
l2r
r2l
a few tips

hans hagen



1

1 Introduction

With CONTEXT you can typeset in two directions: from left to right and from right to left. In fact you

can also combine these two directions, like this:

There are many {\righttoleft \maincolor \it scripts in use} and some run into the

other direction. However, there is {\righttoleft \maincolor \it no fixed relation

{\lefttoright \black \it between the} direction of the script} and cars being

driven left or right of the road.

There are many scriptsinuse and some run into the other direction. However, there is nofixed

relationbetween thedirectionofthescript and cars being driven left or right of the road.

Even someone not familiar with right to left typesetting can see what happens here, or not? In fact

Luigi Scarso pointed out that the fixed reversed into fixed but not in the example where fixed

becomes fixed . This signals an important property of the way the text gets processed: you input

something, at some points font features get applied (like ligatures) and in the end the resulting glyph

stream is reversed. By that time the combination of f+i has become fi! So, be prepared for surprises.

This manual is written by a left to right user so don’t expect a manual on semitic typesetting. Also

don’t expect a (yet) complete manual. I’ll add whatever comes to mind. This is not a manual about

Hebrew or Arabic, if only because I can’t read any of those scripts (languages). I leave that to others

to cover.

This is work in progress! So expect errors and typos.

Hans Hagen

Hasselt, NL



2

2 Setting up fonts

So let’s see how Arabic and Hebrew come out:

The sentence \quotation {I have no clue what this means.} is translated (by

Google Translate) into \quotation {\ar \righttoleft ل ي س ل د ي أ ي ف ك ر ة ع م ا ي ع ن ي ه
ه ذ ا .}
which is then translated back to \quotation {I have no idea what this means.} so

maybe arabic has no clue what a clue is. The suggested Arabic pronunciation is

\quotation {lays laday 'ayu fikrat eamaa yaenih hadha}. Hebrew also likes ideas

more: \quotation {\he \righttoleft א י ן ל י מ ו ש ג מ ה ז ה א ו מ .{ר

The sentence “I have no clue what this means.” is translated (by Google Translate) into “ ةركفئايدلسيل
.اذههينعيامع ” which is then translated back to “I have no idea what this means.” so maybe arabic has

no clue what a clue is. The suggested Arabic pronunciation is “lays laday ’ayu fikrat eamaa yaenih

hadha”. Hebrew also likes ideas more: “ רמואהזהמגשומילןיא ”.

According to Idris Hamid the Arabic should actually be this: “ اذَٰههِينِعْيَاَّمعَةٍرَكِْفُّئَاَّيدَلَسَيْلَ ” and the

transliteration “Laysa ladayya ayyu fikratin ʿammā yaʿnihi hādhā”.

The CONTEXT (or any TEX) ecosystem deals with languages and fonts. Languages (that relate to scripts)

have specific characteristics, like running from right to left, and fonts provide a repertoire of glyphs

and features. There is no real (standard) relationship between these. In for instance browsers, there

are automatic fallback systems for missing characters in a font: another font is taken. These fallbacks

are often not easy to tweak.

In this document we use Dejavu and although that font has Arabic shapes in its monospace variant,

the serifs come without them (at least when I write this down). Before we actually define the bodyfont

we hook in some fallbacks. The typescript for Dejavu has lines like this:

\definefontsynonym

[SerifBoldItalic]

[name:dejavuserifbolditalic]

[features=default,

fallbacks=SerifBoldItalic]

This permits us to do this:

\definefontfallback

[Serif] [scheherazaderegular*arabic]

[arabic] [force=yes,rscale=1.5]

\definefontfallback

[SerifBold] [scheherazadebold*arabic]

[arabic] [force=yes,rscale=1.5]

\definefontfallback

[SerifItalic] [scheherazaderegular*arabic]

[arabic] [force=yes,rscale=1.5]

\definefontfallback

[SerifBoldItalic] [scheherazadebold*arabic]



3

[arabic] [force=yes,rscale=1.5]

\definefontfallback

[Serif] [sileot*hebrew]

[hebrew] [force=yes]

\definefontfallback

[SerifBold] [sileot*hebrew]

[hebrew] [force=yes]

\definefontfallback

[SerifItalic] [sileot*hebrew]

[hebrew] [force=yes]

\definefontfallback

[SerifBoldItalic] [sileot*hebrew]

[hebrew] [force=yes]

\definefontfallback

[Mono] [almfixed*none]

[arabic] [force=yes]

\definefontfallback

[Mono] [sileot*none]

[hebrew] [force=yes,factor=1] % factor forces a monospace

\setupbodyfont

[dejavu,10pt]

In addition we set up the languages:

\setuplanguage[ar][font=arabic,bidi=right]

\setuplanguage[he][font=hebrew,bidi=right]

The following example demonstrates what the effects of these commands are:

{ ل َ ي ْ س َ ل َ د َ ي ّ َ أ َ ي ّ ُ ف ِ ك ْ ر َ ة ٍ ع َ م ّ َ ا ي َ ع ْ ن ِ ي ه ِ ه ٰ ذ َ ا .}
{ א י ן ל י מ ו ש ג מ ה ז ה א ו מ {.ר
{\righttoleft ل َ ي ْ س َ ل َ د َ ي ّ َ أ َ ي ّ ُ ف ِ ك ْ ر َ ة ٍ ع َ م ّ َ ا ي َ ع ْ ن ِ ي ه ِ
ه ٰ ذ َ ا .}
{\righttoleft א י ן ל י מ ו ש ג מ ה ז ה א ו מ {.ר
{\ar \righttoleft ل َ ي ْ س َ ل َ د َ ي ّ َ أ َ ي ّ ُ ف ِ ك ْ ر َ ة ٍ ع َ م ّ َ ا ي َ ع ْ ن ِ ي ه ِ
ه ٰ ذ َ ا .}
{\he \righttoleft א י ן ל י מ ו ש ג מ ה ז ה א ו מ {.ר
{\ar ل َ ي ْ س َ ل َ د َ ي ّ َ أ َ ي ّ ُ ف ِ ك ْ ر َ ة ٍ ع َ م ّ َ ا ي َ ع ْ ن ِ ي ه ِ ه ٰ ذ َ ا .}
{\he א י ן ל י מ ו ש ג מ ה ז ה א ו מ {.ר

سَيْلَ َّيدَلَ َٔا ُّي ِف ةٍرَكْ َّمعَ ا هِينِعْيَ ٰه .اذَ
ןיא יל גשומ המ הז .רמוא

.اذَٰههِينِعْيَاَّمعَةٍرَكِْفُّئَاَّيدَلَسَيْلَ
.רמואהזהמגשומילןיא
.اذَٰههِينِعْيَاَّمعَةٍرَكِْفُّئَاَّيدَلَسَيْلَ



4

.רמואהזהמגשומילןיא
.اذَٰههِينِعْيَاَّمعَةٍرَكِْفُّئَاَّيدَلَسَيْلَ
.רמואהזהמגשומילןיא

In principle you can also rely on automatic direction changes, for instance by using the following

command:

\setupdirections

[bidi=global,

method=three]

But that doesn’t do a font switch for you, nor does it do any of the other language related settings. It

really helps if you properly tag your document content, as in:

{\ar ل َ ي ْ س َ ل َ د َ ي ّ َ أ َ ي ّ ُ ف ِ ك ْ ر َ ة ٍ ع َ م ّ َ ا ي َ ع ْ ن ِ ي ه ِ ه ٰ ذ َ ا .}
{\he א י ן ל י מ ו ש ג מ ה ז ה א ו מ {.ר

One reason to set the font parameter for a language is that it will activate the right features in a font.

Instead of falling back on some default, we can be very specific in what we want to enable.



5

3 A mixed layout

The typesetting engine normally works from left to right and top to bottom. Going from right to left

actually involved two decisions:

• the direction of the display elements, the paragraphs

• the direction of the inline text, the lines

The first one is kept track of in a state variable. Every paragraph starts with a node that carries,

among other information, that state. This node is added automatically and does not interfere with the

typesetting. The inline direction is more intrusive as it is marked by nodes that indicate the beginning

and end of a reversed strip. This mechanism is rather reliable and normally works out well. Take this:

left {\righttoleft right} left

left{ \righttoleft right} left

left {\righttoleft right }left

left{ \righttoleft right }left

You can see that we need to be careful with spaces as they can end up inside or outside a substream

and by swapping next to each other:

left right left

left right left

left right left

left right left

We can wrap the lines in boxes as in:

\hbox{left\space{\bf\righttoleft right}\space left}

\hbox{left{\bf\space \righttoleft right}\space left}

\hbox{left\space{\bf\righttoleft right\space}left}

\hbox{left{\bf\space\righttoleft right\space}left}

When visualize the spaces we get this:

leftSP right SPleftH__

leftSP right SPleftH__

leftSP rightSP leftH__

leftSP rightSP leftH__

The space of a normal and bold font in the same family normally is the same but let’s mix with a larger

size:

\hbox{left {\bfa\righttoleft right} left}

\hbox{left{\bfa\space \righttoleft right} left}

\hbox{left {\bfa\righttoleft right }left}

\hbox{left{\bfa\space\righttoleft right }left}

Now we get the following. As you can see, it really matters where we put the braces.

leftSP right SPleftH__



6

leftSP right SPleftH__

left SP right SPleftH__

leftSP rightSP leftH__

left SP rightSP leftH__
Figure 3.1 Watch your spaces!

left SP right SPleftH__

leftSP rightSP leftH__

left SP rightSP leftH__

Once you are accustomed to tagging and TEX you will probably not fall into these traps. In figure 3.1

we show a large version.

