

About SCITE

This manual is under (re)construction.

For a long time at Pragma ADE we used TgXedit, an editor we’d written in Modula.
It had some project management features and recognized the project structure in
ConTgXt documents. Later we rewrote this to a platform independent reimplemen-
tation called TEXwork written in Perl/Tk (not to be confused with the editor with the
plural name).

In the beginning of the century I can into SciTE, written by Neil Hodgson. Although
the mentioned editors provide some functionality not present in SciTE we decided to
use that editor because it frees us from maintaining our own. I ported our TgX and
MetaPost (line based) syntax highlighting to SciTE and got a lot of others for free.

After a while I found out that there was an extension interface written in Lua. I played
with it and wrote a few extensions too. This pleasant experience later triggered the
LuaTgX project.

A decade into the century SciTE got another new feature: you can write dynamic
external lexers in Lua using lpeg. As in the meantime ConTgXt has evolved in a
TgX/Lua hybrid, it made sense to look into this. The result is a couple of lexers that
suit TgX, MetaPost and Lua usage in ConTgXt MKIV. As we also use xml as input and
output format a lexer for xml is also provided. And because pdfis one of the backend
formats lexing of pdf is also implemented.’

In the ConTgXt (standalone) distribution you will find the relevant files under:
<texroot>/tex/texmf-context/context/data/scite

Normally a user will not have to dive into the implementation details but in principle
you can tweak the properties files to suit your purpose.

The look and feel

The color scheme that we use is consistent over the lexers but we use more colors
that in the traditional lexing. For instance, TgX primitives, low level TEX commands,
TgX constants, basic file structure related commands, and user commands all get a
different treatment. When spell checking is turned on, we indicate unknown words,

In the process some of the general lexing framework was adapted to suit our demands for speed. We ship
these files as well.

STTTEZ TI0Z-0T-6 | 47+4D 192 | SNI2pow | T2 uwinja g7 3ul | §Z:7TEZ TI07-0T-§ | =¥ |Ensia-paquod-a3as

