
do:

context.copy()
context.direct(0)

or:

context.copy(false,0)

but this works as well:

context(node.copy_list(tex.box[0]))

So we get: Don’t get framed ! If you do:

context(tex.box[0])

you also need to make sure that the box is freed but let’s not go into those details now.

Here is an example if messing around with node lists that get seen before a paragraph gets broken
into lines, i.e. when hyphenation, font manipulation etc take place. First we define some colors:

\definecolor[mynesting:0][r=.6]
\definecolor[mynesting:1][g=.6]
\definecolor[mynesting:2][r=.6,g=.6]

Next we define a function that colors nodes in such a way that we can see the different processing
stages.

\startluacode
local enabled = false
local count = 0
local setcolor = nodes.tracers.colors.set

function userdata.processmystuff(head)
if enabled then

local color = "mynesting:" .. (count % 3)
-- for n in node.traverse(head) do

for n in node.traverse_id(nodes.nodecodes.glyph,head) do
setcolor(n,color)

end
count = count + 1
return head, true

end

38 A few Details

preliminary, uncorrected version – June 25, 2020

return head, false
end

function userdata.enablemystuff()
enabled = true

end

function userdata.disablemystuff()
enabled = false

end
\stopluacode

We hook this function into the normalizers category of the processor callbacks:

\startluacode
nodes.tasks.appendaction("processors", "normalizers", "userdata.processmystuff")
\stopluacode

We now can enable this mechanism and show an example:

\startbuffer
Node lists are processed \hbox {nested from \hbox{inside} out} which is not
what you might expect. But, \hbox{coloring} does not \hbox {happen} really
nested here, more \hbox {in} \hbox {the} \hbox {order} \hbox {of} \hbox
{processing}.
\stopbuffer

\ctxlua{userdata.enablemystuff()}
\par \getbuffer \par
\ctxlua{userdata.disablemystuff()}

The \par is needed because otherwise the processing is already disabled before the paragraph gets
seen by TEX.

Node lists are processed nested from inside out which is not what you might expect. But, coloring
does not happen really nested here, more in the order of processing.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

Instead of using an boolean to control the state, we can also do this:

\startluacode
local count = 0
local setcolor = nodes.tracers.colors.set

function userdata.processmystuff(head)
count = count + 1
local color = "mynesting:" .. (count % 3)
for n in node.traverse_id(nodes.nodecodes.glyph,head) do

A few Details 39

preliminary, uncorrected version – June 25, 2020

setcolor(n,color)
end
return head, true

end

nodes.tasks.appendaction("processors", "after", "userdata.processmystuff")
\stopluacode

Disabling now happens with:

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

As you might want to control these things in more details, a simple helper mechanism was made:
markers. The following example code shows the way:

\definemarker[mymarker]

Again we define some colors:

\definecolor[mymarker:1][r=.6]
\definecolor[mymarker:2][g=.6]
\definecolor[mymarker:3][r=.6,g=.6]

The LUA code like similar to the code presented before:

\startluacode
local setcolor = nodes.tracers.colors.setlist
local getmarker = nodes.markers.get
local hlist_code = nodes.codes.hlist
local traverse_id = node.traverse_id

function userdata.processmystuff(head)
for n in traverse_id(hlist_code,head) do

local m = getmarker(n,"mymarker")
if m then

setcolor(n.list,"mymarker:" .. m)
end

end
return head, true

end

nodes.tasks.appendaction("processors", "after", "userdata.processmystuff")
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

This time we disabled the processor (if only because in this document we don’t want the overhead.

\startluacode
nodes.tasks.enableaction("processors", "userdata.processmystuff")

40 A few Details

preliminary, uncorrected version – June 25, 2020

\stopluacode

Node lists are processed \hbox \boxmarker{mymarker}{1} {nested from \hbox{inside}
out} which is not what you might expect. But, \hbox {coloring} does not \hbox
{happen} really nested here, more \hbox {in} \hbox \boxmarker{mymarker}{2} {the}
\hbox {order} \hbox {of} \hbox \boxmarker{mymarker}{3} {processing}.

\startluacode
nodes.tasks.disableaction("processors", "userdata.processmystuff")
\stopluacode

The result looks familiar:

Node lists are processed nested from inside out which is not what you might expect. But, coloring
does not happen really nested here, more in the order of processing.

Some more examples 41

preliminary, uncorrected version – June 25, 2020

5 Some more examples

5.1 Appetizer
Before we give some more examples, we will have a look at the way the title page is made. This way
you get an idea what more is coming.

local todimen, random = number.todimen, math.random

context.startTEXpage()

local paperwidth = tex.dimen.paperwidth
local paperheight = tex.dimen.paperheight
local nofsteps = 25
local firstcolor = "darkblue"
local secondcolor = "white"

context.definelayer(
{ "titlepage" }

)

context.setuplayer(
{ "titlepage" },
{

width = todimen(paperwidth),
height = todimen(paperheight),

}
)

context.setlayerframed(
{ "titlepage" },
{ offset = "-5pt" },
{

width = todimen(paperwidth),
height = todimen(paperheight),
background = "color",
backgroundcolor = firstcolor,
backgroundoffset = "10pt",
frame = "off",

},
""

)

local settings = {
frame = "off",
background = "color",
backgroundcolor = secondcolor,
foregroundcolor = firstcolor,

42 Some more examples

preliminary, uncorrected version – June 25, 2020

foregroundstyle = "type",
}

for i=1, nofsteps do
for j=1, nofsteps do

context.setlayerframed(
{ "titlepage" },
{

x = todimen((i-1) * paperwidth /nofsteps),
y = todimen((j-1) * paperheight/nofsteps),
rotation = random(360),

},
settings,
"CLD"

)
end

end

context.tightlayer(
{ "titlepage" }

)

context.stopTEXpage()

return true

This does not look that bad, does it? Of course in pure TEX code it looks mostly the same but loops
and calculations feel a bit more natural in LUA then in TEX. The result is shown in figure 5.1. The
actual cover page was derived from this.

5.2 A few examples
As it makes most sense to use the LUA interface for generated text, here is another example with a
loop:

context.startitemize { "a", "packed", "two" }
for i=1,10 do

context.startitem()
context("this is item %i",i)

context.stopitem()
end

context.stopitemize()

a. this is item 1
b. this is item 2
c. this is item 3
d. this is item 4
e. this is item 5
f. this is item 6

Some more examples 43

preliminary, uncorrected version – June 25, 2020

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CL
D

CL
D

CL
D

CL
D

CLD
CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD
CLD

CLD

CLD

CL
D

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD
CLD

CL
D

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD
CL
D

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CLD

CLD

CLD

CLD

CLD

CLD
CLD

CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CL
D

CLD

CLD

CL
D

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CL
D

CLD
CLD

CLD
CLD

CL
D

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD
CLD

CLD
CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD

CLD
CLD

CLD

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CL
D

CL
D

CLD

CLD

CL
D

CLD

CLD

CLD
CLD

CL
D

CLD

CLD

CLD

CLD

CLD

CLD

CLD

CL
D

CLD

CL
D

CLD
CLD

CL
D

CL
D

CLD

CL
D

CL
D

CLD
CLD

CLD

CLD

CLD

CL
D

CLD

CLD

CLD

CLD

CL
D

CLD
CLD

Figure 5.1 The simplified cover page.

g. this is item 7
h. this is item 8
i. this is item 9
j. this is item 10

Just as you can mix TEX with XML and METAPOST, you can define bits and pieces of a document in
LUA. Tables are good candidates:

local one = {
align = "middle",
style = "type",

}
local two = {

align = "middle",
style = "type",
background = "color",
backgroundcolor = "darkblue",
foregroundcolor = "white",

}
local random = math.random
context.bTABLE { framecolor = "darkblue" }

for i=1,10 do

44 Some more examples

preliminary, uncorrected version – June 25, 2020

50 69 48 81 10 51 61 49 34 7 42 26 92 8 34 16 84 22 1 28
84 31 20 32 22 40 46 42 3 4 80 35 54 36 84 26 17 10 15 41
93 40 36 9 3 99 80 33 73 94 64 87 53 17 37 14 77 27 84 63
86 26 69 44 66 38 55 24 58 87 73 28 94 8 92 4 58 46 40 24
17 47 86 39 76 62 7 26 92 58 46 73 18 56 73 32 96 57 70 47
29 77 68 55 1 7 59 91 39 70 9 19 31 34 20 48 30 32 90 93
14 93 41 48 90 64 48 89 11 24 88 43 35 63 16 22 53 75 3 65
15 70 65 43 65 15 46 69 81 2 7 66 42 21 14 31 70 92 94 14
92 25 48 34 22 54 65 34 81 77 4 83 89 26 28 7 46 73 14 73
21 55 1 89 40 30 31 76 46 12 73 75 24 64 31 22 42 56 78 43

Table 5.1 A table generated by LUA.

context.bTR()
for i=1,20 do

local r = random(99)
context.bTD(r < 50 and one or two)
context("%2i",r)
context.eTD()

end
context.eTR()

end
context.eTABLE()

Here we see a function call to context in the most indented line. The first argument is a format
that makes sure that we get two digits and the random number is substituted into this format. The
result is shown in table 5.1. The line correction is ignored when we use this table as a float, otherwise
it assures proper vertical spacing around the table. Watch how we define the tables one and two
beforehand. This saves 198 redundant table constructions.

Not all code will look as simple as this. Consider the following:

context.placefigure(
"caption",
function() context.externalfigure({ "cow.pdf" }) end

)

Here we pass an argument wrapped in a function. If we would not do that, the external figure would
end up wrong, as arguments to functions are evaluated before the function that gets them (we already
showed some alternative approaches in previous chapters). A function argument is treated as special
and in this case the external figure ends up right. Here is another example:

context.placefigure("Two cows!",function()
context.bTABLE()

context.bTR()
context.bTD()

context.externalfigure(
{ "cow.pdf" },

Some more examples 45

preliminary, uncorrected version – June 25, 2020

{ width = "3cm", height = "3cm" }
)

context.eTD()
context.bTD { align = "{lohi,middle}" }

context("and")
context.eTD()
context.bTD()

context.externalfigure(
{ "cow.pdf" },
{ width = "4cm", height = "3cm" }

)
context.eTD()

context.eTR()
context.eTABLE()

end)

In this case the figure is not an argument so it gets flushed sequentially with the rest.

and

Figure 5.2 Two cows!

5.3 Styles
Say that you want to typeset a word in a bold font. You can do that this way:

context("This is ")
context.bold("important")
context("!")

Now imagine that you want this important word to be in red too. As we have a nested command, we
end up with a nested call:

context("This is ")
context.bold(function() context.color({ "red" }, "important") end)
context("!")

or

context("This is ")
context.bold(context.delayed.color({ "red" }, "important"))
context("!")

In that case it’s good to know that there is a command that combines both features:

context("This is ")

46 Some more examples

preliminary, uncorrected version – June 25, 2020

context.style({ style = "bold", color = "red" }, "important")
context("!")

But that is still not convenient when we have to do that often. So, you can wrap the style switch in a
function.

local function mycommands.important(str)
context.style({ style = "bold", color = "red" }, str)

end

context("This is ")
mycommands.important("important")
context(", and ")
mycommands.important("this")
context(" too !")

Or you can setup a named style:

context.setupstyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.style({ "important" }, "important")
context(", and ")
context.style({ "important" }, "this")
context(" too !")

Or even define one:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.important("important")
context(", and ")
context.important("this")
context(" too !")

This last solution is especially handy for more complex cases:

context.definestyle({ "important" }, { style = "bold", color = "red" })

context("This is ")
context.startimportant()
context.inframed("important")
context.stopimportant()
context(", and ")
context.important("this")
context(" too !")

This is important , and this too !

Some more examples 47

preliminary, uncorrected version – June 25, 2020

5.4 A complete example
One day my 6 year old niece Lorien was at the office and wanted to know what I was doing. As I
knew she was practicing arithmetic at school I wrote a quick and dirty script to generate sheets with
exercises. The most impressive part was that the answers were included. It was a rather braindead
bit of LUA, written in a few minutes, but the weeks after I ended up running it a few more times, for
her and her friends, every time a bit more difficult and also using different arithmetic. It was that
script that made me decide to extend the basic cld manual into this more extensive document.

We generate three columns of exercises. Each exercise is a row in a table. The last argument to the
function determines if answers are shown.

local random = math.random

local function ForLorien(n,maxa,maxb,answers)
context.startcolumns { n = 3 }
context.starttabulate { "|r|c|r|c|r|" }
for i=1,n do

local sign = random(0,1) > 0.5
local a, b = random(1,maxa or 99), random(1,max or maxb or 99)
if b > a and not sign then a, b = b, a end
context.NC()
context(a)
context.NC()
context.mathematics(sign and "+" or "-")
context.NC()
context(b)
context.NC()
context("=")
context.NC()
context(answers and (sign and a+b or a-b))
context.NC()
context.NR()

end
context.stoptabulate()
context.stopcolumns()
context.page()

end

This is a typical example of where it’s more convenient to write the code in LUA that in TEX’s macro
language. As a consequence setting up the page also happens in LUA:

context.setupbodyfont {
"palatino",
"14pt"

}

context.setuplayout {
backspace = "2cm",
topspace = "2cm",

48 Some more examples

preliminary, uncorrected version – June 25, 2020

header = "1cm",
footer = "0cm",
height = "middle",
width = "middle",

}

This leave us to generate the document. There is a pitfall here: we need to use the same random
number for the exercises and the answers, so we freeze and defrost it. Functions in the commands
namespace implement functionality that is used at the TEX end but better can be done in LUA than in
TEX macro code. Of course these functions can also be used at the LUA end.

context.starttext()

local n = 120

commands.freezerandomseed()

ForLorien(n,10,10)
ForLorien(n,20,20)
ForLorien(n,30,30)
ForLorien(n,40,40)
ForLorien(n,50,50)

commands.defrostrandomseed()

ForLorien(n,10,10,true)
ForLorien(n,20,20,true)
ForLorien(n,30,30,true)
ForLorien(n,40,40,true)
ForLorien(n,50,50,true)

context.stoptext()

name: cld-005.pdf

file: cld-005.pdf

state: unknown

name: cld-005.pdf

file: cld-005.pdf

state: unknown

exercises answers

Figure 5.3 Lorien’s challenge.

A few pages of the result are shown in figure 5.3. In the CONTEXT distribution a more advanced ver-
sion can be found in s-edu-01.cld as I was also asked to generate multiplication and table exercises.

Some more examples 49

preliminary, uncorrected version – June 25, 2020

In the process I had to make sure that there were no duplicates on a page as she complained that was
not good. There a set of sheets is generated with:

moduledata.educational.arithematic.generate {
name = "Bram Otten",
fontsize = "12pt",
columns = 2,
run = {

{ method = "bin_add_and_subtract", maxa = 8, maxb = 8 },
{ method = "bin_add_and_subtract", maxa = 16, maxb = 16 },
{ method = "bin_add_and_subtract", maxa = 32, maxb = 32 },
{ method = "bin_add_and_subtract", maxa = 64, maxb = 64 },
{ method = "bin_add_and_subtract", maxa = 128, maxb = 128 },

},
}

5.5 Interfacing
The fact that we can define functionality using LUA code does not mean that we should abandon the
TEX interface. As an example of this we use a relatively simple module for typesetting morse code.3
First we create a proper namespace:

moduledata.morse = moduledata.morse or { }
local morse = moduledata.morse

We will use a few helpers and create shortcuts for them. The first helper loops over each UTF character
in a string. The other two helpers map a character onto an uppercase (because morse only deals with
uppercase) or onto an similar shaped character (because morse only has a limited character set).

local utfcharacters = string.utfcharacters
local ucchars, shchars = characters.ucchars, characters.shchars

The morse codes are stored in a table.

local codes = {

["A"] = "·—", ["B"] = "—···",
["C"] = "—·—·", ["D"] = "—··",
["E"] = "·", ["F"] = "··—·",
["G"] = "——·", ["H"] = "····",
["I"] = "··", ["J"] = "·———",
["K"] = "—·—", ["L"] = "·—··",
["M"] = "——", ["N"] = "—·",
["O"] = "———", ["P"] = "·——·",
["Q"] = "——·—", ["R"] = "·—·",
["S"] = "···", ["T"] = "—",
["U"] = "··—", ["V"] = "···—",

3 The real module is a bit larger and can format verbose morse.

50 Some more examples

preliminary, uncorrected version – June 25, 2020

["W"] = "·——", ["X"] = "—··—",
["Y"] = "—·——", ["Z"] = "——··",

["0"] = "—————", ["1"] = "·————",
["2"] = "··———", ["3"] = "···——",
["4"] = "····—", ["5"] = "·····",
["6"] = "—····", ["7"] = "——···",
["8"] = "———··", ["9"] = "————·",

["."] = "·—·—·—", [","] = "——··——",
[":"] = "———···", [";"] = "—·—·—",
["?"] = "··——··", ["!"] = "—·—·——",
["-"] = "—····—", ["/"] = "—··—· ",
["("] = "—·——·", [")"] = "—·——·—",
["="] = "—···—", ["@"] = "·——·—·",
["'"] = "·————·", ['"'] = "·—··—·",

["À"] = "·——·—",
["Å"] = "·——·—",
["Ä"] = "·—·—",
["Æ"] = "·—·—",
["Ç"] = "—·—··",
["É"] = "··—··",
["È"] = "·—··—",
["Ñ"] = "——·——",
["Ö"] = "———·",
["Ø"] = "———·",
["Ü"] = "··——",
["ß"] = "··· ···",

}

morse.codes = codes

As you can see, there are a few non ASCII characters supported as well. There will never be full UNI-
CODE support simply because morse is sort of obsolete. Also, in order to support UNICODE one could
as well use the bits of UTF characters, although . . . memorizing the whole UNICODE table is not much
fun.

We associate a metatable index function with this mapping. That way we can not only conveniently
deal with the casing, but also provide a fallback based on the shape. Once found, we store the repre-
sentation so that only one lookup is needed per character.

local function resolvemorse(t,k)
if k then

local u = ucchars[k]
local v = rawget(t,u) or rawget(t,shchars[u]) or false
t[k] = v
return v

Some more examples 51

preliminary, uncorrected version – June 25, 2020

else
return false

end
end

setmetatable(codes, { __index = resolvemorse })

Next comes some rendering code. As we can best do rendering at the TEX end we just use macros.

local MorseBetweenWords = context.MorseBetweenWords
local MorseBetweenCharacters = context.MorseBetweenCharacters
local MorseLong = context.MorseLong
local MorseShort = context.MorseShort
local MorseSpace = context.MorseSpace
local MorseUnknown = context.MorseUnknown

The main function is not that complex. We need to keep track of spaces and newlines. We have a
nested loop because a fallback to shape can result in multiple characters.

function morse.tomorse(str)
local inmorse = false
for s in utfcharacters(str) do

local m = codes[s]
if m then

if inmorse then
MorseBetweenWords()

else
inmorse = true

end
local done = false
for m in utfcharacters(m) do

if done then
MorseBetweenCharacters()

else
done = true

end
if m == "·" then

MorseShort()
elseif m == "—" then

MorseLong()
elseif m == " " then

MorseBetweenCharacters()
end

end
inmorse = true

elseif s == "\n" or s == " " then
MorseSpace()
inmorse = false

else
if inmorse then

52 Some more examples

preliminary, uncorrected version – June 25, 2020

MorseBetweenWords()
else

inmorse = true
end
MorseUnknown(s)

end
end

end

We use this function in two additional functions. One typesets a file, the other a table of available
codes.

function morse.filetomorse(name,verbose)
morse.tomorse(resolvers.loadtexfile(name),verbose)

end

function morse.showtable()
context.starttabulate { "|l|l|" }
for k, v in table.sortedpairs(codes) do

context.NC() context(k)
context.NC() morse.tomorse(v,true)
context.NC() context.NR()

end
context.stoptabulate()

end

We’re done with the LUA code that we can either put in an external file or put in the module file. The
TEX file has two parts. The typesetting macros that we use at the LUA end are defined first. These can
be overloaded.

\def\MorseShort
{\dontleavehmode
\vrule

width \MorseWidth
height \MorseHeight
depth \zeropoint

\relax}

\def\MorseLong
{\dontleavehmode
\vrule

width 3\dimexpr\MorseWidth
height \MorseHeight
depth \zeropoint

\relax}

\def\MorseBetweenCharacters
{\kern\MorseWidth}

\def\MorseBetweenWords

Some more examples 53

preliminary, uncorrected version – June 25, 2020

{\hskip3\dimexpr\MorseWidth\relax}

\def\MorseSpace
{\hskip7\dimexpr\MorseWidth\relax}

\def\MorseUnknown#1
{[\detokenize{#1}]}

The dimensions are stored in macros as well. Of course we could provide a proper setup command,
but it hardly makes sense.

\def\MorseWidth {0.4em}
\def\MorseHeight{0.2em}

Finally we have arrived at the macros that interface to the LUA functions.

\def\MorseString#1{\ctxlua{moduledata.morse.tomorse(\!!bs#1\!!es)}}
\def\MorseFile #1{\ctxlua{moduledata.morse.filetomorse("#1")}}
\def\MorseTable {\ctxlua{moduledata.morse.showtable()}}

A string is converted to morse with the first command.

\Morse{A more advanced solution would be to convert a node list. That
way we can deal with weird input.}

This shows up as:

Reduction and uppercasing is demonstrated in the next example:

\MorseString{ÀÁÂÃÄÅàáâãäå}

This gives:

5.6 Using helpers
The next example shows a bit of LPEG. On top of the standard functionality a few additional functions
are provided. Let’s start with a pure TEX example:

\defineframed
[colored]

54 Some more examples

preliminary, uncorrected version – June 25, 2020

[foregroundcolor=red,
foregroundstyle=\underbar,
offset=.1ex,
location=low]

\processisolatedwords {\input ward \relax} \colored

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It
would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old-age patient who smokes many packs of cigarettes per day — and we humans
are the cigarettes.

Because this processor macro operates at the TEX end it has some limitations. The content is collected
in a very narrow box and from that a regular paragraph is constructed. It is for this reason that no
color is applied: the snippets that end up in the box are already typeset.

An alternative is to delegate the task to LUA:

\startluacode
local function process(data)

local words = lpeg.split(lpeg.patterns.spacer,data or "")

for i=1,#words do
if i == 1 then

context.dontleavehmode()
else

context.space()
end
context.colored(words[i])

end

end

process(io.loaddata(resolvers.findfile("ward.tex")))
\stopluacode

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact.
It would be happening whether humans had ever evolved or not. But our presence is like the
effect of an old-age patient who smokes many packs of cigarettes per day — and we humans
are the cigarettes.

The function splits the loaded data into a table with individual words. We use a splitter that splits
on spacing tokens. The special case for i = 1 makes sure that we end up in horizontal mode (read:
properly start a paragraph). This time we do get color because the typesetting is done directly. Here
is an alternative implementation:

local done = false

local function reset()
done = false

Some more examples 55

preliminary, uncorrected version – June 25, 2020

return true
end

local function apply(s)
if done then

context.space()
else

done = true
context.dontleavehmode()

end
context.colored(s)

end

local splitter = lpeg.P(reset)
* lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
lpeg.match(splitter,data)

end

This version is more efficient as it does not create an intermediate table. The next one is comaprable:

local function apply(s)
context.colored("%s ",s)

end

local splitter lpeg.splitter(lpeg.patterns.spacer,apply)

local function process(data)
context.dontleavevmode()
lpeg.match(splitter,data)
context.removeunwantedspaces()

end

5.7 Formatters
Sometimes can save a bit of work by using formatters. By default, the context command, when
called directly, applies a given formatter. But when called as table this feature is lost because then we
want to process non-strings as well. The next example shows a way out:

The last one is the most interesting one here: in the subnamespace formatted (watch the d) a format
specification with extra arguments is expected.

56 Some more examples

preliminary, uncorrected version – June 25, 2020

Graphics 57

preliminary, uncorrected version – June 25, 2020

6 Graphics

6.1 The regular interface
If you are familiar with CONTEXT, which by now probably is the case, you will have noticed that it
integrates the METAPOST graphic subsystem. Drawing a graphic is not that complex:

context.startMPcode()
context [[

draw
fullcircle scaled 1cm
withpen pencircle scaled 1mm
withcolor .5white
dashed dashpattern (on 2mm off 2mm) ;

]]
context.stopMPcode()

We get a gray dashed circle rendered with an one millimeter thick line:

So, we just use the regular commands and pass the drawing code as strings. Although METAPOST is
a rather normal language and therefore offers loops and conditions and the lot, you might want to
use LUA for anything else than the drawing commands. Of course this is much less efficient, but it
could be that you don’t care about speed. The next example demonstrates the interface for building
graphics piecewise.

context.resetMPdrawing()

context.startMPdrawing()
context([[fill fullcircle scaled 5cm withcolor (0,0,.5) ;]])
context.stopMPdrawing()

context.MPdrawing("pickup pencircle scaled .5mm ;")
context.MPdrawing("drawoptions(withcolor white) ;")

for i=0,50,5 do
context.startMPdrawing()
context("draw fullcircle scaled %smm ;",i)
context.stopMPdrawing()

end

for i=0,50,5 do
context.MPdrawing("draw fullsquare scaled " .. i .. "mm ;")

end

context.MPdrawingdonetrue()

58 Graphics

preliminary, uncorrected version – June 25, 2020

context.getMPdrawing()

This gives:

I the first loop we can use the format options associated with the simple context call. This will not
work in the second case. Even worse, passing more than one argument will definitely give a faulty
graphic definition. This is why we have a special interface for METAFUN. The code above can also be
written as:

local metafun = context.metafun

metafun.start()

metafun("fill fullcircle scaled 5cm withcolor %s ;",
metafun.color("darkblue"))

metafun("pickup pencircle scaled .5mm ;")
metafun("drawoptions(withcolor white) ;")

for i=0,50,5 do
metafun("draw fullcircle scaled %smm ;",i)

end

for i=0,50,5 do
metafun("draw fullsquare scaled %smm ;",i)

end

metafun.stop()

Watch the call to color, this will pass definitions at the TEX end to METAPOST. Of course you really
need to ask yourself “Do I want to use METAPOST this way?”. Using LUA loops instead of METAPOST
ones makes much more sense in the following case:

local metafun = context.metafun

function metafun.barchart(t)
metafun.start()
local t = t.data
for i=1,#t do

Graphics 59

preliminary, uncorrected version – June 25, 2020

metafun("draw unitsquare xyscaled(%s,%s) shifted (%s,0);",
10, t[i]*10, i*10)

end
metafun.stop()

end

local one = { 1, 4, 6, 2, 3, }
local two = { 8, 1, 3, 5, 9, }

context.startcombination()
context.combination(metafun.delayed.barchart { data = one }, "one")
context.combination(metafun.delayed.barchart { data = two }, "two")

context.stopcombination()

We get two barcharts alongside:

one two

local template = [[
path p, q ; color c[] ;
c1 := \MPcolor{darkblue} ;
c2 := \MPcolor{darkred} ;
p := fullcircle scaled 50 ;
l := length p ;
n := %s ;
q := subpath (0,%s/n*l) of p ;
draw q withcolor c2 withpen pencircle scaled 1 ;
fill fullcircle scaled 5 shifted point length q of q withcolor c1 ;
setbounds currentpicture to unitsquare shifted (-0.5,-0.5) scaled 60 ;
draw boundingbox currentpicture withcolor c1 ;
currentpicture := currentpicture xsized(1cm) ;

]]

local function steps(n)
for i=0,n do

context.metafun.start()
context.metafun(template,n,i)

context.metafun.stop()
if i < n then

context.quad()
end

end
end

60 Graphics

preliminary, uncorrected version – June 25, 2020

context.hbox(function() steps(10) end)

Using a template is quite convenient but at some point you can loose track of the replacement values.
Also, adding an extra value can force you to adapt the following ones which enlarges the change for
making an error. An alternative is to use the template mechanism. Although this mechanism was
originally made for other purposes, you can use it for whatever you like.

local template = [[
path p ; p := fullcircle scaled 4cm ;
draw p withpen pencircle scaled .5mm withcolor red ;
freedotlabel ("%lefttop%", point 1 of p,origin) ;
freedotlabel ("%righttop%", point 3 of p,origin) ;
freedotlabel ("%leftbottom%", point 5 of p,origin) ;
freedotlabel ("%rightbottom%",point 7 of p,origin) ;

]]

local variables = {
lefttop = "one",
righttop = "two",
leftbottom = "three",
rightbottom = "four" ,

}

context.metafun.start()
context.metafun(utilities.templates.replace(template,variables))

context.metafun.stop()

Here we use named placeholders and pass a table with associated values to the replacement function.
Apart from convenience it’s also more readable. And the overhead is rather minimal.

onetwo

three four

To some extent we fool ourselves with this kind of LUAfication of METAPOST code. Of course we
can make a nice METAPOST library and put the code in a macro instead. In that sense, doing this in
CONTEXT directly often gives better and more efficient code.

