

Warning

SciTE version 3.61 works ok but 3.62 crashes. It’a a real pity that SciTE doesn’t have the scintillua
lexer built in, which would also make integration a bit nicer by sharing the Lua instance. The ConTgXt
lexing discussed here is the lexing I assume when using ConTgXt MKIV, but alas it’s not easy to get it
running on Unix and on MacOSX there is no Lua lexing available.

About SCITE

For a long time at Pragma ADE we used TgXedit, an editor we’d written in Modula. It had some project
management features and recognized the project structure in ConTEXt documents. Later we rewrote
this to a platform independent reimplementation called TgXwork written in Perl/Tk (not to be confused
with the editor with the plural name).

In the beginning of the century I can into SciTE, written by Neil Hodgson. Although the mentioned
editors provide some functionality not present in SciTE we decided to use that editor because it frees
us from maintaining our own. I ported our TgX and MetaPost (line based) syntax highlighting to SciTE
and got a lot of others for free.

After a while I found out that there was an extension interface written in Lua. I played with it and
wrote a few extensions too. This pleasant experience later triggered the LuaTgX project.

A decade into the century SciTE got another new feature: you can write dynamic external lexers in
Lua using Ipeg. As in the meantime ConTgXt has evolved in a TgX/Lua hybrid, it made sense to look
into this. The result is a couple of lexers that suit TgX, MetaPost and Lua usage in ConTgXt MKIV. As
we also use xml as input and output format a lexer for xml is also provided. And because pdf is one of
the backend formats lexing of pdf is also implemented.!

In the ConTgXt (standalone) distribution you will find the relevant files under:
<texroot>/tex/texmf-context/context/data/scite

Normally a user will not have to dive into the implementation details but in principle you can tweak
the properties files to suit your purpose.

The look and feel

The color scheme that we use is consistent over the lexers but we use more colors that in the traditional
lexing. For instance, TEX primitives, low level TEX commands, TgX constants, basic file structure
related commands, and user commands all get a different treatment. When spell checking is turned
on, we indicate unknown words, but also words that are known but might need checking, for instance
because they have an uppercase character. In figure 1 we some of that in practice.

Installing SCITE

Installing SciTE is straightforward. We are most familiar with MS Windows but for other operating
systems installation is not much different. First you need to fetch the archive from:

1 In the process some of the general lexing framework was adapted to suit our demands for speed. We ship these files as well.

CTTTEE TI0Z-0T-€ | 471+42 103 | SNI3pow | TE Uinod £7 3ul) | SZ:7TEE TT0Z-0T-§ | 321 ENsIA-Paiud-3)0s