4 [» 4 »
e 1xaxdoys\ | [/p
09k
Ja3deyodols\ | gF
144
deuaoy\ £t
[4y
[BTaxz]ue1g\ v
or
T\ 6E
§ :12p03 ITXI<p9Z’ 7 :2WTIunt 12303 | waysks STY3 3noge % .HQW(_U WEOmWQWL o\49p\ 8t
JE :pOylaWw JU3LIINI ‘le|nyo }|NeL3p 1BqOIIE :spoylaw matagpd | 1X33U03- X3 as]a\ LE
abed passasoud [‘spuodas ge1°T - JWTIUNL = S3BIS BN ATHW S8J4Ed oym g% .ﬁu.x.mu. QEOmVQWL o\ 3op\ 9g
(9W SE :%32) 9W bE - afesn Alowaw 1us1and = S1E1S EN] ATHW =2nJd “—.u_..ﬂ/ mm
[60BOAT + 95553 40 9OCIL - 533U3Nb3s]0J3U0D < S5}E1S BN ATHW £
"-2312q UODTSJI3A ‘X23en] ST STYR - J3uueq xaien] < S3B1S BN ATHW 1 PE
.-. s g/@°p :buTpeo] ‘spuodas ste’e - AT Butssadosd ysodeiaw = S3E1S BN} ATHW :OHPu@LLOu@:HHQOPﬂ/ €€
Spuodas 19g°@ - JWT} pEO] S}UDf < SIB1S BN ATHW b .
ZTouoww) wye:pTAlewls :s3aT4 £5 - S1U0L PIPEO] < SIBIS BN ATHW U—UOUQEQOFG_/ cE
4pd-1ENSTA-1X33U03-33TI5 - 31T4 UT P3AES 3|NS3J < SIEIS BN| ATHW .
ied] ST ‘S3pou @ ‘spuolas @EeE’e - SwT} uorieledald WX] < S53B1S BN ATHW - Jdojpus 1€
SFEQZEETRI"0 AN)BA YITM paunsal - JITTWOPUE] < SIEIS BN ATHU ! (Www,T) pale2s 8124T211Nt MeJp (o]
2£9 ‘3D3UTPUT £/SE ‘31IIUTP EASE - SYIBQLLEd = S1E1S BN ATHU .
Zziua - sui311ed papeo] < 53B1S BN ATHUW - 00T OFQ: =T J0} 514
Jauab £132311p Joj puayaeq) spd - pua)Jeq pasn < S1E1S BN ATHW apoa, Jdeis
i[@oue3sut 5 “s3sT) ysey anbrun g - sysey joEq]EI IST] FPOU < SIEIS BN ATHW PO2dh31e1s\ 8¢
| 23ngTi130 21 “A3jEUad £ ‘3ni6 7 - 3fesn fIoWSW 3pOU = 53EIS BN ATHW :OﬂPU@LLOU@:ﬂHPLﬁPﬂ/ =i
| LZF 40 S1ST] § ‘S3POU GE - SIPOU Pasiasad dn pauea]d = SIEIS BN ATHU 9z
nys> 5gg ‘sa1qel £9 ‘SsI|Npow ZEE - ejep 3po2a1fq palols < S3EIS BN ATHW
u suE3ds T ‘SpU0JasS 91@’@ SWTIPED] - 13A)0S3J 33UN0S3L = 53E1S BN ATHUW .AA:O“UOU WBH.LPKOPEOUHMH-.-.*FU/ \ﬂwﬂn_m.n—u Se 11=M SB saUT]UT LT
¥31/3%33u03-%21/do)aAap/elep i - yied ayzes pasn < S3E1S BN ATHW
Zqam/1e30] - juxalijualedoineyas - 3114 Bryuod pasn = siels eny aTqu| = pue sdsxaq FMOQMPQE pue en] psppadqus 243 4YITM UOTIEBUTQWOD UT i
SREA CLULRIL PLNVELS DULVELTSUELLVESULIVEID CRVESEVEL CRULEEE SRVLEELE FLRL T Lmu._um_._u.d.._.mﬁm SWT11Eea4 2yl =2JeJ]lsuUcwep 031 1X=21 3uWos u.mﬂh ST STyl £€C
1 =bedgns ‘1 abedisasn ‘7 abedyeas Butysniy < : : : :