Of course you can use all relevant commands in the LUA interface, like:

context.startMPpage()
context("draw origin")

Graphics 61

preliminary, uncorrected version – June 25, 2020

for i=0,100,10 do
context("..{down}(%d,0)",i)

end
context(" withcolor \\MPcolor{darkred} ;")

context.stopMPpage()

to get a graphic that has its own page. Don’t use the metafun namespace here, as it will not work
here. This drawing looks like:

6.2 The LUA interface
Messing around with graphics is normally not needed and if you do it, you’d better know what you’re
doing. For TEX a graphic is just a black box: a rectangle with dimensions. You specify a graphic, in a
format that the backend can deal with, either or not apply some scaling and from then on a reference
to that graphic, normally wrapped in a normal TEX box, enters the typesetting machinery. Because
the backend, the part that is responsible for translating typeset content onto a viewable or printable
format like PDF, is built into LUATEX, at some point the real image has to be injected and the backend
can only handle a few image formats: PNG, JPG, JBIG and PDF.

In CONTEXT some more image formats are supported but in practice this boils down to converting the
image to a format that the backend can handle. Such a conversion depends on an external programs
and in order not to redo the conversion each run CONTEXT keeps track of the need to redo it.

Some converters are built in, for example one that deals with GIF images. This is normally not a
preferred format, but it happens that we have to deal with it in cases where organizations use that
format (if only because they use the web). Here is how this works at the LUA end:

figures.converters.gif = {
pdf = function(oldname,newname)

os.execute(string.format("gm convert %s %s",oldname,newname))
end

}

We use gm (Graphic Magic) for the conversion and pass the old and new names. Given this definition
at the TEX end we can say:

\externalfigure[whatever.gif][width=4cm]

Here is a another one:

figures.converters.bmp = {
pdf = function(oldname,newname)

os.execute(string.format("gm convert %s %s",oldname,newname))
end

}

In both examples we convert to PDF because including this filetype is quite fast. But you can also go
to other formats:

figures.converters.png = {

62 Graphics

preliminary, uncorrected version – June 25, 2020

png = function(oldname,newname,resolution)
local command = string.format('gm convert -depth 1 "%s" "%s"',oldname,newname)
logs.report(string.format("running command %s",command))
os.execute(command)

end
}

Instead of directly defining such a table, you can better do this:

figures.converters.png = figures.converters.png or { }

figures.converters.png.png = function(oldname,newname,resolution)
local command = string.format('gm convert -depth 1 "%s" "%s"',oldname,newname)
logs.report(string.format("running command %s",command))
os.execute(command)

end

Here we check if a table exists and if not we extend the table. Such converters work out of the box if
you specify the suffix, but you can also opt for a simple:

\externalfigure[whatever][width=4cm]

In this case CONTEXT will check for all known supported formats, which is not that efficient when no
graphic can be found. In order to let for instance files with suffix bmp can be included you have to
register it as follows. The second argument is the target.

figures.registersuffix("bmp","bmp")

At some point more of the graphic inclusion helpers will be opened up for general use but for now
this is what you have available.

Macros 63

preliminary, uncorrected version – June 25, 2020

7 Macros

7.1 Introduction
You can skip this chapter if you’re not interested in defining macros or are quite content with defin-
ing them in TEX. It’s just an example of possible future interface definitions and it’s not the fastest
mechanism around.

7.2 Parameters
Right from the start CONTEXT came with several user interfaces. As a consequence you need to take
this into account when you write code that is supposed to work with interfaces other than the English
one. The TEX command:

\setupsomething[key=value]

and the LUA call:

context.setupsomething { key = value }

are equivalent. However, all keys at the TEX end eventually become English, but the values are un-
changed. This means that when you code in LUA you should use English keys and when dealing with
assigned values later on, you need to translate them of compare with translations (which is easier).
This is why in the CONTEXT code you will see:

if somevalue == interfaces.variables.yes then
...

end

instead of:

if somevalue == "yes" then
...

end

7.3 User interfacing
Unless this is somehow inhibited, users can write their own macros and this is done in the TEX lan-
guage. Passing data to macros is possible and looks like this:

\def\test#1#2{.. #1 .. #2 .. } \test{a}{b}
\def\test[#1]#2{.. #1 .. #2 .. } \test[a]{b}

Here #1 and #2 represent an argument and there can be at most 9 of them. The [] are delimiters and
you can delimit in many ways so the following is also right:

\def\test(#1><#2){.. #1 .. #2 .. } \test(a><b)

Macro packages might provide helper macros that for instance take care of optional arguments, so
that we can use calls like:

64 Macros

preliminary, uncorrected version – June 25, 2020

\test[1,2,3][a=1,b=2,c=3]{whatever}

and alike. If you are familiar with the CONTEXT syntax you know that we use this syntax all over the
place.

If you want to write a macro that calls out to LUA and handles things at that end, you might want to
avoid defining the macro itself and this is possible.

An example of a definition and usage at the LUA end is:

\startluacode
function test(opt_1, opt_2, arg_1)

context.startnarrower()
context("options 1: %s",interfaces.tolist(opt_1))
context.par()
context("options 2: %s",interfaces.tolist(opt_2))
context.par()
context("argument 1: %s",arg_1)
context.stopnarrower()

end

interfaces.definecommand {
name = "test",
arguments = {

{ "option", "list" },
{ "option", "hash" },
{ "content", "string" },

},
macro = test,

}
\stopluacode

test: \test[1][a=3]{whatever}

The call gives:

test:
options 1: 1
options 2: a=3
argument 1: whatever

If you want to to define an environment (i.e. a start--stop pair, it looks as follows:

\startluacode
local function startmore(opt_1)

context.startnarrower()
context("start more, options: %s",interfaces.tolist(opt_1))
context.startnarrower()

end

local function stopmore()

Macros 65

preliminary, uncorrected version – June 25, 2020

context.stopnarrower()
context("stop more")
context.stopnarrower()

end

interfaces.definecommand ("more", {
environment = true,
arguments = {

{ "option", "list" },
},
starter = startmore,
stopper = stopmore,

})
\stopluacode

more: \startmore[1] one \startmore[2] two \stopmore one \stopmore

This gives:

more:
start more, options: 1

one
start more, options: 2

two
stop more

one
stop more

The arguments are know in both startmore and stopmore and nesting is handled automatically.

7.4 Looking inside
If needed you can access the body of a macro. Take for instance:

\def\TestA{A}
\def\TestB{\def\TestC{c}}
\def\TestC{C}

The following example demonstrates how we can look inside these macros. You need to be aware of
the fact that the whole blob of LUA codes is finished before we return to TEX, so when we pipe the
meaning of TestB back to TEX it only gets expanded afterwards. We can use a function to get back
to LUA. It’s only then that the meaning of testC is changed by the (piped) expansion of TestB.

\startluacode
context(tokens.getters.macro("TestA"))
context(tokens.getters.macro("TestB"))
context(tokens.getters.macro("TestC"))
tokens.setters.macro("TestA","a")
context(tokens.getters.macro("TestA"))
context(function()

66 Macros

preliminary, uncorrected version – June 25, 2020

context(tokens.getters.macro("TestA"))
context(tokens.getters.macro("TestB"))
context(tokens.getters.macro("TestC"))

end)
\stopluacode

ACaac

Here is another example:

\startluacode
if tokens.getters.macro("fontstyle") == "rm" then

context("serif")
else

context("unknown")
end
\stopluacode

Of course this assumes that you have some knowledge of the CONTEXT internals.

serif

Verbatim 67

preliminary, uncorrected version – June 25, 2020

8 Verbatim

8.1 Introduction
If you are familiar with traditional TEX, you know that some characters have special meanings. For
instance a $ starts and ends inline math mode:

$e=mc^2$

If we want to typeset math from the LUA end, we can say:

context.mathematics("e=mc^2")

This is in fact:

\mathematics{e=mc^2}

However, if we want to typeset a dollar and use the ctxcatcodes regime, we need to explicitly access
that character using \char or use a command that expands into the character with catcode other.

One step further is that we typeset all characters as they are and this is called verbatim. In that mode
all characters are tokens without any special meaning.

8.2 Special treatment
The formula in the introduction can be typeset verbatim as follows:

context.verbatim("$e=mc^2$")

This gives:

$e=mc^2$

You can also do things like this:

context.verbatim.bold("$e=mc^2$")

Which gives:

$e=mc^2$

So, within the verbatim namespace, each command gets its arguments verbatim.

context.verbatim.inframed({ offset = "0pt" }, "$e=mc^2$")

Here we get: $e=mc^2$. So, settings and alike are processed as if the user had used a regular
context.inframed but the content comes out verbose.

If you wonder why verbatim is needed as we also have the type function (macro) the answer is that
it is faster, easier to key in, and sometimes the only way to get the desired result.

68 Verbatim

preliminary, uncorrected version – June 25, 2020

8.3 Multiple lines
Currently we have to deal with linebreaks in a special way. This is due to the way TEX deals with
linebreaks. In fact, when we print something to TEX, the text after a \n is simply ignored.

For this reason we have a few helpers. If you want to put something in a buffer, you cannot use the
regular buffer functions unless you make sure that they are not overwritten while you’re still at the
LUA end.

context.tobuffer("temp",str)
context.getbuffer("temp")

Another helper is the following. It splits the string into lines and feeds them piecewise using the
context function and in the process adds a space at the end of the line (as this is what TEX normally
does.

context.tolines(str)

Catcodes can get in the way when you pipe something to TEX that itself changes the catcodes. This
happens for instance when you write buffers that themselves have buffers or have code that changes
the line endings as with startlines. In that case you need to feed back the content as if it were a
file. This is done with:

context.viafile(str)

The string can contain newlines. The string is written to a virtual file that is input. Currently names
looks like virtual://virtualfile.1 but future versions might have a different name part, so best
use the variable instead. After all, you don’t know the current number in advance anyway.

8.4 Pretty printing
In CONTEXT MKII there have always been pretty printing options. We needed it for manuals and it
was also handy to print sources in the same colors as the editor uses. Most of those pretty printers
work in a line-by-line basis, but some are more complex, especially when comments or strings can
span multiple lines.

When the first versions of LUATEX showed up, rewriting the MKII code to use LUA was a nice exercise
and the code was not that bad, but when LPEG showed up, I put it on the agenda to reimplement them
again.

We only ship a few pretty printers. Users normally have their own preferences and it’s not easy to
make general purpose pretty printers. This is why the new framework is a bit more flexible and
permits users to kick in their own code.

Pretty printing involves more than coloring some characters or words:

• spaces should honoured and can be visualized
• newlines and empty lins need to be honoured as well
• optionally lines have to be numbered but
• wrapped around lines should not be numbered

Verbatim 69

preliminary, uncorrected version – June 25, 2020

It’s not much fun to deal with these matters each time that you write a pretty printer. This is why we
can start with an existing one like the default pretty printer. We show several variants of doing the
same. We start with a simple clone of the default parser.4

local P, V = lpeg.P, lpeg.V

local grammar = visualizers.newgrammar("default", {
pattern = V("default:pattern"),
visualizer = V("pattern")^1

})

local parser = P(grammar)

visualizers.register("test-0", { parser = parser })

We distinguish between grammars (tables with rules), parsers (a grammar turned into an LPEG ex-
pression), and handlers (collections of functions that can be applied. All three are registered under
a name and the verbatim commands can refer to that name.

\starttyping[option=test-0,color=]
Test 123,
test 456 and
test 789!
\stoptyping

Nothing special happens here. We just get straightforward verbatim.

Test 123,
test 456 and
test 789!

Next we are going to color digits. We collect as many as possible in a row, so that we minimize the
calls to the colorizer.

local patterns, P, V = lpeg.patterns, lpeg.P, lpeg.V

local function colorize(s)
context.color{"darkred"}
visualizers.writeargument(s)

end

local grammar = visualizers.newgrammar("default", {
digit = patterns.digit^1 / colorize,
pattern = V("digit") + V("default:pattern"),
visualizer = V("pattern")^1

})

4 In the meantime the lexer of the SCITE editor that I used also provides a mechanism for using LPEG based lexers. Although
in the pretty printing code we need a more liberal one I might backport the lexers I wrote for editing TEX, METAPOST, LUA,
CLD, XML and PDF as a variant for the ones we use in MKIV now. That way we get similar colorschemes which might be
handy sometimes.

70 Verbatim

preliminary, uncorrected version – June 25, 2020

local parser = P(grammar)

visualizers.register("test-1", { parser = parser })

Watch how we define a new rule for the digits and overload the pattern rule. We can refer to the
default rule by using a prefix. This is needed when we define a rule with the same name.

\starttyping[option=test-1,color=]
Test 123,
test 456 and
test 789!
\stoptyping

This time the digits get colored.

Test 123,
test 456 and
test 789!

In a similar way we can colorize letters. As with the previous example, we use CONTEXT commands
at the LUA end.

\starttyping[option=test-2,color=]
Test 123,
test 456 and
test 789!
\stoptyping

Again we get some coloring.

Test 123,
test 456 and
test 789!

It will be clear that the amount of rules and functions is larger when we use a more complex parser.
It is for this reason that we can group functions in handlers. We can also make a pretty printer
configurable by defining handlers at the TEX end.

\definestartstop
[MyDigit]
[style=bold,color=darkred]

\definestartstop
[MyLowercase]
[style=bold,color=darkgreen]

\definestartstop
[MyUppercase]
[style=bold,color=darkblue]

Verbatim 71

preliminary, uncorrected version – June 25, 2020

The LUA code now looks different. Watch out: we need an indirect call to for instance MyDigit
because a second argument can be passed: the settings for this environment and you don’t want that
get passed to MyDigit and friends.

\starttyping[option=test-3,color=]
Test 123,
test 456 and
test 789!
\stoptyping

We get digits, upper- and lowercase characters colored:

Test 123,
test 456 and
test 789!

You can also use parsers that don’t use LPEG:

local function parser(s)
visualizers.write("["..s.."]")

end

visualizers.register("test-4", { parser = parser })

\starttyping[option=test-4,space=on,color=darkred]
Test 123,
test 456 and
test 789!
\stoptyping

The function visualizer.write takes care of spaces and newlines.

[Test␣123,
test␣456␣and
test␣789!]

We have a few more helpers:

visualizers.write interprets the argument and applies methods
visualizers.writenewline goes to the next line (similar to \par
visualizers.writeemptyline inserts an empty line (similer to \blank
visualizers.writespace inserts a (visible) space
visualizers.writedefault writes the argument verbatim without interpretation

These mechanism have quite some overhead in terms of function calls. In the worst case each token
needs a (nested) call. However, doing all this at the TEX end also comes at a price. So, in practice this
approach is more flexible but without too large a penalty.

In all these examples we typeset the text verbose: what is keyed in normally comes out (either or not
with colors), so spaces stay spaces and linebreaks are kept.

local function parser(s)

72 Verbatim

preliminary, uncorrected version – June 25, 2020

local s = string.gsub(s,"show","demonstrate")
local s = string.gsub(s,"'re"," are")
context(s)

end

visualizers.register("test-5", { parser = parser })

We can apply this visualizer as follows:

\starttyping[option=test-5,color=darkred,style=]
This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stoptyping

This time the text gets properly aligned:

This is just some text to demonstrate what we can do with this mechanism. In
spite of what you might think we are not bound to verbose text.

It often makes sense to use a buffer:

\startbuffer[demo]
This is just some text to show what we can do with this mechanism. In
spite of what you might think we're not bound to verbose text.
\stopbuffer

Instead of processing the buffer in verbatim mode you can then process it directly:

\setuptyping[file][option=test-5,color=darkred,style=]
\ctxluabuffer[demo]

Which gives:

In this case, the space is a normal space and not the fixed verbatim space, which looks better.

Logging 73

preliminary, uncorrected version – June 25, 2020

9 Logging

Logging and localized messages have always been rather standardized in CONTEXT, so upgrading the
related mechanism had been quite doable. In MKIV for a while we had two systems in parallel: the
old one, mostly targeted at messages at the TEX end, and a new one used at the LUA end. But when
more and more hybrid code showed up, integrating both systems made sense.

Most logging concerns tracing and can be turned on and off on demand. This kind of control is now
possible for all messages. Given that the right interfaces are used, you can turn off all messages:

context --silent

This was already possible in MKII, but there TEX’s own messages still were visible. More important
is that we have control:

context --silent=structure*,resolve*,font*

This will disable all reporting for these three categories. It is also possible to only disable messages
to the console:

context --noconsole

In CONTEXT you can use directives:

\enabledirectives[logs.blocked=structure*,resolve*,font*]
\enabledirectives[logs.target=file]

As all logging is under LUA control and because this (and other) kind of control has to kick in early
in the initialization the code might look somewhat tricky. Users won’t notice this because they only
deal with the formal interface. Here we will only discuss the LUA interfaces.

Messages related to tracing are done as follows:

local report_whatever = logs.reporter("modules","whatever")

report_whatever("not found: %s","this or that")

The first line defined a logger in the category modules. You can give a second argument as well, the
subcategory. Both will be shown as part of the message, of which an example is given in the second
line.

These messages are shown directly, that is, when the function is called. However, when you generate
TEX code, as we discuss in this document, you need to make sure that the message is synchronized
with that code. This can be done with a messenger instead of a reporter.

local report_numbers = logs.reporter("numbers","check")
local status_numbers = logs.messenger("numbers","check")

status_numbers("number 1: %s, number 2: %s",123,456)
report_numbers("number 1: %s, number 2: %s",456,123)

74 Logging

preliminary, uncorrected version – June 25, 2020

Both reporters and messages are localized when the pattern given as first argument can be found in
the patterns subtable of the interface messages. Categories and subcategories are also translated,
but these are looked up in the translations subtable. So in the case of

report_whatever("found: %s",filename)
report_whatever("not found: %s",filename)

you should not be surprised if it gets translated. Of course the category and subcategory provide
some contextual information.

Lua Functions 75

preliminary, uncorrected version – June 25, 2020

10 Lua Functions

10.1 Introduction
When you run CONTEXT you have some libraries preloaded. If you look into the LUA files you will
find more than is discussed here, but keep in mind that what is not documented, might be gone or
done different one day. Some extensions live in the same namespace as those provided by stock LUA
and LUATEX, others have their own. There are many more functions and the more obscure (or never
being used) ones will go away.

The LUA code in CONTEXT is organized in quite some modules. Those with names like l-*.lua are
rather generic and are automatically available when you use mtxrun to run a LUA file. These are
discusses in this chapter. A few more modules have generic properties, like some in the categories
util-*.lua, trac-*.lua, luat-*.lua, data-*.lua and lxml-*.lua. They contain more special-
ized functions and are discussed elsewhere.

Before we move on the the real code, let’s introduce a handy helper:

inspect(somevar)

Whenever you feel the need to see what value a variable has you can insert this function to get some
insight. It knows how to deal with several data types.

10.2 Tables

[lua] concat

These functions come with LUA itself and are discussed in detail in the LUA reference manual so we
stick to some examples. The concat function stitches table entries in an indexed table into one string,
with an optional separator in between. If can also handle a slice of the table

local str = table.concat(t)
local str = table.concat(t,separator)
local str = table.concat(t,separator,first)
local str = table.concat(t,separator,first,last)

Only strings and numbers can be concatenated.

table.concat({"a","b","c","d","e"})

abcde

table.concat({"a","b","c","d","e"},"+")

a+b+c+d+e

table.concat({"a","b","c","d","e"},"+",2,3)

b+c

76 Lua Functions

preliminary, uncorrected version – June 25, 2020

[lua] insert remove

You can use insert and remove for adding or replacing entries in an indexed table.

table.insert(t,value,position)
value = table.remove(t,position)

The position is optional and defaults to the last entry in the table. For instance a stack is built this
way:

table.insert(stack,"top")
local top = table.remove(stack)

Beware, the insert function returns nothing. You can provide an additional position:

table.insert(list,"injected in slot 2",2)
local thiswastwo = table.remove(list,2)

[lua] unpack

You can access entries in an indexed table as follows:

local a, b, c = t[1], t[2], t[3]

but this does the same:

local a, b, c = table.unpack(t)

This is less efficient but there are situations where unpack comes in handy.

[lua] sort

Sorting is done with sort, a function that does not return a value but operates on the given table.

table.sort(t)
table.sort(t,comparefunction)

The compare function has to return a consistent equivalent of true or false. For sorting more com-
plex data structures there is a specialized sort module available.

t={"a","b","c"} table.sort(t)

t={ "a", "b", "c" }

t={"a","b","c"} table.sort(t,function(x,y) return x > y end)

t={ "c", "b", "a" }

t={"a","b","c"} table.sort(t,function(x,y) return x < y end)

t={ "a", "b", "c" }

Lua Functions 77

preliminary, uncorrected version – June 25, 2020

sorted

The built-in sort function does not return a value but sometimes it can be if the (sorted) table is
returned. This is why we have:

local a = table.sorted(b)

keys sortedkeys sortedhashkeys sortedhash

The keys function returns an indexed list of keys. The order is undefined as it depends on how the
table was constructed. A sorted list is provided by sortedkeys. This function is rather liberal with
respect to the keys. If the keys are strings you can use the faster alternative sortedhashkeys.

local s = table.keys (t)
local s = table.sortedkeys (t)
local s = table.sortedhashkeys (t)

Because a sorted list is often processed there is also an iterator:

for key, value in table.sortedhash(t) do
print(key,value)

end

There is also a synonym sortedpairs which sometimes looks more natural when used alongside
the pairs and ipairs iterators.

table.keys({ [1] = 2, c = 3, [true] = 1 })

t={ "c", 1, true }

table.sortedkeys({ [1] = 2, c = 3, [true] = 1 })

t={ 1, "c", true }

table.sortedhashkeys({ a = 2, c = 3, b = 1 })

t={ "a", "b", "c" }

serialize print tohandle tofile

The serialize function converts a table into a verbose representation. The print function does the
same but prints the result to the console which is handy for tracing. The tofile function writes the
table to a file, using reasonable chunks so that less memory is used. The fourth variant tohandle
takes a handle so that you can do whatever you like with the result.

table.serialize (root, name, reduce, noquotes, hexify)
table.print (root, name, reduce, noquotes, hexify)
table.tofile (filename, root, name, reduce, noquotes, hexify)
table.tohandle (handle, root, name, reduce, noquotes, hexify)

The serialization can be controlled in several ways. Often only the first two options makes sense:

78 Lua Functions

preliminary, uncorrected version – June 25, 2020

table.serialize({ a = 2 })

t={
["a"]=2,

}

table.serialize({ a = 2 }, "name")

t={
["a"]=2,

}

table.serialize({ a = 2 }, true)

t={
["a"]=2,

}

table.serialize({ a = 2 }, false)

t={
["a"]=2,

}

table.serialize({ a = 2 }, "return")

t={
["a"]=2,

}

table.serialize({ a = 2 }, 12)

t={
["a"]=2,

}

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true)

t={
[3]="b",
["a"]=2,
[true]="6",

}

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true, true)

t={
[3]="b",
["a"]=2,
[true]="6",

}

Lua Functions 79

preliminary, uncorrected version – June 25, 2020

table.serialize({ a = 2, [3] = "b", [true] = "6" }, nil, true, true, true)

t={
[3]="b",
["a"]=2,
[true]="6",

}

In CONTEXT there is also a tocontext function that typesets the table verbose. This is handy for
manuals and tracing.

identical are_equal

These two function compare two tables that have a similar structure. The identical variant operates
on a hash while are_equal assumes an indexed table.

local b = table.identical (one, two)
local b = table.are_equal (one, two)

table.identical({ a = { x = 2 } }, { a = { x = 3 } })

false

table.identical({ a = { x = 2 } }, { a = { x = 2 } })

true

table.are_equal({ a = { x = 2 } }, { a = { x = 3 } })

true

table.are_equal({ a = { x = 2 } }, { a = { x = 2 } })

true

table.identical({ "one", "two" }, { "one", "two" })

true

table.identical({ "one", "two" }, { "two", "one" })

false

table.are_equal({ "one", "two" }, { "one", "two" })

true

table.are_equal({ "one", "two" }, { "two", "one" })

false

tohash fromhash swapped swaphash reversed reverse mirrored

We use tohash quite a lot in CONTEXT. It converts a list into a hash so that we can easily check if
(a string) is in a given set. The fromhash function does the opposite: it creates a list of keys from a
hashed table where each value that is not false or nil is present.

80 Lua Functions

preliminary, uncorrected version – June 25, 2020

local hashed = table.tohash (indexed)
local indexed = table.fromhash(hashed)

The function swapped turns keys into values vise versa while the reversed and reverse reverses
the values in an indexed table. The last one reverses the table itself (in-place).

local swapped = table.swapped (indexedtable)
local reversed = table.reversed (indexedtable)
local reverse = table.reverse (indexedtable)
local mirrored = table.mirrored (hashedtable)

table.tohash({ "a", "b", "c" })

t={
["a"]=true,
["b"]=true,
["c"]=true,

}

table.fromhash({ a = true, b = false, c = true })

t={ "c", "a" }

table.swapped({ "a", "b", "c" })

t={
["a"]=1,
["b"]=2,
["c"]=3,

}

table.reversed({ "a", "b", "c" })

t={ "c", "b", "a" }

table.reverse({ 1, 2, 3, 4 })

t={ 4, 3, 2, 1 }

table.mirrored({ a = "x", b = "y", c = "z" })

t={
["a"]="x",
["b"]="y",
["c"]="z",
["x"]="a",
["y"]="b",
["z"]="c",

}

Lua Functions 81

preliminary, uncorrected version – June 25, 2020

append prepend

These two functions operate on a pair of indexed tables. The first table gets appended or prepended
by the second. The first table is returned as well.

table.append (one, two)
table.prepend(one, two)

The functions are similar to loops using insert.

table.append({ "a", "b", "c" }, { "d", "e" })

t={ "a", "b", "c", "d", "e" }

table.prepend({ "a", "b", "c" }, { "d", "e" })

t={ "d", "e", "a", "b", "c" }

merge merged imerge imerged

You can merge multiple hashes with merge and indexed tables with imerge. The first table is the
target and is returned.

table.merge (one, two, ...)
table.imerge (one, two, ...)

