From 99c647f91806e9b73970a8e252af5a7974d5a57d Mon Sep 17 00:00:00 2001 From: Marius Date: Sat, 6 Apr 2013 15:00:22 +0300 Subject: beta 2013.04.05 22:00 --- metapost/context/base/mp-grap.mpiv | 413 +++++++++++++++++++++++++------------ metapost/context/base/mp-tool.mpiv | 15 ++ 2 files changed, 296 insertions(+), 132 deletions(-) (limited to 'metapost') diff --git a/metapost/context/base/mp-grap.mpiv b/metapost/context/base/mp-grap.mpiv index bc02e8610..cce63abe0 100644 --- a/metapost/context/base/mp-grap.mpiv +++ b/metapost/context/base/mp-grap.mpiv @@ -11,12 +11,13 @@ %C therefore copyrighted by \PRAGMA. See licen-en.pdf for %C details. -% maybe we should have another Gerr ... something grph_error_message - -if known context_grap : endinput ; fi ; +if known context_grap : endinput ; fi boolean context_grap ; context_grap := true ; +% Instead we could include graph here and then clean it up as well as use private +% variables in the grap_ namespace. After all, graph is frozen. + input graph.mp ; vardef roundd(expr x, d) = @@ -66,9 +67,23 @@ vardef dofmt_@#(expr f, x) = % textext(mfun_format_number(escaped_format(f),x)) enddef ; +% note that suffix @# is ignored above... + +vardef strfmt(expr f, x) = + "\MPgraphformat{" & escaped_format(f) & "}{" & (if string x : x else: decimal x fi) & "}" +enddef ; + % We redefine autogrid from graph.mp adding the possibility of differing X and Y % formats. Autoform is defined in graph.mp (by default "%g"). -% + +% graph.mp: string Autoform; Autoform = "%g"; +% graph.mp: +% graph.mp: vardef autogrid(suffix tx, ty) text w = +% graph.mp: Gneedgr_:=false; +% graph.mp: if str tx<>"": for x=auto.x: tx(Autoform,x) w; endfor fi +% graph.mp: if str ty<>"": for y=auto.y: ty(Autoform,y) w; endfor fi +% graph.mp: enddef; + % string Autoform_X ; Autoform_X := "@.0e" ; % string Autoform_Y ; Autoform_Y := "@.0e" ; @@ -86,9 +101,10 @@ vardef autogrid(suffix tx, ty) text w = else : Autoform fi, - x) w ; + x + ) w ; endfor - fi ; + fi if str ty <> "" : for y=auto.y : ty ( @@ -101,16 +117,17 @@ vardef autogrid(suffix tx, ty) text w = else : Autoform fi, - y) w ; + y + ) w ; endfor - fi ; + fi enddef ; % A couple of extensions: -% Define a vector function sym returning a picture: 10 different shapes, +% Define a function plotsymbol() returning a picture: 10 different shapes, % unfilled outline, interior filled with different shades of the background. -% Thus, overlapping points on a plot are more clearly distinguishable. +% This allows overlapping points on a plot to be more distinguishable. % grap_symsize := fontsize defaultfont ; % can be redefined % @@ -124,11 +141,11 @@ enddef ; path grap_sym[] ; % (internal) symbol path -grap_sym[0] := (0,0) ; % point -grap_sym[1] := fullcircle ; % circle -grap_sym[2] := (up -- down) scaled .5 ; % vertical bar +grap_sym[0] := (0,0) ; % point +grap_sym[1] := fullcircle ; % circle +grap_sym[2] := (up -- down) scaled .5 ; % vertical bar -for i = 3 upto 9 : % polygons +for i = 3 upto 9 : % polygons grap_sym[i] := for j = 0 upto i-1 : (up scaled .5) rotated (360j/i) -- @@ -179,9 +196,9 @@ endfor cycle ; grap_sym[34] := grap_sym[24] rotated 45 ; - % usage: gdraw p plot plotsymbol(1,red,1) ; % a filled red circle - % usage: gdraw p plot plotsymbol(4,blue,0) ; % a blue square - % usage: gdraw p plot plotsymbol(14,green,0.5) ; % a 