~xpd-4pdy/sazinos/ixaiuod/dojanapy/eiepsio, a1t Butsn < dux < puayaeq NN
1¥31u03/1500d033W,/3%31U03/d0)IASP/EIEP/ 1D ¢, ungeldu, BUTPRO] < 1sodeyau W—UOUM—._._.QOH..M/ 12
,ungeiaw, jewiop BUTSN ,unjeiaw, 23uelsuT BUTZT)RTITUT < 3sodezau
213713 Aduey awos =- 1°@ : ¢ 12h3) B 493deys = BurtuoTides = 24N3120115 pu= 0c
N papen] ST 1dzl Wi ul3pouw yoeq)1E4 < sjuoy o
Jeyowoigpsdew 3weu 3A)0S34 03 3I|QEUn < YIEW 1ENIITA < sjuoy Av\ﬂ(_u._._wn_ou_.m eEEL 6T
Jnos/3x31u03/do)aA3p/e1ep/ia) (ATHW" ZT5-2dA1/5331N05/3x33u03/do3n3p/eaep /i) Au.xmu. " _“HU_MQHLFCQUFX.QPEOU 8T
(3be1s puodas) sjuoj ul3pow utie] Butpeo]ald < sjuoy .
- ATHW/3x33und/x23pd/dew/s3uoy/3¥a3u0d - JuKa /x33/3x23u03-x23/doanapezep/ 12} A uh(_u._.._wu_.(_ B3s"3xajuoo LT
anTide sT ua abenbuey = sabenbuey) O—u m@._”(_ PC@%.H"H f_ou_. w._“
papeoiaJd 30U 31B SIU0Y UI3POW UT}E] < sjuoy
! (do3'1ensTa-3x33u03-33135) ST
papeo] dol’1ENSTA-3X3jup3-33Ias < waysks .H A
1 (
ATHw*dx3-3uU03 woly papeo] saydied Jwos :ialemaqg = walsks ..ﬁ o m>(_u._._® yyanol =yj,, = x=1 M €T
AT dx3-3u03/5331n05/3x33u02/doyanap/e1ep/i3) ' c _
I hapEaL ATy ot A { .ifa3us patys syl = axe3 } 4
. .AH 2J40W =29 ued =J8yy -- M = S3TJJuU= 1e200 T
ATHU®30]-3U03 WO} papeo)] saydied 3w0s :3JIEM3q = waysks
ATHW® 0] -3U03/5331N05/3%33U02,/d0]3n3p/e1ep/ ! 3) spooenyliels\ 01
papeo) ATyu®30]-3u03 < waysks 6
(
ATHU®M3U-3UOD WO} PapeE0) saydied Swos :3JeMaq < waysks _”m._.u.._”u. hU_.._Wu_. mEOMHmHFHF”_LmFQW_._Uu.(_WFM/\ 8
ATHU®M3U-3U03/5301N05/3x33u0d/doyanap/eiep/:3) L
pa3pe0] ATHUM3U-1UDD < waysks 1x3334018)\ 5
yYsT16ua/ysT1BUa (3UT g TT'TIOZ :3Wy ATNW SE:6T 80°TL'TT0Z 434 3IX3Luo] S
xmu,d.m_.._m:.uxmu:ou.muaumv —)Lu._._wu_ 4
‘pa1qeua BT23TIM
(STSt A1) TTEE9BTIAZ-8 T{ B-213Q UOTSISA “XILEAT ST STYL IX231pawe.d3uTiap\ =
- JWX33/%31/3XIJU0D-X31 /00 IN3P/RIEP,/ T, =y - X31BN] T und | 3X33U03- X3 Z
X33 1ENSTA-}X33u03-33125 jpdoine-- 3xajuod 3dTids-- ajesauabojne-- unixjus| ~ V_BHOUMDUCWH % T
ll _ EY[ENSIA-PRIU0I-330s | BT3WPEII-PRIU0I-IIS _ﬁu.nmb _m:_.m._u:ﬁmnm__u.vu enp|ep § | junejepw-ppnowsp 3 | enpajdwes-qu 7 |enpjoojunu-p 3 |enpsuoissas-s § | enpjonuodgols § _m:_.m_uome.mw _m: 03p|INg-p 7 _ﬁﬂmv_on%ﬂuqﬁ