The variants ending with a d merge the given list of tables and return the result leaving the first
argument untouched.

local merged = table.merged (one, two, ...)
local merged = table.imerged (one, two, ...)

table.merge({ a = 1, b = 2, c = 3 }, { d = 1 }, { a = 0 })

t={
["a"]=0,
["b"]=2,
["c"]=3,
["d"]=1,

}

table.imerge({ "a", "b", "c" }, { "d", "e" }, { "f", "g" })

t={ "a", "b", "c", "d", "e", "f", "g" }

copy fastcopy

When copying a table we need to make a real and deep copy. The copy function is an adapted version
from the LUA wiki. The fastopy is faster because it does not check for circular references and does
not share tables when possible. In practice using the fast variant is okay.

local copy = table.copy (t)

82 Lua Functions

preliminary, uncorrected version – June 25, 2020

local copy = table.fastcopy(t)

flattened

A nested table can be unnested using flattened. Normally you will only use this function if the
content is somewhat predictable. Often using one of the merge functions does a similar job.

local flattened = table.flatten(t)

table.flattened({ a = 1, b = 2, { c = 3 }, d = 4})

t={ 2, 1, 4, 3 }

table.flattened({ 1, 2, { 3, { 4 } }, 5})

t={ 1, 2, 3, 4, 5 }

table.flattened({ 1, 2, { 3, { 4 } }, 5}, 1)

t={
1,
2,
3,
{ 4 },
5,

}

table.flattened({ a = 1, b = 2, { c = 3 }, d = 4})

t={ 2, 1, 4, 3 }

table.flattened({ 1, 2, { 3, { c = 4 } }, 5})

t={ 1, 2, 3, 4, 5 }

table.flattened({ 1, 2, { 3, { c = 4 } }, 5}, 1)

t={
1,
2,
3,
{
["c"]=4,

},
5,

}

loweredkeys

The name says it all: this function returns a new table with the keys being lower case. This is handy
in cases where the keys have a change to be inconsistent, as can be the case when users input keys
and values in less controlled ways.

Lua Functions 83

preliminary, uncorrected version – June 25, 2020

local normalized = table.loweredkeys { a = "a", A = "b", b = "c" }

table.loweredkeys({ a = 1, b = 2, C = 3})

t={
["a"]=1,
["b"]=2,
["c"]=3,

}

contains

This function works with indexed tables. Watch out, when you look for a match, the number 1 is not
the same as string "1". The function returns the index or false.

if table.contains(t, 5) then ... else ... end
if table.contains(t,"5") then ... else ... end

table.contains({ "a", 2, true, "1"}, 1)

false

table.contains({ "a", 2, true, "1"}, "1")

4

unique

When a table (can) contain duplicate entries you can get rid of them by using the unique helper:

local t = table.unique { 1, 2, 3, 4, 3, 2, 5, 6 }

table.unique({ "a", "b", "c", "a", "d" })

t={ "a", "b", "c", "d" }

count

The name speaks for itself: this function counts the number of entries in the given table. For an
indexed table #t is faster.

local n = table.count(t)

table.count({ 1, 2, [4] = 4, a = "a" })

4

sequenced

Normally, when you trace a table, printing the serialized version is quite convenient. However, when
it concerns a simple table, a more compact variant is:

84 Lua Functions

preliminary, uncorrected version – June 25, 2020

print(table.sequenced(t, separator))

table.sequenced({ 1, 2, 3, 4})

1 | 2 | 3 | 4

table.sequenced({ 1, 2, [4] = 4, a = "a" }, ", ")

1, 2

10.3 Math
In addition to the built-in math function we provide: round, odd, even, div, mod, sind, cosd and
tand.

At the TEX end we have a helper luaexpr that you can use to do calculations:

\luaexpr{1 + 2.3 * 4.5 + math.pi} = \cldcontext{1 + 2.3 * 4.5 + math.pi}

Both calls return the same result, but the first one is normally faster than the context command
which has quite some overhead.

14.49159265359 = 14.49159265359

The \luaexpr command can also better deal with for instance conditions, where it returns true or
false, while \cldcontext would interpret the boolean value as a special signal.

10.4 Booleans

tonumber

This function returns the number one or zero. You will seldom need this function.

local state = boolean.tonumber(str)

boolean.tonumber(true)

1

toboolean

When dealing with configuration files or tables a bit flexibility in setting a state makes sense, if only
because in some cases it’s better to say yes than true.

local b = toboolean(str)
local b = toboolean(str,tolerant)

When the second argument is true, the strings true, yes, on, 1, t and the number 1 all turn into
true. Otherwise only true is honoured. This function is also defined in the global namespace.

Lua Functions 85

preliminary, uncorrected version – June 25, 2020

string.toboolean("true")

true

string.toboolean("yes")

false

string.toboolean("yes",true)

true

is_boolean

This function is somewhat similar to the previous one. It interprets the strings true, yes, on and t as
true and false, no, off and f as false. Otherwise nil is returned, unless a default value is given,
in which case that is returned.

if is_boolean(str) then ... end
if is_boolean(str,default) then ... end

string.is_boolean("true")

true

string.is_boolean("off")

false

string.is_boolean("crap",true)

true

10.5 Strings
LUA strings are simply sequences of bytes. Of course in some places special treatment takes place. For
instance \n expands to one or more characters representing a newline, depending on the operating
system, but normally, as long as you manipulate strings in the perspective of LUATEX, you don’t need
to worry about such issues too much. As LUATEX is a UTF-8 engine, strings normally are in that
encoding but again, it does not matter much as LUA is quite agnostic about the content of strings: it
does not care about three characters reflecting one UNICODE character or not. This means that when
you use for instance the functions discussed here, or use libraries like lpeg behave as you expect.

Versions later than 0.75 are likely to have some basic UNICODE support on board but we can easily
adapt to that. At least till LUATEX version 0.75 we provided the slunicode library but users cannot
assume that that will be present for ever. If you want to mess around with UTF string, use the utf
library instead as that is the one we provide in MKIV. It presents the stable interface to whatever LUA
itself provides and/or what LUATEX offers and/or what is there because MKIV implements it.

[lua] byte char

As long as we’re dealing with ASCII characters we can use these two functions to go from numbers to
characters and vise versa.

86 Lua Functions

preliminary, uncorrected version – June 25, 2020

string.byte("luatex")

108

string.byte("luatex",1,3)

108 117 97

string.byte("luatex",-3,-1)

116 101 120

string.char(65)

A

string.char(65,66,67)

ABC

[lua] sub

You cannot directly access a character in a string but you can take any slice you want using sub. You
need to provide a start position and negative values will count backwards from the end.

local slice = string.sub(str,first,last)

string.sub("abcdef",2)

bcdef

string.sub("abcdef",2,3)

bc

string.sub("abcdef",-3,-2)

de

[lua] gsub

There are two ways of analyzing the content of a string. The more modern and flexible approach is to
use lpeg. The other one uses some functions in the string namespace that accept so called patterns
for matching. While lpeg is more powerfull than regular expressions, the pattern matching is less
powerfull but sometimes faster and also easier to specify. In many cases it can do the job quite well.

local new, count = string.gsub(old,pattern,replacement)

The replacement can be a function. Often you don’t want the number of matches, and the way to
avoid this is either to store the result in a variable:

local new = string.gsub(old,"lua","LUA")
print(new)

Lua Functions 87

preliminary, uncorrected version – June 25, 2020

or to use parentheses to signal the interpreter that only one value is return.

print((string.gsub(old,"lua","LUA"))

Patterns can be more complex so you’d better read the LUA manual if you want to know more about
them.

string.gsub("abcdef","b","B")

aBcdef

string.gsub("abcdef","[bc]",string.upper)

aBCdef

An optional fourth argument specifies how often the replacement has to happen

string.gsub("textextextex","tex","abc")

abcabcabcabc

string.gsub("textextextex","tex","abc",1)

abctextextex

string.gsub("textextextex","tex","abc",2)

abcabctextex

[lua] find

The find function returns the first and last position of the match:

local first, last = find(str,pattern)

If you’re only interested if there is a match at all, it’s enough to know that there is a first position. No
match returns nil. So,

if find("luatex","tex") then ... end

works out okay. You can pass an extra argument to find that indicates the start position. So you can
use this function to loop over all matches: just start again at the end of the last match.

A fourth optional argument is a boolean that signals not to interpret the pattern but use it as-is.

string.find("abc.def","c% .d",1,false)

3

string.find("abc.def","c% .d",1,true)

nil

string.find("abc% .def","c% .d",1,false)

nil

88 Lua Functions

preliminary, uncorrected version – June 25, 2020

string.find("abc% .def","c% .d",1,true)

3

[lua] match gmatch

With match you can split of bits and pieces of a string. The parenthesis indicate the captures.

local a, b, c, ... = string.match(str,pattern)

The gmatch function is used to loop over a string, for instance the following code prints the elements
in a comma separated list, ignoring spaces after commas.

for s in string.gmatch(str,"([^,%s])+") do
print(s)

end

A more detailed description can be found in the LUA reference manual, so we only mention the special
directives. Characters are grouped in classes:

%a letters
%l lowercase letters
%u uppercase letters
%d digits
%w letters and digits
%c control characters
%p punctuation
%x hexadecimal characters
%s space related characters

You can create sets too:

[%l%d] lowercase letters and digits
[^%d%p] all characters except digits and punctuation
[p-z] all characters in the range p upto z
[pqr] all characters p, q and r

There are some characters with special meanings:

^ the beginning of a string
$ end of a string
. any character
* zero or more of the preceding specifier, greedy
- zero or more of the preceding specifier, least possible
+ one or more of the preceding specifier
? zero or one of the preceding specifier
() encapsulate capture
%b capture all between the following two characters

You can use whatever you like to be matched:

Lua Functions 89

preliminary, uncorrected version – June 25, 2020

pqr the sequence pqr
my name is (%w) the word following my name is

If you want to specify such a token as it is, then you can precede it with a percent sign, so to get a
percent, you need two in a row.

string.match("before:after","^(.-):")

before

string.match("before:after","^([^:])")

b

string.match("before:after","bef(.*)ter")

ore:af

string.match("abcdef","[b-e]+")

bcde

string.match("abcdef","[b-e]*")

string.match("abcdef","b-e+")

e

string.match("abcdef","b-e*")

Such patterns should not be confused with regular expressions, although to some extent they can do
the same. If you really want to do complex matches, you should look into LPEG.

[lua] lower upper

These two function spreak for themselves.

string.lower("LOW")

low

string.upper("upper")

UPPER

[lua] format

The format function takes a template as first argument and one or more additional arguments de-
pending on the format. The template is similar to the one used in C but it has some extensions.

90 Lua Functions

preliminary, uncorrected version – June 25, 2020

local s = format(format, str, ...)

The following table gives an overview of the possible format directives. The s is the most proba-
bly candidate and can handle numbers well as strings. Watch how the minus sign influences the
alignment.5

integer %i 12345 12345
integer %d 12345 12345
unsigned %u -12345 12345
character %c 123 Y
hexadecimal %x 123 7b

%X 123 7B
octal %o 12345 30071

string %s abc abcd
%-8s 123 123
%8s 123 123

float %0.2f 12.345 12.35
exponential %0.2e 12.345 1.23e+01

%0.2E 12.345 1.23E+01
autofloat %0.2g 12.345 12

%0.2G 12.345 12

string.format("U+% 05X",2010)

U+007DA

striplines

The striplines function can strip leading and trailing empty lines, collapse or delete intermediate
empty lines and strips leading and trailing spaces. We will demonstrate this with string str:

<sp><sp><lf><sp><sp><sp><sp>aap<lf><sp><sp>noot<sp>mies<lf><sp><sp><lf><sp>
<sp><sp><sp><lf><sp>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>teun<sp><sp><sp>
<sp>vuur<sp>gijs<lf><sp><sp><sp><sp><sp><sp><sp>lam<sp><sp><sp><sp>kees<sp>
bok<sp>weide<lf><sp><sp><sp><sp><lf>does<sp>hok<sp>duif<sp>schapen<sp><sp>
<lf><sp><sp>

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

5 There can be differences between platforms although so far we haven’t run into problems. Also, LUA 5.2 does a bit more
checking on correct arguments and LUA 5.3 is more picky on integers.

Lua Functions 91

preliminary, uncorrected version – June 25, 2020

6 does hok duif schapen

The different options for stripping are demonstrated below, We use verbose descriptions instead of
vague boolean flags.

utilities.strings.striplines(str,"collapse")

<lf><sp>aap<lf><sp>noot<sp>mies<lf><sp><lf><sp><lf><sp>wim<sp>zus<sp>jet<lf>
teun<sp>vuur<sp>gijs<lf><sp>lam<sp>kees<sp>bok<sp>weide<lf><sp><lf>does<sp>
hok<sp>duif<sp>schapen<sp><lf>

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

utilities.strings.striplines(str,"prune")

aap<lf>noot<sp>mies<lf><lf><lf>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>teun
<sp><sp><sp><sp>vuur<sp>gijs<lf>lam<sp><sp><sp><sp>kees<sp>bok<sp>weide<lf>
<lf>does<sp>hok<sp>duif<sp>schapen

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

utilities.strings.striplines(str,"prune and collapse")

aap<lf>noot<sp>mies<lf><lf>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>teun<sp>
<sp><sp><sp>vuur<sp>gijs<lf>lam<sp><sp><sp><sp>kees<sp>bok<sp>weide<lf><lf>
does<sp>hok<sp>duif<sp>schapen

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

92 Lua Functions

preliminary, uncorrected version – June 25, 2020

6 does hok duif schapen

utilities.strings.striplines(str,"prune and no empty")

aap<lf>noot<sp>mies<lf>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>teun<sp><sp>
<sp><sp>vuur<sp>gijs<lf>lam<sp><sp><sp><sp>kees<sp>bok<sp>weide<lf>does<sp>
hok<sp>duif<sp>schapen

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

utilities.strings.striplines(str,"prune and to space")

aap<sp>noot<sp>mies<sp>wim<sp>zus<sp>jet<sp>teun<sp>vuur<sp>gijs<sp>lam<sp>
kees<sp>bok<sp>weide<sp>does<sp>hok<sp>duif<sp>schapen

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

utilities.strings.striplines(str,"retain")

<lf>aap<lf>noot<sp>mies<lf><lf><lf>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>
teun<sp><sp><sp><sp>vuur<sp>gijs<lf>lam<sp><sp><sp><sp>kees<sp>bok<sp>weide
<lf><lf>does<sp>hok<sp>duif<sp>schapen<lf>

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

Lua Functions 93

preliminary, uncorrected version – June 25, 2020

utilities.strings.striplines(str,"retain and collapse")

<lf>aap<lf>noot<sp>mies<lf><lf>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>teun
<sp><sp><sp><sp>vuur<sp>gijs<lf>lam<sp><sp><sp><sp>kees<sp>bok<sp>weide<lf>
<lf>does<sp>hok<sp>duif<sp>schapen<lf>

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

utilities.strings.striplines(str,"retain and no empty")

<lf>aap<lf>noot<sp>mies<lf>wim<sp><sp><sp><sp>zus<sp><sp><sp>jet<lf>teun<sp>
<sp><sp><sp>vuur<sp>gijs<lf>lam<sp><sp><sp><sp>kees<sp>bok<sp>weide<lf>does
<sp>hok<sp>duif<sp>schapen<lf>

1 aap
2 noot mies

3 wim zus jet
4 teun vuur gijs
5 lam kees bok weide

6 does hok duif schapen

You can of course mix usage with the normal context helper commands, for instance put them in
buffers. Buffers normally will prune leading and trailing empty lines anyway.

context.tobuffer("dummy",utilities.strings.striplines(str))
context.typebuffer({ "dummy" }, { numbering = "line" })

formatters

The format function discussed before is the built-in. As an alternative CONTEXT provides an addi-
tional formatter that has some extensions. Interesting is that that one is often more efficient, although
there are cases where the speed is comparable. As we run out of keys, some extra ones are a bit counter
intuitive, like l for booleans (logical).

utf character %c 322 ł

string %s foo foo
force tostring %S nil
quoted string %q foo "foo"

94 Lua Functions

preliminary, uncorrected version – June 25, 2020

force quoted string %Q nil
%N 0123 123

automatic quoted %a true 'true'

%A true "true"

left aligned utf %30< xx½xx xx½xx

right aligned utf %30> xx½xx xx½xx

integer %i 1234 1234
integer %d 1234 1234
signed number %I 1234 +1234
rounded number %r 1234.56 1235
stripped number %N 000123 123
comma/period float %m 12.34 12.34
period/comma float %M 12.34 12,34

hexadecimal %x 1234 4d2
%X 1234 4D2

octal %o 1234 2322

float %0.2f 12.345 12.35
formatted float %2.3k 12.3456 12.346
checked float %0.2F 12.30 12.30
exponential %.2e 12.345e120 1.23e121

%.2E 12.345e120 1.23E121
sparse exp %0.2j 12.345e120 1.23e121

%0.2J 12.345e120 1.23E121
autofloat %g 12.345 1.23E1

%G 12.345 1.23E1

unicode value 0x %h ł 1234
%H ł 1234

unicode value U+ %u ł 1234 u+00142 u+004d2
%U ł 1234 U+00142 U+004D2

points %p 1234567 18.838pt
basepoints %b 1234567 18.76762bp

table concat %t {1,2,3} 123
%*t {1,2,3} 1*2*3
%{ AND }t {a=1,b=3}

table serialize %T {1,2,3} 1*2*3
%T {a=1,b=3} a=1 b=2
%+T {a=1,b=3} a=1[+b=2]

boolean (logic) %l "a" == "b"
%L "a" == "b"

whitespace %w 3
%2w 3

Lua Functions 95

preliminary, uncorrected version – June 25, 2020

%4W

skip %2z 1,2,3,4 14

The generic formatters a and A convert the argument into a string and deals with strings, number,
booleans, tables and whatever. We mostly use these in tracing. The lowercase variant uses single
quotes, and the uppercase variant uses double quotes.

A special one is the alignment formatter, which is a variant on the s one that also takes an optional
positive of negative number:

\startluacode
context.start()
context.tttf()
context.verbatim("[[% 30<]]","xxaxx") context.par()
context.verbatim("[[% 30<]]","xx½xx") context.par()
context.verbatim("[[% 30>]]","xxaxx") context.par()
context.verbatim("[[% 30>]]","xx½xx") context.par()
context.verbatim("[[%-30<]]","xxaxx") context.par()
context.verbatim("[[%-30<]]","xx½xx") context.par()
context.verbatim("[[%-30>]]","xxaxx") context.par()
context.verbatim("[[%-30>]]","xx½xx") context.par()
context.stop()
\stopluacode

[[xxaxx]]

[[xx½xx]]

[[xxaxx]]

[[xx½xx]]

[[xxaxx]]

[[xx½xx]]

[[xxaxx]]

[[xx½xx]]

There are two more formatters plugged in: !xml! and !tex!. These are best demonstrated with an
example:

local xf = formatter["xml escaped: %!xml!"]
local xr = formatter["tex escaped: %!tex!"]

print(xf("x > 1 && x < 10"))
print(xt("this will cost me $123.00 at least"))

weird, this fails when cld-verbatim is there as part of the big thing: catcodetable 4 suddenly lacks the
comment being a other

96 Lua Functions

preliminary, uncorrected version – June 25, 2020

The context command uses the formatter so one can say:

\startluacode
context("first some xml: %!xml!, and now some %!tex!",

"x > 1 && x < 10", "this will cost me $123.00 at least")
\stopluacode

This renders as follows:

first some xml: x > 1 && x < 10, and now some this will cost me $123.00 at least

You can extend the formatter but we advise you not to do that unless you’re sure what you’re doing.
You never know what CONTEXT itself might add for its own benefit.

However, you can define your own formatter and add to that without interference. In fact, the main
formatter is just defined that way. This is how it works:

local MyFormatter = utilities.strings.formatters.new()

utilities.strings.formatters.add (
MyFormatter,
"upper",
"global.string.upper(%s)"

)

Now you can use this one as:

context.bold(MyFormatter["It's %s or %!upper!."]("this","that"))

It’s this or THAT.

Because we’re running inside CONTEXT, a better definition would be this:

local MyFormatter = utilities.strings.formatters.new()

utilities.strings.formatters.add (
MyFormatter,
"uc",
"myupper(%s)",

-- "local myupper = global.characters.upper"
{ myupper = global.characters.upper }

)

utilities.strings.formatters.add (
MyFormatter,
"lc",
"mylower(%s)",

-- "local mylower = global.characters.lower"
{ mylower = global.characters.lower }

)

utilities.strings.formatters.add (

Lua Functions 97

preliminary, uncorrected version – June 25, 2020

MyFormatter,
"sh",
"myshaped(%s)",

-- "local myshaped = global.characters.shaped"
{ myshaped = global.characters.shaped }

)

context(MyFormatter["Uppercased: %!uc!"]("ÀÁÂÃÄÅàáâãäå"))
context.par()
context(MyFormatter["Lowercased: %!lc!"]("ÀÁÂÃÄÅàáâãäå"))
context.par()
context(MyFormatter["Reduced: %!sh!"]("ÀÁÂÃÄÅàáâãäå"))

The last arguments creates shortcuts. As expected we get:

Uppercased: ÀÁÂÃÄÅÀÁÂÃÄÅ

Lowercased: àáâãäåàáâãäå

Reduced: AAAAAAaaaaaa

Of course you can also apply the casing functions directly so in practice you shouldn’t use formatters
without need. Among the advantages of using formatters are:

• They provide a level of abstraction.
• They can replace multiple calls to \context.
• Sometimes they make source code look better.
• Using them is often more efficient and faster.

The last argument might sound strange but considering the overhead involved in the context (re-
lated) functions, doing more in one step has benefits. Also, formatters are implemented quite effi-
ciently, so their overhead can be neglected.

In the examples you see that a formatter extension is itself a template.

local FakeXML = utilities.strings.formatters.new()

utilities.strings.formatters.add(FakeXML,"b",[["<" ..%s..">"]])
utilities.strings.formatters.add(FakeXML,"e",[["</"..%s..">"]])
utilities.strings.formatters.add(FakeXML,"n",[["<" ..%s.."/>"]])

context(FakeXML["It looks like %!b!xml%!e! doesn't it?"]("it","it"))

This gives: It looks like <it>xml</it> doesn’t it?. Of course we could go over the top here:

local FakeXML = utilities.strings.formatters.new()

local stack = { }

function document.f_b(s)
table.insert(stack,s)
return "<" .. s .. ">"

98 Lua Functions

preliminary, uncorrected version – June 25, 2020

end

function document.f_e()
return "</" .. table.remove(stack) .. ">"

end

utilities.strings.formatters.add(FakeXML,"b",[[global.document.f_b(%s)]])
utilities.strings.formatters.add(FakeXML,"e",[[global.document.f_e()]])

context(FakeXML["It looks like %1!b!xml%0!e! doesn't it?"]("it"))

This gives: It looks like <it>xml</it> doesn’t it?. Such a template look horrible, although it’s not too
far from the regular format syntax: just compare %1f with %1!e!. The zero trick permits us to inject
information that we’ve put on the stack. As this kind of duplicate usage might occur most, a better
solution is available:

local FakeXML = utilities.strings.formatters.new()

utilities.strings.formatters.add(FakeXML,"b",[["<" .. %s .. ">"]])
utilities.strings.formatters.add(FakeXML,"e",[["</" .. %s .. ">"]])

context(FakeXML["It looks like %!b!xml%-1!e! doesn't it?"]("it"))

We get: It looks like <it>xml</it> doesn’t it?. Anyhow, in most cases you will never feel the need
for such hackery and the regular formatter works fine. Adding this extension mechanism was rather
trivial and it doesn’t influence the performance.

In CONTEXT we have a few more extensions:

utilities.strings.formatters.add (
strings.formatters, "unichr",
[["U+" .. format("%%05X",%s) .. " (" .. utfchar(%s) .. ")"]]

)

utilities.strings.formatters.add (
strings.formatters, "chruni",
[[utfchar(%s) .. " (U+" .. format("%%05X",%s) .. ")"]]

)

This one is used in messages:

context("Missing character %!chruni! in font.",234) context.par()
context("Missing character %!unichr! in font.",234)

This shows up as:

context("Missing character context("Missing character

If you look closely to the definition, you will notice that we use %s twice. This is a feature of the
definer function: if only one argument is picked up (which is default) then the replacement format
can use that two times. Because we use a format in the constructor, we need to escape the percent
sign there.

Lua Functions 99

preliminary, uncorrected version – June 25, 2020

strip

This function removes any leading and trailing whitespace characters.

local s = string.strip(str)

string.strip(" lua + tex = luatex ")

lua + tex = luatex

split splitlines checkedsplit

The line splitter is a special case of the generic splitter. The split function can get a string as well an
lpeg pattern. The checkedsplit function removes empty substrings.

local t = string.split (str, pattern)
local t = string.split (str, lpeg)
local t = string.checkedsplit (str, lpeg)
local t = string.splitlines (str)

string.split("a, b,c, d", ",")

t={ "a", " b", "c", " d" }

string.split("p.q,r", lpeg.S(",."))

t={ "p", "q", "r" }

string.checkedsplit(";one;;two", ";")

t={ "one", "two" }

string.splitlines("lua\ntex nic")

t={ "lua", "tex nic" }

quoted unquoted

You will hardly need these functions. The quoted function can normally be avoided using the format
pattern %q. The unquoted function removes single or double quotes but only when the string starts
and ends with the same quote.

local q = string.quoted (str)
local u = string.unquoted(str)

string.quoted([[test]])

"test"

string.quoted([[test"test]])

"test\"test"

100 Lua Functions

preliminary, uncorrected version – June 25, 2020

string.unquoted([["test]])

"test

string.unquoted([["t\"est"]])

t\"est

string.unquoted([["t\"est"x]])

t\"est

string.unquoted("\'test\'")

test

count

The function count returns the number of times that a given pattern occurs. Beware: if you want to
deal with UTF strings, you need the variant that sits in the lpeg namespace.

local n = count(str,pattern)

string.count("test me", "e")

2

limit

This function can be handy when you need to print messages that can be rather long. By default,
three periods are appended when the string is chopped.

print(limit(str,max,sentinel)

string.limit("too long", 6)

too...

string.limit("too long", 6, " (etc)")

(etc)

is_empty

A string considered empty by this function when its length is zero or when it only contains spaces.

if is_empty(str) then ... end

string.is_empty("")

true

Lua Functions 101

preliminary, uncorrected version – June 25, 2020

string.is_empty(" ")

true

string.is_empty(" ? ")

false

escapedpattern topattern

These two functions are rather specialized. They come in handy when you need to escape a pattern,
i.e. prefix characters with a special meaning by a %.

local e = escapedpattern(str, simple)
local p = topattern (str, lowercase, strict)

The simple variant does less escaping (only -.?* and is for instance used in wildcard patterns when
globbing directories. The topattern function always does the simple escape. A strict pattern gets
anchored to the beginning and end. If you want to see what these functions do you can best look at
their implementation.

