
SciTE
IN CONTEXT MkIV

1

Warning

SciTE version 3.61 works ok but 3.62 crashes. It’a a real pity that SciTE doesn’t have the scintillua

lexer built in, which would also make integration a bit nicer by sharing the Lua instance. The ConTEXt

lexing discussed here is the lexing I assume when using ConTEXt MkIV, but alas it’s not easy to get it

running on Unix and on MacOSX there is no Lua lexing available.

About SCITE

For a long time at Pragma ADE we used TEXedit, an editor we’d written in Modula. It had some project

management features and recognized the project structure in ConTEXt documents. Later we rewrote

this to a platform independent reimplementation called TEXwork written in Perl/Tk (not to be confused

with the editor with the plural name).

In the beginning of the century I can into SciTE, written by Neil Hodgson. Although the mentioned

editors provide some functionality not present in SciTE we decided to use that editor because it frees

us from maintaining our own. I ported our TEX and MetaPost (line based) syntax highlighting to SciTE

and got a lot of others for free.

After a while I found out that there was an extension interface written in Lua. I played with it and

wrote a few extensions too. This pleasant experience later triggered the LuaTEX project.

A decade into the century SciTE got another new feature: you can write dynamic external lexers in

Lua using lpeg. As in the meantime ConTEXt has evolved in a TEX/Lua hybrid, it made sense to look

into this. The result is a couple of lexers that suit TEX, MetaPost and Lua usage in ConTEXt MkIV. As

we also use xml as input and output format a lexer for xml is also provided. And because pdf is one of

the backend formats lexing of pdf is also implemented.1

In the ConTEXt (standalone) distribution you will find the relevant files under:

<texroot>/tex/texmf-context/context/data/scite

Normally a user will not have to dive into the implementation details but in principle you can tweak

the properties files to suit your purpose.

The look and feel

The color scheme that we use is consistent over the lexers but we usemore colors that in the traditional

lexing. For instance, TEX primitives, low level TEX commands, TEX constants, basic file structure

related commands, and user commands all get a different treatment. When spell checking is turned

on, we indicate unknown words, but also words that are known but might need checking, for instance

because they have an uppercase character. In figure 1 we some of that in practice.

Installing SCITE

Installing SciTE is straightforward. We are most familiar with MS Windows but for other operating

systems installation is not much different. First you need to fetch the archive from:

www.scintilla.org

1 In the process some of the general lexing framework was adapted to suit our demands for speed. We ship these files as well.

2

Figure 1 Nested lexers in action.

3

The MS Windows binaries are zipped in wscite.zip, and you can unzip this in any directory you want

as long as you make sure that the binary ends up in your path or as shortcut on your desktop. So, say

that you install SciTE in:

c:\data\system\scite\wscite

You need to add this path to your local path definition. Installing SciTE to some known place has the

advantage that you can move it around. There are no special dependencies on the operating system.

On MS Windows you can for instance install SciTE in:

c:\data\system\scite

and then end up with:

c:\data\system\scite\wscite

and that is the path you need to add to your environment PATH variable.

On linux the files end up in:

/usr/bin

/usr/share/scite

Where the second path is the path we will put more files.

Installing scintillua

Next you need to install the lpeg lexers.2 The library is part of the textadept editor byMitchell (mitchell

.att.foicica.com) which is also based on scintilla: The archive can be fetched from:

http://foicica.com/scintillua/

On MS Windows you need to copy the files to the wscite folder (so we end up with a lexers subfolder

there). For linux the place depends on the distribution, for instance /usr/share/scite; this is the

place where the regular properties files live.3

So, you end up, on MS Windows with:

c:\data\system\scite\wscite\lexers

And on linux:

/usr/share/scite/lexers

Beware: if you’re on a 64 bit system, you need to rename the 64 bit so library into one without a

number. Unfortunately the 64 bit library is now always available which can give surprises when the

operating system gets updates. In such a case you should downgrade or use winewith theMSWindows

binaries instead. After installation you need to restart SciTE in order to see if things work out as

expected.

2 Versions later than 2.11 will not run on MS Windows 2K. In that case you need to comment the external lexer import.
3 If you update, don’t do so without testing first. Sometimes there are changes in SciTE that influence the lexers in which case

you have to wait till we have update them to suit those changes.

4

Installing the CONTEXT lexers

When we started using this nice extension, we ran into issues and as a consequence shipped a patched

Lua code. We also needed some more control as we wanted to provide more features and complex

nested lexers. Because the library api changed a couple of times, we now have our own variant which

will be cleaned up over time to be more consistent with our other Lua code (so that we can also use

it in ConTEXt as variant verbatim lexer). We hope to be able to use the scintillua library as it does

the job.