dpF sieyng =0enbue] suondf sjool wmaf ynes§ wp3 a3

- X3 |ENsIn-PEIUCI-SIDs\EepIsy)
J

Figure 1 Nested lexers in action.

N

but also words that are known but might need checking, for instance because they
have an uppercase character. In figure 1 we some of that in practice.

Installing SCITE

Installing SciTE is straightforward. We are most familiar with MS Windows but for
other operating systems installation is not much different. First you need to fetch
the archive from:

www.scintilla.org

The MS Windows binaries are zipped in wscite.zip, and you can unzip this in any
directory you want as long as you make sure that the binary ends up in your path or
as shortcut on your desktop. So, say that you install SciTE in:

c:\data\system\scite\wscite

You need to add this path to your local path definition. Installing SciTE to some
known place has the advantage that you can move it around. There are no special
dependencies on the operating system.

Next you need to install the Ipeg lexers.? These can be fetched from:
http://foicica.com/scintillua/

On MS Windows you need to copy the lexers subfolder to the wscite folder. For
linux the place depends on the distribution and I just copy them in the same path as
where the regular properties files live.?

For Unix, one can take a precompiled version as well. Here we might need to split
the set of files into:

/usr/bin
/usr/share/scite

The second path is hard coded in the binary and moving all files there probably works
okay. Beware: if you're on a 64 bit system, you need to rename the 64 bit so library.

If you want to use ConTgXt, you need to copy the relevant files from
<texroot>/tex/texmf-context/context/data/scite

to the path were SciTE keeps its property files (*.properties). There is a file called
SciteGlobal.properties. At the end of that file (on MS Windows it is in the path
Veheoes therSbite bih anlf nyomileMedtlizdtme2io thehendse you need to comment the external

lexer import.
If yaumpalate, slon’t e comvidelt-teseny first. Sometimes there are changes in SciTE that influence the
lexers in which case you have to wait till we have update them to suit those changes.

You need to restart SciTE in order to see if things work out as expected.

Disabling the external lexer in a recent SciTE is somewhat tricky. In that case the
end of that file looks like:

imports.exclude=scite-context-external
import *
import scite-context-user

In any case you need to make sure that the user file is loaded last.

After this, things should run as expected (given that TgX runs at the console as well).

Fonts

The configuration file defaults to the Dejavu fonts. These free fonts are part of the
ConTgXt suite (also known as the standalone distribution). Of course you can fetch
them from http://dejavu-fonts.org as well. You have to copy them to where your
operating system expects them. In the suite they are available in

<contextroot>/tex/texmf/fonts/truetype/public/dejavu

An alternative approach

If for some reason you prefer not to mess with property files in the main SciTE path,
you can follow a different route and selectively copy files to places.

The following files are needed for the lpeg based lexer:

lexers/scite-context-lexer.lua

lexers/scite-context-lexer-tex.lua
lexers/scite-context-lexer-mps.lua
lexers/scite-context-lexer-lua.lua
lexers/scite-context-lexer-cld.lua
lexers/scite-context-lexer-txt.lua
lexers/scite-context-lexer-xml*. lua
lexers/scite-context-lexer-pdf*.lua

lexers/context/data/scite-context-data-tex.lua
lexers/context/data/scite-context-data-context.lua
lexers/context/data/scite-context-data-interfaces.lua
lexers/context/data/scite-context-data-metapost.lua
lexers/context/data/scite-context-data-metafun.lua

lexers/themes/scite-context-theme.lua

The data files are needed because we cannot access property files from within the
lexer. If we could open a file we could use the property files instead.

These files go to the lexers subpath in your SciTE installation. Normally this sits in
the binary path. The following files provide some extensions. On MS Windows you
can copy these files to the path where the SciTE binary lives.

scite-ctx.lua

Because property files can only be loaded from the same path where the (user) file
loads them you need to copy the following files to the same path where the loading
is defined:

scite-context.properties
scite-context-internal.properties
scite-context-external.properties

scite-pragma.properties

scite-tex.properties
scite-metapost.properties

scite-context-data-tex.properties
scite-context-data-context.properties
scite-context-data-interfaces.properties
scite-context-data-metapost.properties
scite-context-data-metafun.properties

scite-ctx.properties
scite-ctx-context.properties
scite-ctx-example.properties

On MS Windows these go to:
c:/Users/YourName
Next you need to add this to:

import scite-context
import scite-context-internal
import scite-context-external
import scite-pragma

to the file:
SciTEUser.properties

Of course the pragma import is optional. You can comment either the internal or
external variant but there is no reason not to keep them both.

Extensions

Just a quick not to some extensions. If you select a part of the text (normally you do
this with the shift key pressed) and you hit Shift-F11, you get a menu with some
options. More (robust) ones will be provided at some point.