10.6 UTF

We used to have the slunicode library available but as most of it is not used and because it has a
somewhat fuzzy state, we will no longer rely on it. In fact we only used a few functions in the utf
namespace so as CONTEXT user you’d better stick to what is presented here. You don’t have to worry
how they are implemented. Depending on the version of LUATEX it can be that a library, a native
function, or LPEGis used.

char byte

As UTF is a multibyte encoding the term char in fact refers to a LUA string of one upto four 8-bit
characters.

local b = utf.byte("å")
local c = utf.char(0xE5)

The number of places in CONTEXT where do such conversion is not that large: it happens mostly in
tracing messages.

logs.report("panic","the character U+%05X is used",utf.byte("æ"))

utf.byte("æ")

230

utf.char(0xE6)

æ

102 Lua Functions

preliminary, uncorrected version – June 25, 2020

sub

If you need to take a slice of an UTF encoded string the sub function can come in handy. This function
takes a string and a range defined by two numbers. Negative numbers count from the end of the
string.

utf.sub("123456àáâãäå",1,7)

123456à

utf.sub("123456àáâãäå",0,7)

123456à

utf.sub("123456àáâãäå",0,9)

123456àáâ

utf.sub("123456àáâãäå",4)

456àáâãäå

utf.sub("123456àáâãäå",0)

123456àáâãäå

utf.sub("123456àáâãäå",0,0)

utf.sub("123456àáâãäå",4,4)

4

utf.sub("123456àáâãäå",4,0)

utf.sub("123456àáâãäå",-3,0)

utf.sub("123456àáâãäå",0,-3)

123456àáâã

utf.sub("123456àáâãäå",-5,-3)

áâã

utf.sub("123456àáâãäå",-3)

ãäå

len

There are probably not that many people that can instantly see how many bytes the string in the
following example takes:

Lua Functions 103

preliminary, uncorrected version – June 25, 2020

local l = utf.len("ÀÁÂÃÄÅàáâãäå")

Programming languages use ASCII mostly so there each characters takes one byte. In CJK scripts how-
ever, you end up with much longer sequences. If you ever did some typesetting of such scripts you
have noticed that the number of characters on a page is less than in the case of a Latin script. As in-
formation is coded in less characters, effectively the source of a Latin or CJK document will not differ
that much.

utf.len("ÒÓÔÕÖòóôõö")

10

values characters

There are two iterators that deal with UTF. In LUATEX these are extensions to the string library but
for consistency we’ve move them to the utf namespace.

The following function loops over the UTF characters in a string and returns the UNICODE number in
u:

for u in utf.values(str) do
... -- u is a number

end

The next one returns a string c that has one or more characters as UTF characters can have upto 4
bytes.

for c in utf.characters(str) do
... -- c is a string

end

ustring xstring tocodes

These functions are mostly useful for logging where we want to see the UNICODE number.

utf.ustring(0xE6)

U+000E6

utf.ustring("ù")

U+000F9

utf.xstring(0xE6)

0x000E6

utf.xstring("à")

0x000E0

utf.tocodes("ùúü")

0x00F9 0x00FA 0x00FC

104 Lua Functions

preliminary, uncorrected version – June 25, 2020

utf.tocodes("àáä","")

0x00E00x00E10x00E4

utf.tocodes("òóö","+")

0x00F2+0x00F3+0x00F6

split splitlines totable

The split function splits a sequence of UTF characters into a table which one character per slot. The
splitlines does the same but each slot has a line instead. The totable function is similar to split,
but the later strips an optionally present UTF bom.

utf.split("òóö")

table: 000001e8683bed20

count

This function counts the number of times that a given substring occurs in a string. The patterns can
be a string or an LPEG pattern.

utf.count("òóöòóöòóö","ö")

3

utf.count("äáàa",lpeg.P("á") + lpeg.P("à"))

2

remapper replacer substituter

With remapper you can create a remapping function that remaps a given string using a (hash) table.

local remap = utf.remapper { a = 'd', b = "c", c = "b", d = "a" }

print(remap("abcd 1234 abcd"))

A remapper checks each character against the given mapping table. Its cousin replacer is more
efficient and skips non matches. The substituter function only does a quick check first and avoids
building a string with no replacements. That one is much faster when you expect not that many
replacements.

The replacer and substituter functions take table as argument and an indexed as well as hashed
one are acceptable. In fact you can even do things like this:

local rep = utf.replacer { [lpeg.patterns.digit] = "!" }

is_valid

This function returns false if the argument is no valid UTF string. As LUATEX is pretty strict with
respect to the input, this function is only useful when dealing with external files.

Lua Functions 105

preliminary, uncorrected version – June 25, 2020

function checkfile(filename)
local data = io.loaddata(filename)
if data and data ~= "" and not utf.is_valid(data) then

logs.report("error","file %q contains invalid utf",filename)
end

end

10.7 Numbers and bits
In the number namespace we collect some helpers that deal with numbers as well as bits. Starting
with LUA 5.2 a library bit32 is but the language itself doesn’t provide for them via operators: the
library uses functions to manipulate numbers upto 232. In the latest LUATEX you can use the new bit
related operators.

tobitstring

There is no format option to go from number to bits in terms of zeros and ones so we provide a helper:
tobitsting.

number.tobitstring(2013)

00000000000000000000011111011101

number.tobitstring(2013,3)

00000000000000000000011111011101

number.tobitstring(2013,1)

00000000000000000000011111011101

valid

This function can be used to check or convert a number, for instance in user interfaces.

number.valid(12)

12

number.valid("34")

34

number.valid("ab",56)

56

10.8 LPEG patterns
For LUATEX and CONTEXT MKIV the lpeg library came at the right moment as we can use it in lots
of places. An in-depth discussion makes no sense as it’s easier to look into l-lpeg.lua, so we stick

106 Lua Functions

preliminary, uncorrected version – June 25, 2020

to an overview.6 Most functions return an lpeg object that can be used in a match. In time critical
situations it’s more efficient to use the match on a predefined pattern that to create the pattern new
each time. Patterns are cached so there is no penalty in predefining a pattern. So, in the following
example, the splitter that splits at the asterisk will only be created once.

local splitter_1 = lpeg.splitat("*")
local splitter_2 = lpeg.splitat("*")

local n, m = lpeg.match(splitter_1,"2*4")
local n, m = lpeg.match(splitter_2,"2*4")

[lua] match print P R S V C Cc Cs ...

The match function does the real work. Its first argument is a lpeg object that is created using the
functions with the short uppercase names.

local P, R, C, Ct = lpeg.P, lpeg.R, lpeg.C, lpeg.Ct

local pattern = Ct((P("[") * C(R("az")^0) * P(']') + P(1))^0)

local words = lpeg.match(pattern,"a [first] and [second] word")

In this example the words between square brackets are collected in a table. There are lots of examples
of lpeg in the CONTEXT code base.

anywhere

local p = anywhere(pattern)

lpeg.match(lpeg.Ct((lpeg.anywhere("->")/"!")^0), "oeps->what->more")

t={ "!", "!" }

splitter splitat firstofsplit secondofsplit

The splitter function returns a pattern where each match gets an action applied. The action can
be a function, table or string.

local p = splitter(pattern, action)

The splitat function returns a pattern that will return the split off parts. Unless the second argu-
ment is true the splitter keeps splitting

local p = splitat(separator,single)

When you need to split off a prefix (for instance in a label) you can use:

local p = firstofsplit(separator)
local p = secondofsplit(separator)

6 If you search the web for lua lpeg you will end up at the official documentation and tutorial.

Lua Functions 107

preliminary, uncorrected version – June 25, 2020

The first function returns the original when there is no match but the second function returns nil
instead.

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps->what->more")

t={ "oeps", "what", "more" }

lpeg.match(lpeg.Ct(lpeg.splitat("->",false)), "oeps")

t={ "oeps" }

lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps->what->more")

t={ "oeps", "what->more" }

lpeg.match(lpeg.Ct(lpeg.splitat("->",true)), "oeps")

t={ "oeps" }

lpeg.match(lpeg.firstofsplit(":"), "before:after")

before

lpeg.match(lpeg.firstofsplit(":"), "whatever")

whatever

lpeg.match(lpeg.secondofsplit(":"), "before:after")

after

lpeg.match(lpeg.secondofsplit(":"), "whatever")

nil

split checkedsplit

The next two functions have counterparts in the string namespace. They return a table with the
split parts. The second function omits empty parts.

local t = split (separator,str)
local t = checkedsplit(separator,str)

lpeg.split(",","a,b,c")

t={ "a", "b", "c" }

lpeg.split(",",",a,,b,c,")

t={ "", "a", "", "b", "c", "" }

lpeg.checkedsplit(",",",a,,b,c,")

t={ "a", "b", "c" }

108 Lua Functions

preliminary, uncorrected version – June 25, 2020

stripper keeper replacer

These three functions return patterns that manipulate a string. The replacer gets a mapping table
passed.

local p = stripper(str or pattern)
local p = keeper (str or pattern)
local p = replacer(mapping)

lpeg.match(lpeg.stripper(lpeg.R("az")), "[-a-b-c-d-]")

[-----]

lpeg.match(lpeg.stripper("ab"), "[-a-b-c-d-]")

[---c-d-]

lpeg.match(lpeg.keeper(lpeg.R("az")), "[-a-b-c-d-]")

abcd

lpeg.match(lpeg.keeper("ab"), "[-a-b-c-d-]")

ab

lpeg.match(lpeg.replacer{{"a","p"},{"b","q"}}, "[-a-b-c-d-]")

[-p-q-c-d-]

balancer

One of the nice things about lpeg is that it can handle all kind of balanced input. So, a function is
provided that returns a balancer pattern:

local p = balancer(left,right)

lpeg.match(lpeg.Ct((lpeg.C(lpeg.balancer("{","}"))+1)^0),"{a} {b{c}}")

t={ "{a}", "{b{c}}" }

lpeg.match(lpeg.Ct((lpeg.C(lpeg.balancer("((","]"))+1)^0),"((a] ((b((c]]")

t={ "((a]", "((b((c]]" }

counter

The counter function returns a function that returns the length of a given string. The count function
differs from its counterpart living in the string namespace in that it deals with UTF and accepts
strings as well as patterns.

local fnc = counter(lpeg.P("á") + lpeg.P("à"))
local len = fnc("äáàa")

Lua Functions 109

preliminary, uncorrected version – June 25, 2020

UP US UR

In order to make working with UTF-8 input somewhat more convenient a few helpers are provided.

local p = lpeg.UP(utfstring)
local p = lpeg.US(utfstring)
local p = lpeg.UR(utfpair)
local p = lpeg.UR(first,last)

utf.count("äáàa",lpeg.UP("áà"))

1

utf.count("äáàa",lpeg.US("àá"))

2

utf.count("äáàa",lpeg.UR("aá"))

4

utf.count("äáàa",lpeg.UR("àá"))

2

utf.count("äáàa",lpeg.UR(0x0000,0xFFFF))

4

patterns

The following patterns are available in the patterns table in the lpeg namespace:

HEX alwaysmatched anything argument b_collapser b_stripper balanced beginline
beginofstring bytestoHEX bytestodec bytestohex bytetoHEX bytetodec bytetohex
cardinal cfloat chartonumber cnumber collapser colon comma commaspacer containseol
content context cpfloat cpnumber cpunsigned csletter cunsigned decafloat digit
digits dimenpair doublequoted dquote e_collapser e_stripper emptyline endofstring
eol equal escaped escapedquotes float formattednumber fullstripper hex hexadecimal
hexafloat hexdigit hexdigits hextobyte hextobytes integer letter linesplitter
longtostring lowercase luaescape luaquoted m_collapser m_stripper nested nestedbraces
nestedparents newline nodquote nonspacer nonwhitespace nospacer nosquote number
oct octal octdigit octdigits paragraphs period propername qualified quoted
rootbased semicolon sentences sign singlequoted somecontent space spaceortab
spacer splitthousands splittime sqlescape sqlquoted squote stripper stripzero
stripzeros tab texescape textline toentities tolower toshape toupper underscore
undouble unquoted unsigned unsingle unspacer uppercase url urldecoder urlencoder
urlescaper urlgetcleaner urlsplitter urlunescaped urlunescaper utf16_to_utf8_be
utf16_to_utf8_le utf32_to_utf8_be utf32_to_utf8_le utf8 utf8byte utf8char
utf8character utf8four utf8lower utf8lowercharacter utf8one utf8shape utf8shapecharacter
utf8three utf8two utf8upper utf8uppercharacter utf_16_be_nl utf_16_le_nl
utf_32_be_nl utf_32_le_nl utfbom utfbom_16_be utfbom_16_le utfbom_32_be utfbom_32_le

110 Lua Functions

preliminary, uncorrected version – June 25, 2020

utfbom_8 utflinesplitter utfoffset utfstricttype utftohigh utftolow utftype
validatedutf validdimen validutf8 validutf8char whitespace words xml xmlescape

There will probably be more of them in the future.

10.9 IO
The io library is extended with a couple of functions as well and variables but first we mention a few
predefined functions.

[lua] open popen...

The IO library deals with in- and output from the console and files.

local f = io.open(filename)

When the call succeeds f is a file object. You close this file with:

f:close()

Reading from a file is done with f:read(...) and writing to a file with f:write(...). In order to
write to a file, when opening a second argument has to be given, often wb for writing (binary) data.
Although there are more efficient ways, you can use the f:lines() iterator to process a file line by
line.

You can open a process with io.popen but dealing with this one depends a bit on the operating
system.

fileseparator pathseparator

The value of the following two strings depends on the operating system that is used.

io.fileseparator
io.pathseparator

io.fileseparator

\

io.pathseparator

;

loaddata savedata

These two functions save you some programming. The first function loads a whole file in a string. By
default the file is loaded in binary mode, but when the second argument is true, some interpretation
takes place (for instance line endings). In practice the second argument can best be left alone.

io.loaddata(filename,textmode)

Lua Functions 111

preliminary, uncorrected version – June 25, 2020

Saving the data is done with:

io.savedata(filename,str)
io.savedata(filename,tab,joiner)

When a table is given, you can optionally specify a string that ends up between the elements that
make the table.

exists size noflines

These three function don’t need much comment.

io.exists(filename)
io.size(filename)
io.noflines(fileobject)
io.noflines(filename)

characters bytes readnumber readstring

When I wrote the icc profile loader, I needed a few helpers for reading strings of a certain length and
numbers of a given width. Both accept five values of n: -4, -2, 1, 2 and 4 where the negative values
swap the characters or bytes.

io.characters(f,n) --
io.bytes(f,n)

The function readnumber accepts five sizes: 1, 2, 4, 8, 12. The string function handles any size and
strings zero bytes from the string.

io.readnumber(f,size)
io.readstring(f,size)

Optionally you can give the position where the reading has to start:

io.readnumber(f,position,size)
io.readstring(f,position,size)

ask

In practice you will probably make your own variant of the following function, but at least a template
is there:

io.ask(question,default,options)

For example:

local answer = io.ask("choice", "two", { "one", "two" })

112 Lua Functions

preliminary, uncorrected version – June 25, 2020

10.10 File
The file library is one of the larger core libraries that comes with CONTEXT.

dirname basename extname nameonly

We start with a few filename manipulators.

local path = file.dirname(name,default)
local base = file.basename(name)
local suffix = file.extname(name,default) -- or file.suffix
local name = file.nameonly(name)

file.dirname("/data/temp/whatever.cld")

/data/temp

file.dirname("c:/data/temp/whatever.cld")

c:/data/temp

file.basename("/data/temp/whatever.cld")

whatever.cld

file.extname("c:/data/temp/whatever.cld")

cld

file.nameonly("/data/temp/whatever.cld")

whatever

addsuffix replacesuffix

These functions are used quite often:

local filename = file.addsuffix(filename, suffix, criterium)
local filename = file.replacesuffix(filename, suffix)

The first one adds a suffix unless one is present. When criterium is true no checking is done and
the suffix is always appended. The second function replaces the current suffix or add one when there
is none.

file.addsuffix("whatever","cld")

whatever.cld

file.addsuffix("whatever.tex","cld")

whatever.tex

Lua Functions 113

preliminary, uncorrected version – June 25, 2020

file.addsuffix("whatever.tex","cld",true)

whatever.tex.cld

file.replacesuffix("whatever","cld")

whatever.cld

file.replacesuffix("whatever.tex","cld")

whatever.cld

is_writable is_readable

These two test the nature of a file:

file.is_writable(name)
file.is_readable(name)

splitname join collapsepath

Instead of splitting off individual components you can get them all in one go:

local drive, path, base, suffix = file.splitname(name)

The drive variable is empty on operating systems other than MS WINDOWS. Such components are
joined with the function:

file.join(...)

The given snippets are joined using the / as this is rather platform independent. Some checking takes
place in order to make sure that nu funny paths result from this. There is also collapsepath that
does some cleanup on a path with relative components, like ...

file.splitname("a:/b/c/d.e")

a:/b/c/ d e

file.join("a","b","c.d")

a/b/c.d

file.collapsepath("a/b/../c.d")

a/c.d

file.collapsepath("a/b/../c.d",true)

E:/context/manuals/mkiv/external/cld/a/c.d

splitpath joinpath

By default splitting a execution path specification is done using the operating system dependant
separator, but you can force one as well:

114 Lua Functions

preliminary, uncorrected version – June 25, 2020

file.splitpath(str,separator)

The reverse operation is done with:

file.joinpath(tab,separator)

Beware: in the following examples the separator is system dependent so the outcome depends on the
platform you run on.

file.splitpath("a:b:c")

t={ "a:b:c" }

file.splitpath("a;b;c")

t={ "a", "b", "c" }

file.joinpath({"a","b","c"})

a;b;c

robustname

In workflows filenames with special characters can be a pain so the following function replaces char-
acters other than letters, digits, periods, slashes and hyphens by hyphens.

file.robustname(str,strict)

file.robustname("We don't like this!")

We-don-t-like-this-

file.robustname("We don't like this!",true)

We-don-t-like-this

readdata writedata

These two functions are duplicates of functions with the same name in the io library.

copy

There is not much to comment on this one:

file.copy(oldname,newname)

is_qualified_path is_rootbased_path

A qualified path has at least one directory component while a rootbased path is anchored to the root
of a filesystem or drive.

file.is_qualified_path(filename)

Lua Functions 115

preliminary, uncorrected version – June 25, 2020

file.is_rootbased_path(filename)

file.is_qualified_path("a")

false

file.is_qualified_path("a/b")

true

file.is_rootbased_path("a/b")

false

file.is_rootbased_path("/a/b")

true

10.11 Dir
The dir library uses functions of the lfs library that is linked into LUATEX.

current

This returns the current directory:

dir.current()

glob globpattern globfiles

The glob function collects files with names that match a given pattern. The pattern can have wild-
cards: * (oen of more characters), ? (one character) or ** (one or more directories). You can pass
the function a string or a table with strings. Optionally a second argument can be passed, a table that
the results are appended to.

local files = dir.glob(pattern,target)
local files = dir.glob({pattern,...},target)

The target is optional and often you end up with simple calls like:

local files = dir.glob("*.tex")

There is a more extensive version where you start at a path, and applies an action to each file that
matches the pattern. You can either or not force recursion.

dir.globpattern(path,patt,recurse,action)

The globfiles function collects matches in a table that is returned at the end. You can pass an
existing table as last argument. The first argument is the starting path, the second arguments controls
analyzing directories and the third argument has to be a function that gets a name passed and is
supposed to return true or false. This function determines what gets collected.

dir.globfiles(path,recurse,func,files)

116 Lua Functions

preliminary, uncorrected version – June 25, 2020

makedirs

With makedirs you can create the given directory. If more than one name is given they are concati-
nated.

dir.makedirs(name,...)

expandname

This function tries to resolve the given path, including relative paths.

dir.expandname(str)

dir.expandname(".")

E:/context/manuals/mkiv/external/cld

10.12 URL

split hashed construct

This is a specialized library. You can split an url into its components. An URL is constructed like this:

foo://example.com:2010/alpha/beta?gamma=delta#epsilon

scheme foo://
authority example.com:2010
path /alpha/beta
query gamma=delta
fragment epsilon

A string is split into a hash table with these keys using the following function:

url.hashed(str)

or in strings with:

url.split(str)

The hash variant is more tolerant than the split. In the hash there is also a key original that holds
the original URL and and the boolean noscheme indicates if there is a scheme at all.

The reverse operation is done with:

url.construct(hash)

url.hashed("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={
["authority"]="example.com:2010",
["filename"]="example.com:2010/alpha/beta",
["fragment"]="epsilon",

Lua Functions 117

preliminary, uncorrected version – June 25, 2020

["host"]="example.com",
["noscheme"]=false,
["original"]="foo://example.com:2010/alpha/beta?gamma=delta#epsilon",
["path"]="alpha/beta",
["port"]=2010,
["queries"]={
["gamma"]="delta",

},
["query"]="gamma=delta",
["scheme"]="foo",

}

url.hashed("alpha/beta")

t={
["authority"]="",
["filename"]="alpha/beta",
["fragment"]="",
["noscheme"]=true,
["original"]="alpha/beta",
["path"]="alpha/beta",
["query"]="",
["scheme"]="file",

}

url.split("foo://example.com:2010/alpha/beta?gamma=delta#epsilon")

t={ "foo", "example.com:2010", "alpha/beta", "gamma=delta", "epsilon" }

url.split("alpha/beta")

t={ "", "", "", "", "" }

hasscheme addscheme filename query

There are a couple of helpers and their names speaks for themselves:

url.hasscheme(str)
url.addscheme(str,scheme)
url.filename(filename)
url.query(str)

url.hasscheme("http://www.pragma-ade.com/cow.png")

http

url.hasscheme("www.pragma-ade.com/cow.png")

false

118 Lua Functions

preliminary, uncorrected version – June 25, 2020

url.addscheme("www.pragma-ade.com/cow.png","http://")

http://:///www.pragma-ade.com/cow.png

url.addscheme("www.pragma-ade.com/cow.png")

file:///www.pragma-ade.com/cow.png

url.filename("http://www.pragma-ade.com/cow.png")

http://www.pragma-ade.com/cow.png

url.query("a=b&c=d")

t={
["a"]="b",
["c"]="d",

}

10.13 OS

[lua luatex] env setenv getenv

In CONTEXT normally you will use the resolver functions to deal with the environment and files.
However, a more low level interface is still available. You can query and set environment variables
with two functions. In addition there is the env table as interface to the environment. This threesome
replaces the built in functions.

os.setenv(key,value)
os.getenv(key)
os.env[key]

[lua] execute

There are several functions for running programs. One comes directly from LUA, the otheres come
with LUATEX. All of them are are overloaded in CONTEXT in order to get more control.

os.execute(...)

[luatex] spawn exec

Two other runners are:

os.spawn(...)
os.exec (...)

The exec variant will transfer control from the current process to the new one and not return to the
current job. There is a more detailed explanation in the LUATEX manual.

Lua Functions 119

preliminary, uncorrected version – June 25, 2020

resultof launch

The following function runs the command and returns the result as string. Multiple lines are com-
bined.

os.resultof(command)

The next one launches a file assuming that the operating system knows what application to use.

os.launch(str)

type name platform libsuffix binsuffix

There are a couple of strings that reflect the current machinery: type returns either windows or
unix. The variable name is more detailed: windows, msdos, linux, macosx, etc. If you also want the
architecture you can consult platform.

local t = os.type
local n = os.name
local p = os.platform

These three variables as well as the next two are used internally and normally they are not needed in
your applications as most functions that matter are aware of what platform specific things they have
to deal with.

local s = os.libsuffix
local b = os.binsuffix

These are string, not functions.

os.type

windows

os.name

windows

os.platform

win64

os.libsuffix

dll

os.binsuffix

exe

[lua] time

The built in time function returns a number. The accuracy is implementation dependent and not that
large.

120 Lua Functions

preliminary, uncorrected version – June 25, 2020

os.time()

1593091454

[luatex] times gettimeofday

Although LUA has a built in type os.time function, we normally will use the one provided by LUATEX
as it is more precise:

os.gettimeofday()

os.gettimeofday()

1593091454.1126

runtime

More interesting is:

os.runtime()

which returns the time spent in the application so far.

os.runtime()

4.1653201580048

Sometimes you need to add the timezone to a verbose time and the following function does that for
you.

os.timezone(delta)

os.timezone()

1

os.timezone(1)

+02:00

os.timezone(-1)

+02:00

uuid

A version 4 UUID can be generated with:

os.uuid()

The generator is good enough for our purpose.

os.uuid()

4cce4420-4858-a1a9-a05a-290fad64cb54

The LUA interface code 121

preliminary, uncorrected version – June 25, 2020

11 The LUA interface code

11.1 Introduction
There is a lot of LUA code in MKIV. Much is not exposed and a lot of what is exposed is not meant to
be used directly at the LUA end. But there is also functionality and data that can be accessed without
side effects.

In the following sections a subset of the built in functionality is discussed. There are often more func-
tions alongside those presented but they might change or disappear. So, if you use undocumented
features, be sure to tag them somehow in your source code so that you can check them out when
there is an update. Best would be to have more functionality defined local so that it is sort of hidden
but that would be unpractical as for instance functions are often used in other modules and or have
to be available at the TEX end.

It might be tempting to add your own functions to namespaces created by CONTEXT or maybe overload
some existing ones. Don’t do this. First of all, there is no guarantee that your code will not interfere,
nor that it overloads future functionality. Just use your own namespace. Also, future versions of CON-
TEXT might have a couple of protection mechanisms built in. Without doubt the following sections
will be extended as soon as interfaces become more stable.

11.2 Characters
There are quite some data tables defined but the largest is the character database. You can consult this
table any time you want but you’re not supposed to add or change its content if only because changes
will be overwritten when you update CONTEXT. Future versions may carry more information. The
table can be accessed using an unicode number. A relative simple entry looks as follows:

characters.data[0x00C1]

t={
["adobename"]="Aacute",
["category"]="lu",
["contextname"]="Aacute",
["description"]="LATIN CAPITAL LETTER A WITH ACUTE",
["direction"]="l",
["lccode"]=225,
["linebreak"]="al",
["shcode"]=65,
["specials"]={ "char", 65, 769 },
["unicodeslot"]=193,

}

Much of this is rather common information but some of it is specific for use with CONTEXT. Some
characters have even more information, for instance those that deal with mathematics:

characters.data[0x2190]

t={

122 The LUA interface code

preliminary, uncorrected version – June 25, 2020

["adobename"]="arrowleft",
["category"]="sm",
["cjkwd"]="a",
["description"]="LEFTWARDS ARROW",
["direction"]="on",
["linebreak"]="ai",
["mathextensible"]="l",
["mathfiller"]="leftarrowfill",
["mathlist"]={ 60, 8722 },
["mathspec"]={
{
["class"]="relation",
["name"]="leftarrow",

},
{
["class"]="relation",
["name"]="gets",

},
{
["class"]="under",
["name"]="underleftarrow",

},
{
["class"]="over",
["name"]="overleftarrow",

},
},
["mathstretch"]="h",
["unicodeslot"]=8592,

}

Not all characters have a real entry. For instance most CJK characters are virtual and share the same
data:

characters.data[0x3456]

t={
["unicodeslot"]=13398,

}

You can also access the table using UTF characters:

characters.data["ä"]

t={
["adobename"]="adieresis",
["category"]="ll",
["contextname"]="adiaeresis",
["description"]="LATIN SMALL LETTER A WITH DIAERESIS",
["direction"]="l",

The LUA interface code 123

preliminary, uncorrected version – June 25, 2020

["linebreak"]="al",
["shcode"]=97,
["specials"]={ "char", 97, 776 },
["uccode"]=196,
["unicodeslot"]=228,

}

A more verbose string access is also supported:

characters.data["U+0070"]

t={
["adobename"]="p",
["category"]="ll",
["cjkwd"]="na",
["description"]="LATIN SMALL LETTER P",
["direction"]="l",
["linebreak"]="al",
["mathclass"]="variable",
["uccode"]=80,
["unicodeslot"]=112,

}

Another (less usefull) table contains information about ranges in this character table. You can access
this table using rather verbose names, or you can use collapsed lowercase variants.

characters.blocks["CJK Compatibility Ideographs"]

t={
["description"]="CJK Compatibility Ideographs",
["first"]=63744,
["last"]=64255,
["otf"]="hang",

}

characters.blocks["hebrew"]

t={
["description"]="Hebrew",
["first"]=1424,
["last"]=1535,
["otf"]="hebr",

}

characters.blocks["combiningdiacriticalmarks"]

t={
["description"]="Combining Diacritical Marks",
["first"]=768,
["last"]=879,

}

124 The LUA interface code

preliminary, uncorrected version – June 25, 2020

Some fields can be accessed using functions. This can be handy when you need that information for
tracing purposes or overviews. There is some overhead in the function call, but you get some extra
testing for free. You can use characters as well as numbers as index.

characters.contextname("ä")

adiaeresis

characters.adobename(228)

adieresis

characters.description("ä")

LATIN SMALL LETTER A WITH DIAERESIS

The category is normally a two character tag, but you can also ask for a more verbose variant:

characters.category(228)

ll

characters.category(228,true)

Letter Lowercase

The more verbose category tags are available in a table:

characters.categorytags["lu"]

Letter Uppercase

There are several fields in a character entry that help us to remap a character. The lccode indicates
the lowercase code point and the uccode to the uppercase code point. The shcode refers to one or
more characters that have a similar shape.

characters.shape ("ä")

97

characters.uccode("ä")

196

characters.lccode("ä")

228

characters.shape (100)

100

characters.uccode(100)

68

The LUA interface code 125

preliminary, uncorrected version – June 25, 2020

characters.lccode(100)

100

You can use these function or access these fields directly in an entry, but we also provide a few virtual
tables that avoid accessing the whole entry. This method is rather efficient.

characters.lccodes["ä"]

228

characters.uccodes["ä"]

196

characters.shcodes["ä"]

97

characters.lcchars["ä"]

ä

characters.ucchars["ä"]

Ä

characters.shchars["ä"]

a

As with other tables, you can use a number instead of an UTF character. Watch how we get a table for
multiple shape codes but a string for multiple shape characters.

characters.lcchars[0x00C6]

æ

characters.ucchars[0x00C6]

Æ

characters.shchars[0x00C6]

AE

characters.shcodes[0x00C6]

t={ 65, 69 }

These codes are used when we manipulate strings. Although there are upper and lower functions
in the string namespace, the following ones are the real ones to be used in critical situations.

characters.lower("ÀÁÂÃÄÅàáâãäå")

àáâãäåàáâãäå

126 The LUA interface code

preliminary, uncorrected version – June 25, 2020

characters.upper("ÀÁÂÃÄÅàáâãäå")

ÀÁÂÃÄÅÀÁÂÃÄÅ

characters.shaped("ÀÁÂÃÄÅàáâãäå")

AAAAAAaaaaaa

A rather special one is the following:

characters.lettered("Only 123 letters + count!")

