diff options
author | Hans Hagen <pragma@wxs.nl> | 2013-05-21 16:14:00 +0200 |
---|---|---|
committer | Hans Hagen <pragma@wxs.nl> | 2013-05-21 16:14:00 +0200 |
commit | 9d8e8c6d368abc72eae60cc0b24984cc2506a1bf (patch) | |
tree | 8eb26e90f7d428280d9d66c7b03430053fffcae0 /metapost | |
parent | bd95a21d2b31a5fab1b4cc7c2b0334823fb3a3e9 (diff) | |
download | context-9d8e8c6d368abc72eae60cc0b24984cc2506a1bf.tar.gz |
beta 2013.05.21 16:14
Diffstat (limited to 'metapost')
-rw-r--r-- | metapost/context/base/mp-grap.mpiv | 125 |
1 files changed, 78 insertions, 47 deletions
diff --git a/metapost/context/base/mp-grap.mpiv b/metapost/context/base/mp-grap.mpiv index 34b1bd1cc..5761931ff 100644 --- a/metapost/context/base/mp-grap.mpiv +++ b/metapost/context/base/mp-grap.mpiv @@ -67,21 +67,37 @@ fi input string.mp % Private version of a few marith macros, fixed for double math... -newinternal mzero ; mzero := -53*mlog 2 ; % Anything at least this small is treated as zero -newinternal mlogten ; mlogten := mlog(10) ; % Would this be better inline? +newinternal mlogten ; mlogten := mlog(10) ; +newinternal doubleinfinity ; doubleinfinity := 2**1024 ; +% Note that we get arithmetic overflows if we set to -doubleinfinity below. -% Safely convert a number to mlog form +% Safely convert a number to mlog form, trapping zero. vardef graph_mlog primary x = - if unknown x : whatever - elseif x=0 : mzero - else : mlog(abs x) - fi + if unknown x: whatever elseif x=0: -.5doubleinfinity else: mlog(abs x) fi +enddef ; +vardef graph_exp primary x = + if unknown x: whatever else: mexp(x) fi +enddef ; + +% and add the following for utility/completeness +% (replacing the definitions in mp-tool.mpiv). +vardef logten primary x = + if unknown x: whatever elseif x=0: -.5doubleinfinity else: mlog(abs x)/mlog(10) fi +enddef ; +vardef ln primary x = + if unknown x: whatever elseif x=0: -.5doubleinfinity else: mlog(abs x)/256 fi +enddef ; +vardef exp primary x = + if unknown x: whatever else: (mexp 256)**x fi +enddef ; +vardef powten primary x = + if unknown x: whatever else: 10**x fi enddef ; % Convert x from mlog form into a pair whose xpart gives a mantissa and whose % ypart gives a power of ten. vardef graph_Meform(expr x) = - if x<=mzero : origin + if x<=-doubleinfinity : origin else : save e, m ; e=floor(x/mlogten)-3; m := mexp(x-e*mlogten) ; if abs m<1000 : m := m*10 ; e := e-1 ; elseif abs m>=10000 : m := m/10 ; e := e+1 ; fi @@ -115,6 +131,7 @@ enddef ; % New : save graph_background ; color graph_background ; % if defined, fill the frame. +save graph_close_file ; boolean graph_close_file ; graph_close_file = false ; def begingraph(expr w, h) = begingroup @@ -169,7 +186,7 @@ enddef ; newinternal log, linear ; % coordinate system codes log :=1 ; linear :=2; -% note that mp-tool.mpiv defines log as log10... +% note that mp-tool.mpiv defines log as log10. %%%%%%%%%%%%%%%%%%%%%% Coordinates : setcoords, setrange %%%%%%%%%%%%%%%%%%%%%% @@ -435,10 +452,14 @@ enddef ; % Execute c for each line of data read from file f, and stop at the first % line with no data. Commands c can use line number i and tokens $1, $2, ... def gdata(expr f)(suffix $)(text c) = + boolean flag ; for i=1 upto infinity : exitunless graph_read_line$(f) ; c endfor + if graph_close_file : + closefrom f ; + fi enddef ; @@ -1037,44 +1058,45 @@ endfor cycle ; graph_shape[34] := graph_shape[24] rotated 45 ; -% usage : gdraw p plot plotsymbol(1,red,1) ; % a filled red circle -% usage : gdraw p plot plotsymbol(14,blue,0) ; % a blue square -% usage : gdraw p plot plotsymbol(4,green,0.5) ; % a 50% filled green diamond - -def stars(expr c, f) = plotsymbol(25,c,f) enddef ; % a 5-point star -def points(expr c, f) = plotsymbol( 0,c,f) enddef ; -def circles(expr c, f) = plotsymbol( 1,c,f) enddef ; -def crosses(expr c, f) = plotsymbol(34,c,f) enddef ; -def squares(expr c, f) = plotsymbol(14,c,f) enddef ; -def diamonds(expr c, f) = plotsymbol( 4,c,f) enddef ; % a turned square -def uptriangles(expr c, f) = plotsymbol( 3,c,f) enddef ; -def downtriangles(expr c, f) = plotsymbol(13,c,f) enddef ; -def lefttriangles(expr c, f) = plotsymbol(33,c,f) enddef ; -def righttriangles(expr c, f) = plotsymbol(23,c,f) enddef ; - -def plotsymbol(expr n,c,f) = % (number,color,color|number) +% usage : gdraw p plot plotsymbol( 1,1) ; % a filled circle +% usage : gdraw p plot plotsymbol(14,0) ; % a square +% usage : gdraw p plot plotsymbol( 4,.5) ; % a 50% filled diamond + +def stars(expr f) = plotsymbol(25,f) enddef ; % a 5-point star +def points(expr f) = plotsymbol( 0,f) enddef ; +def circles(expr f) = plotsymbol( 1,f) enddef ; +def crosses(expr f) = plotsymbol(34,f) enddef ; +def squares(expr f) = plotsymbol(14,f) enddef ; +def diamonds(expr f) = plotsymbol( 4,f) enddef ; % a turned square +def uptriangles(expr f) = plotsymbol( 3,f) enddef ; +def downtriangles(expr f) = plotsymbol(13,f) enddef ; +def lefttriangles(expr f) = plotsymbol(33,f) enddef ; +def righttriangles(expr f) = plotsymbol(23,f) enddef ; + +def plotsymbol(expr n, f) text t = if known graph_shape[n] : image( - save b ; color b ; b := - if known graph_background : graph_background else : background fi ; + save bg, fg ; color bg, fg ; + bg := if known graph_background : graph_background else : background fi ; + save pic ; picture pic ; pic := image(draw origin _op_ t ;) ; + fg := if color colorpart pic : colorpart pic else : black fi ; save p ; path p ; p = graph_shape[n] scaled graph_shapesize ; - draw p withcolor b withpen currentpen scaled 2 ; % halo + draw p withcolor bg withpen currentpen scaled 2 ; % halo if cycle p : fill p withcolor if color f and known f : f - elseif numeric f and known f and color c and known c : - f[b,c] elseif numeric f and known f : - f[b,black] + f[bg,fg] else : - b + bg fi ; fi - draw p if color c and known c : withcolor c fi ; + draw p withpen currentpen _op_ t ; ) else : nullpicture fi + t enddef ; % standard resistance color code: rainbow sequence (from /usr/share/X11/rgb.txt) @@ -1090,6 +1112,16 @@ resistance_color7 = (148/255,0,211/255) ; resistance_name7 = "darkviolet" resistance_color8 = (190/255,190/255,190/255) ; resistance_name8 = "gray" ; resistance_color9 = (1,1,1) ; resistance_name9 = "white" ; +%def rainbow(expr