Spell checking

If you want to have spell checking, you need have files with correct words on each
line. The first line of a file determines the language:

% language=uk

When you use the external lexers, you need to provide some files. Given that you
have a text file with valid words only, you can run the following script:

mtxrun --script scite --words nl uk

This will convert files with names like spell-nl.txt into Lua files that you need to
copy to the lexers/data path. Spell checking happens realtime when you have the
language directive (just add a bogus character to disable it). Wrong words are col-
ored red, and words that might have a case problem are colored orange. Recognized
words are greyed and words with less than three characters are ignored.

In the case of internal lexers, the following file is needed:
spell-uk.txt

If you use the traditional lexer, this file is taken from the path determined by the
environment variable:

CTXSPELLPATH

As already mentioned, the Ipeg lexer expects them in the data path. This is because
the Lua instance that does the lexing is rather minimalistic and lacks some libraries
as well as cannot access the main SciTE state.

Spell checking in txt files is enabled by adding a first line:
[#!-%] language=uk

The first character on that line is one of the four mentioned between square brackets.
So,

language=uk

should work. For xml files there are two methods. You can use the following (at the
start of the file):

<?xml ... language="uk" 7>
But probably better is to use the next directive just below the usual xml marker line:

<?context-directive editor language uk 7>

Interface selection

In a similar fashion you can drive the interface checking:

'

% interface=nl

Property files

The internal lexers are controlled by the property files while the external ones are
steered with themes. Unfortunately there is hardly any access to properties from
the external lexer code nor can we consult the file system and/or run programs like
mtxrun. This means that we cannot use configuration files in the ConTgXt distribution
directly. Hopefully this changes with future releases.

The external lexers

These are the more advanced. They provide more detail and the ConTgXt lexer also
supports nested MetaPost and Lua. Currently there is no detailed configuration but
this might change once they are stable.

The external lexers operate on documents while the internal ones operate on lines.
This can make the external lexers slow on large documents. We’ve optimized the
code somewhat for speed and memory consumption but there’s only so much one
can do. While lexing each change in style needs a small table but allocating and
garbage collecting many small tables comes at a price. Of course in practice this
probably gets unnoticed.*

In principle the external lexers can be used with textadept which alsouses scintilla.
Actually, support for lpeg lexing originates in textadept. Currently textadept lacks
a couple of features I like about SciTE (for instance it has no realtime logpane) and
it’s also still changing. At some point the ConTgXt distribution might ship with files
for textadept as well.

The external Ipeg lexers work okay with the MS Windows and linux versions of SciTE,
but unfortunately at the time of writing this, the Lua library that is needed is not avail-
able for the MacOSX version of SciTE. Also, due to the fact that the lexing framework
is rather isolated, there are some issues that cannot be addressed in the properly, at
least not currently.

In addition to ConTgXt and MetaFun lexing a Lua lexer is also provided so that we
can handle ConTgXt Lua Document (cld) files too. There is also an xml lexer. This
one also provides spell checking. The pdf lexer tries to do a good job on pdf files, but
it has some limitations. There is also a simple text file lexer that does spell checking.

Don’t worry if you see an orange rectangle in your TgX or xml document. This indi-
cates that there is a special space character there, for instance 0xA0, the nonbreak-

ahletspre eodRfrconInSenenass ine $hadryold vse MbiBlandppat eigdéngat speed is less an

issue now.

The internal lexers

SciTE has quite some built in lexers. A lexer is responsible for highlighting the syntax
of your document. The way a TgX file is treated is configured in the file:

tex.properties

You can edit this file to your needs using the menu entry under options in the top
bar. In this file, the following settings apply to the TgX lexer:

lexer.tex.interface.default=0
lexer.tex.use.keywords=1
lexer.tex.comment.process=0
lexer.tex.auto.if=1

The option lexer.tex.interface.default determines the way keywords are high-
lighted. You can control the interface from your document as well, which makes more
sense that editing the configuration file each time.