Onlyletterscount

With the second argument is true, spaces are kept and collapsed. Leading and trailing spaces are
stripped.

characters.lettered("Only 123 letters + count!",true)

Only letters count

Access to tables can happen by number or by string, although there are some limitations when it
gets too confusing. Take for instance the number 8 and string "8": if we would interpret the string
as number we could never access the entry for the character eight. However, using more verbose
hexadecimal strings works okay. The remappers are also available as functions:

characters.tonumber("a")

97

characters.fromnumber(100)

d

characters.fromnumber(0x0100)

Ā

characters.fromnumber("0x0100")

Ā

characters.fromnumber("U+0100")

Ā

In addition to the already mentioned category information you can also use a more direct table ap-
proach:

characters.categories["ä"]

ll

characters.categories[100]

ll

The LUA interface code 127

preliminary, uncorrected version – June 25, 2020

In a similar fashion you can test if a given character is in a specific category. This can save a lot of
tests.

characters.is_character[characters.categories[67]]

true

characters.is_character[67]

true

characters.is_character[characters.data[67].category]

true

characters.is_letter[characters.data[67].category]

true

characters.is_command[characters.data[67].category]

nil

Another virtual table is the one that provides access to special information, for instance about how a
composed character is made up of components.

characters.specialchars["ä"]

a

characters.specialchars[100]

d

The outcome is often similar to output that uses the shapecode information.

Although not all the code deep down in CONTEXT is meant for use at the user level, it sometimes
can eb tempting to use data and helpers that are available as part of the general housekeeping. The
next table was used when looking into sorting Korean. For practical reasons we limit the table to ten
entries; otherwise we would have ended up with hundreds of pages.

가 ㄱ ㅏ HANGUL SYLLABLE GA
각 ㄱ ㅏ ㄱ HANGUL SYLLABLE GAG
갂 ㄱ ㅏ ㄲ HANGUL SYLLABLE GAGG
갃 ㄱ ㅏ ㄳ HANGUL SYLLABLE GAGS
간 ㄱ ㅏ ㄴ HANGUL SYLLABLE GAN
갅 ㄱ ㅏ ㄵ HANGUL SYLLABLE GANJ
갆 ㄱ ㅏ ㄶ HANGUL SYLLABLE GANH
갇 ㄱ ㅏ ㄷ HANGUL SYLLABLE GAD
갈 ㄱ ㅏ ㄹ HANGUL SYLLABLE GAL
갉 ㄱ ㅏ ㄺ HANGUL SYLLABLE GALG

\startluacode
local data = characters.data

128 The LUA interface code

preliminary, uncorrected version – June 25, 2020

local map = characters.hangul.remapped

local first, last = characters.getrange("hangulsyllables")

last = first + 9 -- for now

context.start()

context.definedfont { "file:unbatang" }

context.starttabulate { "|T||T||T||T||T|" }
for unicode = first, last do

local character = data[unicode]
local specials = character.specials
if specials then

context.NC()
context.formatted("%04V",unicode)
context.NC()
context.formatted("%c",unicode)
for i=2,4 do

local chr = specials[i]
if chr then

chr = map[chr] or chr
context.NC()
context.formatted("%04V",chr)
context.NC()
context.formatted("%c",chr)

else
context.NC()
context.NC()

end
end
context.NC()
context(character.description)
context.NC()
context.NR()

end
end
context.stoptabulate()

context.stop()
\stopluacode

11.3 Fonts
There is a lot of code that deals with fonts but most is considered to be a black box. When a font
is defined, its data is collected and turned into a form that TEX likes. We keep most of that data
available at the LUA end so that we can later use it when needed. In this chapter we discuss some of

The LUA interface code 129

preliminary, uncorrected version – June 25, 2020

the possibilities. More details can be found in the font manual(s) so we don’t aim for completeness
here.

A font instance is identified by its id, which is a number where zero is reserved for the so called
nullfont. The current font id can be requested by the following function.

fonts.currentid()

8

The fonts.current() call returns the table with data related to the current id. You can access the
data related to any id as follows:

local tfmdata = fonts.identifiers[number]

Not all entries in the table make sense for the user as some are just meant to drive the font initialization
at the TEX end or the backend. The next table lists the most important ones. Some of the tables are
just shortcuts to en entry in one of the shared subtables.

ascender number the height of a line conforming the font
descender number the depth of a line conforming the font
italicangle number the angle of the italic shapes (if present)
designsize number the design size of the font (if known)
size number the size in scaled points if the font instance
factor number the multiplication factor for unscaled dimensions
hfactor number the horizontal multiplication factor
vfactor number the vertical multiplication factor
extend number the horizontal scaling to be used by the backend
slant number the slanting to be applied by the backend
characters table the scaled character (glyph) information (tfm)
descriptions table the original unscaled glyph information (otf, afm, tfm)
indices table the mapping from unicode slot to glyph index
unicodes table the mapoing from glyph names to unicode
marks table a hash table with glyphs that are marks as entry
parameters table the font parameters as TEX likes them
mathconstants table the OPENTYPE math parameters
mathparameters table a reference to the MathConstants table
shared table a table with information shared between instances
unique table a table with information unique for this instance
unscaled table the unscaled (intermediate) table
goodies table the CONTEXT specific extra font information
fonts table the table with references to other fonts
cidinfo table a table with special information for the backend
filename string the full path of the loaded font
fontname string the font name as specified in the font (limited in size)
fullname string the complete font name as specified in the font
name string the (short) name of the font
psname string the (unique) name of the font as used by the backend
hash string the hash that makes this instance unique

130 The LUA interface code

preliminary, uncorrected version – June 25, 2020

id number the id (number) that TEX will use for this instance
type string an idicator if the font is virtual or real
format string a qualification for this font, e.g. opentype
mode string the CONTEXT processing mode, node or base

The parameters table contains variables that are used by TEX itself. You can use numbers as index
and these are equivalent to the so called \fontdimen variables. More convenient is is to access by
name:

slant the slant per point (seldom used)
space the interword space
spacestretch the interword stretch
spaceshrink the interword shrink
xheight the x-height (not per se the heigth of an x)
quad the so called em-width (often the width of an emdash)
extraspace additional space added in specific situations

The math parameters are rather special and explained in the LUATEX manual. Quite certainly you
never have to touch these parameters at the LUA end.

En entry in the characters table describes a character if we have entries within the UNICODE range.
There can be entries in the private area but these are normally variants of a shape or special math
glyphs.

name the name of the character
index the index in the raw font table
height the scaled height of the character
depth the scaled depth of the character
width the scaled height of the character
tounicode a UTF-16 string representing the conversion back to unicode
expansion_factor a multiplication factor for (horizontal) font expansion
left_protruding a multiplication factor for left side protrusion
right_protruding a multiplication factor for right side protrusion
italic the italic correction
next a pointer to the next character in a math size chain
vert_variants a pointer to vertical variants conforming OPENTYPE math
horiz_variants a pointer to horizontal variants conforming OPENTYPE math
top_accent information with regards to math top accents
mathkern a table describing stepwise math kerning (following the shape)
kerns a table with intercharacter kerning dimensions
ligatures a (nested) table describing ligatures that start with this character
commands a table with commands that drive the backend code for a virtual shape

Not all entries are present for each character. Also, in so called node mode, the ligatures and kerns
tables are empty because in that case they are dealt with at the LUA end and not by TEX.

Say that you run into a glyph node and want to access the data related to that glyph. Given that
variable n points to the node, the most verbose way of doing that is:

local g = fonts.identifiers[n.id].characters[n.char]

The LUA interface code 131

preliminary, uncorrected version – June 25, 2020

Given the speed of LUATEX this is quite fast. Another method is the following:

local g = fonts.characters[n.id][n.char]

For some applications you might want faster access to critical parameters, like:

local quad = fonts.quads [n.id][n.char]
local xheight = fonts.xheights[n.id][n.char]

but that only makes sense when you don’t access more than one such variable at the same time.

Among the shared tables is the feature specification:

fonts.current().shared.features

t={
["analyze"]=true,
["autolanguage"]="position",
["autoscript"]="position",
["checkmarks"]=true,
["curs"]=true,
["devanagari"]=true,
["dummies"]=true,
["extensions"]=true,
["extrafeatures"]=true,
["extraprivates"]=true,
["features"]=true,
["kern"]=true,
["liga"]=true,
["mark"]=true,
["mathkerns"]=true,
["mathrules"]=true,
["mkmk"]=true,
["mode"]="node",
["number"]=35,
["script"]="dflt",
["spacekern"]=true,
["tlig"]=true,
["trep"]=true,
["visualspace"]=true,

}

As features are a prominent property of OPENTYPE fonts, there are a few datatables that can be used
to get their meaning.

fonts.handlers.otf.tables.features['liga']

standard ligatures

fonts.handlers.otf.tables.languages['nld']

dutch

132 The LUA interface code

preliminary, uncorrected version – June 25, 2020

fonts.handlers.otf.tables.scripts['arab']

arabic

There is a rather extensive font database built in but discussing its interface does not make much
sense. Most usage happens automatically when you use the name: and spec: methods of defining
fonts and the mtx-fonts script is built on top of it.

table.sortedkeys(fonts.names.data)

t={ "cache_uuid", "cache_version", "datastate", "fallbacks", "families", "files",
"indices", "mappings", "names", "rejected", "sorted_fallbacks", "sorted_families",
"sorted_mappings", "specifications", "statistics", "version" }

You can load the database (if it’s not yet loaded) with:

names.load(reload,verbose)

When the first argument is true, the database will be rebuild. The second arguments controls ver-
bosity.

Defining a font normally happens at the TEX end but you can also do it in LUA.

local id, fontdata = fonts.definers.define {
lookup = "file", -- use the filename (file spec name)
name = "pagella-regular", -- in this case the filename
size = 10*65535, -- scaled points
global = false, -- define the font globally
cs = "MyFont", -- associate the name \MyFont
method = "featureset", -- featureset or virtual (* or @)
sub = nil, -- no subfont specifier
detail = "whatever", -- the featureset (or whatever method applies)

}

In this case the detail variable defines what featureset has to be applied. You can define such sets
at the LUA end too:

fonts.definers.specifiers.presetcontext (
"whatever",
"default",
{

mode = "node",
dlig = "yes",

}
)

The first argument is the name of the featureset. The second argument can be an empty string or
a reference to an existing featureset that will be taken as starting point. The final argument is the
featureset. This can be a table or a string with a comma separated list of key/value pairs.

The LUA interface code 133

preliminary, uncorrected version – June 25, 2020

11.4 Nodes
Nodes are the building blocks that make a document reality. Nodes are linked into lists and at various
moments in the typesetting process you can manipulate them. Deep down in CONTEXT we use quite
some LUA magic to manipulate lists of nodes. Therefore it is no surprise that we have some tracing
available. Take the following box.

\setbox0\hbox{It's in \hbox{\bf all} those nodes.}

This box contains characters and glue between the words. The box is already constructed. There can
also be kerns between characters, but of course only if the font provides such a feature. Let’s inspect
this box:

nodes.toutf(tex.box[0])

It’s in all those nodes.

nodes.toutf(tex.box[0].list)

It’s in all those nodes.

This tracer returns the text and spacing and recurses into nested lists. The next tracer does not do
this and marks non glyph nodes as [-]:

nodes.listtoutf(tex.box[0])

[-]

nodes.listtoutf(tex.box[0].list)

It’[-]s[-]in[-][-][-]t[-]hose[-]nodes.

A more verbose tracer is the next one. It does show a bit more detailed information about the glyphs
nodes.

nodes.tosequence(tex.box[0])

hlist

nodes.tosequence(tex.box[0].list)

U+0049:I U+0074:t U+2019:’ kern U+0073:s glue U+0069:i U+006E:n glue hlist glue
U+0074:t kern U+0068:h U+006F:o U+0073:s U+0065:e glue U+006E:n U+006F:o U+0064:d
U+0065:e U+0073:s U+002E:.

The fourth tracer does not show that detail and collapses sequences of similar node types.

nodes.idstostring(tex.box[0])

[hlist]

nodes.idstostring(tex.box[0].list)

[3*glyph] [kern] [glyph] [glue] [2*glyph] [glue] [hlist] [glue] [glyph] [kern]
[4*glyph] [glue] [6*glyph]

134 The LUA interface code

preliminary, uncorrected version – June 25, 2020

The number of nodes in a list is identified with the countall function. Nested nodes are counted
too.

nodes.countall(tex.box[0])

28

nodes.countall(tex.box[0].list)

27

There are a lot of helpers in the nodes namespace. In fact, we map all the helpers provided by the
engine itself under nodes too. These are described in the LUATEX manual. There are for instance
functions to check node types and node id’s:

local str = node.type(1)
local num = node.id("vlist")

These are basic LUATEX functions. In addition to those we also provide a few more helpers as well as
mapping tables. There are two tables that map node id’s to strings and backwards:

nodes.nodecodes regular nodes, some fo them are sort of private to the engine
nodes.noadcodes math nodes that later on are converted into regular nodes

Nodes can have subtypes. Again we have tables that map the subtype numbers onto meaningfull
names and reverse.

nodes.listcodes subtypes of hlist and vlist nodes
nodes.kerncodes subtypes of kern nodes
nodes.gluecodes subtypes of glue nodes (skips)
nodes.glyphcodes subtypes of glyph nodes, the subtype can change
nodes.mathcodes math specific subtypes
nodes.fillcodes these are not really subtypes but indicate the strength of the filler
nodes.whatsitcodes subtypes of a rather large group of extension nodes

Some of the names of types and subtypes have underscores but you can omit them when you use
these tables. You can use tables like this as follows:

local glyph_code = nodes.nodecodes.glyph
local kern_code = nodes.nodecodes.kern
local glue_code = nodes.nodecodes.glue

for n in nodes.traverse(list) do
local id == n.id
if id == glyph_code then

...
elseif id == kern_code then

...
elseif id == glue_code then

...
else

...

The LUA interface code 135

preliminary, uncorrected version – June 25, 2020

end
end

You only need to use such temporary variables in time critical code. In spite of what you might think,
lists are not that long and given the speed of LUA (and successive optimizations in LUATEX) looping
over a paragraphs is rather fast.

Nodes are created using node.new. If you study the CONTEXT code you will notice that there are
quite some functions in the nodes.pool namespace, like:

local g = nodes.pool.glyph(fnt,chr)

Of course you need to make sure that the font id is valid and that the referred glyph in in the font.
You can use the allocators but don’t mess with the code in the pool namespace as this might interfere
with its usage all over CONTEXT.

The nodes namespace provides a couple of helpers and some of them are similar to ones provided in
the node namespace. This has practical as well as historic reasons. For instance some were prototypes
functions that were later built in.

local head, current = nodes.before (head, current, new)
local head, current = nodes.after (head, current, new)
local head, current = nodes.delete (head, current)
local head, current = nodes.replace(head, current, new)
local head, current, old = nodes.remove (head, current)

Another category deals with attributes:

nodes.setattribute (head, attribute, value)
nodes.unsetattribute (head, attribute)
nodes.setunsetattribute (head, attribute, value)
nodes.setattributes (head, attribute, value)
nodes.unsetattributes (head, attribute)
nodes.setunsetattributes(head, attribute, value)
nodes.hasattribute (head, attribute, value)

11.5 Resolvers
All IO is handled by functions in the resolvers namespace. Most of the code that you find in the
data-*.lua files is of litle relevance for users, especially at the LUA end, so we won’t discuss it here
in great detail.

The resolver code is modelled after the KPSE library that itself implements the TEX Directory Structure
in combination with a configuration file. However, we go a bit beyond this structure, for instance in
integrating support for other resources that file systems. We also have our own configuration file.
But important is that we still support a similar logic too so that regular configurations are dealt with.

During a run LUATEX needs files of a different kind: source files, font files, images, etc. In practice
you will probably only deal with source files. The most fundamental function is findfile. The first
argument is the filename to be found. A second optional argument indicates the file type.

136 The LUA interface code

preliminary, uncorrected version – June 25, 2020

The following table relates so called formats to suffixes and variables in the configuration file.

variable format suffix

AFMFONTS afm afm
adobe font metric
adobe font
metrics

BIBINPUTS bib bib
BSTINPUTS bst bst
FONTCIDMAPS cid cid cidmap

cid map
cid maps
cid file
cid files

FONTFEATURES fea fea
font feature
font features
font feature file
font feature
files

TEXFORMATS fmt fmt
format
tex format

FONTCONFIG_PATH fontconfig
fontconfig file
fontconfig files

ICCPROFILES icc icc
icc profile
icc profiles

CLUAINPUTS lib dll
LUAINPUTS lua lua lud tma tmd
MPMEMS mem mem

metapost format
MPINPUTS mp mp mpvi mpiv mpxl mpii
OFMFONTS ofm ofm tfm

omega font metric
omega font
metrics

OPENTYPEFONTS otf otf
opentype
opentype font
opentype fonts

OVFFONTS ovf ovf vf
omega virtual
font
omega virtual
fonts

The LUA interface code 137

preliminary, uncorrected version – June 25, 2020

T1FONTS pfb pfb pfa
type1
type 1
type1 font
type 1 font
type1 fonts
type 1 fonts

PKFONTS pk pk
TEXINPUTS tex tex mkiv mkvi mkxl mklx mkii cld lfg xml
TEXMFSCRIPTS texmfscript lua rb pl py

texmfscripts
script
scripts

TFMFONTS tfm tfm
tex font metric
tex font metrics

TTFONTS ttf ttf ttc dfont
truetype
truetype font
truetype fonts
truetype collection
truetype collections
truetype dictionary
truetype dictionaries

VFFONTS vf vf
virtual font
virtual fonts

There are a couple of more formats but these are not that relevant in the perspective of CONTEXT.

When a lookup takes place, spaces are ignored and formats are normalized to lowercase.

file.strip(resolvers.findfile("context.tex"),"tex/")

file.strip(resolvers.findfile("context.mkiv"),"tex/")

c:/data/develop/context/sources/context.mkiv

file.strip(resolvers.findfile("context"),"tex/")

texmf-context/scripts/context/stubs/unix/context

file.strip(resolvers.findfile("data-res.lua"),"tex/")

c:/data/develop/context/sources/data-res.lua

file.strip(resolvers.findfile("lmsans10-bold"),"tex/")

138 The LUA interface code

preliminary, uncorrected version – June 25, 2020

file.strip(resolvers.findfile("lmsans10-bold.otf"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","otf"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentypefonts"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

file.strip(resolvers.findfile("lmsans10-bold","opentype fonts"),"tex/")

texmf/fonts/opentype/public/lm/lmsans10-bold.otf

The plural variant of this function returns one or more matches.

resolvers.findfiles("texmfcnf.lua","cnf")

t={ "c:/data/develop/tex-context/tex/texmf-local/web2c/texmfcnf.lua" }

resolvers.findfiles("context.tex","")

t={
}

11.6 Mathematics (math)
todo

11.7 Graphics (grph)
is a separate chapter

11.8 Languages (lang)
todo

11.9 MetaPost (mlib)
todo

11.10 LuaTEX (luat)
todo

11.11 Tracing (trac)
todo

Scanners 139

preliminary, uncorrected version – June 25, 2020

12 Scanners

12.1 Introduction
Here we discuss methods to define macros that directly interface with the LUA side. It involves all
kind of scanners. There are actually more than we discuss here but some are meant for low level
usage. What is describe here has been used for ages and works quite well.

We don’t discuss some of the more obscure options here. Some are there just because we need them as part of
bootstrapping or initializing code and are of no real use to users.

12.2 A teaser first
Most of this chapter is examples and you learn TEX (and LUA) best by just playing around. The nice
thing about TEX is that it’s all about visual output, so that’s why in the next examples we just typeset
some of what we just scanned. Of course in practice the actions will be more complex.

\startluacode
interfaces.implement {

name = "MyMacroA",
public = true,
arguments = "string",
actions = function(s)

context("(%s)",s)
end,

}
\stopluacode

By default a macro gets defined in the \clf_ namespace but the public option makes it visible.
This default indicates that it is actually a low level mechanism in origin. More often than not these
interfaces are used like this:

\def\MyMacro#1{... \clf_MyMacroA{#1} ...}

When we look at the meaning of \MyMacroA we get:

\MyMacroA expandable luacall 1461

And when we apply this macro as:

\MyMacroA{123}
\MyMacroA{abc}
\edef\temp{\MyMacroA{abc}}

We get

(123) (abc)

The meaning of \temp is:

140 Scanners

preliminary, uncorrected version – June 25, 2020

\temp macro:->(abc)

We can also define the macro to be protected (\unexpanded) in CONTEXT speak). We can overload
existing scanners but unless we specify the overload option, we get a warning on the console.

\startluacode
interfaces.implement {

name = "MyMacroA",
public = true,

-- overload = true,
protected = true,
arguments = "string",
actions = function(s)

context("[%s]",s)
end,

}
\stopluacode

This time we get:

[123] [abc]

The meaning of \temp is:

\temp macro:->\MyMacroA {abc}

12.3 Basic data types
It is actually possible to write very advanced scanners but unless you’re in for obscurity the limited
subset discussed here is normally enough. The CONTEXT user interface is rather predictable, unless
you want to show off with weird additional interfaces, for instance by using delimiters other than
curly braces and brackets, or by using separators other than commas.

\startluacode
interfaces.implement {

name = "MyMacroB",
public = true,
arguments = { "string", "integer", "boolean", "dimen" },
actions = function(s,i,b,d)

context("<%s> <%i> <%l> <%p>",s,i,b,d)
end,

}
\stopluacode

This time we grab four arguments, each of a different type:

\MyMacroB{foo} 123 true 45.67pt

\def\temp {oof}
\scratchcounter 321
\scratchdimen 76.54pt

Scanners 141

preliminary, uncorrected version – June 25, 2020

\MyMacroB\temp \scratchcounter false \scratchdimen

The above usage gives:

<foo> <123> <true> <45.67pt>

<oof> <321> <false> <76.53999pt>

As you can see, registers can be used as well, and the \temp macro is also accepted as argument. The
integer and dimen arguments scan standard TEX values. If you want a LUA number you can specify
that as well. As our first example showed, when there is one argument you don’t need an array to
specify it.

\startluacode
interfaces.implement {

name = "MyMacroC",
public = true,
arguments = "number",
actions = function(f)

context("<%.2f>",f)
end,

}
\stopluacode

As you can see, hexadecimal numbers are also accepted:

\MyMacroC 1.23
\MyMacroC 1.23E4
\MyMacroC -1.23E4
\MyMacroC 0x1234

The above usage gives:

<1.23> <12300.00> <-12300.00> <4660.00>

12.4 Tables
A list can be grabbed too. The individual items are separated by spaces and items can be bound by
braces.

\startluacode
interfaces.implement {

name = "MyMacroD",
public = true,
arguments = "list",
actions = function(t)

context("< % + t >",t)
end,

}
\stopluacode

142 Scanners

preliminary, uncorrected version – June 25, 2020

The macro call:

\MyMacroD { 1 2 3 4 {5 6} }

results in:

< 1 + 2 + 3 + 4 + 5 6 >

Often in LUA scripts tables are uses all over the place. Picking up a table is also supported by the
implementer.

\startluacode
interfaces.implement {

name = "MyMacroE",
public = true,
arguments = {

{
{ "bar", "integer" },
{ "foo", "dimen" },

}
},
actions = function(t)

context("<foo : %p> <bar : %i>",t.foo,t.bar)
end,

}
\stopluacode

Watch out, we don’t use equal signs and commas here:

\MyMacroE {
foo 12pt
bar 34

}

We get:

<foo : 12pt> <bar : 34>

All the above can be combined:

\startluacode
interfaces.implement {

name = "MyMacroF",
public = true,
arguments = {

"string",
{

{ "bar", "integer" },
{ "foo", "dimen" },

},
{

{ "one", "string" },

Scanners 143

preliminary, uncorrected version – June 25, 2020

{ "two", "string" },
},

},
actions = function(s,t1,t2)

context("<%s> <%p> <%i> <%s> <%s>",s,t1.foo,t1.bar,t2.one,t2.two)
end,

}
\stopluacode

The following call:

\MyMacroF
{oeps}
{ foo 12pt bar 34 }
{ one {x} two {y} }

Results in one string and two table arguments.