50% filled green diamond +% usage: gdraw p plot plotsymbol(1,red,1) ; % a filled red circle +% usage: gdraw p plot plotsymbol(4,blue,0) ; % a blue square +% usage: gdraw p plot plotsymbol(14,green,0.5) ; % a 50% filled green diamond def plotsymbol(expr n,c,f) = % (number,color,color|number) if known grap_sym[n] : @@ -206,171 +223,303 @@ def plotsymbol(expr n,c,f) = % (number,color,color|number) fi enddef ; -% Here starts a section with some extensions that come in handy when drawing -% polynomials. We assume that metapost is run in double number mode. +% convert a polygon path to a smooth path (useful, e.g. as a guide to the eye) + +def smoothpath (suffix $) = + if path $ : + (for i=0 upto length $ : + if i>0 : .. fi + (point i of $) + endfor ) + fi +enddef ; + +% return a path of a function func(x) with abcissa running from f to t over n intervals -% Least-squares "fit" to a polynomial +def makefunctionpath (expr f, t, n) (text func) = + (for x=f step ((t-f)/n) until t : + if x<>f : .. fi + (x, func) + endfor ) +enddef ; + +% shift a path, point by point % -% Example of use: +% example: +% +% p1 := addnoisetopath(p0,(.1normaldeviate,.1normaldeviate)) ; + +vardef addnoisetopath (suffix p) (text t) = + if path p : + hide(pair pi) + (for i=0 upto length p : + if i>0 : -- fi + hide(pi := point i of p; x := xpart pi; y := ypart pi)z shifted t + endfor) + fi +enddef ; + +% return a new path of a function func(x) using the same abcissa as an existing path + +vardef functionpath (suffix p) (text t) = + (for i=0 upto length p : + if i>0 : .. fi + (hide(x := xpart(point i of p))x,t) + endfor ) +enddef ; + +% least-squares "fit" to a polynomial +% +% example: % % path p[] ; % numeric a[] ; a0 := 1 ; a1 := .1 ; a2 := .01 ; a3 := .001 ; a4 := 0.0001 ; -% for i=0 upto 10: -% x1 := 5i/10 ; -% y1 := poly.a(4,x1) ; -% augment.p0(z1) ; -% augment.p1((x1,y1+.005normaldeviate)) ; -% endfor +% p0 := makefunctionpath(0,5,10,poly(a,4,x)) ; +% p1 := addnoisetopath(p0,(0,.001normaldeviate)) ; % gdraw p0 ; % gdraw p1 plot plotsymbol(1,black,.5) ; % -% numeric chisq, b[] ; -% polyfit.p1(chisq, b, 4) ; -% for i=0 upto length p1 : -% x1 := xpart(point i of p1) ; -% y1 := poly.b(4,x1) ; -% augment.p2(z1) ; -% endfor -% gdraw p2 ; +% numeric b[] ; +% polyfit(p1, b, 4, 1) ; +% gdraw functionpath(p1,poly(b,4,x)) ; % % numeric c[] ; -% linefit.p1(chisq, c) ; -% for i=0 upto length p1 : -% x1 := xpart(point i of p1) ; -% y1 := line.c(x1) ; -% augment.p3(z1) ; -% endfor -% gdraw p3 dashed evenly ; - -vardef det@# (expr n) = % find the determinant of a (n+1)*(n+1) matrix - % indices run from 0 to n. - % first, we make a copy so as not to corrupt the matrix. - save copy ; numeric copy[][] ; - for k=0 upto n : - for j=0 upto n : - copy[k][j] := @#[k][j] ; - endfor - endfor - numeric determinant, jj ; determinant := 1 ; - boolean zero ; zero := false ; - for k=0 upto n : - if copy[k][k] = 0 : - for 0 = k upto n : - if copy[k][j]=0 : - zero := true ; - else : - jj := j ; +% linefit(p1, c, 1) ; +% gdraw functionpath(p1,line(c,x)) dashed evenly ; + +% a polynomial function: +% +% y = a0 + a1 * x + a2 * x^2 + ... + a[n] * x^n + +vardef poly (suffix $) (expr n, x) = + (for j=0 upto n : + $[j]*(x**j) endfor) % no ; +enddef ; + +% find the determinant of a (n+1)*(n+1) matrix; indices run from 0 to n + +vardef det (suffix $) (expr n) = + hide( + numeric determinant ; determinant := 1 ; + save jj ; numeric jj ; + for k=0 upto n : + if $[k][k]=0 : + jj := -1 ; + for j=0 upto n : + if $[k][j]<>0 : + jj := j ; + exitif true ; + fi + endfor + if jj<0 : + determinant := 0 ; + exitif true ; fi - exitunless zero ; - endfor - if zero : - determinant := 0 ; + for j=k upto n : % interchange the columns + temp := $[j][jj] ; + $[j][jj] := $[j][k] ; + $[j][k] := temp ; + endfor + determinant = -determinant ; fi - exitif zero ; - for j = k upto n : % interchange the columns - temp := copy[j][jj] ; - copy[j][jj] := copy[j][k] ; - copy[j][k] := temp ; - endfor - determinant = -determinant ; - fi - exitif zero ; - determinant := determinant * copy[k][k] ; - if k < n : % subtract row k from lower rows to get a diagonal matrix - for j = k + 1 upto n : - for i = k + 1 upto n : - copy[j][i] := copy[j][i] - copy[j][k] * copy[k][i] / copy[k][k] ; + exitif determinant=0 ; + determinant := determinant * $[k][k] ; + if k 0 : t else : 1 fi ; % weight + x1 := w ; + for j=0 upto 2n : sumx[j] := sumx[j] + x1 ; - x1 := x1 * x0 ; + x1 := x1 * x ; endfor - y1 := y0 ; - for j = 0 upto n : + y1 := y * w ; + for j=0 upto n : sumy[j] := sumy[j] + y1 ; - y1 := y1 * x0 ; + y1 := y1 * x ; endfor - chisq := chisq + y0*y0 ; + Gchisq_ := Gchisq_ + y*y*w ; endfor % construct matrices and calculate the polynomial coefficients save m ; numeric m[][] ; - for j = 0 upto n : - for k = 0 upto n : - i := j + k ; - m[j][k] := sumx[i] ; + for j=0 upto n : + for k=0 upto n : + m[j][k] := sumx[j+k] ; endfor endfor save delta ; numeric delta ; - delta := det.m(n) ; + delta := det(m,n) ; % this destroys the matrix m[][], which is OK if delta = 0 : - chisq := 0 ; + Gchisq_ := 0 ; for j=0 upto n : $[j] := 0 ; endfor else : - for l = 0 upto n : - for j = 0 upto n : - for k = 0 upto n : - i := j + k ; - m[j][k] := sumx[i] ; + for i=0 upto n : + for j=0 upto n : + for k=0 upto n : + m[j][k] := sumx[j+k] ; endfor - m[j][l] := sumy[j] ; + m[j][i] := sumy[j] ; endfor - $[l] := det.m(n) / delta ; + $[i] := det(m,n) / delta ; % matrix m[][] gets destroyed... endfor - for j = 0 upto n : - chisq := chisq - 2*$[j]*sumy[j] ; - for k = 0 upto n : - i := j + k ; - chisq := chisq + $[j]*$[k]*sumx[i] ; + for j=0 upto n : + Gchisq_ := Gchisq_ - 2sumy[j]*$[j] ; + for k=0 upto n : + Gchisq_ := Gchisq_ + $[j]*$[k]*sumx[j+k] ; endfor endfor % normalize by the number of degrees of freedom - chisq := chisq / (length(@#) - n) ; + Gchisq_ := Gchisq_ / (length(p) - n) ; + fi + fi +enddef ; + +% y = a0 + a1 * x +% +% of course a line is just a polynomial of order 1 + +vardef line (suffix $) (expr x) = poly($,1,x) enddef ; % beware: potential name clash +vardef linefit (suffix p, $) (text t) = polyfit(p, $, 1, t) ; enddef ; + +% and a constant is polynomial of order 0 + +vardef const (suffix $) (expr x) = poly($,0,x) enddef ; +vardef constfit (suffix p, $) (text t) = polyfit(p, $, 0, t) ; enddef ; + +% y = a1 * exp(a0*x) +% +% exp and ln defined in metafun + +vardef exponential (suffix $) (expr x) = $1*exp($0*x) enddef ; + +% since we take a log, this only works for positive ordinates + +vardef exponentialfit (suffix p, $) (text t) = + save a ; numeric a[] ; + save q ; path q ; % fit to the log of the ordinate + for i=0 upto length p : + if ypart(point