Anyway, if you want to use ConTEXt, you need to copy the relevant files from

<texroot>/tex/texmf-context/context/data/scite

to the path were SciTE keeps its property files (*.properties). This is the path we already mentioned.

There should be a file there called SciteGlobal.properties.

So,in the end you get on MS Windows new files in:

c:\data\system\scite\wscite

c:\data\system\scite\wscite\context

c:\data\system\scite\wscite\context\lexer

c:\data\system\scite\wscite\context\lexer\themes

c:\data\system\scite\wscite\context\lexer\data

c:\data\system\scite\wscite\context\documents

while on linux you get:

/usr/bin/share/

/usr/bin/share/context

/usr/bin/share/context/lexer

/usr/bin/share/context/lexer/themes

/usr/bin/share/context/lexer/data

/usr/bin/share/context/documents

At the end of the SciteGlobal.properties you need to add the following line:

import context/scite-context-user

After this, things should run as expected (given that TEX runs at the console as well).

Fonts

The configuration file defaults to the Dejavu fonts. These free fonts are part of the ConTEXt suite (also

known as the standalone distribution). Of course you can fetch them from http://dejavu-fonts.org

as well. You have to copy them to where your operating system expects them. In the suite they are

available in:

<contextroot>/tex/texmf/fonts/truetype/public/dejavu

Extensions

Just a quick note to some extensions. If you select a part of the text (normally you do this with the

shift key pressed) and you hit Shift-F11, you get a menu with some options. More (robust) ones will

be provided at some point.

5

Spell checking

If you want to have spell checking, you need have files with correct words on each line. The first line

of a file determines the language:

% language=uk

When you use the external lexers, you need to provide some files. Given that you have a text file with

valid words only, you can run the following script:

mtxrun --script scite --words nl uk

This will convert files with names like spell-nl.txt into Lua files that you need to copy to the

lexers/data path. Spell checking happens realtime when you have the language directive (just add

a bogus character to disable it). Wrong words are colored red, and words that might have a case

problem are colored orange. Recognized words are greyed and words with less than three characters

are ignored.

A spell checking file has to be put in the lexers/data directory and looks as follows (e.g. spell-

uk.lua):

return {

["max"]=40,

["min"]=3,

["n"]=151493,

["words"]={

["aardvark"]="aardvark",

["aardvarks"]="aardvarks",

["aardwolf"]="aardwolf",

["aardwolves"]="aardwolves",

...

}

}

The keys are words that get checked for the given value (which can have uppercase characters). The

word files are not distributed (but they might be at some point).

In the case of internal lexers, the following file is needed:

spell-uk.txt

If you use the traditional lexer, this file is taken from the path determined by the environment variable:

CTXSPELLPATH

As already mentioned, the lpeg lexer expects them in the data path. This is because the Lua instance

that does the lexing is rather minimalistic and lacks some libraries as well as cannot access the main

SciTE state.

Spell checking in txt files is enabled by adding a first line:

[#!-%] language=uk

The first character on that line is one of the four mentioned between square brackets. So,

6

language=uk

should work. For xml files there are two methods. You can use the following (at the start of the file):

<?xml ... language="uk" ?>

But probably better is to use the next directive just below the usual xml marker line:

<?context-directive editor language uk ?>

Interface selection

In a similar fashion you can drive the interface checking:

% interface=nl

Property files

The internal lexers are controlled by the property files while the external ones are steered with themes.

Unfortunately there is hardly any access to properties from the external lexer code nor can we consult

the file system and/or run programs like mtxrun. This means that we cannot use configuration files in

the ConTEXt distribution directly. Hopefully this changes with future releases.

The external lexers

These are the more advanced lexers. They provide more detail and the ConTEXt lexer also supports

nested MetaPost and Lua. Currently there is no detailed configuration but this might change once

they are stable.

The external lexers operate on documents while the internal ones operate on lines. This can make the

external lexers slow on large documents. We’ve optimized the code somewhat for speed and memory

consumption but there’s only so much one can do. While lexing each change in style needs a small

table but allocating and garbage collecting many small tables comes at a price. Of course in practice

this probably gets unnoticed.4

The external lpeg lexers work okay with theMSWindows and linux versions of SciTE, but unfortunately

at the time of writing this, the Lua library that is needed is not available for the MacOSX version of

SciTE. Also, due to the fact that the lexing framework is rather isolated, there are some issues that

cannot be addressed in the properly, at least not currently.