<oeps> <12pt> <34> <x> <y>

You can nest tables, as in:

\startluacode
interfaces.implement {

name = "MyMacroG",
public = true,
arguments = {

"string",
"string",
{

{ "data", "string" },
{ "tab", "string" },
{ "method", "string" },
{ "foo", {

{ "method", "integer" },
{ "compact", "number" },
{ "nature" },
{ "*" }, -- any key

} },
{ "compact", "string", "tonumber" },
{ "nature", "boolean" },
{ "escape" },

},
"boolean",

},
actions = function(s1, s2, t, b)

context("<%s> <%s>",s1,s2)
context("<%s> <%s> <%s>",t.data,t.tab,t.compact)
context("<%i> <%s> <%s>",t.foo.method,t.foo.nature,t.foo.whatever)
context("<%l>",b)

144 Scanners

preliminary, uncorrected version – June 25, 2020

end,
}

\stopluacode

Although the \relax is not really needed in the next calls, I often use it to indicate that we’re done:

\MyMacroG
{s1}
{s2}
{

data {d}
tab {t}
compact {12.34}
foo { method 1 nature {n} whatever {w} }

}
true

\relax

This typesets:

<s1> <s2><d> <t> <12.34><1> <n> <w><true>

12.5 Expansion
When working with scanners it is important to realize that we have to do with an expansion engine.
When TEX picks up a token, it can be done as-is, that is the raw token, but it can also expand that token
first (which can be recursive) and then pick up the first token that results from that. Sometimes you
want that expansion, for instance when you pick up keywords, sometimes you don’t.

Expansion effects are most noticeable when we pickup a ‘string’ kind of value. In the implementor
we have two methods for that: string and argument. The argument method has an expandable
form (the default) and one that doesn’t expand. Take this:

\startluacode
interfaces.implement {

name = "MyMacroH",
public = true,
arguments = {

"string",
"argument",
"argumentasis",

},
actions = function(a,b,c)

context.type(a or "-") context.quad()
context.type(b or "-") context.quad()
context.type(c or "-") context.crlf()

end,
}

\stopluacode

Scanners 145

preliminary, uncorrected version – June 25, 2020

Now take this input:

\def\a{A} \def\b{B} \def\c{C}
\MyMacroH{a}{b}{c}
\MyMacroH{a\a}{b\b}{c\c}
\MyMacroH\a\b\c\relax
\MyMacroH\a xx\relax

We we use the string method we need a \relax (or some spacer) to end scanning of the string when
we don’t use curly braces. The last line is actually kind of tricky because the macro expects two
arguments after scanning the first string.

a b c
aA bB c\c
ABC - -
Axx - -

Here is a variant:

\startluacode
interfaces.implement {

name = "MyMacroI",
public = true,
arguments = {

"argument",
"argumentasis",

},
actions = function(a,b,c)

context.type(a or "-") context.quad()
context.type(b or "-") context.quad()
context.type(c or "-") context.crlf()

end,
}

\stopluacode

With:

\def\a{A} \def\b{B}
\MyMacroI{a}{b}
\MyMacroI{a\a}{b\b}
\MyMacroI\a\b\relax

we get:

a b -
aA b\b -
A B -

12.6 Boxes
You can pick up a box too. The value returned is a list node:

146 Scanners

preliminary, uncorrected version – June 25, 2020

\startluacode
interfaces.implement {

name = "MyMacroJ",
public = true,
arguments = "box",
actions = function(b)

context(b)
end,

}
\stopluacode

The usual box specifiers are supported:

So, with:

\MyMacroJ \hbox {\strut Test 1}
\MyMacroJ \hbox to 4cm {\strut Test 2}

we get:

Test 1
Test 2

There are three variants that don’t need the box operator hbox, vbox and vtop:

\startluacode
interfaces.implement {

name = "MyMacroL",
public = true,
arguments = {

"hbox",
"vbox",

},
actions = function(h,v)

context(h)
context(v)

end,
}

\stopluacode

Again, the usual box specifiers are supported:

This:

\MyMacroL {\strut Test 1h} to 10mm {\vfill Test 1v\vfill}
\MyMacroL spread 1cm {\strut Test 2h} to 15mm {\vfill Test 2v\vfill}

gives:

Scanners 147

preliminary, uncorrected version – June 25, 2020

Test 1hH__

Test 1vH__

__V

Test 2hH__

Test 2vH__

__V

12.7 Like CONTEXT

The previously discussed scanners don’t use equal signs and commas as separators, but you can
enforce that regime in the following way:

\startluacode
interfaces.implement {

name = "MyMacroN",
public = true,
arguments = {

"hash",
"array",

},
actions = function(h, a)

context.totable(h)
context.quad()
context.totable(a)

end,
}

\stopluacode

This:

\MyMacroN
[a = 1, b = 2]
[3, 4, 5, {6 7}]

gives:

[a=1,b=2] [3,4,5,6 7]

12.8 Verbatim
There are a couple of rarely used scanners (there are more of course but these are pretty low level
and not really used directly using implementors).

\startluacode
interfaces.implement {

name = "MyMacroO",
public = true,
arguments = "verbatim",

148 Scanners

preliminary, uncorrected version – June 25, 2020

actions = function(v)
context.type(v)

end,
}

\stopluacode

There is no expansion applied in:

\MyMacroO{this is \something verbatim}

so we get what we input:

this is \something verbatim

12.9 Macros
We can pick up a control sequence without bothering what it actually represents:

\startluacode
interfaces.implement {

name = "MyMacroP",
public = true,
arguments = "csname",
actions = function(c)

context("{\\ttbf name:} {\\tttf %s}",c)
end,

}
\stopluacode

The next control sequence is picked up and its name without the leading escape character is returned:

\MyMacroP\framed

So here we get:

name: framed

12.10 Token lists
If you have no clue what tokens are in the perspective of TEX, you can skip this section. We can grab
a token list in two ways. The most LUAish way is to grab it as a table:

\startluacode
interfaces.implement {

name = "MyMacroQ",
public = true,
arguments = "toks",
actions = function(t)

context("%S : ",t)
context.sprint(t)

Scanners 149

preliminary, uncorrected version – June 25, 2020

context.crlf()
end,

}
\stopluacode

\MyMacroQ{this is a {\bf token} list}
\MyMacroQ{this is a \inframed{token} list}

The above sample code gives us:

table: 000001e869949430 : this is a token list
table: 000001e869949b70 : this is a token list

An alternative is to keep the list a user data object:

\startluacode
interfaces.implement {

name = "MyMacroR",
public = true,
arguments = "tokenlist",
actions = function(t)

context("%S : ",t)
context.sprint(t)
context.crlf()

end,
}

\stopluacode

\MyMacroR{this is a {\bf token} list}
\MyMacroR{this is a \inframed{token} list}

Now we get:

<lua token : 757557 => 757660 : relax 0> : this is a token list
<lua token : 733904 => 370153 : relax 0> : this is a token list

12.11 Actions
The plural actions suggests that there can be more than one and indeed that is the case. The next
example shows a sequence of actions that are applied. The first one gets the arguments passes.

\startluacode
interfaces.implement {

name = "MyMacroS",
public = true,
arguments = "string",
actions = { characters.upper, context },

}
\stopluacode

\MyMacroS{uppercase}

150 Scanners

preliminary, uncorrected version – June 25, 2020

Gives: UPPERCASE

You can pass default arguments too. That way you can have multiple macros using the same action.
Here’s how to do that:

\startluacode
local function MyMacro(a,b,sign)

if sign then
context("$%i + %i = %i$",a,b,a+b)

else
context("$%i - %i = %i$",a,b,a-b)

end
end

interfaces.implement {
name = "MyMacroPlus",
public = true,
arguments = { "integer", "integer", true },
actions = MyMacro,

}

interfaces.implement {
name = "MyMacroMinus",
public = true,
arguments = { "integer", "integer", false },
actions = MyMacro,

}
\stopluacode

So,

\MyMacroPlus 654 321 \crlf
\MyMacroMinus 654 321 \crlf

Gives:

654 + 321 = 975
654 − 321 = 333

If you need to pass a string, you pass it as "'preset'", so single quotes inside the double ones.
Otherwise strings are interpreted as scanner types.

12.12 Embedded LUA code
When you mix TEX and LUA, you can put the LUA code in a TEX file, for instance a style. In the previous
sections we used this approach:

\startluacode
-- lua code

\stopluacode

Scanners 151

preliminary, uncorrected version – June 25, 2020

This method is both reliable and efficient but you need to keep into mind that macros get expanded.
In the next code, the second line will give an error when you have not defined \foo as expandable
macro. When it is unexpandable it will get passed as it is and LUA will see a \f as an escaped character.
So, when you want a macro be passes as macro, you need to do it as in the third line. The fact that
there is a comment trigger (--) doesn’t help here.

\startluacode
context("foo")

-- context("\foo")
context("\\bar")

\stopluacode

When you use \ctxlua the same is true but there you also need to keep an eye on special characters.
For instance a percent sign is then interpreted in the TEX way and because all becomes one line, a --
somewhere in the middle will make the rest of the line comment:

\ctxlua {
context("foo")

% context("\foo")
-- context("\\bar")

}

Here, the second line goes away (TEX comment) and the third line obscures all that follows. You
can use \letterpercent to smuggle a percent sign in a \ctxlua call. Special characters like a hash
symbol also need to be passed by name. Normally curly braces are no problem because LUA also likes
them properly nested.

When things become too messy and complex you can always put the code in an external file and load
that one (e.g. with require.

In the examples in this chapter we put the function in the table, but for long ones you might want to
do this:

\startluacode
local function MyMacro(s)

-- lots of code
end

interfaces.implement {
name = "MyMacro",
public = true,
arguments = "string",
actions = MyMacro,

}
\stopluacode

It is a common mistake not to define variables and functions as local. If you define them global for
sure there will become a time when this bites you.

152 Scanners

preliminary, uncorrected version – June 25, 2020

Variables 153

preliminary, uncorrected version – June 25, 2020

13 Variables

13.1 Introduction
Sometimes a bit of experimenting and exploring the boundaries of the TEX-LUA interfaces results in
new mechanisms. To what extent they are really useful is hard to say but we just keep them around.
Some are described here. This is, at least for the moment, a LMTX specific chapter.

13.2 Simple tables
The basic TEX data types are counters (integers), dimensions (kind of floating point variables with
typographic dimensions), token lists, node lists (boxes), fonts, and so on, but no data organized in
tables. The first mechanism that we discuss is one that obeys grouping. In that respect is behaves like
regular registers.

\newhashedtable\somehashtable

\somehashtable{ foo = 123, bar = "foo" }
[123 = \the\somehashtable{foo}]
[foo = \the\somehashtable{bar}]

\bgroup
\somehashtable{ foo = 456, bar = "oof" }
[456 = \the\somehashtable{foo}]
[oof = \the\somehashtable{bar}]
\egroup

[123 = \the\somehashtable{foo}]
[foo = \the\somehashtable{bar}]

\bgroup
\global\somehashtable{ foo = 456 }

\somehashtable{ bar = "oof" }
[456 = \the\somehashtable{foo}]
[oof = \the\somehashtable{bar}]
\egroup

[456 = \the\somehashtable{foo}]
[foo = \the\somehashtable{bar}]

We define a hashed table, one with keys and values. The definition is global. We can then assign
values to this table where the assignments themselves are hash tables. The above code generates:

[123 = 123] [foo = foo]

[456 = 456] [oof = oof]

[123 = 123] [foo = foo]

154 Variables

preliminary, uncorrected version – June 25, 2020

[456 = 456] [oof = oof]

[456 = 456] [foo = foo]

As you can see, the \global prefix makes the value persistent outside the group. You can mix local
and global assignments.

Instead of a hashed table, you can have an indexed table. This time the keys are numbers.

\newindexedtable\someindextable

\someindextable{ 123, "foo" }
[123 = \the\someindextable 1]
[foo = \the\someindextable 2]

\bgroup
\someindextable{ 456, "oof" }
[456 = \the\someindextable 1]
[oof = \the\someindextable 2]
\egroup

[123 = \the\someindextable 1]
[foo = \the\someindextable 2]

\bgroup
\global\someindextable{ [1] = 456 }

\someindextable{ [2] = "oof" }
[456 = \the\someindextable 1]
[oof = \the\someindextable 2]
\egroup

[456 = \the\someindextable 1]
[foo = \the\someindextable 2]

The outcome is the same as before:

[123 = 123] [foo = foo]

[456 = 456] [oof = oof]

[123 = 123] [foo = foo]

[456 = 456] [oof = oof]

[456 = 456] [foo = foo]

At the LUA end you can access these tables too:

\startluacode
context("[hashed : bar = %s]",context.hashedtables.somehashtable.bar)
context("[indexed : 2 = %s]", context.indexedtables.someindextable[2])
\stopluacode

Variables 155

preliminary, uncorrected version – June 25, 2020

Indeed we get:

[hashed : bar = foo][indexed : 2 = foo]

13.3 Data tables
In LUA, tables can be more complex than in the previous section. When you need more complex tables,
it is likely that your grouping needs are also different, which is why we have another mechanism.
This mechanism is build on top of another model: data values. There are 64K integer registers in any
modern TEX engine and normally that is more than enough. However, in addition in LUAMETATEX
we have a variant integer storage unit, one that is lightweight and where the amount is limited by the
size of the hash table. It was added as part of the low level cleanup up of the LUA token interface (a
bit more abstraction). Here is an example of its usage:

\dorecurse {100} {
\setdatavalue{#1}{#1}

}

\start \tttf \darkred \raggedright \dorecurse {100} {
#1=\scratchcounter\getdatavalue{#1}\the\scratchcounter

} \par \stop \blank

\start \tttf \darkgreen \raggedright \dorecurse {100} {
#1=\thedatavalue{#1}%

} \par \stop \blank

1=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 11=11 12=12 13=13 14=14 15=15 16=16
17=17 18=18 19=19 20=20 21=21 22=22 23=23 24=24 25=25 26=26 27=27 28=28 29=29
30=30 31=31 32=32 33=33 34=34 35=35 36=36 37=37 38=38 39=39 40=40 41=41 42=42
43=43 44=44 45=45 46=46 47=47 48=48 49=49 50=50 51=51 52=52 53=53 54=54 55=55
56=56 57=57 58=58 59=59 60=60 61=61 62=62 63=63 64=64 65=65 66=66 67=67 68=68
69=69 70=70 71=71 72=72 73=73 74=74 75=75 76=76 77=77 78=78 79=79 80=80 81=81
82=82 83=83 84=84 85=85 86=86 87=87 88=88 89=89 90=90 91=91 92=92 93=93 94=94
95=95 96=96 97=97 98=98 99=99 100=100

1=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 11=11 12=12 13=13 14=14 15=15 16=16
17=17 18=18 19=19 20=20 21=21 22=22 23=23 24=24 25=25 26=26 27=27 28=28 29=29
30=30 31=31 32=32 33=33 34=34 35=35 36=36 37=37 38=38 39=39 40=40 41=41 42=42
43=43 44=44 45=45 46=46 47=47 48=48 49=49 50=50 51=51 52=52 53=53 54=54 55=55
56=56 57=57 58=58 59=59 60=60 61=61 62=62 63=63 64=64 65=65 66=66 67=67 68=68
69=69 70=70 71=71 72=72 73=73 74=74 75=75 76=76 77=77 78=78 79=79 80=80 81=81
82=82 83=83 84=84 85=85 86=86 87=87 88=88 89=89 90=90 91=91 92=92 93=93 94=94
95=95 96=96 97=97 98=98 99=99 100=100

We define hundred values which are a simple numeric macros. Here we use two auxiliary macros be-
cause we prefer to use a dedicated namespace for these variables. However, there are also primitives
that deal with these data values:

\setdatavalue{my-data}{12345}%
\letdatacode \MyData 67890

156 Variables

preliminary, uncorrected version – June 25, 2020

\thedatavalue{my-data} \the\MyData

gives: 12345 67890

But, when more is needed than simple integers, tables come into view. This interface is different from
the simple one and involves more commands. The next examples show about all:

\newluatable\testtable
\setluatable\testtable{ foo = 123, bar = "456", oof = "rab" }
% \inspectluatable\testtable
\darkcyan
foo = \getfromluatable\testtable{foo}\par
bar = \getfromluatable\testtable{bar}\par
oof = \getfromluatable\testtable{oof}\par
\bgroup

\useluatable\testtable
\setluatable\testtable{ foo = 123123, bar = "456456" }

% \inspectluatable\testtable
\darkmagenta
foo = \getfromluatable\testtable{foo}\par
bar = \getfromluatable\testtable{bar}\par
oof = \getfromluatable\testtable{oof}\par
\startluacode

local t = context.luatables.get("testtable")
context("<%s %s %s>",t.foo,t.bar,t.oof)

\stopluacode \par
\egroup
\darkyellow
foo = \getfromluatable\testtable{foo}\par
bar = \getfromluatable\testtable{bar}\par
oof = \getfromluatable\testtable{oof}\par
\startluacode

local t = context.luatables.get("testtable")
context("<%s %s %s>",t.foo,t.bar,t.oof)

\stopluacode \par
% \inspectluatable\testtable

The tables are semi-local: \newluatable creates a table and \useluatable will create a local copy
that is discarded when the group ends.

foo = 123
bar = 456
oof = rab
foo = 123123
bar = 456456
oof = rab
<123123 456456 rab>
foo = 123
bar = 456
oof = rab

Variables 157

preliminary, uncorrected version – June 25, 2020

<123 456 rab>

Hashed and indexed tables can be used mixed, but there are additional accessors for indexed tables
because there we expect numbers.

\newluatable\moretable
\setluatable\moretable{ 1, "foo" }
\darkcyan
[1] = \getfromluatable\moretable{1}\par
[2] = \idxfromluatable\moretable 2 \par
\bgroup

\useluatable\moretable
\setluatable\moretable{ foo = 123123, bar = "456456" }
\darkmagenta
[1] = \getfromluatable\moretable{1}\par
[2] = \idxfromluatable\moretable 2 \par
\startluacode

local t = context.luatables.get("moretable")
context("<%s %s>",t[1],t[2])

\stopluacode \par
\egroup
\darkyellow
[1] = \getfromluatable\moretable{1}\par
[2] = \idxfromluatable\moretable 2 \par
\startluacode

local t = context.luatables.get("moretable")
context("<%s %s>",t[1],t[2])

\stopluacode \par

[1] = 1
[2] = foo
[1] = 1
[2] = foo
<1 foo>
[1] = 1
[2] = foo
<1 foo>

You can create more complex (nested) tables that you can handle at the LUA end in the usual way.
Basically any LUA that makes a table can go between the curly braces.

13.4 Named variables
Just because it can be done, and maybe it even has it use, we offer additional numbers, stored and
accessible by name. The different types all live in their own namespace:

\luainteger bar 123456
\luafloat bar 123.456e12
\luainteger gnu = 0xFFFF

158 Variables

preliminary, uncorrected version – June 25, 2020

{\darkcyan \the\luainteger bar}
{\darkmagenta\the\luafloat bar}
{\darkyellow \the\luainteger gnu}

These serialize like: 123456 123456000000000 65535, and when not set they default to zero. There is
an extra type, cardinal:

\luainteger a 0x7FFFFFFFFFFFFFFF
\luainteger b -0x7FFFFFFFFFFFFFFF
\luacardinal c 0xFFFFFFFFFFFFFFFF

We cheat a bit behind the screens because it is actually a double but we scan it as positive integer and
serialize it as such.

[\the \luainteger a\relax]\par
[\the \luainteger b\relax]\par
[\the \luacardinal c\relax]\par

[9223372036854775807]

[-9223372036854775807]

[18446744073709551616]

You have access to the numbers at the LUA end, as in:

\luainteger one 123 \luafloat two 456.678
\luaexpr{interfaces.numbers.one/1000 + interfaces.numbers.two/10000}

There are integers, cardinals and floats but the numbers one is the most generic as it tries to
resolve it from one of these namespaces, so we get: [0.1686678]. There is also a related expression
command:

(?: \luaexpression {n.one/1000 + n.two/10000})
(f: \luaexpression float {n.one/1000 + n.two/10000})
(i: \luaexpression integer {n.one/1000 + n.two/10000})
(c: \luaexpression cardinal {n.one/1000 + n.two/10000})
(l: \luaexpression lua {n.one/1000 + n.two/10000})

It typesets this (watch the lua variant, which is a precise roundtrip serialization method):

(?: 0.1686678)
(f: 0.1686678000000000066105343421440920792520046234130859375)
(i: 0)
(c: 0)
(l: 0x1.596e80e71b2cbp-3)

The n table is just a shortcut to interfaces.numbers.

Callbacks 159

preliminary, uncorrected version – June 25, 2020

14 Callbacks

14.1 Introduction
The LUATEX engine provides the usual basic TEX functionality plus a bit more. It is a deliberate choice
not to extend the core engine too much. Instead all relevant processes can be overloaded by new
functionality written in LUA. In CONTEXT callbacks are wrapped in a protective layer: on the one
hand there is extra functionality (usually interfaced through macros) and on the other hand users
can pop in their own handlers using hooks. Of course a plugged in function has to do the right thing
and not mess up the data structures. In this chapter the layer on top of callbacks is described.

14.2 Actions
Nearly all callbacks in LUATEX are used in CONTEXT. In the following list the callbacks tagged with
enabled are used and frozen, the ones tagged disabled are blocked and never used, while the ones
tagged undefined are yet unused.

append_to_vlist_filter undefined
build_page_insert enabled
buildpage_filter enabled vertical spacing etc (mvl)
contribute_filter enabled things done with lines
define_font enabled definition of fonts (tfmdata preparation)
find_data_file enabled find file using resolver
find_format_file enabled find file using resolver
find_log_file enabled find file using resolver
handle_error_hook undefined
hpack_filter enabled horizontal manipulations (before hbox creation)
hpack_quality undefined
hyphenate disabled normal hyphenation routine, called elsewhere
insert_local_par enabled after paragraph start
kerning disabled normal kerning routine, called elsewhere
ligaturing disabled normal ligaturing routine, called elsewhere
linebreak_filter enabled breaking paragraps into lines
make_extensible undefined
mlist_to_hlist enabled preprocessing math list
new_graf enabled before paragraph start
open_data_file enabled open file for reading
post_linebreak_filter enabled horizontal manipulations (after par break)
pre_dump enabled lua related finalizers called before we dump the format
pre_linebreak_filter enabled horizontal manipulations (before par break)
pre_output_filter undefined
process_jobname undefined
read_data_file enabled read file at once
show_error_hook enabled
show_error_message enabled
show_lua_error_hook enabled
show_warning_message enabled

160 Callbacks

preliminary, uncorrected version – June 25, 2020

show_whatsit enabled
start_file enabled
start_run enabled actions performed at the beginning of a run
stop_file enabled
stop_run enabled actions performed at the end of a run
terminal_input enabled
vpack_filter enabled vertical spacing etc
vpack_quality undefined
wrapup_run enabled actions performed after closing files

Eventually all callbacks will be used so don’t rely on undefined callbacks not being protected. Some
callbacks are only set when certain functionality is enabled.

It may sound somewhat harsh but if users kick in their own code, we cannot guarantee CONTEXT’s
behaviour any more and support becomes a pain. If you really need to use a callback yourself, you
should use one of the hooks and make sure that you return the right values.

All callbacks related to file handling, font definition and housekeeping are frozen and cannot be
overloaded. A reason for this are that we need some kind of protection against misuse. Another
reason is that we operate in a well defined environment, the so called TEX directory structure, and we
don’t want to mess with that. And of course, the overloading permits CONTEXT to provide extensions
beyond regular engine functionality.

So as a fact we only open up some of the node list related callbacks and these are grouped as follows:

category callback usage

processors pre_linebreak_filter called just before the paragraph is broken into lines
hpack_filter called just before a horizontal box is constructed

finalizers post_linebreak_filter called just after the paragraph has been broken into
lines

shipouts no callback yet applied to the box (or xform) that is to be shipped out
mvlbuilders buildpage_filter called after some material has been added to the main

vertical list
vboxbuilders vpack_filter called when some material is added to a vertical box
math mlist_to_hlist called just after the math list is created, before it is

turned into an horizontal list

Each category has several subcategories but for users only two make sense: before and after. Say
that you want to hook some tracing into the mvlbuilder. This is how it’s done:

function third.mymodule.myfunction(where)
nodes.show_simple_list(tex.lists.contrib_head)

end

nodes.tasks.appendaction("processors", "before", "third.mymodule.myfunction")

Callbacks 161

preliminary, uncorrected version – June 25, 2020

As you can see, in this case the function gets no head passed (at least not currently). This example
also assumes that you know how to access the right items. The arguments and return values are
given below.7

category arguments return value

processors head, ... head, done
finalizers head, ... head, done
shipouts head head, done
mvlbuilders done
vboxbuilders head, ... head, done
parbuilders head, ... head, done
pagebuilders head, ... head, done
math head, ... head, done

14.3 Tasks
In the previous section we already saw that the actions are in fact tasks and that we can append (and
therefore also prepend) to a list of tasks. The before and after task lists are valid hooks for users
contrary to the other tasks that can make up an action. However, the task builder is generic enough
for users to be used for individual tasks that are plugged into the user hooks.

Of course at some point, too many nested tasks bring a performance penalty with them. At the end
of a run MKIV reports some statistics and timings and these can give you an idea how much time is
spent in LUA.

The following tables list all the registered tasks for the processors actions:

category function

before unset
normalizers typesetters.periodkerns.handler

languages.replacements.handler
typesetters.wrappers.handler
typesetters.characters.handler
fonts.collections.process
fonts.checkers.missing
userdata.processmystuff

characters scripts.autofontfeature.handler
scripts.splitters.handler
typesetters.cleaners.handler
typesetters.directions.handler
typesetters.cases.handler
typesetters.breakpoints.handler
scripts.injectors.handler

words languages.words.check

7 This interface might change a bit in future versions of CONTEXT. Therefore we will not discuss the few more optional
arguments that are possible.

162 Callbacks

preliminary, uncorrected version – June 25, 2020

languages.hyphenators.handler
typesetters.initials.handler
typesetters.firstlines.handler

fonts builders.paragraphs.solutions.splitters.split
nodes.handlers.characters
nodes.injections.handler
typesetters.fontkerns.handler
nodes.handlers.protectglyphs
builders.kernel.ligaturing
builders.kernel.kerning
nodes.handlers.stripping
nodes.handlers.flatten
fonts.goodies.colorschemes.coloring

lists typesetters.rubies.check
typesetters.characteralign.handler
typesetters.spacings.handler
typesetters.kerns.handler
typesetters.digits.handler
typesetters.italics.handler
languages.visualizediscretionaries

after typesetters.marksuspects
userdata.processmystuff

Some of these do have subtasks and some of these even more, so you can imagine that quite some
action is going on there.

The finalizer tasks are:

category function

before unset
normalizers unset
fonts builders.paragraphs.solutions.splitters.optimize

lists typesetters.paragraphs.normalize
typesetters.margins.localhandler
builders.paragraphs.keeptogether
builders.paragraphs.tag
nodes.linefillers.handler

after unset

Shipouts concern:

category function

before unset
normalizers nodes.handlers.cleanuppage

typesetters.showsuspects
typesetters.margins.finalhandler
builders.paragraphs.expansion.trace

Callbacks 163

preliminary, uncorrected version – June 25, 2020

typesetters.alignments.handler
nodes.references.handler
nodes.destinations.handler
nodes.rules.handler
nodes.shifts.handler
structures.tags.handler
nodes.handlers.accessibility
nodes.handlers.backgrounds
typesetters.rubies.attach

finishers nodes.visualizers.handler
attributes.colors.handler
attributes.transparencies.handler
attributes.colorintents.handler
attributes.negatives.handler
attributes.effects.handler
attributes.viewerlayers.handler

after unset
wrapup nodes.handlers.export

luatex.synctex.collect

There are not that many mvlbuilder tasks currently:

category function

before unset
normalizers streams.collect

nodes.handlers.backgroundspage
typesetters.margins.globalhandler
nodes.handlers.migrate
builders.vspacing.pagehandler
builders.profiling.pagehandler
typesetters.checkers.handler

after unset

The vboxbuilder perform similar tasks:

category function

before unset
normalizers nodes.handlers.backgroundsvbox

builders.vspacing.vboxhandler
typesetters.checkers.handler

after unset

In the future we expect to have more parbuilder tasks. Here again there are subtasks that depend on
the current typesetting environment, so this is the right spot for language specific treatments.