% interface=all|tex|nl|en|de|cz|it]|ro]|latex

The values in the properties file and the keywords in the preamble line have the
following meaning:

0 all all commands (preceded by a backslash)

1 tex TEX, e-TgX, pdfTEX, Omega primitives (and macros)
2 nl the dutch ConTgXt interface

3 en the english ConTgXt interface

4 de the german ConTgXt interface

5 cz the czech ConTgXt interface

6 it the italian ConTgXt interface

7 ro the romanian ConTgXt interface

8 latex IATgEX (apart from packages)

The configuration file is set up in such a way that you can easily add more keywords to
the lists. The keywords for the second and higher interfaces are defined in their own
properties files. If you're curious about the way this is configures, you can peek into
the property files that start with scite-context. When you have ConTgXt installed
you can generate configuration files with

mtxrun --script interface --scite

You need to make sure that you move the result to the right place so best not mess
around with this command and use the files from the distribution.

Back to the properties in tex.properties. You can disable keyword coloring allto-
gether with:

lexer.tex.use.keywords=0

but this is only handy for testing purposes. More interesting is that you can influence
the way comment is treated:

lexer.tex.comment.process=0

When set to zero, comment is not interpreted as TgX code and it will come out in a
uniform color. But, when set to one, you will get as much colors as a TgX source. It’s
a matter of taste what you choose.

The lexer tries to cope with the TgX syntax as good as possible and takes for instance
care of the funny ~” notation. A special treatment is applied to so called \if’s:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever’s will be seen as a
command. When set to zero, only the primitive \1f’s will be treated. In order not to
confuse you, when this property is set to one, the lexer will not color an \ifwhatever
that follows an \newif.

The MetaPost lexer

The MetaPost lexer is set up slightly different from its TgX counterpart, first of all
because MetaPost is more a language that TEX. As with the TgX lexer, we can control
the interpretation of identifiers. The MetaPost specific configuration file is:

metapost.properties
Here you can find properties like:
lexer.metapost.interface.default=1

Instead of editing the configuration file you can control the lexer with the first line
in your document:

% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers
1 metapost or mp MetaPost primitives and macros
2 metafun MetaFun macros

Similar to the TgX lexer, you can influence the way comments are handled:
lexer.metapost.comment.process=1

This will interpret comment as MetaPost code, which is not that useful (opposite to
TgX, where documentation is often coded in TgX).

The lexer will color the MetaPost keywords, and, when enabled also additional key-
words (like those of MetaFun). The additional keywords are colored and shown in a
slanted font.

The MetaFun keywords are defined in a separate file:
metafun-scite.properties

You can either copy this file to the path where you global properties files lives, or put
a copy in the path of your user properties file. In that case you need to add an entry
to the file SciTEUser.properties:

import metafun-scite

10

The lexer is able to recognize btex-etex and will treat anything in between as just
text. The same happens with strings (between "). Both act on a per line basis.

Using ConTEXt

When mtxrun is in your path, ConTgXt should run out of the box. You can find mtxrun
in:

<contextroot>/tex/texmf-mswin/bin
or in a similar path that suits the operating system that you use.

When you hit CTRL-12 your document will be processed. Take a look at the Tools
menu to see what more is provided.

Extensions (using LUA)

When the Lua extensions are loaded, you will see a message in the log pane that
looks like:

- see scite-ctx.properties for configuring info

- ctx.spellcheck.wordpath set to ENV(CTXSPELLPATH)
- ctxspellpath set to c:\data\develop\context\spell
- ctx.spellcheck.wordpath expands to c:\data\develop\context\spell

- ctx.wraptext.length is set to 65
- key bindings:

Shift + F11 pop up menu with ctx options

Ctrl + B check spelling

Ctrt + M wrap text (auto indent)

Ctrl + R reset spelling results

Ctrl + 1 insert template

Ctrl + E open log file

Ctrl + + show language character strip (key might change)

- recognized first lines:

xml <?xml version='1.0"' language='nl'
tex % language=nl

This message tells you what extras are available. The language character strip fea-
ture is relatively new and displays buttons at the bottom of the screen for the char-
acters in a (chosen) language. This is handy when you occasionally have to key in
(snippets) of a language you’'re not familiar with. More alphabets will be added (we
take data from some ConTgXt language relates files).