In addition to ConTEXt and MetaFun lexing a Lua lexer is also provided so that we can handle ConTEXt

Lua Document (cld) files too. There is also an xml lexer. This one also provides spell checking. The

pdf lexer tries to do a good job on pdf files, but it has some limitations. There is also a simple text file

lexer that does spell checking. Finally there is a lexer for cweb files.

Don’t worry if you see an orange rectangle in your TEX or xml document. This indicates that there is a

special space character there, for instance 0xA0, the nonbreakable space. Of course we assume that

you use utf8 as input encoding.

4 I wrote the code in 2011 on a more than 5 years old Dell M90 laptop, so I suppose that speed is less an issue now.

7

The internal lexers

SciTE has quite some built in lexers. A lexer is responsible for highlighting the syntax of your docu-

ment. The way a TEX file is treated is configured in the file:

tex.properties

You can edit this file to your needs using the menu entry under options in the top bar. In this file, the

following settings apply to the TEX lexer:

lexer.tex.interface.default=0

lexer.tex.use.keywords=1

lexer.tex.comment.process=0

lexer.tex.auto.if=1

The option lexer.tex.interface.default determines the way keywords are highlighted. You can

control the interface from your document as well, which makes more sense that editing the configu-

ration file each time.

% interface=all|tex|nl|en|de|cz|it|ro|latex

The values in the properties file and the keywords in the preamble line have the following meaning:

0 all all commands (preceded by a backslash)

1 tex TEX, u�-TEX, pdfTEX, Omega primitives (and macros)

2 nl the dutch ConTEXt interface

3 en the english ConTEXt interface

4 de the german ConTEXt interface

5 cz the czech ConTEXt interface

6 it the italian ConTEXt interface

7 ro the romanian ConTEXt interface

8 latex LATEX (apart from packages)

The configuration file is set up in such a way that you can easily add more keywords to the lists. The

keywords for the second and higher interfaces are defined in their own properties files. If you’re

curious about the way this is configures, you can peek into the property files that start with scite-

context. When you have ConTEXt installed you can generate configuration files with

mtxrun --script interface --scite

You need to make sure that you move the result to the right place so best not mess around with this

command and use the files from the distribution.

Back to the properties in tex.properties. You can disable keyword coloring alltogether with:

lexer.tex.use.keywords=0

but this is only handy for testing purposes. More interesting is that you can influence the way comment

is treated:

lexer.tex.comment.process=0

When set to zero, comment is not interpreted as TEX code and it will come out in a uniform color. But,

when set to one, you will get as much colors as a TEX source. It’s a matter of taste what you choose.

8

The lexer tries to cope with the TEX syntax as good as possible and takes for instance care of the funny

^^ notation. A special treatment is applied to so called \if’s:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever’s will be seen as a command. When set

to zero, only the primitive \if’s will be treated. In order not to confuse you, when this property is set

to one, the lexer will not color an \ifwhatever that follows an \newif.

The MetaPost lexer

The MetaPost lexer is set up slightly different from its TEX counterpart, first of all because MetaPost is

more a language that TEX. As with the TEX lexer, we can control the interpretation of identifiers. The

MetaPost specific configuration file is:

metapost.properties

Here you can find properties like:

lexer.metapost.interface.default=1

Instead of editing the configuration file you can control the lexer with the first line in your document:

% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers

1 metapost or mp MetaPost primitives and macros

2 metafun MetaFun macros

Similar to the TEX lexer, you can influence the way comments are handled:

lexer.metapost.comment.process=1

This will interpret comment as MetaPost code, which is not that useful (opposite to TEX, where docu-

mentation is often coded in TEX).

The lexer will color the MetaPost keywords, and, when enabled also additional keywords (like those

of MetaFun). The additional keywords are colored and shown in a slanted font.

The MetaFun keywords are defined in a separate file:

metafun-scite.properties

You can either copy this file to the path where you global properties files lives, or put a copy in the path

of your user properties file. In that case you need to add an entry to the file SciTEUser.properties:

import metafun-scite

The lexer is able to recognize btex--etex and will treat anything in between as just text. The same

happens with strings (between "). Both act on a per line basis.

9

Using ConTEXt

When mtxrun is in your path, ConTEXt should run out of the box. You can find mtxrun in:

<contextroot>/tex/texmf-mswin/bin

or in a similar path that suits the operating system that you use.

When you hit CTRL-12 your document will be processed. Take a look at the Tools menu to see what

more is provided.