The \righttoleft command actually has two meanings. This can best be seen from an example.

\righttoleft \bf How will this come out?

Howwillthiscomeout?

And \righttoleft \bf how will this come out?

And howwillthiscomeout?

When we start a paragraph (or in TEX speak: when we are still in vertical mode) the paragraph di-

rection as well as the inline direction is set. Otherwise only the inline direction is set. There are low

level TEX commands (primitives) to set the direction but you can best not use these because we need

to do a bit more than that.

There are quite some low level commands related to changing directions. Some deal with the layout,

some with boxes. We might provide more in the future.



7

\lefttoright l2r dir node or paragraph property

\righttoleft r2l dir node or paragraph property

\checkedlefttoright l2r dir node or paragraph property (unless already set)

\checkedrighttoleft r2l dir node or paragraph property (unless already set)

\synchronizeinlinedirection pickup a (possibly) reset state

\synchronizelayoutdirection pickup a (possibly) reset state

\synchronizedisplaydirection pickup a (possibly) reset state

\righttolefthbox r2l \hbox

\lefttorighthbox l2r \hbox

\righttoleftvbox r2l \vbox

\lefttorightvbox l2r \vbox

\righttoleftvtop r2l \vtop

\lefttorightvtop l2r \vtop

\leftorrighthbox l2r or r2l \hbox

\leftorrightvbox l2r or r2l \vbox

\leftorrightvtop l2r or r2l \vtop

\autodirhbox l2r or r2l \hbox (a bit more clever)

\autodirvbox l2r or r2l \vbox (a bit more clever)

\autodirvtop l2r or r2l \vtop (a bit more clever)

\bidilre character U+202A, enforce l2r state

\bidirle character U+202B, enforce r2l state

\bidipop character U+202C, return to last state

\bidilro character U+202D, override l2r state

\bidirlo character U+202E, override r2l state

\lefttorightmark \lrm character U+200E, l2r indicator

\righttoleftmark \rlm character U+200F, r2l indicator

\dirlre switch to l2r mode using \bidilre or

\dirrle switch to r2l mode using \bidirle or

\dirlro enforce l2r mode using \bidilro or

\dirrlo enforce r2l mode using \bidirlo or

\naturalhbox a normal l2r hbox

\naturalvbox a normal l2r vbox

\naturalvtop a normal l2r vtop

\naturalhpack a normal l2r hpack

\naturalvpack a normal l2r vpack

When we talk about layout, we mean the overall layout, concerning the document as a whole. We can

have a dominantly l2r, dominantly r2l or mixed setup. In a next chapter we will give more details on

the dominant setup. Here we stick to mentioning that the document flow direction is set with

\setupalign[r2l] % or r2l

When a command to setup an environment has a align parameter, the same keywords can be uses as

part of the specification.1

1 We haven’t tested all situations and possible interferences. Just report anomalies to the mailing list.



8

4 Numbering and positioning

todo: columns (direction key), numbers (conversionsets), margins (begin/end), etc



9

5 The LUA interface

We assume that you run CONTEXT MKIV in combination with LUATEX. Direction support in this engine

has been improved over time. Originally the OMEGA (ALEPH) direction model was used but in the

meantime it has been stripped to the basics, and what used to be so called whatsits (extension nodes)

are now first class nodes. Of the many directions only four are kept in LUATEX and they are indicated

by three letters:

0 TLT left to right

1 TRT right to left

2 LTL not used in context (obsolete)

3 RTT not used in context (obsolete)

In LUAMETATEX, and therefore CONTEXT LMTX we only have the first two. Therefore in LMTX you

normally don’t have to worry about checking for them at the LUA end because they are irrelevant for

calculations (the vertical ones swapped the horizontal and vertical progression). Also, when really

needed, we use the direction keys with numerical indicators, so zero for l2r and one for r2l. These

values are used for local par nodes as well as direction nodes. In addition a direction node has a

subtype:

0 normal comparable to +

1 cancel comparable to -



10

6 Going vertical

Normally the term bidi is reserved for horizontal direction swapping but there is no reason to limit

our view to that. So, here I will spend some words on how we can deal with vertical directions.

I will move some (not yet public) explanation from elsewhere to here in due time.