1y L4
Ixaydols)\ || [
{ ISP
Ja3deysdols) || gf ||
144
deao\ e ||
4y
[BTasz]uera\ 44
or
T\ 6E
[
® :3p03 1IXI<pYZ'¢ :IWTIUNL 18301 | walsks STY3 3jnoqe % .HO_WLU OEOWH_.O_NL AV AN g€
JEB 1poylaW JUILIND ‘le|nye J|NEL3p 1E8GOJIE :spoylaw mataipd | 1X31U03-X U0 as19\ i
abed passadoud T ‘spuodas g1’ - BWIIUNL < S}E}S BN] ATHW S8ded oym g .ﬁu.uamu. wEOMVQWL 2\Jep\ 9€
{9l SE :%32) G FE - abesn flowaw 3uslind = 5115 BN ATHW 0:.__“."_.._”/ mm
[©0006T + 95559 10 9O9STE - s3Juanb3s 1013U0) = 538315 BN] ATHW L
'§-213Q UDTSI3A ‘X3ien] ST STy} - 13uueq xalen] < S}E1S BN} ATHU 4 e
“ s g/@°@ :Durpes) ‘spucdas gIP'@ - awil Durssadeld 3sodejaw < S}ELS BN ATHU :OHPU@LLOU@:HHQQPM/ €€
spuodas 19£°@ - 3WT] pEO)] S3U0} = S3IB}S BN ATHW . -
ZTouoww) wye-pTAlewls :s3|T4 £F - S3juDj papeo] = S3B1S BN] ATHUW OUOUn_:QOH.m/ cE
4pd’1ENSTA-3%33U03-33T35 - 21T4 UT PaAES 3|NS3S = S3BIS BN] ATHW 5
1ed] ST ‘S3pou @ ‘Spuoias pEe’ e - SwT3 uoTieiedasd jux] < S}E1S BN] ATHW - Jdojpus I€
SFESZEETRY" A INTEA YITA pawnsad - J3ZTWOpURS = 51215 BN ATHW : AEE*._”U paleds 81241271 1N} Medp PE
9£9 “3I3UTPUT E£4SE IIIITP 2OST - S)JEQ11E < S}EIS BN ATHU . _
giiua - suiajjed papeo] < S3E3}S BN] ATHUW - POT OU_.Q-._ TI=T Jdo} B¢
13u3b .A._.uuu“_.nn 1oy puayzeq) spd - puayIeq pasn = S}E1S EBN] ATHUW apoodp1iels\ 8z
|3juelsuT © “s3s5T] ¥sSe1 anbTun g - 5YSE} 3JE8q1]EJ }ST] 3POU = S}E1S BN ATHU
| 3angTi33e 7T ‘A31PUSd 7 ‘an6 Z - SbESn AloW3w 3poU = S1E1S BN ATHU :OﬁFu@LLOU@:ﬂHPLﬁFm/ =
H [EF 40 SIST] 6 ‘S3POuU BE - S3POU PIniasal dn pauea|l < SIELS EN] ATHW 9z
nys cgg ‘sa3)qel €9 ‘Sa|npow ZEE - e3ep apoda3fq Palols = S3}EES BN ATHW
“ sueds T ‘Spuolas gIp’@ IWTIpPEO] - 13A10531 33IN0S3J = S}ELS EN] ATHU .,HA..W_UOU MJH..uPXOFCOUHﬁ—._._.KFU/ %w.ﬂﬁm.n—u S 11=M Sse aUTUT L°rd
x31/3%33u03-%31/do2Aap elep/ 1D - yyed Iyoed pasn = S3E}S BN] ATHW
Zqam/1E30] - juxa}:juaiedoiney)as - 3174 6Tjuod pasn < s3e3s eny ATyl | pue s.Jdsxs] FMOQMH_.QE pue eny psppsqus sy Y3jTMm UOTIBUTQUWOD UT e
4-ZTUewoJw] /u)/23T1qnd/3dA1Uado/ 53U0 / JUX3L/X31/IXIIU0I-X31 /0] 3A3P/RIBP/ 1 D=(LOV_UQLUHHQQM salWT}iesad 8yl 3jedlsuowsp 0} 1X3] 3WOS Fm:.h ST STY| jord
1 =6edgqns ‘1 3bediasn ‘1 abedyeas Butysn)y = sabed .
*xpd-4pdy/sadinos/ixajuod/dojanap/elepy/id, 3114 Butsn < dux < puaxoeq c
1x21uod/1sodelaw/3xaiuod/dojanap/elep/id :,unjeiau, Butpeo)] = 1sodezau WUOUﬁz._.n_OFm/ 12
,unyeiaw, jewsoy BuTsn ,unyeiaw, IouelsuT BUTZT1ETITUT = 1sodezauw
31311 fIuBy 2WOS =- I1°Q ¢ 7 13A3]1 @ J31deyd = BUTUOT1IAS =< 3Jn1onJ1s pua [ord
B papeo] ST 1dgl Wl ul3pow 3Jeq)E} < sjuoy .
Jeyowosysdew aweu 3A)0S31 03 I]EUN < YIBW 1ENIITA = s3uoy AH%LPEQO_OPW LR 6T
inos/3xajuod/doyanap/eiep/i3) (ATHuU"zTs-3dA3/s5301n0s/3xaju0d/do]anap/e3ep/i2) Au.xwu. " _”._””_m@._”.— u._.__mu IX23uod 8T
(26e3s pundas) sjuoy uiapow urie) Butpeojasd < s3uoy .
- ATYW/3X33U03 /X33 4pd/dew/ s3uoy /31X33U0I - Jux3] /X31/3X33U03-x33 /do)Inap/eep,/ ol AuhLu.Cwu.qu.m IXa3uos LT
anT1de sT ua abenbue] < sabenbue]| op MNHLHCN%.H"._” 10} o1
papeo]aid 30U 3JE S1UOL UIIpOW UTIE] < sjuoy .
| (do3’1EnSTA-3x33u03-33135) ST
papeo] do3°]ENSTA-3}X33u03-33TIS = wazsks .ﬁ T
[(;
ATHW® dX3-1U0J woly papeo) saydied Iwo0s :3lemag < waisks ..ﬁ .._h(_u._.._w ylanol ayl,, = ixel v €T
ATHu- dx3-3U03/S331N0s/31x33uod/do)anap/eleps/id) ‘ g —
1 papny - B 05« wsts { .ik43ue patys ayL, = axe3 } 4
.AH aJow 29 ued ad2yly -- w\ = S8TJlu= 1207 T
ATHW'30]-3U0D woly papen] saydied Jwos :alemag < wazsis
ATHU* 307 -3U03/5331N05/3x33u0d/doy3nap/e3ep,/:3) apoden)iJels\ eT
pPapEO] ATHWU'D0]-1U0] < walsAs 6
(-
ATYW'M3U-3U0d wWoly papeo] saydied awos :3lemaq < wazshs _”m._.u..nu. hU_.._Mu_. WEOWIQHF._H_.”_LQHD_W_._UHLMPM/| 8
ATHU*M3U-3U0D/5331N05/3x33u0d/doyanap/e3ep,/:3) L
PapEO] ATHU'MIU-3U0D = wa3sis 1x83134818\ 5
Ystibua/ysTibus 11UT g TT TI68Z W AW SE:6T BO'TIT'TIOZ 434 1IX31uU0) m
%3}’ 1ENSTA-3X33U03-33TIS) _”%(_ Jus] ¥
“pa1qeuUa aTaITIMY
(GIEF ASJ) TI2Z90TIOZ-0°TL°0-B13Q UOTSI3) “X3lBN] ST STyl u-xmu-vawLL.mz..ﬂh.m—U/ m
- JUX31/X31/1X3IU0D-X31/d0] INIP/EIEPS 1D, =3y - - XIJEN] [und | 1X31U03-X W Z
X33]ENSTA-}X33U03-33T35 jpdojne-- 3xajuod 3drids-- ajessuabojne-- unixjws| - x:"@@ﬁSUEMH % T
[l _ oY [BNSIA-PEU0I 335 | ISFBLIPE3I-PAIUOI-3}IS _xﬂ.nEu _m: 'siaydjedsip-p § | enppepw § | junepepw-1eypnowsp 3 [enpaidwesosgqu T [enpjoojuni-p § [enpsuoissas-s § [enpjonuoaqel-s § _m:_.m_uo:ﬁr:.mw _m: |0o3p|Ing-p 7 _ﬁu.mu_onnxﬂ.lﬁ
diag s;ayng abenbue] suondf sjpol malf yosea§ ppI apg
o5 - X3y ensin-pEud-ains\EepiEs\:)
y,