The following actions are applied just before the list is passed on the the output routine. The return
value is a vlist.

164 Callbacks

preliminary, uncorrected version – June 25, 2020

Both the parbuilders and pagebuilder tasks are unofficial and not yet meant for users.

Finally, we have tasks related to the math list:

category function

before unset
normalizers noads.handlers.showtree

noads.handlers.unscript
noads.handlers.unstack
noads.handlers.variants
noads.handlers.relocate
noads.handlers.families
noads.handlers.render
noads.handlers.collapse
noads.handlers.fixscripts
noads.handlers.domains
noads.handlers.autofences
noads.handlers.resize
noads.handlers.alternates
noads.handlers.tags
noads.handlers.italics
noads.handlers.kernpairs
noads.handlers.classes

builders builders.kernel.mlist_to_hlist
typesetters.directions.processmath
noads.handlers.makeup
noads.handlers.align

after unset

As MKIV is developed in sync with LUATEX and code changes from experimental to more final and
reverse, you should not be too surprised if the registered function names change.

You can create your own task list with:

nodes.tasks.new("mytasks",{ "one", "two" })

After that you can register functions. You can append as well as prepend them either or not at a
specific position.

nodes.tasks.appendaction ("mytask","one","bla.alpha")
nodes.tasks.appendaction ("mytask","one","bla.beta")

nodes.tasks.prependaction("mytask","two","bla.gamma")
nodes.tasks.prependaction("mytask","two","bla.delta")

nodes.tasks.appendaction ("mytask","one","bla.whatever","bla.alpha")

Functions can also be removed:

nodes.tasks.removeaction("mytask","one","bla.whatever")

Callbacks 165

preliminary, uncorrected version – June 25, 2020

As removal is somewhat drastic, it is also possible to enable and disable functions. From the fact that
with these two functions you don’t specify a category (like one or two) you can conclude that the
function names need to be unique within the task list or else all with the same name within this task
will be disabled.

nodes.tasks.enableaction ("mytask","bla.whatever")
nodes.tasks.disableaction("mytask","bla.whatever")

The same can be done with a complete category:

nodes.tasks.enablegroup ("mytask","one")
nodes.tasks.disablegroup("mytask","one")

There is one function left:

nodes.tasks.actions("mytask",2)

This function returns a function that when called will perform the tasks. In this case the function
takes two extra arguments in addition to head.8

Tasks themselves are implemented on top of sequences but we won’t discuss them here.

14.4 Paragraph and page builders
Building paragraphs and pages is implemented differently and has no user hooks. There is a mech-
anism for plugins but the interface is quite experimental.

14.5 Some examples
todo

8 Specifying this number permits for some optimization but is not really needed

166 Callbacks

preliminary, uncorrected version – June 25, 2020

Backend code 167

preliminary, uncorrected version – June 25, 2020

15 Backend code

15.1 Introduction
In CONTEXT we’ve always separated the backend code in so called driver files. This means that in the
code related to typesetting only calls to the API take place, and no backend specific code is to be used.
Currently a PDF backend is supported as well as an XML export.9

Some CONTEXT users like to add their own PDF specific code to their styles or modules. However,
such extensions can interfere with existing code, especially when resources are involved. Therefore
the construction of PDF data structures and resources is rather controlled and has to be done via the
official helper macros.

15.2 Structure
A PDF file is a tree of indirect objects. Each object has a number and the file contains a table (or
multiple tables) that relates these numbers to positions in a file (or position in a compressed object
stream). That way a file can be viewed without reading all data: a viewer only loads what is needed.

1 0 obj <<
/Name (test) /Address 2 0 R

>>
2 0 obj [

(Main Street) (24) (postal code) (MyPlace)
]

For the sake of the discussion we consider strings like (test) also to be objects. In the next table we
list what we can encounter in a PDF file. There can be indirect objects in which case a reference is used
(2 0 R) and direct ones.

It all starts in the document’s root object. From there we access the page tree and resources. Each
page carries its own resource information which makes random access easier. A page has a page
stream and there we find the to be rendered content as a mixture of (UNICODE) strings and special
drawing and rendering operators. Here we will not discuss them as they are mostly generated by the
engine itself or dedicated subsystems like the METAPOST converter. There we use literal or \latelua
whatsits to inject code into the current stream.

15.3 Data types
There are several datatypes in PDF and we support all of them one way or the other.

type form meaning

constant /... A symbol (prescribed string).
string (...) A sequence of characters in pdfdoc encoding
unicode <...> A sequence of characters in utf16 encoding

9 This chapter is derived from an article on these matters. You can find nore information in hybrid.pdf.

168 Backend code

preliminary, uncorrected version – June 25, 2020

number 3.1415 A number constant.
boolean true/false A boolean constant.
reference N 0 R A reference to an object
dictionary << ... >> A collection of key value pairs where the value itself is an (indirect) ob-

ject.
array [...] A list of objects or references to objects.
stream A sequence of bytes either or not packaged with a dictionary that contains

descriptive data.
xform A special kind of object containing an reusable blob of data, for example

an image.

While writing additional backend code, we mostly create dictionaries.

<< /Name (test) /Address 2 0 R >>

In this case the indirect object can look like:

[(Main Street) (24) (postal code) (MyPlace)]

The LUATEX manual mentions primitives like \pdfobj, \pdfannot, \pdfcatalog, etc. However,
in MKIV no such primitives are used. You can still use many of them but those that push data into
document or page related resources are overloaded to do nothing at all.

In the LUA backend code you will find function calls like:

local d = lpdf.dictionary {
Name = lpdf.string("test"),
Address = lpdf.array {

"Main Street", "24", "postal code", "MyPlace",
}

}

Equaly valid is:

local d = lpdf.dictionary()
d.Name = "test"

Eventually the object will end up in the file using calls like:

local r = lpdf.immediateobject(tostring(d))

or using the wrapper (which permits tracing):

local r = lpdf.flushobject(d)

The object content will be serialized according to the formal specification so the proper << >> etc.
are added. If you want the content instead you can use a function call:

local dict = d()

An example of using references is:

local a = lpdf.array {

Backend code 169

preliminary, uncorrected version – June 25, 2020

"Main Street", "24", "postal code", "MyPlace",
}
local d = lpdf.dictionary {

Name = lpdf.string("test"),
Address = lpdf.reference(a),

}
local r = lpdf.flushobject(d)

We have the following creators. Their arguments are optional.

function optional parameter

lpdf.null
lpdf.number number
lpdf.constant string
lpdf.string string
lpdf.unicode string
lpdf.boolean boolean
lpdf.array indexed table of objects
lpdf.dictionary hash with key/values
lpdf.reference string
lpdf.verbose indexed table of strings

tostring(lpdf.null())

null

tostring(lpdf.number(123))

123

tostring(lpdf.constant("whatever"))

/whatever

tostring(lpdf.string("just a string"))

(just a string)

tostring(lpdf.unicode("just a string"))

<feff006a0075007300740020006100200073007400720069006e0067>

tostring(lpdf.boolean(true))

true

tostring(lpdf.array { 1, lpdf.constant("c"), true, "str" })

[1 /c true (str)]

tostring(lpdf.dictionary { a=1, b=lpdf.constant("c"), d=true, e="str" })

<< /a 1 /b /c /d true /e (str) >>

170 Backend code

preliminary, uncorrected version – June 25, 2020

tostring(lpdf.reference(123))

123 0 R

tostring(lpdf.verbose("whatever"))

whatever

15.4 Managing objects
Flushing objects is done with:

lpdf.flushobject(obj)

Reserving object is or course possible and done with:

local r = lpdf.reserveobject()

Such an object is flushed with:

lpdf.flushobject(r,obj)

We also support named objects:

lpdf.reserveobject("myobject")

lpdf.flushobject("myobject",obj)

A delayed object is created with:

local ref = pdf.delayedobject(data)

The data will be flushed later using the object number that is returned (ref). When you expect that
many object with the same content are used, you can use:

local obj = lpdf.shareobject(data)
local ref = lpdf.shareobjectreference(data)

This one flushes the object and returns the object number. Already defined objects are reused. In
addition to this code driven optimization, some other optimization and reuse takes place but all that
happens without user intervention. Only use this when it’s really needed as it might consume more
memory and needs more processing time.

15.5 Resources
While LUATEX itself will embed all resources related to regular typesetting, MKIV has to take care of
embedding those related to special tricks, like annotations, spot colors, layers, shades, transparen-
cies, metadata, etc. Because third party modules (like tikz) also can add resources we provide some
macros that makes sure that no interference takes place:

\pdfbackendsetcatalog {key}{string}
\pdfbackendsetinfo {key}{string}

Backend code 171

preliminary, uncorrected version – June 25, 2020

\pdfbackendsetname {key}{string}

\pdfbackendsetpageattribute {key}{string}
\pdfbackendsetpagesattribute{key}{string}
\pdfbackendsetpageresource {key}{string}

\pdfbackendsetextgstate {key}{pdfdata}
\pdfbackendsetcolorspace {key}{pdfdata}
\pdfbackendsetpattern {key}{pdfdata}
\pdfbackendsetshade {key}{pdfdata}

One is free to use the LUA interface instead, as there one has more possibilities but when code is shared
with other macro packages the macro interface makes more sense. The names of the LUA functions
are similar, like:

lpdf.addtoinfo(key,anything_valid_pdf)

Currently we expose a bit more of the backend code than we like and future versions will have a more
restricted access. The following function will stay public:

lpdf.addtopageresources (key,value)
lpdf.addtopageattributes (key,value)
lpdf.addtopagesattributes(key,value)

lpdf.adddocumentextgstate(key,value)
lpdf.adddocumentcolorspac(key,value)
lpdf.adddocumentpattern (key,value)
lpdf.adddocumentshade (key,value)

lpdf.addtocatalog (key,value)
lpdf.addtoinfo (key,value)
lpdf.addtonames (key,value)

15.6 Annotations
You can use the LUA functions that relate to annotations etc. but normally you will use the regular
CONTEXT user interface. You can look into some of the lpdf-* modules to see how special annotations
can be dealt with.

15.7 Tracing
There are several tracing options built in and some more will be added in due time:

\enabletrackers
[backend.finalizers,
backend.resources,
backend.objects,
backend.detail]

172 Backend code

preliminary, uncorrected version – June 25, 2020

As with all trackers you can also pass them on the command line, for example:

context --trackers=backend.* yourfile

The reference related backend mechanisms have their own trackers. When you write code that gen-
erates PDF, it also helps to look in the PDF file so see if things are done right. In that case you need to
disable compression:

\nopdfcompression

15.8 Analyzing
The epdf library that comes with LUATEX offers a userdata interface to PDF files. On top of that CON-
TEXT provides a more LUA-ish access, using tables. You can open a PDF file with:

local mypdf = lpdf.epdf.load(filename)

When opening is successful, you have access to a couple of tables:

\NC \type{pages} \NC indexed \NC \NR
\NC \type{destinations} \NC hashed \NC \NR
\NC \type{javascripts} \NC hashed \NC \NR
\NC \type{widgets} \NC hashed \NC \NR
\NC \type{embeddedfiles} \NC hashed \NC \NR
\NC \type{layers} \NC indexed \NC \NR

These provide efficient access to some data that otherwise would take a bit of code to deal with.
Another top level table is the for PDF characteristic Catalog. Watch the capitalization: as with other
native PDF data structures, keys are case sensitive and match the standard.

Here is an example of usage:

local MyDocument = lpdf.epdf.load("somefile.pdf")

context.starttext()

local pages = MyDocument.pages
local nofpages = pages.n

context.starttabulate { "|c|c|c|" }

context.NC() context("page")
context.NC() context("width")
context.NC() context("height") context.NR()

for i=1, nofpages do
local page = pages[i]
local bbox = page.CropBox or page.MediaBox
context.NC() context(i)
context.NC() context(bbox[4]-bbox[2])
context.NC() context(bbox[3]-bbox[1]) context.NR()

Backend code 173

preliminary, uncorrected version – June 25, 2020

end

context.stoptabulate()

context.stoptext()

174 Backend code

preliminary, uncorrected version – June 25, 2020

Font goodies 175

preliminary, uncorrected version – June 25, 2020

16 Font goodies

16.1 Introduction
One of the interesting aspects of TEX is that it provides control over fonts and LUATEX provides quite
some. In CONTEXT we support basic functionality, like OPENTYPE features, as well as some extra func-
tionality. We also have a mechanism for making virtual fonts which is mostly used for the transition
from TYPE1 math fonts to OPENTYPE math fonts. Instead of hard coding specific details in the core
LUA code, we use so called LUA Font Goodies to control them. These goodies are collected in tables
and live in files. When a font is loaded, one or more such goodie files can be loaded alongside.

In the following typescript we load a goodies file that defines a virtual Lucida math font. The goodie
file is loaded immediately and some information in the table is turned into a form that permits access
later on: the virtual font id lucida-math that is used as part of the font specification.

\starttypescript [math] [lucida]
\loadfontgoodies[lucida-math]
\definefontsynonym[MathRoman][lucidamath@lucida-math]

\stoptypescript

Not all information is to be used directly. Some can be accessed when needed. In the following case
the file dingbats.lfg gets loaded (only once) when the font is actually used. In that file, there is
information that is used by the unicoding feature.

\definefontfeature
[dingbats]
[mode=base,
goodies=dingbats,
unicoding=yes]

\definefont[dingbats][file:dingbats][features=dingbats]

In the following sections some aspects of goodies are discussed. We don’t go into details of what
these goodies are, but just stick to the LUA side of the specification.

16.2 Virtual math fonts
A virtual font is defined using the virtuals entry in the mathematics subtable. As TYPE1 fonts are
used, an additional table mapfiles is needed to specify the files that map filenames onto real files.

return {
name = "px-math",
version = "1.00",
comment = "Goodies that complement px math.",
author = "Hans Hagen",
copyright = "ConTeXt development team",
mathematics = {
mapfiles = {

"mkiv-px.map",
},

176 Font goodies

preliminary, uncorrected version – June 25, 2020

virtuals = {
["px-math"] = {
{ name = "texgyrepagella-regular.otf", features = "virtualmath", main = true },
{ name = "rpxr.tfm", vector = "tex-mr" } ,
{ name = "rpxmi.tfm", vector = "tex-mi", skewchar=0x7F },
{ name = "rpxpplri.tfm", vector = "tex-it", skewchar=0x7F },
{ name = "pxsy.tfm", vector = "tex-sy", skewchar=0x30, parameters = true } ,
{ name = "pxex.tfm", vector = "tex-ex", extension = true } ,
{ name = "pxsya.tfm", vector = "tex-ma" },
{ name = "pxsyb.tfm", vector = "tex-mb" },
{ name = "texgyrepagella-bold.otf", vector = "tex-bf" } ,
{ name = "texgyrepagella-bolditalic.otf", vector = "tex-bi" } ,
{ name = "lmsans10-regular.otf", vector = "tex-ss", optional=true },
{ name = "lmmono10-regular.otf", vector = "tex-tt", optional=true },

},
}

}
}

Here the px-math virtual font is defined. A series of fonts is loaded and combined into one. The
vector entry is used to tell the builder how to map the glyphs onto UNICODE. Additional vectors can
be defined, for instance:

fonts.encodings.math["mine"] = {
[0x1234] = 0x56,

}

Eventually these specifications wil be replaced by real OPENTYPE fonts, but even then we will keep
the virtual definitions around.

16.3 Math alternates
In addition to the official ssty feature for enforcing usage of script and scriptscript glyphs, some
stylistic alternates can be present.

return {
name = "xits-math",
version = "1.00",
comment = "Goodies that complement xits (by Khaled Hosny).",
author = "Hans Hagen",
copyright = "ConTeXt development team",
mathematics = {
alternates = {
cal = {
feature = 'ss01',
value = 1,
comment = "Mathematical Calligraphic Alphabet"

},
greekssup = {
feature = 'ss02',
value = 1,
comment = "Mathematical Greek Sans Serif Alphabet"

},
greekssit = {
feature = 'ss03',
value = 1,

Font goodies 177

preliminary, uncorrected version – June 25, 2020

comment = "Mathematical Italic Sans Serif Digits"
},
monobfnum = {
feature = 'ss04',
value = 1,
comment = "Mathematical Bold Monospace Digits"

},
mathbbbf = {
feature = 'ss05',
value = 1,
comment = "Mathematical Bold Double-Struck Alphabet"

},
mathbbit = {
feature = 'ss06',
value = 1,
comment = "Mathematical Italic Double-Struck Alphabet"

},
mathbbbi = {
feature = 'ss07',
value = 1,
comment = "Mathematical Bold Italic Double-Struck Alphabet"

},
upint = {
feature = 'ss08',
value = 1,
comment = "Upright Integrals"

},
}

}
}

These can be activated (in math mode) with the \mathalternate command like:

$\mathalternate{cal}Z$

16.4 Math parameters
Another goodie related to math is the overload of some parameters (part of the font itself) and vari-
ables (used in making virtual shapes).

return {
name = "lm-math",
version = "1.00",
comment = "Goodies that complement latin modern math.",
author = "Hans Hagen",
copyright = "ConTeXt development team",
mathematics = {
mapfiles = {
"lm-math.map",
"lm-rm.map",
"mkiv-base.map",

},
virtuals = {
["lmroman5-math"] = five,
["lmroman6-math"] = six,
["lmroman7-math"] = seven,
["lmroman8-math"] = eight,

178 Font goodies

preliminary, uncorrected version – June 25, 2020

["lmroman9-math"] = nine,
["lmroman10-math"] = ten,
["lmroman10-boldmath"] = ten_bold,
["lmroman12-math"] = twelve,
["lmroman17-math"] = seventeen,

},
variables = {
joinrelfactor = 3, -- default anyway

},
parameters = { -- test values

-- FactorA = 123.456,
-- FactorB = false,
-- FactorC = function(value,target,original) return 7.89 * target.factor end,
-- FactorD = "Hi There!",
},

}
}

In this example you see several virtuals defined which is due to the fact that Latin Modern has de-
sign sizes. The values (like twelve are tables defined before the return happens and are not shown
here. The variables are rather CONTEXT specific, and the parameters are those that come with regular
OPENTYPE math fonts (so the example names are invalid).

In the following example we show two wasy to change parameters. In this case we have a regular
OPENTYPE math font. First we install a patch to the font itself. That change will be cached. We could
also have changed that parameter using the goodies table. The first method is the oldest.

local patches = fonts.handlers.otf.enhancers.patches

local function patch(data,filename,threshold)
local m = data.metadata.math
if m then
local d = m.DisplayOperatorMinHeight or 0
if d < threshold then
patches.report("DisplayOperatorMinHeight(%s -> %s)",d,threshold)
m.DisplayOperatorMinHeight = threshold

end
end

end

patches.register(
"after",
"check math parameters",
"asana",
function(data,filename)
patch(data,filename,1350)

end
)

local function less(value,target,original)
return 0.25 * value

end

return {
name = "asana-math",
version = "1.00",
comment = "Goodies that complement asana.",
author = "Hans Hagen",

Font goodies 179

preliminary, uncorrected version – June 25, 2020

copyright = "ConTeXt development team",
mathematics = {
parameters = {
StackBottomDisplayStyleShiftDown = less,
StackBottomShiftDown = less,
StackDisplayStyleGapMin = less,
StackGapMin = less,
StackTopDisplayStyleShiftUp = less,
StackTopShiftUp = less,
StretchStackBottomShiftDown = less,
StretchStackGapAboveMin = less,
StretchStackGapBelowMin = less,
StretchStackTopShiftUp = less,

}
}

}

We use a function so that the scaling is taken into account as the values passed are those resulting
from the scaling of the font to the requested size.

16.5 Unicoding
We still have to deal with existing TYPE1 fonts, and some of them have an encoding that is hard to
map onto UNICODE without additional information. The following goodie does that. The keys in
the unicodes table are the glyph names. Keep in mind that this only works with simple fonts. The
CONTEXT code takes care of kerns but that’s about it.

return {
name = "dingbats",
version = "1.00",
comment = "Goodies that complement dingbats (funny names).",
author = "Hans Hagen",
copyright = "ConTeXt development team",
remapping = {
tounicode = true,
unicodes = {
a1 = 0x2701,
a10 = 0x2721,
a100 = 0x275E,
a101 = 0x2761,
.............
a98 = 0x275C,
a99 = 0x275D,

},
},

}

The tounicode option makes sure that additional information ends ip in the output so that cut-and-
paste becomes more trustworthy.

16.6 Typescripts
Some font collections, like antykwa, come with so many variants that defining them all in typescripts
becomes somewhat of a nuisance. While a regular font has a typescript of a few lines, antykwa needs
way more lines. This is why we provide a nother way as well, using goodies.

180 Font goodies

preliminary, uncorrected version – June 25, 2020

return {
name = "antykwapoltawskiego",
version = "1.00",
comment = "Goodies that complement Antykwa Poltawskiego",
author = "Hans & Mojca",
copyright = "ConTeXt development team",
files = {
name = "antykwapoltawskiego", -- shared
list = {
["AntPoltLtCond-Regular.otf"] = {
-- name = "antykwapoltawskiego",

weight = "light",
style = "regular",
width = "condensed",

},
["AntPoltLtCond-Italic.otf"] = {
weight = "light",
style = "italic",
width = "condensed",

},
["AntPoltCond-Regular.otf"] = {
weight = "normal",
style = "regular",
width = "condensed",

},

.......

["AntPoltExpd-BoldItalic.otf"] = {
weight = "bold",
style = "italic",
width = "expanded",

},
},

},
typefaces = { -- for Mojca (experiment, names might change)
["antykwapoltawskiego-light"] = {
shortcut = "rm",
shape = "serif",
fontname = "antykwapoltawskiego",
normalweight = "light",
boldweight = "medium",
width = "normal",
size = "default",
features = "default",

},

.......

},
}

This is a typical example of when a goodies file is loaded directly:

\loadfontgoodies[antykwapoltawskiego]

A bodyfont is now defined by choosing from the defined combinations:

\definetypeface

Font goodies 181

preliminary, uncorrected version – June 25, 2020

[name=mojcasfavourite,
preset=antykwapoltawskiego,
normalweight=light,
boldweight=bold,
width=expanded]

\setupbodyfont
[mojcasfavourite]

This mechanism is a follow up on a discussion at a CONTEXT conference, still somewhat experimental,
and a playground for Mojca.

16.7 Font strategies
This goodie is closely related to the Oriental TEX project where a dedicated paragraph optimizer can
be used. A rather advanced font is used (husayni) and its associated goodie file is rather extensive.
It defines stylistic features, implements a couple of feature sets, provides colorschemes and most of
all, defines some strategies for making paragraphs look better. Some of the goodie file is shown here.

local yes = "yes"

local basics = {
analyze = yes,
mode = "node",
language = "dflt",
script = "arab",

}

local analysis = {
ccmp = yes,
init = yes, medi = yes, fina = yes,

}

local regular = {
rlig = yes, calt = yes, salt = yes, anum = yes,
ss01 = yes, ss03 = yes, ss07 = yes, ss10 = yes, ss12 = yes, ss15 = yes, ss16 = yes,
ss19 = yes, ss24 = yes, ss25 = yes, ss26 = yes, ss27 = yes, ss31 = yes, ss34 = yes,
ss35 = yes, ss36 = yes, ss37 = yes, ss38 = yes, ss41 = yes, ss42 = yes, ss43 = yes,
js16 = yes,

}

local positioning = {
kern = yes, curs = yes, mark = yes, mkmk = yes,

}

local minimal_stretching = {
js11 = yes, js03 = yes,

}

local medium_stretching = {
js12=yes, js05=yes,

}

local maximal_stretching= {
js13 = yes, js05 = yes, js09 = yes,

182 Font goodies

preliminary, uncorrected version – June 25, 2020

}

local wide_all = {
js11 = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,

}

local shrink = {
flts = yes, js17 = yes, ss05 = yes, ss11 = yes, ss06 = yes, ss09 = yes,

}

local default = {
basics, analysis, regular, positioning, -- xxxx = yes, yyyy = 2,

}

return {
name = "husayni",
version = "1.00",
comment = "Goodies that complement the Husayni font by Idris Samawi Hamid.",
author = "Idris Samawi Hamid and Hans Hagen",
featuresets = { -- here we don't have references to featuresets
default = {
default,

},
minimal_stretching = {
default,
js11 = yes, js03 = yes,

},
medium_stretching = {
default,
js12=yes, js05=yes,

},
maximal_stretching= {
default,
js13 = yes, js05 = yes, js09 = yes,

},
wide_all = {
default,
js11 = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,

},
shrink = {
default,
flts = yes, js17 = yes, ss05 = yes, ss11 = yes, ss06 = yes, ss09 = yes,

},
},
solutions = { -- here we have references to featuresets, so we use strings!
experimental = {
less = {
"shrink"

},
more = {
"minimal_stretching",
"medium_stretching",
"maximal_stretching",
"wide_all"

},
},

},
stylistics = {
......

Font goodies 183

preliminary, uncorrected version – June 25, 2020

ss03 = "level-1 stack over Jiim, initial entry only",
ss04 = "level-1 stack over Jiim, initial/medial entry",
......
ss54 = "chopped finals",
ss55 = "idgham-tanwin",
......
js11 = "level-1 stretching",
js12 = "level-2 stretching",
......
js21 = "Haa.final_alt2",

},
colorschemes = {
default = {
[1] = {
"Onedotabove", "Onedotbelow", ...

},
[2] = {
"Fathah", "Dammah", "Kasrah", ...

},
[3] = {
"Ttaa.waqf", "SsLY.waqf", "QLY.waqf", ...

},
[4] = {
"ZeroArabic.ayah", "OneArabic.ayah", "TwoArabic.ayah", ...

},
[5] = {
"Ayah", "Ayah.alt1", "Ayah.alt2", ...

}
}

}
}
\stopmalltyping

Discussion of these goodies is beyond this document and happens elsewhere.

\stopsection

\startsection[title=Composition]

The \type {compose} features extends a font with additional (virtual) shapes.
This is mostly used with \TYPEONE\ fonts that lack support for eastern european
languages. The type {compositions} subtable is used to control placement of
accents. This can be done per font.

\startmalltyping
local defaultunits = 193 - 30

-- local compose = {
-- DY = defaultunits,
-- [0x010C] = { DY = defaultunits }, -- Ccaron
-- [0x02C7] = { DY = defaultunits }, -- textcaron
-- }

-- fractions relative to delta(X_height - x_height)

local defaultfraction = 0.85

local compose = {
DY = defaultfraction, -- uppercase compensation

184 Font goodies

preliminary, uncorrected version – June 25, 2020

}

return {
name = "lucida-one",
version = "1.00",
comment = "Goodies that complement lucida.",
author = "Hans and Mojca",
copyright = "ConTeXt development team",
compositions = {
["lbr"] = compose,
["lbi"] = compose,
["lbd"] = compose,
["lbdi"] = compose,

}
}

16.8 Postprocessing
You can hook postprocessors into the scaler. Future versions might provide more control over where
this happens.

local function statistics(tfmdata)
commands.showfontparameters(tfmdata)

end

local function squeeze(tfmdata)
for k, v in next, tfmdata.characters do
v.height = 0.75 * (v.height or 0)
v.depth = 0.75 * (v.depth or 0)

end
end

return {
name = "demo",
version = "1.00",
comment = "An example of goodies.",
author = "Hans Hagen",
postprocessors = {
statistics = statistics,
squeeze = squeeze,

},
}

Nice to know 185

preliminary, uncorrected version – June 25, 2020

17 Nice to know

17.1 Introduction
As we like to abstract interfaces it is no surprise that CONTEXT and therefore it’s LUA libraries come
with all kind of helpers. In this chapter I will explain a few of them. Feel free to remind of adding
more here.