11

Templates

There is an experimental template mechanism. One option is to define templates in
a properties file. The property file scite-ctx-context contains definitions like:

command.25.$(file.patterns.context)=insert template \
$(ctx.template.list.context)

ctx.template.list.context=\
itemize=structure.itemize.context|\
tabulate=structure.tabulate.context|\
natural TABLE=structure.TABLE.context|\
use MP graphic=graphics.usemp.context|\
reuse MP graphic=graphics.reusemp.context|\
typeface definition=fonts.typeface.context

ctx.template.structure.itemize.context=\
\startitemize\n\

\item ?\n\

\item ?\n\

\item ?\n\

\stopitemize\n

The file scite-ctx-example defines xml variants:

command.25.$(file.patterns.example)=insert template \
$(ctx.template.list.example)

ctx.template.list.example=\
bold=font.bold.example|\
emphasized=font.emphasized.example|\
[\
inline math=math.inline.example|\
display math=math.display.example|\
[\
itemize=structure.itemize.example

ctx.template.structure.itemize.example=\
<itemize>\n\

<item>?</item>\n\

<item>?</item>\n\

<item>7?</item>\n\

</itemize>\n

For larger projects it makes sense to keep templates with the project. In one of our
projects we have a directory in the path where the project files are kept which holds
template files:

..../ctx-templates/achtergronden.xml
..../ctx-templates/bewijs.xml

12

One could define a template menu like we did previously:

ctx.templatelist.example=\
achtergronden=mathadore.achtergronden|\
bewijs=mathadore.bewijs|\

ctx.template.mathadore.achtergronden.file=smt-achtergronden.xml
ctx.template.mathadore.bewijs.file=smt-bewijs.xml

However, when no such menu is defined, we will automatically scan the directory
and build the menu without user intervention.

Using SCITE

The following keybindings are available in SciTE. Most of this list is taken from the

on-line help pages.

keybinding meaning (taken from the SciTE help file)
Ctrl+Keypad+ magnify text size

Ctrl+Keypad- reduce text size

Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block

Shift+Tab dedent block

Ctrl+BackSpace delete to start of word

Ctrl+Delete delete to end of word

Ctrl+Shift+BackSpace delete to start of line

Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection
Ctrl+End go to end of document; Shift extends selection
Alt+Home go to start of display line; Shift extends selection
Alt+End go to end of display line; Shift extends selection
Ctrl+F2 create or delete a bookmark

F2 go to next bookmark

Ctrl+F3 find selection

Ctrl+Shift+F3 find selection backwards

Ctri+Up scroll up

Ctrl+Down scroll down

Ctri+C copy selection to buffer

Ctri+v insert content of buffer

Ctrl+X copy selection to buffer and delete selection
Ctrl+L line cut

Ctri+Shift+T line copy

Ctrl+Shift+L line delete

Ctri+T line transpose with previous

13

Ctrl+D line duplicate

Ctri+K find matching preprocessor conditional, skipping nested
ones

Ctrl+Shift+K select to matching preprocessor conditional

Ctri+] find matching preprocessor conditional backwards, skip-
ping nested ones

Ctrl+Shift+] select to matching preprocessor conditional backwards

Ctri+[previous paragraph; Shift extends selection

Ctri+] next paragraph; Shift extends selection

Ctrl+Left previous word; Shift extends selection

Ctrl+Right next word; Shift extends selection

Ctri+/ previous word part; Shift extends selection

Ctri+\ next word part; Shift extends selection

Affiliation

author Hans Hagen

copyright PRAGMA ADE, Hasselt NL
more info www.pragma-ade.com

www.contextgarden.net
version August 30, 2013