Extensions (using LUA)

When the Lua extensions are loaded, you will see a message in the log pane that looks like:

- see scite-ctx.properties for configuring info

- ctx.spellcheck.wordpath set to ENV(CTXSPELLPATH)

- ctxspellpath set to c:\data\develop\context\spell

- ctx.spellcheck.wordpath expands to c:\data\develop\context\spell

- ctx.wraptext.length is set to 65

- key bindings:

Shift + F11 pop up menu with ctx options

Ctrl + B check spelling

Ctrl + M wrap text (auto indent)

Ctrl + R reset spelling results

Ctrl + I insert template

Ctrl + E open log file

Ctrl + + show language character strip (key might change)

- recognized first lines:

xml <?xml version='1.0' language='nl'

tex % language=nl

This message tells you what extras are available. The language character strip feature is relatively

new and displays buttons at the bottom of the screen for the characters in a (chosen) language. This

is handy when you occasionally have to key in (snippets) of a language you’re not familiar with. More

alphabets will be added (we take data from some ConTEXt language relates files).

Templates

There is an experimental template mechanism. One option is to define templates in a properties file.

The property file scite-ctx-context contains definitions like:

command.25.$(file.patterns.context)=insert_template \

$(ctx.template.list.context)

10

ctx.template.list.context=\

itemize=structure.itemize.context|\

tabulate=structure.tabulate.context|\

natural TABLE=structure.TABLE.context|\

use MP graphic=graphics.usemp.context|\

reuse MP graphic=graphics.reusemp.context|\

typeface definition=fonts.typeface.context

ctx.template.structure.itemize.context=\

\startitemize\n\

\item ?\n\

\item ?\n\

\item ?\n\

\stopitemize\n

The file scite-ctx-example defines xml variants:

command.25.$(file.patterns.example)=insert_template \

$(ctx.template.list.example)

ctx.template.list.example=\

bold=font.bold.example|\

emphasized=font.emphasized.example|\

|\

inline math=math.inline.example|\

display math=math.display.example|\

|\

itemize=structure.itemize.example

ctx.template.structure.itemize.example=\

<itemize>\n\

<item>?</item>\n\

<item>?</item>\n\

<item>?</item>\n\

</itemize>\n

For larger projects it makes sense to keep templates with the project. In one of our projects we have

a directory in the path where the project files are kept which holds template files:

..../ctx-templates/achtergronden.xml

..../ctx-templates/bewijs.xml

One could define a template menu like we did previously:

ctx.templatelist.example=\

achtergronden=mathadore.achtergronden|\

bewijs=mathadore.bewijs|\

ctx.template.mathadore.achtergronden.file=smt-achtergronden.xml

ctx.template.mathadore.bewijs.file=smt-bewijs.xml

11

However, when no such menu is defined, we will automatically scan the directory and build the menu

without user intervention.

Using SCITE

The following keybindings are available in SciTE. Most of this list is taken from the on-line help pages.

keybinding meaning (taken from the SciTE help file)

Ctrl+Keypad+ magnify text size

Ctrl+Keypad- reduce text size

Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block

Shift+Tab dedent block

Ctrl+BackSpace delete to start of word

Ctrl+Delete delete to end of word

Ctrl+Shift+BackSpace delete to start of line

Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection

Ctrl+End go to end of document; Shift extends selection

Alt+Home go to start of display line; Shift extends selection

Alt+End go to end of display line; Shift extends selection

Ctrl+F2 create or delete a bookmark

F2 go to next bookmark

Ctrl+F3 find selection

Ctrl+Shift+F3 find selection backwards

Ctrl+Up scroll up

Ctrl+Down scroll down

Ctrl+C copy selection to buffer

Ctrl+V insert content of buffer

Ctrl+X copy selection to buffer and delete selection

Ctrl+L line cut

Ctrl+Shift+T line copy

Ctrl+Shift+L line delete

Ctrl+T line transpose with previous

Ctrl+D line duplicate

Ctrl+K find matching preprocessor conditional, skipping nested ones

Ctrl+Shift+K select to matching preprocessor conditional

Ctrl+J find matching preprocessor conditional backwards, skipping nested ones

Ctrl+Shift+J select to matching preprocessor conditional backwards

Ctrl+[previous paragraph; Shift extends selection

Ctrl+] next paragraph; Shift extends selection

Ctrl+Left previous word; Shift extends selection

Ctrl+Right next word; Shift extends selection

Ctrl+/ previous word part; Shift extends selection

12

Ctrl+\ next word part; Shift extends selection

F12 / Ctrl+F7 check (or process)

Ctrl+F12 / Ctrl+F7 process (run)

Alt+F12 / Ctrl+F7 process (run) using the luajit vm (if applicable)

13

Affiliation

author Hans Hagen

copyright PRAGMA ADE, Hasselt NL

more info www.pragma-ade.com

www.contextgarden.net

version December 17, 2015