17.2 Templates
Eventually we will move this to the utilities section.

When dealing with data from tables or when order matters it can be handy to abstract the actual data
from the way it is dealt with. For this we provide a template mechanism. The following example
demonstrate its use.

require("util-ran") -- needed for this example

local preamble = [[|l|l|c|]]
local template = [[\NC %initials% \NC %surname% \NC %length% \NC \NR]]

context.starttabulate { preamble }
for i=1,10 do

local row = utilities.templates.replace(template, {
surname = utilities.randomizers.surname(5,10),
initials = utilities.randomizers.initials(1,3),
length = string.format("%0.2f",math.random(140,195)),

})
context(row)

end
context.stoptabulate()

This renders a table with random entries:

O. Apycakicam 188.00
A.G. Qipumen 192.00
U. Alyxiqaj 172.00
Y.K. Wiqodedyr 184.00
U.G.U. Akelyk 170.00
A. Osisat 179.00
E.G.U. Ubapasugyb 195.00
O.C.O. Xofyr 166.00
E.J.Y. Izugiquxyx 166.00
I.W. Pexifohem 160.00

The nice thing is that when we change the order of the columns, we don’t need to change the table
builder.

local preamble = [[|c|l|l|]]

186 Nice to know

preliminary, uncorrected version – June 25, 2020

local template = [[\NC %length% \NC %initials% \NC %surname% \NC \NR]]

The replace function takes a few more arguments. There are also a some more replacement options.

replace("test '%[x]%' test",{ x = [[a 'x' a]] }))
replace("test '%[x]%' test",{ x = true }))
replace("test '%[x]%' test",{ x = [[a 'x' a]], y = "oeps" },'sql'))
replace("test '%[x]%' test",{ x = [[a '%y%' a]], y = "oeps" },'sql',true))
replace([[test %[x]% test]],{ x = [[a "x" a]]}))
replace([[test %(x)% test]],{ x = [[a "x" a]]}))

The first argument is the template and the second one a table with mappings from keys to values. The
third argument can be used to inform the replace mechanism what string escaping has to happen.
The last argument triggers recursive replacement. The above calls result in the following strings:

test 'a 'x' \127 a' test
test 'true' test
test 'a ''x'' a' test
test 'a ''oeps'' a' test
test a \"x\" \127 a test
test "a \"x\" \127 a" test

These examples demonstrate that by adding a pair of square brackets we get escaped strings. When
using parenthesis the quotes get added automatically. This is somewhat faster in case when LUA is
the target, but in practice it is not that noticeable.

17.3 Extending
Instead of extending tex endlessly we can also define our own extensions. Here is an example. When
you want to manipulate a box at the LUA end you have the problem that the following will not always
work out well:

local b = tex.getbox(0)
-- mess around with b
tex.setbox(0,b)

So we end up with:

local b = node.copy_list(tex.getbox(0))
-- mess around with b
tex.setbox(0,b)

The reason is that at the TEX end grouping plays a role which means that values are saved and re-
stored. However, there is a save way out by defining a function that cheats a bit:

function tex.takebox(id)
local box = tex.getbox(id)
if box then

local copy = node.copy(box)
local list = box.list
copy.list = list

Nice to know 187

preliminary, uncorrected version – June 25, 2020

box.list = nil
tex.setbox(id,nil)
return copy

end
end

Now we can say:

local b = tex.takebox(0)
-- mess around with b
tex.setbox(b)

In this case we first get the box content and then let TEX do some housekeeping. But, because we only
keep the list node (which we copied) in the register the overhead of copying a whole list is gone.

188 Nice to know

preliminary, uncorrected version – June 25, 2020

A sort of summary 189

preliminary, uncorrected version – June 25, 2020

18 A sort of summary

In this chapter we summarize the functionality provided by the context namespace. We repeat some
of what has been explained in other chapter so that in fact you can start with this summary.

If you have read this manual (or seen code) you know that you can access all the core commands
using this namespace:

context.somecommand("some argument")
context["somecommand"]("some argument")

These calls will eventually expand \somecommand with the given argument. This interface has been
around form the start and has proven to be quite flexible and robust. In spite of what you might
think, the somecommand is not really defined in the context namespace, but in its own one called
core, accessible via context.core.

Next we describe the commands that are naturally defined in the context namespace. Some have
counterparts at the macro level (like bgroup) but many haven’t (for instance rule). We tried not to
polute the context namespace too much but although we could have put the helpers in a separate
namespace it would make usage a bit more unnatural.

18.1 Access to commands

context(".. some text ..")

The string is flushed as-is:

.. some text ..

context("format",...)

The first string is a format specification according that is passed to the LUA function format in the
string namespace. Following arguments are passed too.

context(123,...)

The numbers (and following numbers or strings) are flushed without any formatting.

123... (concatenated)

context(true)

An explicit endlinechar is inserted, in TEX speak:

^^M

190 A sort of summary

preliminary, uncorrected version – June 25, 2020

context(false,...)

Strings and numbers are flushed surrounded by curly braces, an indexed table is flushed as option
list, and a hashed table is flushed as parameter set.

multiple {...} or [...] etc

context(node)

The node (or list of nodes) is injected at the spot. Keep in mind that you need to do the proper
memory management yourself.

context["command"] context.core["command"]

The function that implements \command. The core table is where these functions realy live.

context["command"](value,...)

The value (string or number) is flushed as a curly braced (regular) argument.

\command {value}...

context["command"]({ value },...)

The table is flushed as value set. This can be an identifier, a list of options, or a directive.

\command [value]...

context["command"]({ key = val },...)

The table is flushed as key/value set.

\command [key={value}]...

context["command"](true)

An explicit endlinechar is inserted.

\command ^^M

context["command"](node)

The node(list) is injected at the spot. Keep in mind that you need to do the proper memory manage-
ment yourself.

\command {node(list)}

context["command"](false,value)

The value is flushed without encapsulating tokens.

A sort of summary 191

preliminary, uncorrected version – June 25, 2020

\command value

context["command"]({ value }, { key = val }, val, false, val)

The arguments are flushed accordingly their nature and the order can be any.

\command [value][key={value}]{value}value

context.direct(...)

The arguments are interpreted the same as if direct was a command, but no \direct is injected in
front. Braces are added:

regular \expandafter \bold \ctxlua{context.direct("bold")} regular
black \expandafter \color \ctxlua{context.direct({"red"})}{red} black
black \expandafter \color \ctxlua{context.direct({"green"},"green")} black

The \expandafter makes sure that the \bold and \color macros see the following {bold}, [red],
and [green]{green} arguments.

regular bold regular
black red black
black green black

context.delayed(...)

The arguments are interpreted the same as in a context call, but instead of a direct flush, the argu-
ments will be flushed in a next cycle.

context.delayed["command"](...)

The arguments are interpreted the same as in a command call, but instead of a direct flush, the com-
mand and arguments will be flushed in a next cycle.

context.nested["command"]

This command returns the command, including given arguments as a string. No flushing takes place.

context.nested

This command returns the arguments as a string and treats them the same as a regular context call.

context.formatted["command"]([<regime>,]<format>,<arguments>)

This command returns the command that will pass it’s arguments to the string formatter. When the
first argument is a number, then it is interpreted as a catcode regime.

192 A sort of summary

preliminary, uncorrected version – June 25, 2020

context.formatted([<regime>,]<format>,<arguments>)

This command passes it’s arguments to the string formatter. When the first argument is a number,
then it is interpreted as a catcode regime.

18.2 METAFUN

context.metafun.start()

This starts a METAFUN (or METAPOST) graphic.

context.metafun.stop()

This finishes and flushes a METAFUN (or METAPOST) graphic.

context.metafun("format",...)

The argument is appended to the current graphic data but the string formatter is used on following
arguments.

context.metafun.delayed

This namespace does the same as context.delayed: it wraps the code in such a way that it can be
used in a function call.

18.3 Building blocks

context.bgroup() context.egroup()

These are just \bgroup and \egroup equivalents and as these are in fact shortcuts to the curly braced
we output these instead.

context.space()

This one directly maps onto \space.

context.par()

This one directly maps onto \par.

18.4 Basic Helpers

context.rule(wd,ht,dp,direction) context.rule(specification)

A rule node is injected with the given properties. A specification is just a table with the four fields.
The rule gets the current attributes.

A sort of summary 193

preliminary, uncorrected version – June 25, 2020

context.glyph(fontid,n) context.glyph(n)

A glyph node is injected with the given font id. When no id is given, the current font is used. The
glyph gets the current attributes.

context.char(n) context.char(str) context.char(tab)

This will inject one or more copies of \char calls. You can pass a number, a string representing a
number, or a table with numbers.

context.utfchar(n) context.utfchar(str)

This injects is UTF character (one or more bytes). You can pass a number or a string representing a
numbers. You need to be aware of special characters in TEX, like #.

18.5 Registers
This is a table that hosts a couple of functions. The following new ones are available:

local n = newdimen (name)
local n = newskip (name)
local n = newcount (name)
local n = newmuskip(name)
local n = newtoks (name)
local n = newbox (name)

These define a register with name name at the LUA end and \name at the TEX end. The registers’
number is returned. The next function is like \chardef: it defines \name with value n.

local n = newchar(name,n)

It’s not likely that you will use any of these commands, if only because when you’re operating from
the LUA end using LUA variables is more convenient.

18.6 Catcodes
Normally we operate under the so called context catcode regime. This means that content gets
piped to TEX using the same meanings for characters as you normally use in CONTEXT. So, a $ starts
math. In table 18.1 we show the catcode regimes.

context.catcodes

The context.catcodes tables contains the internal numbers of the catcode tables used. The next
table shows the names that can be used.

name mnemonic TEX command
context ctx ctxcatcodes
protect prt prtcatcodes
plain tex texcatcodes

194 A sort of summary

preliminary, uncorrected version – June 25, 2020

ascii context tex protect text verbatim

 other other other space other
! other other other space other
" other other other space other
other other other space other
$ other other other space other
% other other other space other
& other other other space other
’ other other other space other
(other other other space other
) other other other space other
* other other other space other
+ other other other space other
, other other other space other
- other other other space other
. other other other space other
/ other other other space other

0 .. 9 other other other space other

: other other other space other
; other other other space other

< other other other space other
= other other other space other
> other other other space other
? other other other space other
@ other other other space other

A .. Z other other other space other

[other other other space other
\ other other other space other
] other other other space other
^ other other other space other
_ other other other space other
` other other other space other

a .. z other other other space other

{ other other other space other
| other other other space other
} other other other space other
~ other other other space other

Table 18.1 Catcode regimes

A sort of summary 195

preliminary, uncorrected version – June 25, 2020

text txt txtcatcodes
verbatim vrb vrbcatcodes

context.newindexer(catcodeindex)

This function defines a new indexer. You can think of the context command itself as an indexer. There
are two (extra) predefined indexers:

context.verbatim = context.newindexer(context.catcodes.verbatim)
context.puretext = context.newindexer(context.catcodes.text)

context.pushcatcodes(n) context.popcatcodes()

These commands switch to another catcode regime and back. They have to be used in pairs. Only
the regimes atthe LUA end are set.

context.unprotect() context.protect()

These commands switch to the protected regime and back. They have to be used in pairs. Beware:
contrary to what its name suggests, the unprotect enables the protected regime. These functions
also issue an \unprotect and \protect equivalent at the TEX end.

context.verbatim context.puretext

The differences between these are subtle:

\startluacode
context.verbatim.bold("Why do we use $ for math?") context.par()
context.verbatim.bold("Why do we use { as start?") context.par()
context.verbatim.bold("Why do we use } as end?") context.par()
context.puretext.bold("Why do we use {\\bi $} at all?")

\stopluacode

Verbatim makes all characters letters while pure text leaves the backslash and curly braces special.

Why do we use $ for math?
Why do we use { as start?
Why do we use } as end?
Why do we use $ at all?

context.protected

The protected namespace is only used for commands that are in the CONTEXT private namespace.

context.escaped(str) context.escape(str)

The first command pipes the escaped string to TEX, while the second one just returns an unescaped
string. The characters # $ % \ \ { } are escaped.

196 A sort of summary

preliminary, uncorrected version – June 25, 2020

context.startcollecting() context.stopcollecting()

These two commands will turn flushing to TEX into collecting. This can be handy when you want to
interface commands that grab arguments using delimiters and as such they are used deep down in
some table related interfacing. You probably don’t need them.

18.7 Templates
In addition to the regular template mechanism (part of the utilities) there is a dedicated template
feature in the context namespace. An example demonstrates its working:

\startluacode
local MyTable = [[

\bTABLE
\bTR

\bTD \bf %one_first% \eTD
\bTD %[one_second]% \eTD

\eTR
\bTR

\bTD \bf %two_first% \eTD
\bTD %[two_second]% \eTD

\eTR
\eTABLE

]]

context.templates[MyTable] {
one_first = "one",
two_first = "two",
one_second = "just one $",
two_second = "just two $",

}
\stopluacode

This renders:

one just one $
two just two $

You can also use more complex tables. Watch the space before and after the keys:

\startluacode
local MyOtherTable = [[

\bTABLE
\bTR

\bTD \bf % ['one']['first'] % \eTD
\bTD %[['one']['second']]% \eTD

\eTR
\bTR

\bTD \bf % ['two']['first'] % \eTD

A sort of summary 197

preliminary, uncorrected version – June 25, 2020

\bTD %[['two']['second']]% \eTD
\eTR

\eTABLE
]]

local data = {
one = { first = "one", second = "only 1$" },
two = { first = "two", second = "only 2$" },

}

context.templates[MyOtherTable](data)

context.templates(MyOtherTable,data)
\stopluacode

We get:

one only 1$
two only 2$

one only 1$
two only 2$

18.8 Management

context.functions

This is private table that hosts managament of functions. You’d better leave this one alone!

context.nodes

Normally you will just use context(<somenode>) to flush a node and this private table is more for
internal use.

18.9 String handlers
These two functions implement handlers that split a given string into lines and do something with
it. We stick to showing their call. They are used for special purpose flushing, like flushing content to
TEX in commands discussed here. The XML subsystem also used a couple of dedicated handlers.

local foo = newtexthandler {
content = function(s) ... end,
endofline = function(s) ... end,
emptyline = function(s) ... end,
simpleline = function(s) ... end,

}

local foo = newverbosehandler {
line = function(s) ... end,
space = function(s) ... end,

198 A sort of summary

preliminary, uncorrected version – June 25, 2020

content = function(s) ... end,
before = function() ... end,
after = function() ... end,

}

context.printlines(str)

The low level tex.print function pipes its content to TEX and thereby terminates at at \r (cariage
return, ASCII 13), although it depends on the way catcodes and line endings are set up. In fact, a line
ending in TEX is not really one, as it gets replaced by a space. Only several lines in succession indicate
a new paragraph.

\startluacode
tex.print("line 1\n line 2\r line 3")

\stopluacode

This renders only two lines:

line 1 line 2

However, the context command gives all three lines:

\startluacode
context("line 1\n line 2\r line 3")

\stopluacode

Like:

line 1 line 2 line 3

The context.printlines command is a direct way to print a string in a way similar to reading from
a file. So,

tex.print(io.loaddata(resolvers.findfile("tufte")))

Gives one line, while:

context.printlines(io.loaddata(resolvers.findfile("tufte")))

gives them all, as does:

context(io.loaddata(resolvers.findfile("tufte")))

as does a naïve:

tex.print((string.gsub(io.loaddata(resolvers.findfile("tufte")),"\r","\n")))

But, because successive lines need to become paragraph separators as bit more work is needed and
that is what printlines and context do for you. However, a more convenient alternative is pre-
sented next.

A sort of summary 199

preliminary, uncorrected version – June 25, 2020

context.loadfile(name)

This function locates and loads the file with the given name. The leading and trailing spaces are
stripped.

context.runfile(name)

This function locates and processes the file with the given name. The assumption is that it is a valid
LUA file! When no suffix is given, the suffix cld (CONTEXT LUA document) is used.

context.viafile(data[,tag])

The data is saved to a (pseudo) file with the optional name tag and read in again from that file. This
is a robust way to make sure that the data gets processed like any other data read from file. It permits
all kind of juggling with catcodes, verbatim and alike.

18.10 Helpers

context.tocontext(variable)

For documentation or tracing it can be handy to serialize a variable. The tocontext function does
this:

context.tocontext(true)
context.tocontext(123)
context.tocontext("foo")
context.tocontext(tonumber)
context.tocontext(nil)
context.tocontext({ "foo", "bar" },true)
context.tocontext({ this = { foo , "bar" } },true)

Beware, tocontext is also a table that you can assign to, but that might spoil serialization. This
property makes it possible to extend the serializer.

context.tobuffer(name,str[,catcodes])

With this function you can put content in a buffer, optionally under a catcode regime.

context.tolines(str[,true])

This function splits the string in lines and flushes them one by one. When the second argument is
true leading and trailing spaces are stripped. Each flushed line always gets one space appended.

context.fprint([regime,]fmt,...),tex.fprint([regime,]fmt,...)

The tex.fprint is just there to complement the other flushers in the tex namespace and therefore
we also have it in the context namespace.

200 A sort of summary

preliminary, uncorrected version – June 25, 2020

18.11 Tracing

context.settracing(true or false))

You can trace the TEX code that is generated at the TEX end with:

\enabletrackers[context.trace]

The LUA function sets the tracing from the LUA end. As the context command is used a lot in the
core, you can expect some more tracing that the code that you’re currently checking.

context.pushlogger(fnc) context.poplogger() context.getlogger()

You can provide your own logger if needed. The pushed function receives one string argument. The
getter returns three functions:

local flush, writer, flushdirect = context.getlogger()

The flush function is similar to tex.sprint and appends its arguments, while flushdirect treats
each argument as a line and behaves like tex.print. The flush function adds braces and paranthe-
sis around its arguments, apartt from the first one, which is considered to be a command. Examples
are:

flush("one",2,"three") -- catcode, strings|numbers
writer("\\color",{"red"},"this is red")

and:

flush(context.catcodes.verbatim,"one",2,"three")
writer(context.catcodes.verbatim,"\\color",{"red"},"this is red")

18.12 States
There are several ways to implement alternative code paths in CONTEXT but modes and conditionals
are used mostly. There area few helpers for that.

context.conditionals context.setconditional(name,value)

Conditionals are used to keep a state. You can set their value using the setter, but their effect is not
immediate but part of the current sequence of commands which is delegated to TEX. However, you
can easily keep track of your state at the LUA end with an extra boolean. So, after

if context.conditionals.whatever then
context.setconditional("dothis",false)

else
context.setconditional("dothat",true)

end

the value of dothis and dothat conditions are not yet set in LUA.

A sort of summary 201

preliminary, uncorrected version – June 25, 2020

context.modes context.setmode(name,value)

As with conditionals, you can (re)set the modes in LUA but their values get changes as part of the
command sequence which is delayed till after the LUA call.

context.systemmodes context.setsystemmode(name,value)

The same applies as for regular modes.

context.trialtypesetting()

This function returns true if we’re in trial typesetting mode (used when for instance prerolling a
table).

18.13 Steps
The stepper permits stepwise processing of CONTEXT code: after a step contyrol gets delegated to
CONTEXT and afterwards back to LUA. There main limitation of this mechanism is that it cannot
exceed the number of input levels.

context.stepwise() context.step([str])

Usage is as follows:

context.stepwise (function()
...
context.step(...)
...
context.step(...)
...
context.stepwise (function()

...
context.step(...)
...

context.step(...)
...
end)
...
context.step(...)
...
context.step(...)
...

end)

202 A sort of summary

preliminary, uncorrected version – June 25, 2020

Special commands 203

preliminary, uncorrected version – June 25, 2020

19 Special commands

19.1 Tracing
There are a few functions in the context namespace that are no macros at the TEX end.

context.runfile("somefile.cld")

Another useful command is:

context.settracing(true)

There are a few tracing options that you can set at the TEX end:

\enabletrackers[context.files]
\enabletrackers[context.trace]

19.2 Overloads
A few macros have special functions (overloads) at the LUA end. One of them is \char. The function
makes sure that the characters ends up right. The same is true for \chardef. So, you don’t need
to mess around with \relax or trailing spaces as you would do at the TEX end in order to tell the
scanner to stop looking ahead.

context.char(123)

Other examples of macros that have optimized functions are \par, \bgroup and \egroup. Or take
this:

1: \ctxlua{commands.doif(true)}{one}
2: \cldcommand{doif("a","a","two")}
3: \ctxcommand{doif(true)}{three}

1: one
2: two
3: three

19.3 Steps
We already mentioned the stepper as a very special trick so let’s give some more explanation here.
When you run the following code:

\startluacode
context.startitemize()

context.startitem()
context("BEFORE 1")

context.stopitem()
context("\\setbox0\\hbox{!!!!}")
context.startitem()

204 Special commands

preliminary, uncorrected version – June 25, 2020

context("%p",tex.getbox(0).width)
context.stopitem()

context.stopitemize()
\stopluacode

You get a message like:

[ctxlua]:8: attempt to index a nil value
...
10 context("\\setbox0\\hbox{!!!!}")
11 context.startitem()
12 >> context("%p",tex.getbox(0).width)
...

due to the fact that the box is still void. All that the CONTEXT commands feed into TEX happens when
the code snippet has finished. You can however run a snippet of code the following way:

\startluacode
context.stepwise (function()

context.startitemize()
context.startitem()

context.step("BEFORE 1")
context.stopitem()
context.step("\\setbox0\\hbox{!!!!}")
context.startitem()

context.step("%p",tex.getbox(0).width)
context.stopitem()

context.stopitemize()
end)

\stopluacode

and get:

• BEFORE 1

• 12.23376pt

A more extensive example is:

\startluacode
context.stepwise (function()

context.startitemize()
context.startitem()

context.step("BEFORE 1")
context.stopitem()
context.step("\\setbox0\\hbox{!!!!}")
context.startitem()

context.step("%p",tex.getbox(0).width)
context.stopitem()
context.startitem()

context.step("BEFORE 2")

Special commands 205

preliminary, uncorrected version – June 25, 2020

context.stopitem()
context.step("\\setbox2\\hbox{????}")
context.startitem()

context.step("%p",tex.getbox(2).width)
context.startitem()

context.step("BEFORE 3")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2")
context.stopitem()
context.startitem()

context.step("BEFORE 4")
context.startitemize()

context.stepwise (function()
context.step("\\bgroup")
context.step("\\setbox0\\hbox{>>>>}")
context.startitem()

context.step("%p",tex.getbox(0).width)
context.stopitem()
context.step("\\setbox2\\hbox{<<<<}")
context.startitem()

context.step("%p",tex.getbox(2).width)
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2")
context.stopitem()
context.step("\\egroup")

end)
context.stopitemize()

context.stopitem()
context.startitem()

context.step("AFTER 1\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()
context.startitem()

context.step("AFTER 2\\par")
context.stopitem()
context.startitem()

context.step("\\copy0\\copy2\\par")
context.stopitem()

206 Special commands

preliminary, uncorrected version – June 25, 2020

context.startitem()
context.step("\\copy0\\copy2\\par")

context.stopitem()
context.stopitemize()

end)
\stopluacode

which gives:

• BEFORE 1

• 12.23376pt

• BEFORE 2

• 19.53882pt

• BEFORE 3

• !!!!????

• BEFORE 4

– 33.75287pt

– 33.75287pt

– >>>><<<<

– >>>><<<<

• AFTER 1

• !!!!????

• !!!!????

• AFTER 2

• !!!!????

• !!!!????

A step returns control to TEX immediately and after the TEX code that it feeds back is expanded,
returns to LUA. There are some limitations due to the input stack but normally that is no real issue.

You can run the following code:

\definenumber[LineCounter][way=bypage]
\starttext
\startluacode
for i=1,2000 do

context.incrementnumber { "LineCounter" }
context.getnumber { "LineCounter" }

Special commands 207

preliminary, uncorrected version – June 25, 2020

context.par()
end
\stopluacode
\stoptext

You will notice however that the number is not right on each page. This is because TEX doesn’t know
yet that there is no room on the page. The next will work better:

\definenumber[LineCounter][way=bypage]
\starttext
\startluacode
context.stepwise(function()

for i=1,2000 do
context.testpage { 0 }
context.incrementnumber { "LineCounter" }
context.getnumber { "LineCounter" }
context.par()
context.step()

end
end)
\stopluacode
\stoptext

Instead of the testpage function you can also play directly with registers, like:

if tex.pagegtotal + tex.count.lineheight > tex.pagetotal then

but often an already defined helper does a better job. Of course you will probably never need this
kind of hacks anyway, if only because much more is going on and there are better ways then.

208 Special commands

preliminary, uncorrected version – June 25, 2020

Files 209

preliminary, uncorrected version – June 25, 2020

20 Files

20.1 Preprocessing
Although this option must be used with care, it is possible to preprocess files before they enter TEX.
The following example shows this.

local function showline(str,filename,linenumber,noflines)
logs.simple("[lc] file: %s, line: %s of %s, length: %s",

file.basename(filename),linenumber,noflines,#str)
end

local function showfile(str,filename)
logs.simple("[fc] file: %s, length: %s",

file.basename(filename),#str)
end

resolvers.installinputlinehandler(showline)
resolvers.installinputfilehandler(showfile)

Preprocessors like this are rather innocent. If you want to manipulate the content you need to be
aware of the fact that modules and such also pass your code, and manipulating them can give unex-
pected side effects. So, the following code will not make CONTEXT happy.

local function foo()
return "bar"

end

resolvers.installinputlinehandler(foo)

But, as we pass the filename, you can base your preprocessing on names.

There can be multiple handlers active at the same time, and although more detailed control is pos-
sible, the current interface does not provide that, simply because having too many handlers active
is asking for trouble anyway. What you can do, is putting your handler in front or after the built in
handlers.

resolvers.installinputlinehandler("before",showline)
resolvers.installinputfilehandler("after", showfile)

Of course you can also preprocess files outside this mechanism, which in most cases might be a better
idea. However, the following example code is quite efficient and robust.

local function MyHandler(str,filename)
if file.suffix(filename) == "veryspecial" then

logs.simple("preprocessing file '%s',filename)
return MyConverter(str)

else
return str

end

210 Files

preliminary, uncorrected version – June 25, 2020

end

resolvers.installinputfilehandler("before",MyHandler)

In this case only files that have a suffix .veryspecial will get an extra treatment.

Index 211

preliminary, uncorrected version – June 25, 2020

Index

needs checking, incomplete

b
booleans 7

c
callbacks 159
cardinals 157
catcodes 26
comment 14
constants 35

d
delaying 30
direct output 24

e
expressions 12

f
floats 157
functions 7, 29

i
implementors 139

actions 149
arguments 140
arrays 147
boxes 145
expansion 144
hashes 147
macros 148
tables 141
token lists 148
verbatim 147

integers 157

l
lines 22
loops 11
LUA 7

m
modes 35

n
namespaces 13
nesting 30
nodelists 159
nodes 37
numbers 7

p
prerolls 31
processing 21

s
scanners 139
spaces 22
strings 7
systemmodes 35

t
tables 7
tasks 161
tokens 36
tracing 203
trial typesetting 31

u
user interface 35

v
variables 7, 153

cardinals 157
data tables 155
floats 157
grouped tables 153
integers 157
named 157

verbatim 67
verbose 24

212 Index

preliminary, uncorrected version – June 25, 2020