Figure 1 Nested lexers in action.

www.scintilla.org

The MS Windows binaries are zipped in wscite.zip, and you can unzip this in any directory you want
as long as you make sure that the binary ends up in your path or as shortcut on your desktop. So, say
that you install SciTE in:

c:\data\system\scite\wscite

You need to add this path to your local path definition. Installing SciTE to some known place has the
advantage that you can move it around. There are no special dependencies on the operating system.

On MS Windows you can for instance install SciTE in:
c:\data\system\scite
and then end up with:
c:\data\system\scite\wscite
and that is the path you need to add to your environment PATH variable.
On linux the files end up in:

/usr/bin
/usr/share/scite

Where the second path is the path we will put more files.

Installing scintillua

Next you need to install the lpeg lexers.? The library is part of the textadept editor by Mitchell (mitchell
.att.foicica.com) which is also based on scintilla: The archive can be fetched from:

http://foicica.com/scintillua/

On MS Windows you need to copy the files to the wscite folder (so we end up with a lexers subfolder
there). For linux the place depends on the distribution, for instance /usr/share/scite; this is the
place where the regular properties files live.3

So, you end up, on MS Windows with:
c:\data\system\scite\wscite\lexers
And on linux:
/usr/share/scite/lexers

Beware: if you're on a 64 bit system, you need to rename the 64 bit so library into one without a
number. Unfortunately the 64 bit library is now always available which can give surprises when the
operating system gets updates. In such a case you should downgrade or use wine with the MS Windows

2 Versions later than 2.11 will not run on MS Windows 2K. In that case you need to comment the external lexer import.
3 If you update, don’t do so without testing first. Sometimes there are changes in SciTE that influence the lexers in which case
you have to wait till we have update them to suit those changes.

binaries instead. After installation you need to restart SciTE in order to see if things work out as
expected.