i of p)>0 : + augment.q(xpart(point i of p),ln(ypart(point i of p))) ; + fi + endfor + linefit(q,a,t) ; + $0 := a1 ; + $1 := exp(a0) ; +enddef ; + +% y = a1 * x**a0 + +vardef power (suffix $) (expr x) = $1*(x**$0) enddef ; + +% since we take logs, this only works for positive abcissae and ordinates + +vardef powerfit (suffix p, $) (text t) = + save a ; numeric a[] ; + save q ; path q ; % fit to the logs of the abcissae and ordinates + for i=0 upto length p : + if (xpart(point i of p)>0) and (ypart(point i of p)>0) : + augment.q(ln(xpart(point i of p)),ln(ypart(point i of p))) ; fi + endfor + linefit(q,a,t) ; + $0 := a1 ; + $1 := exp(a0) ; +enddef ; + +% gaussian: y = a2 * exp(-ln(2)*((x-a0)/a1)^2) +% +% a1 is the hwhm; sigma := a1/sqrt(2ln(2)) or a1/1.17741 + +numeric lntwo ; lntwo := ln(2) ; % brrr, why not inline it + +vardef gaussian (suffix $) (expr x) = + if $1 = 0 : + if x = $0 : $2 else : 0 fi + else : + $2 * exp(-lntwo*(((x-$0)/$1)**2)) + fi + if known $3 : + + $3 fi enddef ; -vardef poly@#(expr n, x) = - for j = 0 upto n : - + @#[j]*(x**j) - endfor % no ; +% since we take a log, this only works for positive ordinates + +vardef gaussianfit (suffix p, $) (text t) = + save a ; numeric a[] ; + save q ; path q ; % fit to the log of the ordinate + for i=0 upto length p : + if ypart(point i of p)>0 : + augment.q(xpart(point i of p), ln(ypart(point i of p))) ; + fi + endfor + polyfit(q,a,2,if t > 0 : ln(t) else : 0 fi) ; + $1 := sqrt(-lntwo/a2) ; + $0 := -.5a1/a2 ; + $2 := exp(a0-.25*a1*a1/a2) ; + $3 := 0 ; % polyfit will NOT work with a non-zero background! enddef ; -vardef line@#(expr x) = - poly@# (1,x) +% lorentzian: y = a2 / (1 + ((x - a0)/a1)^2) + +vardef lorentzian (suffix $) (expr x) = + if $1 = 0 : + if x = $0 : $2 else : 0 fi + else : + $2 / (1 + ((x - $0)/$1)**2) + fi + if known $3 : + + $3 + fi enddef ; -vardef linefit@#(suffix chisq, $) = - polyfit@#(chisq, $, 1) ; +vardef lorentzianfit (suffix p, $) (text t) = + save a ; numeric a[] ; + save q ; path q ; % fit to the inverse of the ordinate + for i=0 upto length p : + if ypart(point i of p)<>0 : + augment.q(xpart(point i of p), 1/ypart(point i of p)) ; + fi + endfor + polyfit(q,a,2,if t <> 0 : 1/(t) else : 0 fi) ; + $0 := -.5a1/a2 ; + $2 := 1/(a0-.25a1*a1/a2) ; + $1 := sqrt((a0-.25a1*a1/a2)/a2) ; + $3 := 0 ; % polyfit will NOT work with a non-zero background! enddef ; diff --git a/metapost/context/base/mp-tool.mpiv b/metapost/context/base/mp-tool.mpiv index a947143c4..5b53dcdef 100644 --- a/metapost/context/base/mp-tool.mpiv +++ b/metapost/context/base/mp-tool.mpiv @@ -2307,3 +2307,18 @@ enddef ; % setbounds currentpicture to mfun_bleed_box ; % ) % enddef ; + +%D Dimensions have bever been an issue as traditional MP can't make that large +%D pictures, but with double mode we need a catch: + +newinternal maxdimensions ; maxdimensions := 14000 ; + +def mfun_apply_max_dimensions = % not a generic helper, we want to protect this one + if bbwidth currentpicture > maxdimensions : + currentpicture := currentpicture if bbheight currentpicture > bbwidth currentpicture : ysized else : xsized fi maxdimensions ; + elseif bbheight currentpicture > maxdimensions : + currentpicture := currentpicture ysized maxdimensions ; + fi ; +enddef; + +extra_endfig := extra_endfig & "mfun_apply_max_dimensions ;" ; -- cgit v1.2.3