f) = +% ((abs(5f) mod 5) + 2 - floor((abs(5f) mod 5) + 2)) +% [resistance_color[ floor((abs(5f) mod 5) + 2)], +% resistance_color[ceiling((abs(5f) mod 5) + 2)]] +%enddef ; +def rainbow(expr f) = + hide(numeric n_ ; n_ = (abs(5f) mod 5) + 2 ;) + (n_-floor(n_))[resistance_color[floor n_],resistance_color[ceiling n_]] +enddef ; + % The following extensions are not specific to graph and could be moved to metafun... % sort a path. Efficient en memory use, not so efficient in sorting long paths... @@ -1128,10 +1160,10 @@ def smoothpath (suffix $) = fi enddef ; -% return a path of a function func(x) with abcissa running from f to t over n intervals +% return a path of a function func(x) with abscissa running from f to t over n intervals def makefunctionpath (expr f, t, n) (text func) = - (for x=f step ((t-f)/n) until t : + (for x=f step ((t-f)/(abs n)) until t : if x<>f : .. fi (x, func) endfor ) @@ -1141,24 +1173,23 @@ enddef ; % % example : % -% p1 := addnoisetopath(p0,(.1normaldeviate,.1normaldeviate)) ; +% p1 := addtopath(p0,(.1normaldeviate,.1normaldeviate)) ; -vardef addnoisetopath (suffix p) (text t) = +vardef addtopath (suffix p) (text t) = if path p : - hide(pair p_i) (for i=0 upto length p : if i>0 : -- fi - hide(p_i := point i of p ; x := xpart p_i; y := ypart p_i)z shifted t + hide(clearxy ; z = point i of p ;) z shifted t endfor) fi enddef ; -% return a new path of a function func(x) using the same abcissa as an existing path +% return a new path of a function func(z) using the same abscissa as an existing path -vardef functionpath (suffix p) (text t) = +vardef functionpath (suffix p) (text func) = (for i=0 upto length p : if i>0 : .. fi - (hide(x := xpart(point i of p))x,t) + (hide(x := xpart(point i of p))x,func) %(hide(clearxy ; z = point i of p)x,func) endfor ) enddef ; @@ -1169,9 +1200,9 @@ enddef ; % path p[] ; % numeric a[] ; a0 := 1 ; a1 := .1 ; a2 := .01 ; a3 := .001 ; a4 := 0.0001 ; % p0 := makefunctionpath(0,5,10,polynomial_function(a,4,x)) ; -% p1 := addnoisetopath(p0,(0,.001normaldeviate)) ; +% p1 := addtopath(p0,(0,.001normaldeviate)) ; % gdraw p0 ; -% gdraw p1 plot plotsymbol(1,black,.5) ; +% gdraw p1 plot plotsymbol(1,.5) ; % % numeric b[] ; % polynomial_fit(p1, b, 4, 1) ; @@ -1298,7 +1329,7 @@ vardef polynomial_fit (suffix p, $) (expr n) (text t) = endfor endfor % normalize by the number of degrees of freedom - fit_chi_squared := fit_chi_squared / (length(p) - n) ; + fit_chi_squared := fit_chi_squared / (length(p) - n) ; % length(p)+1-(n+1) fi fi enddef ; @@ -1342,11 +1373,11 @@ enddef ; vardef power_law_function (suffix $) (expr x) = $1*(x**$0) enddef ; -% since we take logs, this only works for positive abcissae and ordinates +% since we take logs, this only works for positive abscissae and ordinates vardef power_law_fit (suffix p, $) (text t) = save a ; numeric a[] ; - save q ; path q ; % fit to the logs of the abcissae and ordinates + save q ; path q ; % fit to the logs of the abscissae and ordinates for i=0 upto length p : if (xpart(point i of p)>0) and (ypart(point i of p)>0) : augment.q(ln(xpart(point i of p)),ln(ypart(point i of p))) ; |