Installing the CONTEXT lexers

When we started using this nice extension, we ran into issues and as a consequence shipped a patched
Lua code. We also needed some more control as we wanted to provide more features and complex
nested lexers. Because the library api changed a couple of times, we now have our own variant which
will be cleaned up over time to be more consistent with our other Lua code (so that we can also use
it in ConTgXt as variant verbatim lexer). We hope to be able to use the scintillua library as it does
the job.

Anyway, if you want to use ConTgXt, you need to copy the relevant files from
<texroot>/tex/texmf-context/context/data/scite

to the path were SciTE keeps its property files (*.properties). This is the path we already mentioned.
There should be a file there called SciteGlobal.properties.

So,in the end you get on MS Windows new files in:

:\data\system\scite\wscite
:\data\system\scite\wscite\context
:\data\system\scite\wscite\context\lexer
:\data\system\scite\wscite\context\lexer\themes
:\data\system\scite\wscite\context\lexer\data
:\data\system\scite\wscite\context\documents

O o o o0 o0 0

while on linux you get:

/usr/bin/share/
/usr/bin/share/context
/usr/bin/share/context/lexer
/usr/bin/share/context/lexer/themes
/usr/bin/share/context/lexer/data
/usr/bin/share/context/documents

At the end of the SciteGlobal.properties you need to add the following line:
import context/scite-context-user

After this, things should run as expected (given that TgX runs at the console as well).

Fonts

The configuration file defaults to the Dejavu fonts. These free fonts are part of the ConTgXt suite (also
known as the standalone distribution). Of course you can fetch them from http://dejavu-fonts.org
as well. You have to copy them to where your operating system expects them. In the suite they are
available in:

<contextroot>/tex/texmf/fonts/truetype/public/dejavu

Extensions

Just a quick note to some extensions. If you select a part of the text (normally you do this with the
shift key pressed) and you hit Shift-F11, you get a menu with some options. More (robust) ones will
be provided at some point.

Spell checking

If you want to have spell checking, you need have files with correct words on each line. The first line
of a file determines the language:

% language=uk

When you use the external lexers, you need to provide some files. Given that you have a text file with
valid words only, you can run the following script:

mtxrun --script scite --words nl uk

This will convert files with names like spell-nl.txt into Lua files that you need to copy to the
lexers/data path. Spell checking happens realtime when you have the language directive (just add
a bogus character to disable it). Wrong words are colored red, and words that might have a case
problem are colored orange. Recognized words are greyed and words with less than three characters
are ignored.

A spell checking file has to be put in the lexers/data directory and looks as follows (e.g. spell-uk.lua):

return {

["max"]=40,

["min"]1=3,

["'n"]=151493,

["words"]1={
["aardvark"]="aardvark",
["aardvarks"]="aardvarks",
["aardwolf"]="aardwolf",
["aardwolves"]="aardwolves",

}

}

The keys are words that get checked for the given value (which can have uppercase characters). The
word files are not distributed (but they might be at some point).

In the case of internal lexers, the following file is needed:
spell-uk.txt

If you use the traditional lexer, this file is taken from the path determined by the environment variable:
CTXSPELLPATH

As already mentioned, the lpeg lexer expects them in the data path. This is because the Lua instance
that does the lexing is rather minimalistic and lacks some libraries as well as cannot access the main
SciTE state.

Spell checking in txt files is enabled by adding a first line:
[#!-%] language=uk

The first character on that line is one of the four mentioned between square brackets. So,
language=uk

should work. For xml files there are two methods. You can use the following (at the start of the file):
<?xml ... language="uk" ?>

But probably better is to use the next directive just below the usual xml marker line:

<?context-directive editor language uk ?>

Interface selection
In a similar fashion you can drive the interface checking:

% interface=nl

Property files

The internal lexers are controlled by the property files while the external ones are steered with themes.
Unfortunately there is hardly any access to properties from the external lexer code nor can we consult
the file system and/or run programs like mtxrun. This means that we cannot use configuration files in
the ConTgXt distribution directly. Hopefully this changes with future releases.

The external lexers

These are the more advanced lexers. They provide more detail and the ConTgXt lexer also supports
nested MetaPost and Lua. Currently there is no detailed configuration but this might change once
they are stable.

The external lexers operate on documents while the internal ones operate on lines. This can make the
external lexers slow on large documents. We’ve optimized the code somewhat for speed and memory
consumption but there’s only so much one can do. While lexing each change in style needs a small
table but allocating and garbage collecting many small tables comes at a price. Of course in practice
this probably gets unnoticed.*

The external Ipeg lexers work okay with the MS Windows and linux versions of SciTE, but unfortunately
at the time of writing this, the Lua library that is needed is not available for the MacOSX version of
SciTE. Also, due to the fact that the lexing framework is rather isolated, there are some issues that
cannot be addressed in the properly, at least not currently.

In addition to ConTEXt and MetaFun lexing a Lua lexer is also provided so that we can handle ConTgXt
Lua Document (cld) files too. There is also an xml lexer. This one also provides spell checking. The

4 T wrote the code in 2011 on a more than 5 years old Dell M90 laptop, so I suppose that speed is less an issue now.

pdf lexer tries to do a good job on pdf files, but it has some limitations. There is also a simple text file
lexer that does spell checking. Finally there is a lexer for cweb files.

Don'’t worry if you see an orange rectangle in your TgX or xml document. This indicates that there is a
special space character there, for instance 0xA0, the nonbreakable space. Of course we assume that
you use utf8 as input encoding.

The internal lexers

SciTE has quite some built in lexers. A lexer is responsible for highlighting the syntax of your docu-
ment. The way a TgX file is treated is configured in the file:

tex.properties

You can edit this file to your needs using the menu entry under options in the top bar. In this file, the
following settings apply to the TgX lexer:

lexer.tex.interface.default=0
lexer.tex.use.keywords=1
lexer.tex.comment.process=0
lexer.tex.auto.if=1

The option lexer.tex.interface.default determines the way keywords are highlighted. You can
control the interface from your document as well, which makes more sense that editing the configu-
ration file each time.

S

s interface=all|tex|nl]en|de|cz|it|ro]|latex

The values in the properties file and the keywords in the preamble line have the following meaning:

0 all all commands (preceded by a backslash)

1 tex TeX, e-TeX, pdfTgX, Omega primitives (and macros)
2 nl the dutch ConTgXt interface

3 en the english ConTgXt interface

4 de the german ConIgXt interface

5 cz the czech ConTgXt interface

6 it the italian ConTgXt interface

7 ro the romanian ConTgXt interface

8 latex DITIgX (apart from packages)

The configuration file is set up in such a way that you can easily add more keywords to the lists. The
keywords for the second and higher interfaces are defined in their own properties files. If you're curi-
ous about the way this is configures, you can peek into the property files that start with scite-context.
When you have ConTgXt installed you can generate configuration files with

mtxrun --script interface --scite

You need to make sure that you move the result to the right place so best not mess around with this
command and use the files from the distribution.

Back to the properties in tex.properties. You can disable keyword coloring alltogether with:

lexer.tex.use.keywords=0

but this is only handy for testing purposes. More interesting is that you can influence the way comment
is treated:

lexer.tex.comment.process=0

When set to zero, comment is not interpreted as TgX code and it will come out in a uniform color. But,
when set to one, you will get as much colors as a TgX source. It’s a matter of taste what you choose.

The lexer tries to cope with the TgX syntax as good as possible and takes for instance care of the funny
~” notation. A special treatment is applied to so called \if’s:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever’s will be seen as a command. When set
to zero, only the primitive \if’s will be treated. In order not to confuse you, when this property is set
to one, the lexer will not color an \ifwhatever that follows an \newif.

The MetaPost lexer

The MetaPost lexer is set up slightly different from its TgX counterpart, first of all because MetaPost is
more a language that TgX. As with the TgX lexer, we can control the interpretation of identifiers. The
MetaPost specific configuration file is:

metapost.properties

Here you can find properties like:
lexer.metapost.interface.default=1

Instead of editing the configuration file you can control the lexer with the first line in your document:
% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers
1 metapost or mp MetaPost primitives and macros
2 metafun MetaFun macros

Similar to the TgX lexer, you can influence the way comments are handled:
lexer.metapost.comment.process=1

This will interpret comment as MetaPost code, which is not that useful (opposite to TgX, where docu-
mentation is often coded in TgX).

The lexer will color the MetaPost keywords, and, when enabled also additional keywords (like those
of MetaFun). The additional keywords are colored and shown in a slanted font.

The MetaFun keywords are defined in a separate file:
metafun-scite.properties

You can either copy this file to the path where you global properties files lives, or put a copy in the path
of your user properties file. In that case you need to add an entry to the file SCiTEUser.properties:

import metafun-scite

The lexer is able to recognize btex-etex and will treat anything in between as just text. The same
happens with strings (between "). Both act on a per line basis.

Using ConTgXt

When mtxrun is in your path, ConTgXt should run out of the box. You can find mtxrun in:
<contextroot>/tex/texmf-mswin/bin

or in a similar path that suits the operating system that you use.

When you hit CTRL-12 your document will be processed. Take a look at the Tools menu to see what
more is provided.

Extensions (using LUA)
When the Lua extensions are loaded, you will see a message in the log pane that looks like:

- see scite-ctx.properties for configuring info

- ctx.spellcheck.wordpath set to ENV(CTXSPELLPATH)
- ctxspellpath set to c:\data\develop\context\spell
- ctx.spellcheck.wordpath expands to c:\data\develop\context\spell

- ctx.wraptext.length is set to 65
- key bindings:

Shift + F11 pop up menu with ctx options

Ctrl + B check spelling

Ctrl + M wrap text (auto indent)

Ctrt + R reset spelling results

Ctrl + I insert template

Ctrl + E open log file

ctrt + + show language character strip (key might change)

- recognized first lines:

xml <?xml version='1.0' language='nl'
tex % language=nl

This message tells you what extras are available. The language character strip feature is relatively
new and displays buttons at the bottom of the screen for the characters in a (chosen) language. This
is handy when you occasionally have to key in (snippets) of a language you’re not familiar with. More
alphabets will be added (we take data from some ConTgXt language relates files).

Templates

It is possible to define (and use) templates. There is a demo file in the distribution called scite-ctx-templates.
You can put a similar file in your working path or one or two levels up from there. If not found, the
default (demo) file will be used. a manu is called up with ctrl-i.

10

A template file is a Lua file and looks like this:

return {
xml = {
name = "bold",
nature = "inline",
template = "?",
3
{
name = "p",
nature = "display",
template = "<p>?</p>",
}
{
name = "emphasized",
nature = "inline",
template = "?",
}
{
name = "inline",
nature = "inline",
template = "<m>?</m>",
}
{
name = "display",
nature = "display",
template = "$?$",
}
{
name = "itemize",
nature = "display",
template =
[[<itemize>
<item>?</item>
<item>?</item>
<item>?</item>
</itemize>]],
}
3
}

In xml sources you can add a line:
<?context-directive job ctxtemplate mytemplates.lua 7>

The file will be searched for in the current direct and upto two levels higher. When no file is found the
TgX distribution is checked.

The files scite-ctx-example and scite-ctx-context define the menu commands, like:

command.25.$(file.patterns.example)=insert template

11

Using SCITE

The following keybindings are available in SciTE. Most of this list is taken from the on-line help pages.

keybinding meaning (taken from the SciTE help file)
Ctrl+Keypad+ magnify text size

Ctrl+Keypad- reduce text size

Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block

Shift+Tab dedent block

Ctrl+BackSpace delete to start of word

Ctrl+Delete delete to end of word

Ctrl+Shift+BackSpace delete to start of line

Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection
Ctrl+End go to end of document; Shift extends selection
Alt+Home go to start of display line; Shift extends selection
Alt+End go to end of display line; Shift extends selection
Ctrl+F2 create or delete a bookmark

F2 go to next bookmark

Ctrl+F3 find selection

Ctrl+Shift+F3 find selection backwards

Ctrl+Up scroll up

Ctrl+Down scroll down

Ctri+C copy selection to buffer

Ctrl+V insert content of buffer

Ctri+X copy selection to buffer and delete selection
Ctri+L line cut

Ctri+Shift+T line copy

Ctrl+Shift+L line delete

Ctri+T line transpose with previous

Ctrl+4D line duplicate

Ctrl+K find matching preprocessor conditional, skipping nested ones
Ctrl+Shift+K select to matching preprocessor conditional
Ctrl+4] find matching preprocessor conditional backwards, skipping nested ones
Ctrl+Shift+] select to matching preprocessor conditional backwards
Ctri+[previous paragraph; Shift extends selection
Ctri+] next paragraph; Shift extends selection
Ctrl+Left previous word; Shift extends selection
Ctrl+Right next word; Shift extends selection

Ctri+/ previous word part; Shift extends selection
Ctri+\ next word part; Shift extends selection

F12 / Ctrl+F7

check (or process)

12

Ctrl+F12 / Ctrl+F7 process (run)
Alt+F12 / Ctrl+F7 process (run) using the luajit v (if applicable)

Affiliation

author Hans Hagen
copyright PRAGMA ADE, Hasselt NL
more info www.pragma-ade.com

www . contextgarden.net
version October 8, 2018

13

